<table>
<thead>
<tr>
<th>Title</th>
<th>Estimating Siegel Modular Forms of Genus 2 Using Jacobi Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Aoki, Hiroki</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-03-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.11501/3167076</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
学位申請論文

青木 宏樹
Estimating Siegel Modular Forms of Genus 2 Using Jacobi Forms

Hiroki Aoki

December 3, 1999

Abstract

We give a new elementary proof of Igusa's theorem on the structure of Siegel modular forms of genus 2. The key point of the proof is the estimation of the dimension of Jacobi forms appearing in the Fourier-Jacobi development of Siegel modular forms. This proves not only Igusa's theorem, but also gives the canonical lifting from Jacobi forms to Siegel modular forms of genus 2.

1 Igusa's theorem

On the Siegel upper-half plane of genus $g \in \mathbb{N}$

$$H_g := \left\{ Z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C}) \mid \mathrm{Im}(Z) > 0 \right\},$$

the symplectic group

$$Sp_g(\mathbb{R}) := \left\{ M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in SL_2(\mathbb{R}) \mid \begin{pmatrix} A & B \\ C & D \end{pmatrix}^t A + B = t cA, \begin{pmatrix} A & B \\ C & D \end{pmatrix}^t B = t dB \right\}$$

acts by

$$H_g \ni Z \mapsto M(Z) := (AZ + B)(CZ + D)^{-1} \in H_g.$$

For $k \in \mathbb{Z}$, the function F is a Siegel modular form of genus g and weight k, if F satisfies the following conditions:

(S1) $F : H_g \to \mathbb{C}$ is holomorphic.

(S2) $F(Z) = \det(CZ + D)^{-k} F(M(Z))$ for any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp_g(\mathbb{Z})$.

1
\((S3)\) \(F\) has the Fourier expansion

\[
F(Z) = \sum_{T=T \geq 0, \text{even integral}} a(T) \exp(\pi \sqrt{-1} \sigma(TZ)),
\]

where \(\sigma\) means the trace of the matrix.

We remark that the condition \((S3)\) is induced by the conditions \((S1)\) and \((S2)\) if \(g \geq 2\). Let \(G(k, \text{Sp}_g(Z))\) be the \(\mathbb{C}\)-vector space of all Siegel modular forms of genus \(g\) and weight \(k\). The following properties about \(G(k, \text{Sp}_g(Z))\) are well-known.

\((S4)\) \(G(0, \text{Sp}_g(Z)) = \mathbb{C}\) and \(G(k, \text{Sp}_g(Z)) = \{0\}\) if \(k < 0\).

About more details of Siegel modular forms, for instance, see Freitag [3].

Put \(M_k := G(k, \text{Sp}_1(Z))\) and \(M_* := \bigoplus_k M_k\) be the induced graded ring. It is well-known that

\[M_* = \mathbb{C}[e_4, e_6],\]

where \(e_k\) is the Eisenstein series of weight \(k\) for \(k = 4, 6\). These two generators are algebraically independent.

Put \(M_k := G(k, \text{Sp}_2(Z))\) and \(M_* := \bigoplus_k M_k\) be the induced graded ring. Igusa [4, 5] showed the structure of \(M_*\).

Theorem 1 (Igusa) The structure of \(M_*\) is

\[M_* = \mathbb{C}[E_4, E_6, \Delta_{10}, \Delta_{12}] \oplus \Delta_{35}\mathbb{C}[E_4, E_6, \Delta_{10}, \Delta_{12}],\]

where \(E_k\) is the Eisenstein Series of weight \(k\) for \(k = 4, 6\) and \(\Delta_k\) is the unique cusp forms of weight \(k\) for \(k = 10, 12, 35\).

Now, we give another and more elementary proof of this theorem. For an element of \(M_k\), we consider the Fourier expansion with respect to the last variable. This gives an injection from \(M_k\) to the spaces of Jacobi forms. We can give the upper bound of the dimension of this image by a similar method in the book of Eichler-Zagier [1]. Surprisingly, this upper bound coincides with the exact dimension of \(M_k\). This proves not only Igusa’s theorem, but also gives the canonical lifting from Jacobi forms to Siegel modular forms of genus 2.
2 Estimation

For $k \in \mathbb{Z}$ and $m \in \mathbb{N}_0$, the function φ is a Jacobi form of weight k and index m, if φ satisfies the following conditions:

(J1) $\varphi : \mathbb{H}_1 \times \mathbb{C} \to \mathbb{C}$ is holomorphic.

(J2) $\varphi(\tau, z) = (cz + d)^{-k} \exp(-\frac{cz^2}{cz + d}) \varphi(\frac{at + b}{cz + d}, \frac{z}{cz + d})$ for any $(a \ b \ c \ d) \in SL_2(\mathbb{Z})$, where $e(*) := \exp(2\pi \sqrt{-1}*)$.

(J3) $\varphi(\tau, z) = q^{mx^2} \zeta^{2m \tau} \varphi(\tau, z + x \tau + y)$ for any $x, y \in \mathbb{Z}$, where $q := e(\tau)$, $\zeta := e(z)$.

(J4) φ has the Fourier expansion

$\varphi(\tau, z) = \sum_{4mn - \ell^2 \geq 0} a(n, l) q^n \zeta^\ell$.

Let $J_{k,m}$ be the \mathbb{C}-vector space of all Jacobi forms of weight k and index m. In the book of Eichler-Zagier [1], they prove the following theorem.

Theorem 2 (Eichler-Zagier [1] Theorem 3.1 and 3.4) We have the following relations between Jacobi forms and Siegel modular forms.

(A) For each $v \in \mathbb{N}_0$ and $k \in \mathbb{N}$, there exists a polynomial P_v^k that induces the map D_v:

$\varphi(\tau, z) = \sum_{n,l} a(n, l) q^n \zeta^l \in J_{k,m}$

$\mapsto D_v \varphi(\tau) := \sum_{n,l} P_v^k(l, nm)a(n, l)q^n \in M_{k+v}$.

(B) The maps D_v induce injections

$\begin{cases}
\prod_{v=0}^{m} D_{2v} : J_{k,m} \to \prod_{v=0}^{m} M_{k+2v} & (k \text{ even}) \\
\prod_{v=1}^{m-1} D_{2v-1} : J_{k,m} \to \prod_{v=1}^{m-1} M_{k+2v-1} & (k \text{ odd, } m \geq 2)
\end{cases}$

If k is odd, $J_{k,0} = \{0\}$ and $J_{k,1} = \{0\}$.

For $r \in \mathbb{N}_0$, we put

$J_{k,m}^{(r)} := \left\{ \varphi(\tau, z) = \sum_{n,l} a(n, l) q^n \zeta^l \in J_{k,m} \mid a(n, l) = 0 \text{ if } n < r \right\}$
and
\[M_k^{(r)} := \left\{ f(\tau) = \sum_n a(n)q^n \in M_k \mid a(n) = 0 \text{ if } n < r \right\}. \]

We remark \(J_{k,m} = J_{k,m}^{(0)} \supset J_{k,m}^{(1)} \supset J_{k,m}^{(2)} \supset \cdots \) and \(M_k = M_k^{(0)} \supset M_k^{(1)} \supset M_k^{(2)} \supset \cdots \). The following lemma is easily induced from Theorem 2.

Lemma 3 We have the following estimation,
\[
\dim J_{k,m}^{(r)} \leq \begin{cases}
\sum_{v=0}^{m} \dim M_{k+2v}^{(r)} & (k \text{ even}) \\
\sum_{v=1}^{m-1} \dim M_{k+2v-1}^{(r)} & (k \text{ odd}, m \geq 2) \\
0 & (k \text{ odd}, m \leq 1)
\end{cases}.
\]

The element \(\Delta(\tau) := q \prod_{n=1}^{\infty} (1 - q^n)^{24} \in M_1^{(1)} \) induces the relation \(\dim M_k^{(r)} = \dim M_{k-12}^{(r-1)} \). Hence \(\dim M_k^{(r)} = \dim M_{k-12r}^{(r)} \).

We define \(P_m : M_k \ni f \mapsto \varphi_m \in J_{k,m} \) by the Fourier-Jacobi development
\[
M_k \ni F(\tau, \omega) = \sum_{m \geq 0} \varphi_m(\tau, z)p^m,
\]
where \(p := e(\omega) \). Under this development, the translations with respect to
\[
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array} \right), \left(\begin{array}{cc}
1 & y \\
x & 1
\end{array} \right) \in SP_2(\mathbb{Z}) \quad \left(\begin{array}{cc}
x & y \\
y & x
\end{array} \right) \in SL_2(\mathbb{Z})
\]
give the translation formulas (J2) and (J3) of Jacobi forms. The modular invariance by the translation with respect to
\[
\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array} \right) \in SP_2(\mathbb{Z})
\]
gives the condition \(F(\tau, \omega) = (-1)^k F(\tau, \omega) \). These elements generate \(SP_2(\mathbb{Z}) \).

We put
\[
M_k^{(r)} := \left\{ F(\tau, \omega) = \sum_m \varphi_m(\tau, z)p^m \in M_k \mid \varphi_m(\tau, z) = 0 \text{ if } m < r \right\}.
\]

We remark \(M_k = M_k^{(0)} \supset M_k^{(1)} \supset M_k^{(2)} \supset \cdots \). Then we have the exact sequence
\[
0 \longrightarrow M_k^{(r+1)} \longrightarrow M_k^{(r)} \xrightarrow{P_r} J_{k,r}.
\]
The condition $F(z_w) = (-1)^k F(z_w)$ gives an information of the image of P_r. In terms of the Fourier expansion $M_k \ni F(z_w) = \sum a(n, l, m) q^n \zeta^l p^m$, the condition $F(z_w) = (-1)^k F(z_w)$ means $a(n, l, m) = (-1)^k a(m, l, n)$.

Now we assume that k is even. The condition $a(n, l, m) = a(m, l, n)$ induces the exact sequence

$$0 \longrightarrow M_k^{(r+1)} \longrightarrow M_k^{(r)} \overset{P_r}{\longrightarrow} J_k^{(r)}$$

and the estimation

$$\dim M_k^{(r)} - \dim M_k^{(r+1)} \leq \dim J_k^{(r)}.$$

Because

$$\dim J_k^{(r)} \leq \sum_{v=0}^{r} \dim M_{k+2v-12r},$$

we have $J_k^{(r)} = \{0\}$ for sufficiently large r, and hence $M_k^{(r)} = M_k^{(r+1)} = \cdots = \{0\}$. Then we have

$$\dim M_k \leq \sum_{r=0}^{\infty} \dim J_k^{(r)} \leq \sum_{v=0}^{\infty} \sum_{r=0}^{v} \dim M_{k+2v-12r}.$$

The Poincare series of the right-hand side is

$$\sum_{r=0}^{\infty} \sum_{v=0}^{r} \frac{t^{12r-2v}}{(1-t^4)(1-t^6)} = \frac{1}{(1-t^4)(1-t^6)(1-t^{10})(1-t^{12})}. \quad (1)$$

Assume the existence of the generators $E_4, E_6, \Lambda_{10}, \Lambda_{12}$ and their algebraic independence for a while. Then (1) shows that the graded ring of even weight is generated by these generators. We have also the short exact sequence

$$0 \longrightarrow M_k^{(r+1)} \longrightarrow M_k^{(r)} \overset{P_r}{\longrightarrow} J_k^{(r)} \longrightarrow 0.$$

Now we assume that k is odd. The condition $a(n, l, m) = -a(m, l, n)$, especially $a(m, l, m) = 0$, induces the exact sequence

$$0 \longrightarrow M_k^{(r+1)} \longrightarrow M_k^{(r)} \overset{P_r}{\longrightarrow} J_k^{(r+1)}.$$
Similarly to the even case, we have

\[\dim \mathbb{M}_k \leq \sum_{r=0}^{\infty} \dim \mathcal{J}^{(r+1)}_{k,r} \]
\[\leq \sum_{r=2}^{\infty} \sum_{v=1}^{r-1} \dim \mathbb{M}_{k+2v-12r-13}. \]

The Poincare series of the right-hand side is

\[\sum_{r=2}^{\infty} \sum_{v=1}^{r-1} \frac{t^{12r-2v+13}}{(1-t^4)(1-t^6)} = \frac{t^{35}}{(1-t^4)(1-t^6)(1-t^{10})(1-t^{12})}. \]

This shows that any modular form of odd weight is the product of \(\Delta_{35} \) and a modular form of even weight, if we admit the existence of \(\Delta_{35} \) due to Igusa.

We have also the short exact sequence

\[0 \longrightarrow \mathbb{M}_{k}^{(r+1)} \longrightarrow \mathbb{M}_{k}^{(r)} \longrightarrow \mathcal{J}^{(r+1)}_{k,r} \longrightarrow 0. \]

We have thus given a new proof of Igusa's theorem, assuming the existence of the generators \(E_4, E_6, \Delta_{10}, \Delta_{12}, \Delta_{35} \) and the algebraic independence of the even generators. We now briefly discuss their existence and algebraic independence. Using theta series, the even generators were constructed in Igusa [4] and Freitag [2], while \(\Delta_{35} \) was constructed in Igusa [5]. The explicit relation \(\Delta_{35}^2 \in \mathbb{C}[E_4, E_6, \Delta_{10}, \Delta_{12}] \) was given by Igusa [6]. We remark that the existence of \(E_4, E_6, \Delta_{10}, \Delta_{12} \) also follows using Jacobi forms from the following proposition (cf. Eichler-Zagier [1] Theorem 6.2), which is a consequence of Saito-Kurokawa lifting.

Proposition 4 For any \(\varphi(\tau, z) = \sum a(n,l)q^n\zeta^l \in \mathcal{J}_{k,1} \), there exists \(F \in \mathbb{M}_k \) such that \(P_1(F) = \varphi \) and that \(P_6(F) = \text{const.} \times a(0,0) \times e_k. \)

Finally, we prove the algebraic independence of \(E_4, E_6, \Delta_{10} \) and \(\Delta_{12} \). These generators have the forms

\[E_4(\tau, z) = c_4(\tau) + 240c_{4,1}(z, \tau)p + \ldots \]
\[E_6(\tau, z) = c_6(\tau) - 504c_{6,1}(z, \tau)p + \ldots \]
\[\Delta_{10}(\tau, z) = 0 + c_{10,1}(z, \tau)p + \ldots \]
\[\Delta_{12}(\tau, z) = 0 + c_{12,1}(z, \tau)p + \ldots \]

\[= 0 + (0 - 4\pi^2\Delta(\tau)z^2 + \ldots)p + \ldots \] (cusp form)

\[= 0 + (12\Delta(\tau) + \star z^2 + \ldots)p + \ldots \] (cusp form),
where \(e_{k,1} \) is the unique Jacobi form of weight \(k = 4, 6 \) and index 1, and \(\varphi_{k,1} \) is the unique Jacobi cusp form of weight \(k = 10, 12 \) and index 1. Now we show their algebraic independence. Suppose
\[
\sum_{4b_1 + 6c_1 + 10d_1 + 12e_1 = k} a_i E_4^{b_i} E_6^{c_i} \Delta_{10}^{d_i} \Delta_{12}^{e_i} = 0
\]
and \(a_i \neq 0 \) for any \(i \). Let \(s := \min\{d_i + e_i\} \) and \(t := \min\{d_i \mid d_i + e_i = s\} \). Then the contribution to the coefficient of \(p^s z^{2t} \) in (2) only comes from \(e_i = s - t \) and \(d_i = t \). Hence we have
\[
\sum_{4b_1 + 6c_1 + 10d_1 + 12(s-t) = k} a_i E_4^{b_i} E_6^{c_i} (-4\pi^2 \Delta)^{t}(12\Delta)^{s-t} = 0.
\]
That is, \(\sum_{4b_1 + 6c_1 + 10d_1 + 12(s-t) = k} a_i E_4^{b_i} E_6^{c_i} = 0 \). From the algebraic independence of \(E_4 \) and \(E_6 \), we have \(a_i = 0 \) when \(e_i = s - t \), \(d_i = t \). This is a contradiction. Hence \(E_4, E_6, \Delta_{10}, \Delta_{12} \) are algebraically independent.

3 Lifting

Let \(\varphi_{35,2} := P_2(\Delta_{35}) \in J_{35,2}^{(3)} \). As seen in the previous section, we have the following commutative diagram

\[
\begin{array}{cccccc}
\text{(odd weight)} & 0 & \longrightarrow & M_{k+35}^{(r+3)} & \longrightarrow & M_{k+35}^{(r+2)} \\
& i \uparrow \times \Delta_{35} & & \downarrow P_{r+3} & & \downarrow J_{k+35,r+2}^{(r+3)} \\
\text{(even weight)} & 0 & \longrightarrow & M_{k}^{(r+1)} & \longrightarrow & M_{k}^{(r)} \\
& & i \uparrow \times \Delta_{35} & & \downarrow P_{r} & \longrightarrow \ J_{k,r}^{(r)} & \longrightarrow 0
\end{array}
\]

We shall give the splitting map of these exact sequences. From the previous section, we have the dimension formula
\[
\dim J_{k,r}^{(r)} = \sum_{v=0}^{r} \dim M_{k+2v}^{(r)}
\]
for any even weight \(k \), hence the generating function is
\[
\sum_{k \in 2\mathbb{Z}} \sum_{r=0}^{\infty} \dim J_{k,r}^{(r)} t^k s^r = \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} \sum_{v=0}^{r} \dim M_{k+2v-12r}^{(r)} t^k s^r
\]
\[
= \sum_{r=0}^{\infty} \sum_{v=0}^{r} \frac{t^{12r-2v}}{(1-t^4)(1-t^6)}
\]
\[
= \frac{1}{(1-t^4)(1-t^6)(1-t^{10})(1-t^{12})}.
\]
Therefore we have the expression

\[J_{\text{even}}^{(r)} := \bigoplus_{k \in \mathbb{Z}} \bigoplus_{r=0}^{\infty} \mathbb{C}[e_4, e_6, \varphi_{10,1}, \varphi_{12,1}]. \]

We remark that this graded ring structure also can be induced from the theory of weak Jacobi forms, given by Eichler-Zagier [1] Theorem 9.3. The correspondences \(e_k \mapsto E_k \) for \(k = 4, 6 \) and \(\varphi_{k,1} \mapsto \Delta_k \) for \(k = 10, 12 \) induce the ring homomorphism \(L : J_{\text{even}}^{(r)} \to \mathbb{M}_* \). For even weight \(k \), define \(L_{k,r} : J_{k,r}^{(r)} \to M_k^{(r)} \) by \(\varphi_{k,1} \mapsto \Delta_k \cdot L_{k-35,r-3}(\varphi_{35,2}) \). Also this \(L_{k,r} \) satisfies \(P_r \circ L_{k,r} = \text{id} \) and splits the exact sequence. For any odd weight \(k \), define \(L_{k,r} : J_{k,r}^{(r+1)} \to M_k^{(r)} \) by \(\varphi_{k,1} \mapsto \Delta_k \cdot L_{k-35,r-3}(\varphi_{35,2}) \). Also this \(L_{k,r} \) satisfies \(P_r \circ L_{k,r} = \text{id} \) and splits the exact sequence. We have proved the following theorem.

Theorem 5 We have the following result:

(A) Let \(k \) be an even integer.

(a) The sequence \(0 \to \mathbb{M}_k^{(r+1)} \to \mathbb{M}_k^{(r)} \to P_r, \mathbb{J}_{k,r}^{(r)} \to 0 \) is exact.

(b) Define the ring homomorphism \(L : J_{\text{even}}^{(r)} \to \mathbb{M}_* \) by \(e_k \mapsto E_k \) for \(k = 4, 6 \) and \(\varphi_{k,1} \mapsto \Delta_k \) for \(k = 10, 12 \), and \(L_{k,r} : J_{k,r}^{(r)} \to M_k^{(r)} \) be a restriction of \(L \). Then \(L_{k,r} \) splits (a), that is, \(P_r \circ L_{k,r} = \text{id} \).

(B) Let \(k \) be an odd integer.

(a) The sequence \(0 \to \mathbb{M}_k^{(r+1)} \to \mathbb{M}_k^{(r)} \to P_r, \mathbb{J}_{k,r}^{(r+1)} \to 0 \) is exact.

(b) Define \(L_{k,r} : J_{k,r}^{(r+1)} \to M_k^{(r)} \) by \(\varphi_{k,1} \mapsto \Delta_k \cdot L_{k-35,r-3}(\varphi_{35,2}) \). Then \(L_{k,r} \) splits (a), that is, \(P_r \circ L_{k,r} = \text{id} \).

Remark Theorem 5(A) is proved only using the theory of Jacobi forms, and we do not use the theory of theta series, which was used in the proof of Igusa and the one of Freitag. But in the proof of (B), we use the existence of \(\Delta_{35} \), that was given by Igusa using theta series. The problem to construct \(L_{35,2} \) directly not using \(\Delta_{35} \), is still open.

Acknowledgment I am deeply grateful to Professor Kyoji Saito for his encouragement. I would like to thank Professor Don Zagier and Professor Takashi Sugano for their useful advice and discussions.
References

