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Abstract

Algorithms of realtime garbage collection are presented, which are intended for list
processing systems on general-purpose machines, i.e., Von Neumann style serial computers
with a single processor. On these machines, realtime garbage collection inevitably puts
some overhead on the overall execution efficiency of the list processing system, because
some of the list processing primitives must check the status of the garbage collection. By
avoiding such a check during execution of frequently used operations such as pointer
references (e.g., Lisp car and cdr) and stack manipulations, the presented algorithms
reduce the execution overhead to a great extent. Although these algorithms do not
support compaction of the whole data space, they efficiently support "partial compaction”
such as array relocation. A rigorous proof of the algorithms is given, first by postulating
several invariants that hold between calls to the list processing primitives, and then by
proving the invariants by induction. The proved invariants are then used for the
evaluation of the presented algorithms.

1. Introduction

Garbage collection is the most popular method to reclaim discarded list cells in list
processing systems such as Lisp. Although there are several variations of garbage
collection, they share essentially the same scheme: Available cells are collected together
to form a freelist and one cell is removed from the freelist each time the list processing
program requires a new cell. When the .freelist exhausts or becomes too short, the list
processing program is temporarily suspended and the program of garbage collection (the
garbage collector) begins to run. The whole process of the garbage collector consists of
two major phases. The mark phase determines which cells are in use (or accessible), by
traversing list structures in use. The sweep phase then puts all inaccessible cells into the
freelist. In addition, someé list processing systems have the compaction phase (or
relocation phase) in which all accessible cells are moved into a contiguous. memory area
and pointer references to the relocated cells are updated appropriately. After the
execution of the garbage collector, the execution of the list processing program is
resumed.

The primary disadvantage of garbage collection is that it periodically suspends the
main list processing program. Roughly speaking, the time for a garbage collection is
estimated as a4 + BV, where 4 is the number of accessible cells when the garbage
collector is invoked and V is the size of the whole memory space. a« and 8 are some



positive factors. As the list processing program uses more cells, the time for each garbage
collection and thus the suspension time of the main list processing program becomes
longer. As reported in [15], for typical list processing programs, each garbage collection
takes from several seconds to several ten seconds. It is difficult for an interactive or
realtime list processing system to provide adequate service when it frequently suspends
the execution of the main program for such a long time. This is typically the case of Al
( Artificial Intelligence) applications for which list processing systems are mostly used.
For example, if the program controls a robot in a product line of a car factory. the robot
will stop its movement periodically while the line keeps moving. As the result, most cars
from the factory cannot be sold because some parts may be missing or the bodies may be
partially painted, depending on the role of the robot. In the worst case, the movement of
the robot asynchronous with other facilities may cause a disastrous accident.

In order to remove this suspension of list processing programs, several algorithms of
“realtime" garbage collection have been proposed [1,2,5,6,10,11,14,15]. A realtime garbage
collector runs in parallel with the main program so that the time for each list processing
primitive is bounded by some small constant. Most of these realtime algorithms are
intended for multi-processor machines. The basic idea is to use one processor for garbage
collection while another processor is responsible for the execution of the main program.
Unfortunately. those algorithms are not appropriate for general-purpose machines on which
many list processing systems are running. Here, general-purpose machines refer to Von
Neumann style computers with a single processor, such as MC68000 and VAX. For these
machines, no supports are expected from the underlying hardware nor from the firmware.
If the algorithms were simulated on general-purpose machines, the overall system
efficiency would be reduced to a great extent because of the frequent switching between
the main process and the garbage collection process. Now a days, some Lisp machines are
available as commercial products, but there are much more Lisp systems (or list processing
systems in general) in use on general-purpose machines. It seems that many further Lisp
systems will become available on general-purpose machines in the future. Hence the need
for an efficient realtime algorithm for general-purpose machines.

On the other hand, Baker's realtime algorithm [1] is inherently serial and has been
implemented on single-processor machines [13]. However, this algorithm puts an extra
burden on operations of pointer references (i.e., car and cdr in Lisp). Implementations of
this algorithm, therefore, use special purpose hardware [ll] to achieve moderate
performance. The overhead of implementing them on general-purpose machines is regarded
extremely high [3]. even with the support of the firmware [18].

This paper presents and discusses algorithms of realtime garbage collection on
general-purpose machines. These algorithms were designed with two principles kept in
mind. A realtime garbage collection on general-purpose machines inevitably puts some
overhead on the execution efficiency of the list processing system. The primary reason is
that some of the list processing primitives must check the current status of garbage
collection. Such a check is unnecessary in conventional list processing systems with stop
garbage collector. In order to reduce the total overhead due to the realtime-ness of
garbage collection, our first design principle is that the possible overhead on frequently
used primitives should be small or even none. In particular, the presented algorithms were



designed so that they put no overhead on the operations of pointer references,
assignments, and stack manipulations, while they put an extra burden on destructive list
operations such as rplaca and rplacd in Lisp.

The other design principle is that it should be easy to apply the algorithms to
conventional systems with stop garbage collector. Not all applications of list processing
systems require realtime-ness, but rather the total execution time may be more important
for many applications. Thus, we would like to have two versions of a same list processing
systems (one with stop collector and the other with realtime one) and to have the chance
to select one of them depending on the application.

In the next section, we explain the basic idea of our realtime algorithms, first by
introducing a simple list processing system with no stack mechanism and with only a
single kind of cells, and then by extending it into a realtime system. The correctness
proof of this simple realtime system is given in Section 3. Section 4 discusses the
dynamic behavior of the realtime system. The algorithms are then applied to a system
with stack mechanism in Section 5 and to a system with multiple kinds of cells in Section
6. Finally, in Section 7, we will show that the algorithms are easily applied to a system
with array compaction. The discussions in Sections 3 and 4 are also applicable to these
extensions, with minor modifications.

In order to provide a rigorous proof and evaluation of the algorithms, we obviously
have to present the algorithms rigorously. For this purpose, we use slightly changed
version of Pascal (8] in this paper. Deviations from Pascal are:

1. Type declarations for parameters and variables are omitted if there is no fear
of ambiguity. Namely, we use the convention that x, vy, z, and p are variables
of the pointer type and i and j are integer variables.

2. We allow underscores _ in identifiers.

3. We use pointer arithmetic and pointer comparison, similar to those in the C
language [9]. When a pointer p points to the i-th element of an array, then
the expression p+1 represents a pointer to the i+i-th element. Similarly,
comparisons on two pointers are defined in terms of the array index, on
condition that both of the pointers point to elements of a same array. For
instance, when p and g point to the i-th and j-th elements, respectively, of an
array, then p<gq is true if and only if i is strictly less than j.

2. The method

In this section, we explain the basic idea of our realtime garbage collection algorithms.
Before going to the explanation, we first present a simple, Lisp-like list processing system
with conventional stop garbage collection. This system is simple in that it supports only a
single type of cells (cons cells) and that it does not have the stack mechanism. This



system, however, has the essential aspects of real list processing system.

A cons cell (or simply a cell) is a record object consisting of three fields: mark, car,
and cdr

type cell = record
mark : Boolean:
car ! pointer:
cdr : pointer;
end

A pointer may be nil, or else it points to either a cell or an atom. Cells are allocated in
the heap H, which is an array of N+1 cells.

var H : array(0..N] of cell

The system actually uses H[01 to H[N-1] as the heap and thus maximum of N cells are
available. The last location of H (HIN]) is reserved so that the expression "p+i" is
meaningful whenever p points to a cell. We introduce two constant pointers Hbtm and
Htop, which point to the first location of the heap (i.e.,, H[01) and the last location of the
heap (i.e., HIN-11), respectively. Atoms are allocated somewhere not in the heap. To
distinguish pointers to cells from those to atoms, we use the function consp. consp(p)
is true if and only if the pointer p points to a cell.

The system has an array R consisting of NR pointers, where NR is a small fixed
number. The user program can access and modify the contents of R by primitive
operations Lgetr and Lsetr Lgetr(i) returns the i-th element of R and Lsetr (i, p)
replaces the i~th element of R with p. Pointers in R are called root pointers and only those
cells reachable directly or indirectly from the root pointers are accessible. Other cells are
inaccessible and thus are garbage. The purpose of garbage collection is to arrange
inaccessible cells so that they may be recycled for further use. It is the responsibility of
the user program to prevent all cells in use from being garbage-collected unexpectedly.
In particular, the system assumes that only accessible pointers are passed as pointer
arguments to primitive operations.

In addition to Lgetr and Lsetr, the system provides primitive operations Lcans,
Lcar, Lcdr, Lrplaca, Lrplacd, and Ledq, each of which corresponds to a Lisp function in
the obvious manner. Unlike Lisp, Lcons in the system does not return a value, but is a
procedure that causes a side effect. Lcons(i,x,y) allocates a new cell with x and y in its
car and cdr fields and, in addition, stores the cell pointer into R[i{l. For example, in
order to set a new list consisting of two nils into R[11], the user program is written as

Lcons(l,nilsnil);
Lcons(l,nil,Lgetr(1));

Fig.l illustrates an implementation of our simple list processing system with



conventional stop garbage collection. The system is initialized by init() which is
invoked once when the system begins to run. All available cells are linked through their
car fields to form the freelist whose first element is pointed to by the global variable
tree_list. This initialization of the freelist is a convention to simplify the explanation.

Available cells could be allocated directly from the heap until the first garbage collection
occurs, as in most Lisp systems.

The garbage collector is invoked when the freelist exhausts. During the mark phase,
the garbage collector marks (i.e., turns true the mark fields of ) all accessible cells by
recursively traversing list structures by the use of the garbage collection stack gcs.
Then during the sweep phase, the heap is sequentially parsed so that all inaccessible cells,
i.e. all non-marked cells, are collected into the freelist. Note the use of the push
operation gcs_push. The body of the mark phase loop simply repeats the push and pop
operations and the actual marking is done by gcs_push(x), which pushes x onto gcs only
if x points to a non-marked cell. This mechanism may seem inefficient since a pointer
may be poped from gcs immediately after it is pushed. However, a sligsht change will
overcome this inefficiency as illustrated in Fig.2. Our intention is to keep the algorithms
simple and clear.

Now we extend the above system so that it be a realtime system (see Fig.3).

In the realtime version, the garbage collection proceeds while the user program keeps
running. Since we assume only a single processor, the two processes cannot proceed in
really parallel. Instead, the whole process of garbage collection is divided into “"chunks”,
each of which can be executed in time less than some constant time, and is executed in
certain "situation” The situation we chose is when a cell is required by the user program,
i.e., when Lcons is invoked. This idea is credited to Baker [1]. Since cells are requested
while garbage collection is in progress, we cannot wait until the freelist exhausts. Instead,
a garbage collection begins when the number of the freelist cells becomes less than a
certain number M. To keep the current number of freelist cells, we introduce an integer
variable free_count.

Another problem arises on the freelist during the sweep phase. In the stop collector,
the freelist is set empty right before the sweep phase. With the realtime collector, the
main program keeps requiring cells even during the sweep phase. If the system sets the
freelist empty at the beginning of the sweep phase, then the sweeping steps must be
repeated until a non-marked cell is found in the heap during the next call of Lcons. This
method destroys the realtime-ness of the collector, since there is no small upper bound for
the time required to find a non-marked cell. Rather, our realtime system leaves the
freelist but collects only those non-marked cells that are not in the freelist yet. To
determine whether a non-marked cell is in the freelist, we use the cdr fields of freelist
cells, which are not used in the stop collector. The rule of thumb is that, a non-marked
cell is in the freelist if and only if its cdr field has a pointer leave_me, which is
distinguished from any meaningful pointers and which the user program cannot access
directly.

The procedure mark() in Fig.3 implements a single chunk of the mark phase. It



marks k1 cells each time it is called, with k! being a small constant. If there are less
than k1 cells to be marked, that is, if gcs becomes empty before the body of the while
statement is repeated k| times, then the execution of mark() ends immediately. Precisely
speaking, therefore, mark() marks k1 cells as long as it is possible. Similarly. the
procedure sweep() implements a chunk of the mark phase and takes care of k2 cells as
long as it is possible. The for control variable p used in the sweep phase loop of Fig.l is
replaced by the global variable sweeper so that calls to sweep() can continuously process
the whole heap. The global variable phase keeps track of the current state of garbage
collection. Its value is mark_phase during mark phase, sweep.phase during sweep phase,
and idling otherwise.

The most important feature of our realtime system is that, during a sweep phase, it
collects those and only those cells that are inaccessible nor in the freelist at the beginning
of the garbage collection. Although some cells may become garbage during the garbage
collection, they are not collected until the next garbage collection. In order to realize
this feature of the system, the system needs to have the following properties.

1. All accessible cells at the beginning of the garbage collection are eventually
marked during the mark phase.

2. Newly allocated cells during the garbage collection are never collected during
the sweep phase of that garbage collection.

The if statement
if phase mark_.phase then gcs_push(x”.car);

in the definition of Lrplaca in Fig.3 and the if statement of Lrplacd are added for the
first property. If the list structures used in the main program are never changed during
the mark phase, then repeated calls of mark () certainly mark all accessible cells as in the
case of the stop collector. However, Lrplaca may possibly modify the list structures and
thus, without the if statement, there is the possibility that an accessible cell is not
marked during mark phase. This is mainly because mark() cannot mark a cell once the
cell becomes non-reachable from (pointers on) gcs. For example, suppose that the
following statements are executed immediately after a garbage collection begins.

Lsetr(2, Lcar(Lgetr(1)));
Lrplaca(Lgetr(1), nil);

Fig.4 illustrates the status of the relevant cells when Lrplaca is invoked. Assume that
the cell 8 in the figure is pointed to only by the car field of the cell «. If Lrplaca
simply replaced the car field of a. then 8 would not be reachable from gcs any more and
thus would loose the chance to get marked. As the result, 8 might be collected as a
garbage during the sweep phase while it still remains accessible. This situation cannot
occur since the pointer to 8 is pushed onto gcs by the statement gcs_push(x*.car) at
the beginning of Lrplaca(x,y). As of the second property, the statement



p~.mark = (p 2 sweeper);
in Lcons(i,x,yv) is added for this property. During the mark phase, this statement
effectively marks all newly allocated cells. During the sweep phase, this statement marks
only those newly allocated cells that are not yet processed by sweep(). Other newly

allocated cells during the sweep phase need not be marked since sweep() processes each
cell only once. Of course, these discussions do not make sure that the system certainly
has the above feature. We need a rigorous proof, which we will give in the next section.

The realtime system puts no extra burden on the primitives Lcar, Lcdr, Lsetr,
Lgetr, and Lea. About Lcons, the calls to mark() and sweep() can be expanded inline
in the body of Lcons. Moreover, because k1 and k2 are constants, the loops in these
procedures can be expanded into straight-line code. Thus the essential overhead of Lcons
will be relatively small compared with the overall execution time of Lcons. Lrplaca and
Lrplacd suffer from the overhead due to realtime-ness, but these operations are used less
frequently than other primitives in actual list processing programs. They may be used
internally for assignments to variables in those Lisp systems that implement variable
bindings by association lists [12]. Even in such Lisp systems, local variables in compiled
programs are usually allocated on the stack and assignments to variables can be
implemented by Lsetr as will be shown in Section 5. In order to finish the efficiency
discussions on our realtime system, we still need to analyze how many times the garbage
collector is invoked. This analysis requires the understanding of some properties of the
garbage collector, which we will present in the next section in terms of invariants. Thus
we leave the analysis to Section 4.

What is as important as execution efficiency is the size of primitive operations, since
in many list processing systems, some primitive operations are expanded inline in compiled
code. Usually, calls to Lcons (or its equivalent) are not expanded inline because the body
of Lcons is too large even in conventional systems. Calls to Lrplaca and Lrplacd are
rare in compiled programs. Since each of the other primitives is of the same size in the
realtime system as in the conventional system, the realtime system promises that the size
of compiled code is kept smalil.

Now we need to show the memory overhead of the realtime system. First of all, gcs
needs no extra space. As of the size of the heap, we need to analyze the dynamic
behavior of the system, which is the main topic of Section 4.

3. Proof

One of the reasons that the conventional stop garbage collection has been so widely
accepted is its simplicity: The process of garbage collection proceeds without intervention
of the user program. Even the allocation of a free cell is done independently of the
garbage collector. Thus it is clear that the mark phase marks all and only accessible cells,
and that the sweep phase collects all and only non-marked (garbage) cells. This is not the
case of our reaitime algorithm, however. The whole process of garbage collection is



divided into chunks, each of which is executed while the execution of the user program
proceeds. Even during the garbage collection, the user program continues to require new
cells and make garbage cells. The correctness is thus beyond our intuition and we need a
rigorous proof for the algorithm.

As already mentioned in the previous section, the most important feature of our
realtime system is the following.

Theorem 3.1. Those and only those cells that are not accessible nor in the freelist at the
beginning of a garbage collection will be put into the freelist during the sweep phase.

In order to prove this, we postulate several system invariants that characterize the realtime
system. Here, a system invariant (or invariants, for short) refers to a property of the
system that holds between calls to primitive operations. Except for those invariants that
are direct consequences of other invariants, we prove each invariant by induction on the
call of primitive operations. That is, in order to prove an invariant, we need to show that
the property holds initially, i.e., immediately after the system initialization procedure
init(), and to show that the property holds after execution of each primitive operation,
by assuming that «ll invariants (including the invariant to prove) hold before the
execution. We also assume that pointer arguments to the primitive operation are all
accessible. Since the complete proof is too long to fit this paper, we only give a rough
sketch of the proof. However, the reader should keep it in mind that the proof is
essentially preceeded by induction.

The first four invariants are concerned with gcs and sweeper

Invariant 3.1. gcs is empty during idling and sweep phases.

Proof : Initially. gcs is empty and the system is in idling phase. When phase is turned

from mark_phase to sweep_phase, gcs is certainly empty. Since the procedure
gcs_push, which is the only operation to augment gcs, is invoked only during mark
phase, gcs remains empty until phase becomes sweep_phase. Q.E.D.

Invariant 3.2. gcs consists only of pointers to marked cells.

Proof : When a cell pointer is pushed on gcs, the mark field of the pointed cell is set to
true. This mark field remains true as long as the cell pointer is on gcs, since mark
fields of cells are turned false only by the procedure sweep(). which is never called
during mark phase. Q.E.D.

Invariant 3.3. A single pointer appears on gcs at most once.

Proof : A cell pointer is pushed onto gcs only when the pointed cell is not yet marked,
but any pointer already on gcs points to a marked cell. Q.E.D.



Invariant 34. The value of the variable sweeper is a cell pointer or is equal to Htop+1.

In particular, sweeper = Htop+! during idling phase, and sweeper Hbtm during mark
phase.
Proof : Initially, sweeper = Htop+l. sweeper is not changed during idling and mark

phases. When phase is turned to mark_phase, sweeper is set to Hbtm. During sweep
phase, sweeper is incremented as long as it points to a cell. When phase is turned to
idling, sweeper Htop+1 again. Q.E.D.

Definition 3.I. When sweeper points to the j-th cell H[j1, the i-th cell in the heap (i.e.,
HCi1) is said to be above sweeper if { 2 j. Otherwise, the cell is said to be below sweeper

Note that, by Invariant 3.4, any cell is below sweeper during idling phase, and any cell is
above sweeper during mark phase.

Definition 3.2. A cell m is said to be markable iff there is a sequence of distinct cell
pointers o, qi, ..., n (N>0) such that

1. qo is on gcs,
2. either gq;*.car = qi., or g;".cdr = q;., (0<i<n),
3. q;".mark = false (0Ki¢n), and

4. q, points to m.

Note that, since m.mark = q,".mark = false, a marked cell cannot be markable.

Invariant 3.5. leave_me is inaccessible.
Invariant 3.6. leave_me is not reachable from gcs.
Invariant 3.7. A cell is a freelist cell iff its cdr field is leave_me.

Invariant 3.8. The freelist is loop-free. That is, for each freelist cell m, there is no
sequence of cell pointers qo, .... gn (n20) such that

1. go = m.car,
2. qi".car = @i (0€iKn), and
3. qn points to m.
Invariant 3.9. No cell below sweeper is marked.

Invariant 3.10. Each accessible cell above sweeper is either marked or markable.

Before going to the proofs of Invariants 3.5 to 3.10, we postulate three invariants which



are direct consequences of these invariants.
Invariant 3.11. No freelist cell is accessible (by Invariants 3.5 and 3.7).
Invariant 3.12. No freelist cell is reachable from gcs (by Invariants 3.6 and 3.7).

Invariant 3.13. During sweep phase, any accessible cell above sweeper is marked (by
Invariants 3.10 and 3.1).

Proof of Invariunt 3.5 : An inaccessible pointer may become accessible only by Lcon. By
Lcons(i.x»y). only the pointer to the first freelist cell becomes accessible, because both
the car and the cdr fields of the cell are replaced by already accessible pointers x and v.
Since leave_me is not a cell pointer, it cannot be identical to the pointer to the first
freelist cell and thus leave_me never becomes accessible. Q.E.D.

Proof of Invariant 3.6 : Lcons, Lrplaca, and Lrplacd are the only primitive operations
that affect the reachability from gcs. The procedures mark() and sweep(), which are
called from Lcons, do not augment the set of pointers reachable from gcs because the
pointers pushed on gcs by mark() are already reachable from gcs and sweep() is called
only in sweep phase during which gcs remains empty (Invariant 3.). Although Lcons
replaces the car and the cdr fields of the first freelist cell, this does not affect the
reachability from gcs, because the first freelist cell itself is not reachable from gcs
(Invariant 3.12). When phase is turned from id!ing to mark_phase, only the accessible
pointers become newly reachable from gcs, but leave_me is not accessible then (Invariant
3.5). Thus, leave_me cannot become reachable from gcs by Lcons. By Lrpiaca(x,y)
(or Lrplacd(x,y)), only those pointers that are reachable from x”*.car (or x".cdr) or
from y may become reachable from gcs. Since these pointers are accessible, none of them
is identical to leave_me. Q.E.D.

Proof of Invariant 3.7 : By induction hypothesis of Invariants 3.1l and 3.12, the set of
freelist cells is modified only by sweep() and Lcons. When sweep() adds a cell into the
freelist, the cdr field of the cell is replaced by leave_me. When a cell is removed from
the freelist by Lcons(i,x,y), the cdr field of the cell is replaced by the accessible
pointer y which is distinct from leave_me. Note that the induction hypothesis of
Invariant 3.8 makes sure that Lcons(i,x,y) really removes a cell from the freelist.Q.E.D.

Proof of Invariant 3.8 : sweep() adds a cell into the freelist only when the cdr field of
the cell is distinct from leave_me. By the induction hypothesis of Invariant 3.7, this cell
is not already in the freelist. Q.E.D.

Proof of Invariant 3.9 : The system never turns true the mark fields of cells below
sweeper: Whenever gcs_push(x) is called, sweeper = Hbtm and thus no cell is below
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sweeper When sweeper is incremented by sweep(), the mark field of the cell pointed

to by sweeper is turned false if it is true before. Q.E.D.

Proof of Invariant 3.10 :

When a freelist cell becomes accessible, its mark field is set true
if it is above sweeper

Immediately after the root pointers are pushed onto gcs by
Lcons, those cells directly pointed to by root pointers are marked and other accessible
cells become markable since no cell was marked before (Invariants 3.9 and 3.4). sweep()

obviously preserves Invariant 3.10. What remains to show is that Invariant 3.10 holds after
the execution of mark (), Lrplaca, and Lrplacd.

To show that Invariant 3.10 holds after the execution of mark(), it suffices to prove
that, for each cell m that is markable before the execution of the loop body

p = gcs_pop();

gcs_push(p~.car);
gcs_push(p~.cdr);

of mark(), either m remains markable or the mark field of m becomes true after the

execution. To prove this, let qo, qi, -, qn (n>0) be a sequence of distinct cell pointers
such that

1. go is on gcs,

2. either q;*.car = gqi, or qi*.cdr = g;., (0in),

3. qi*.mark = false (Kifn), and

4. q, points to m.
If both p~.car and p~.cdr are distinct from ¢y, ..., qa, then these properties are preserved
by the loop body and thus m remains markable. If p~.car = q, for some h (0<h¢n) but
p~.cdr is distinct from q, ..., qa. or, conversely, if p~.cdr = g, for some h (0<h¢n) but
p~.car is distinct from qy, ..., a, then after the loop body,

l. q, is on gcs,

2. either q;".car = g or ¢i*.cdr = g (hiKn),
3. qn*.mark = true,

4. q;*.mark = false (h<i¢n), and

5. qn points to m.

That is, m remains markable if h n and m is marked otherwise. Finally, if p~.car = qm
and p".cdr = qn, for some hl and h2 (0<hl¢n, 0<h2¢n ), then let h = max(hl,h2). Then the

above properties of qn, ... qa hold and thus, after the loop body, either m remains markable
or m is marked.

Similarly, to show that Invariant 3.10 holds after the execution of Lrplaca and
Lrplacd, it suffices to prove that, for each cell m that is markable before the execution,
either m remains markable or the mark field of m becomes true after the execution. Since
the proof is almost the same for both Lrptaca and Lrplacd, we only prove this for
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Lrplaca. Let go, Qi ... o (n>0) be a sequence of distinct cell pointers as above. If
x~.car is distinet from o, qi, .--» qn, then the properties of this sequence are preserved
by Lrplaca and therefore m remains markable. If x*.car = go, then gcs_push(x”.car)
does nothing because x".car”.mark = go¢".mark true (Invariant 3.2). If x*.car = qa,
i.e., if x"*.car points to m, then gcs_push(x”.car) turns the mark field of m true. Thus
m is marked after Lrplaca. If x"~.car = q; for some j (0¢j<n), then after
gcs_push(x”.car),

l. qj is on gcs,

2. either q;".car = q,. or q;".cdr = qi, (jSi<n),
3. qi".mark = false (j<i¢n), and

4. q, points to m

hold. Thus m remains markable after gcs_push(x”.car). If x is distinct from any q;
(j¢i<n), then m obviously remains markable after the statement "x“.car :- y" Suppose

gn = x for some h (j¢h<n). If gu".cdr is distinct from gn.,, then gn".car = qn., i€,
x".car = Qqn.. Thus q; = qwa (= x".car) for 0¢j<h+l<n, but this contradicts the

assumption that qo, qi, ..., qn» are distinct pointers. Therefore, qi".cdr = gn.. This means
that the above properties of the sequence qj, .., qn hold and thus m remains markable,
even after the statement "x".car = y" Q.E.D.

Invariant 3.14. Each cell reachable from gcs is either marked or markable.

Proof : Immediately after the root pointers are pushed onto gcs by Lcons, only
accessible cells are reachable from gcs. As already shown in the proof of Invariant 3.10,
accessible cells are either marked or markable at that time. No cell becomes newly
reachable from gcs by mark() and, as shown in the proof of Invariant 3.10, cells that are
either marked or markable before the execution of mark() are either marked or markable
after the execution. No cell is reachable from gcs when sweep() is called during sweep
phase. Thus Lcons preserves Invariant 3.14. By Lrplaca(x,y) (or Lrplacd(x,y) ), only
those cells that are reachable from x".car (or x".cdr) or from y may become newly
reachable from gcs. Since these cells are accessible, they are either marked or markable
already (Invariant 3.10). Q.E.D.

In order to simplify the discussions that follow, we "paint" cells with two colors when
phase is turned from idling to mark_phase. Those cells that are then either accessible
or in the freelist are painted in red and other cells are painted in black. In addition, at
any moment during the execution of the system, we call a cell as an active cell if it is
then either marked, reachable from gcs, or in the freelist. Cells not active are called
inactive. Note that, by Invariant 3.10, accessible cells are active and, equivalently. inactive
cells are inaccessible. Before proving Theorem 3.1, we reclaim one more system invariant.

Invariant 3.15. For each cell m above sweeper, m is active if and only if m is red.

Proof : Primitive operations other than Lcons do not change sweeper Thus, in order to
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show that these operations preserve Invariant 3.15, it suffices to show that they preserve
the activeness of cells. This is obvious except for Lrplaca and Lrplacd, since other
primitive operations do not affect mark fields, the reachability from gcs, nor the freelist.
Since Lrplaca does not turn mark fields false, marked cells remain marked. The freelist
1s not changed by Lrplaca. As shown in the proof of Invariant 3.10, markable cells either
remain markable or get marked. Thus active cells remain active after Lrplaca.
Conversely, inactive cells (i.e., cells not active) remain inactive for the following reasons.
As shown in the proof of Invariant 3.6, no inaccessible cell becomes reachable from gcs by
Lrplaca. Since inactive cells are inaccessible, no inactive cell becomes markable by
Lrplaca. Since Lrplaca does not mark inaccessible cells as shown in the proof of
Invariant 3.5, inactive cells remain non-marked. Similarly, Lrplacd is shown to preserve
the activeness property of cells. Now, let us prove that Invariant 3.15 holds after each
call of Lcons. We divide this proof into three cases according to the phase before the
call.

i) Case phase = idling: If phase remains idling after the call, then no cell is
above sweeper because sweeper = Htop+! then. If the call turns phase from idling to
mark_phase, then all and only accessible cells become reachable from gcs, one cell is
removed from the freelist and is marked, and other freelist cells remain in the freelist.
Since sweeper is set to Hbtm, Invariant 3.15 holds after the call.

ii) Case phase = mark_phase: The procedure mark() preserves the activeness
property of cells, because the above discussion on Lrplaca applies also to mark().
Obviously, the rest of the call of Lcons also preserves the activeness property. Thus
after the call, a cell is active iff it is active before the call. Since all cells are above
sweeper before the call, by the induction hypothesis of Invariant 3.15 itself, we conclude
that, after the call, a cell is active iff it is red.

iii) Case phase sweep_phase: Let m be an arbitrary cell that is above sweeper
after the call of Lcons. The operation to remove a cell from the freelist does not affect
the activeness property of m, because, if m happens to be the cell removed from the
freelist, then m is certainly marked after the operation. Since m remains above sweeper
during the execution of sweep(), m is marked after sweep() iff m is marked before, and
m is in the freelist after sweep() iff m is in the freelist before. Note that m cannot be
reachable from gcs since gcs is empty during sweep phase. Thus sweep() also preserves
the activeness property of m. Therefore, this call of Lcons does preserve the activeness
property of m. By the induction hypothesis of Invariant 3.15 itself, after the call of
Lcons, m is active iff m is red. Q.E.D.

Now we are ready to prove Theorem 3.1 given at the beginning of this section.

Proof of Theorem 3.1 : It suffices to prove that sweep() eventually puts all black cells
into the freelist but it never puts red cells into the freelist. By the definition of
sweep(), a call of sweep() puts a cell m into the freelist iff m satisfies the following
conditions before the call of sweep() (and, therefore, before the call of Lcons).

1. m is above sweeper
2. m is not marked.
3. m is not in the freelist.
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In addition, since gcs is empty.
4. m is not markable

That is, m is inactive and above sweeper By Invariant 3.5, m is a black cell but not a
red cell. On the other hand, each black cell satisfies these conditions as long as it is
above sweeper Thus when sweeper encounters a black cell, that cell is certainly put
into the freelist. Q.E.D.

4. The dynamic behavior

In this section, we analyzes the dynamic behavior of our realtime system. In
particular, we are interested in the status of the freelist during the execution of a given
user program. From the analysis, we postulate a sufficient condition on the system
parameters N, M, k1, and k2 to avoid the "no storage" error during execution of Lcons.
This condition suggests safe values of N and M for the given program and, in addition,
provides an estimation of memory overhead of our realtime system. Also in this section,
we estimate the number of times the garbage collector is invoked during execution of the
given program. In the following discussions, we naturally make use of the system
invariants proved in the previous section, as the theoretical basis of the discussions.

In order to measure the course of computation, we use the number of times that
Lcons is invoked: "at time {" means “"at the ¢-th call of Lcons” Given a user program,
let T be the total number of times that Lcons is invoked. (If the program is to run
endlessly, then let T be =.) Let F(¢) and A(f{) be the number of freelist cells and the
number of accessible cells, respectively, at time ¢t (¢ = 1, 2, ..., T). Note that 4(t) depends
only on the given program, but not on the system parameters N, M, k1, and k2.

Let us trace F(t). Clearly. F(1) = N since all the cells are freelist cells when Lcons is
called for the first time. Then, during the idling phase, one cell is removed from the
freelist each time Lcons is called, but no cell is added into the freelist. Thus F(t) = F(t -
1) - 1. When the number of the freelist cells becomes equal to M, phase is turned to
mark_phase and the first garbage collection begins. Suppose that the first garbage
collection begins during the a-th call of Lcons and ends during the c-th call. Also
suppose that, during the first garbage collection, phase is switched from mark_phase to
sweep_phase by the b-th call of Lcons(i.x,y). Clearly.

F(a) =M

During the mark phase, gcs_pop() is called exactly k1 times for each call of Lcons,
except for the last call. As discussed in the previous section, pointers to cells that are
accessible at ¢t = a are pushed onto gcs exactly once, but pointers to other cells are never
pushed onto gcs. Therefore, gcs_pop() is called exactly 4(a) times. Thus

b-a [A(a)ki]
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([x1 gives the integer n such that n2x>n-1. Incidentally, x| gives the integer n such that
n+1>x2n.) During the sweep phase, the value of sweeper is incremented by k2 for each
call of Lcons except for the last call. Since sweeper is totally incremented by N,

c-b=[NkK2]

To simplify the calculation, hereafter we assume that N/k2 is an integer. With this
assumption,

c~-b=N/k2
Since no cell is added into the freelist during the mark phase,
F(t) = F(a) - (t - a) for altsb

On the other hand, the value of F(t) during the sweep phase depends on the distribution
of the black cells (i.e., those cells that are not accessible not in the freelist at ¢t - a) over
the heap. For i =0, 1, ..., N/k2, let B(i) be the number of black cells among the first ixk2
cells H[O01, ..., H[ixk2-1] in the heap. B(i) gives the number of black cells that are put
into the freelist by the first i calls of sweep(). The first call of sweep() occurs during
the (b+l)-th call of Lcons and thus, at time t (b+1{tlc+l), B(t - b 1) black cells have
been put into the freelist. Since one cell is removed from the freelist by each call of
Lcons, we obtain
F(t)= F(b)+ B(t b-1)-(t-Db)

F(a)+ B(t-b-1)-(t-a) for b+istsc+l

Thus, B(i), together with F(a) (= M), N, k1, and k2, completely defines F(¢) for alt{c+l.
Although the function F(¢) thus defined may possibly have negative values, the system
causes the '"no storage” error when the number of freelist cells (i.e., the value of
free_count ) is going to be negative. In order for the first garbage collection to proceed
successfully, it is necessary and sufficient that F(¢)20 for all t (agtlc+l).

The distribution function B(i) can be an arbitrary function that satisfies the
following conditions.

1. B(0) =20

2. Bi -1)< B(i) £ B(i -1)+ k2 fori=1, 2, ..., N/k2
3. B(N/k2) =N - A(a) - F(a) (= { number of black cells })

Since

B(i) = B{N/k2)
- (B(N/k2) - B(N/k2 - 1))

- (B(i +1) - B(i))



2N - A(a)- F(a) - (N/k2 - i)xk2
= k2 - A(a) - F(a)

and since B(i{) is non-negative,

0 (1Ki<d )
i*k2 - A(a) - F(a) (d+1SiSN/K2 )

where d = [(A(a) + F(a))k2). From this, we obtain the lower bound F(¢) of F(t).

F(a) - (t - a) (asts{b+d+1)
Flb(f) =
Fla) + ((t - b -1)%k2 - 4(a) - F(a)) - (t - a)

(b+d+2{tlc+1)

Note that in the extreme case when all black cells are located at the higher part of the
heap, F(t) is identical to F(t). Fi(t) decreases monotonically when agé<b+d+l, but
increases monotonically when b+d+2¢{t{c+l. A simple calculation tells that F,(b+d+l) <
Fiu(b+d+2). Thus Fi,(t) takes the smallest value when t = b+d+l, and a sufficient condition
for F(t )20 (a2t2c+l) is

Fla) - (b +(A(a) - F(a))k2fl+1-a)20 (4.1)
which is equivalent to
F(a) 2 (A(a)(1/kt + 1/k2)+1) /(1 -1k2)
Usually, it is difficult to find the value of A(a), but the maximum number of accessible
cells Amax is relatively easy to estimate. By using A4ma.., we obtain the following sufficient
condition for F(t)20.
M2 (Amaxx(1/k1 + 1/k2) + 1)/ (1 - /k2) (4.2)
The above discussion holds also for the second garbage collection if F(t)=M at the
beginning of the second garbage collection. This condition is satisfied if F(¢)M
immediately after the first garbage collection, i.e., if F(c+l)2M. Since
F(c+l) = F(a) + Blc - b)-(c-a~+1)
= Fla) + (N - A(a) - F(a)) - [A(a)kl]l N/Kk2 -1
2 N - Amni r"lmax/k].l N/k2 -1
> Nw(1l = 1/k2 ) = dpaex(l + /K1) - 2

the sufficient condition for F(c+l )2M is
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Nk(l = 1/k2 ) = Apau*(L + /K1) -2 2 M (4.3)

The same discussion holds for successive garbage collections. Therefore, we obtain the
following theorem.

Theorem {4.1. Given a list processing program on our realtime system, if both (4.2) and
(4.3) hold, then all garbage collection proceeds successfully.

Theorem 4.1 is useful to find safe values of M and N for a given program. Practically, we

can ignore "+ 1" in (4.2) and "~ 2" in (4.3), since N, M, and A4... are much larger and,
moreover, (4.2) and (4.3) are derived from the worst case analysis. The practically safe

values are, therefore,

M= dpaox(U/kT + 1/k2) 7 (1 - 1/k2)

N = Amaxx(l + 2/k1 = 1/7Ck1%k2)) / (1 - 1/k2)?
For instance, if k1 = k2 = 20, then M = 0.1054,,., and N 1.2164q.,. In comparison, for the
conventional system with stop garbage collector in Fig.l, the smallest safe value for N is
:Amax. In this case, therefore, the realtime system needs 21.6% more memory for the heap.

Now we will estimate the number of times the garbage collector is invoked, assuming

that N and M satisfy both (4.2) and (4.3). Suppose that the i:ch garbage collection begins
during the aj-th call of Lcons and ends during the ci-th call. As already shown,

ci =[A(a; k1] + N/K2 + a
Immediately after the i-th garbage collection, the number of freelist cells are

F(ci+l) = Nx(1 - 1/k2) - A(a;) - [A(ai VK11 -1
Then, the system is in idling phase until ¢t = aj., and thus,

F(t)=F(ci+l)-(t -¢ -1) for c;+1<t<aing
Since F(ai.) = M,

F(ci+l) - (ajy ci-1)=M
From this, we obtain

ain - a N - Ala) M fori=1,2,.

This formula, together with the initial value of a, N - M + 1, completely specifies the
sequence { a; }. If we assume that A({) is identical to a constant Amean. then

a; = l*(N - Amean - M) + Amean + 1
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and we obtain a very rough estimation of the number of garbage collections as
T/(N = Anean = M)

(Remember T is the number of times Lcons is called during the execution of the given
program.) For the conventional system with stop garbage collector given in Fig.l, the
sequence { a; } is defined by

l.ay=N+1
2. @i -3 =N - A(a) fori=1, 2, ..

Again, under the assumption A(t) = Anmesn. the number of garbage collections is estimated
as

T/( N - AAmean )

This expression supports the widely believed rule that the larger N is, the less times the
garbage collector is invoked. Although this rule does not apply in some cases (indeed, it
is not difficult to find a counter example), this rule seems to apply in most cases.
Similarly. the rough estimation for the realtime system above suggests that the smaller M
is and the larger N is, the less times the garbage collector is invoked.

We have already seen that the safe values for N and M are, respectively. 1.216 4., and

0.1054 ., in case k1 = k2 = 20. If we assume Anax = 2.4mean, then for these values of N and
M, the number of garbage collection is about 0.82T7/Amean for the realtime system. In
contrast, with the safe value of N = A, for the conventional system, the number of

garbage collection is about T/A4mean. Thus, with these safe values of N and M, the realtime
system causes less garbage collection than the conventional system. On the other hand, it
is clear that, with the same size of heap, the realtime system causes more garbage
collection than the conventional system. For instance, with the heap size N = 1.216 4,.... the
conventional system calls the garbage collector about 0.77/4,e.n times. Thus the realtime
system causes 17% more garbage collection than the conventional system.

5. System stack

In this section, we extend our realtime system so that the user program can handle
the system stack. The system stack contains pointers and is typically used for argument
passing and variable allocation. The system stack is like the root array R in that pointers
on the system stack are regarded as root pointers. Unlike R, however, the size of the
system stack differs from time to time and the maximum size of the system stack NSS is
assumed much larger than NR, the size of R. The primitive operations on the system stack
are ss_empty(), ss_push(x), and ss_pop(). ss_empty() returns true if the system
stack is empty. and returns false otherwise. ss_push(x) pushes the pointer x onto the
system stack. ss_pop() pops up the system stack and returns the pointer previously at
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the top of the system stack.

To simplify the discussions on the system stack, we simply expand R so that it can
contain up to NR + NSS pointers.

var R © arrayl(l..(NR + NSS)] of pointer;

By this convention, Lsetr(i,x) and Lgetr(i) are used also to access the system stack.
A new variable SStop keeps the index of the top of the system stack within R. Initially,
SStop is set to NR. The three primitive operations on the system stack is defined as in
Fig.5. Now, the pointers R[11, ..., R[SStop] are the only root pointers and those and only
those cells that are reachable directly or indirectly from these root pointers are accessible.

For this model, the algorithms presented in Fig.3 correctly work, if we rewrite the
for loop to initialize garbage collection as follows.

for i = 1 to SStop do gcs_push(R[il)

However, if SStop is relatively large, then the execution of Lcons will take a long time
when phase is switched from idling to mark_phase. This violates the realtime-ness of
the system. Instead of processing the root pointers at a time, our revised system
processes at most a fixed number of root pointers each time Lcons is called (see Fig.6).
Since the contents of the system stack will be changed as computation proceeds, we need
to save the contents of the system stack when garbage collection begins. Or else, we
cannot make sure that all accessible cells at the beginning of garbage collection are
eventually marked during the mark phase. For this purpose, we introduce another stack,
called the save stack, which is implemented by an array SV and a global variable SVtop.

var SV : arrayll. (NR + NSS)] of pointer;
var SVtop : integer;

When Lcons is called in idling phase, if the length of the freelist becomes too short, then
all pointers in the system stack are copied into SV by copy_system_stack(SStop) and
the value of SStop is saved into SVtop. Then, during the mark phase, Lcons processes at
most k3 pointers on the save stack each time gcs becomes empty after the call of mark ().
Here, k3 is a small constant, like kI and k2. The copying operation
copy.system_stack(SStop) can be directly implemented by the underlying hardware,
using the so-called block transfer mechanism which almost all general-purpose machines
support. Since the size of the system stack is at most NR + N3SS and since NSS is between
some kilobytes and some ten kilobytes in most list processing systems, we can assume that
the copying operation takes only a very short time.

Primitive operations other than Lcons are the same as those in the realtime system
without the system stack. In particular, the revised realtime system puts no extra burden
on the most frequently used operations Lcar and Lcdr  As already seen in Section 3, by
expanding mark () and sweep() inline and by expanding the loops in these procedures into
straight-line code, the essential overhead on Lcons is relatively small. In addition, since
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k3 is a constant, the for loop to process the save stack can be also expanded into
straight-line code. Moreover, the revised system puts no extra burden on stack
operations including direct access to the stack entities by Lsetr and Lgetr This means
that the compiler can expand stack operations inline in compiled code without any penalty
both in code size and in execution efficiency.

The correctness discussions in Section 3 apply. with minor changes, to the revised
system. First of all, we add an Invariant.

Invariant 5.1. The save stack is empty during idling and sweep phases.

Then, we redefine the notion of "markable" so that, in addition to gcs, the save stack can
be regarded as the origin of markable cells.

Definition 5.1. A cell m is markable iff there is a sequence of distinct cell pointers o, qi,
ey qn (n>0) such that

1. go is either on gcs or on the save stack,

2. either q;".car = .1 Or q;".cdr = ., (0€i<n),

3. qi".mark = faise (0<in), and

4. q, points to m.
Another change is to replace Invariant 3.2 with a stronger condition.
Invariant 5.2. leave_me is not reachable from gcs nor from the save stack.
And, accordingly. we must replace Invariant 3.12 with

Invariant 5.3. No freelist cell is reachable from gcs nor from the save stack.

These changes are necessary to make sure that the statements

pt.car = x;
pt.cdr = y;
p*.mark = (p 2 sweeper):

in the body of Lcons do not affect the markability of cells (in the sense of Definition
5.1). Finally. the notion of "active" should be redefined as follows. A cell is active if it is
marked, reachable either from gcs or from the save stack, or in the freelist. The proof is
similar to the one in Section 3 and is left to the reader.

As for the analysis in Section 4, the mark phase may take more time than [A4(a)/k1],
since not only the last but also other calls to mark () may invoke gcs_pop() less than k1
times. Let SStop0 be the value of SStop at t = a. Assume that, during the mark phase,
gcs becomes empty (and thus some pointers on the save stack are processed) at t = d,, ...,
dna (a<di< ... <dn<dp.=b). Clearly. n = [SStop0/k3]. Also assume that, after ¢t = d; (i = 1, 2,
.., ), 9cs_pop() is called e; times until the save stack is processed next time. Then we
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have
di.y max(fe/k1],1)+d; fori=1, 2, .., n.

When phase is turned to mark_phase at ¢t a, gcs is empty. Thus the next time Lcons
is called, the save stack is certainly processed. Therefore d, = a + 1. Let g, and r; be
respectively the quotient and the remainder of e; divided by k1. Then, the time for the
mark phase is calculated as follows.

b-a

= (d, - a) + Z{i | Ki¢n}[d,., - di]

1+ L{i| 1gi¢n [ max(Te;/k 11, 1)]

L+ Z{ilr, #0}qi+ 11+ Z{ilri=08&q = 0}q]+Z{ilr=q =0}1]
L+ D{i [ 1<ign}qi] + E{i | ri = O3(1] + Z{i | r, = q = 0}[1]

1+ Z{il1&isn}(e; = )Wk1]+n-2Z{iiri=0& q; = 0}{1]

1+ LACa)k1] + [SStop0/k3]
1+ L4(a)kt] + (NR + NSS)/k3

[ 22 S 1}

(Z{i | PCO}f(i)] means the sum of f(i) for all integer / that satisfies P(i).) Here, to
simplify the calculation, we have assumed that (NR + NSS)/k3 is an integer. On the other
hand, the time for the sweep phase (i.e., ¢ - b) is same as in Section 4, and (4.1) is still
sufficient for F(t)20 (a2t2c+l). By replacing "b - a" in (4.1) with the above upper bound,
we obtain a sufficient condition for (4.1).

M 2 (dmaa*x(/kT + 1/k2) + (NR + NSS)/K3) / (1 -1k2) (5.1)

Since

F(c+l) = F(a) + (N - A(a) - F(a)) -(b-a)-N/k2 -1
2 N#(1 - /K2 ) = Amaxx(1 + I/k1) - (NR +# NSS)/k3 -1

the sufficient condition for F(c+l)2M is
Nxk(1 = 1/k2 ) = Amax*(1 + 1/k1) = (NR + NSS)/k3 -1 2 M (5.2)
Theorem 5.1. Given a user program for our realtime system with the system stack, if both
(5.1) and (5.2) hold, then all garbage collection proceeds successfully.
Let us ignore "- 1" in (5.2). Then the practically safe value of N is

Amaxk(1 + Uk 1 = 1(Kk1%k2)) / (1 - 1/k2 )
plus the constant

(2xk2 - 1)x(NR + NSS) / (k3x(K2 - 1))
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In case k1 = k2 = K3 = 20, the realtime system with the system stack needs 1.2164max +
0.102(NR + NSS) cells in the heap. In addition, the system needs the space for the save

stack which should contain up to NR + NSS cells. Thus, the realtime system needs 1.216Amax
+ 1.I02(NR + NSS ) more space than the conventional system with the system stack.

6. Multiple Kinds of cells

So far, we have assumed that only a single type of cells (i.e., cons cells) are available.
In this section, we extend our realtime system so that it supports other kinds of cells as
well, such as symbol cells in Lisp systems. Usually, cells of a same type occupy a fixed
size of memory and, therefore, if freelists are used to maintain available cells, each cell
type a has its own freelist afree_list. The system keeps track of the maximum number
of allocatable cells Ny, separately for each type a. A pointer can points to a cell of any
type and, given a pointer, the system can determine which type of cells the pointer points
to. In order to simplify our discussion, we assume that cells have two common fields type
and mark: The type field determines the type of the cell, and mark is used by the
garbage collector as before. The other fields contain pointers, and the number of these
pointer fields is fixed for each type. For each type a, let fi, ..., fn. be the names of the
pointer fields. Then we have the following primitive operations on each type a.

1. The allocation procedure Lacons(isX;» +..s Xn ), Which allocates an « cell
from afree_list, assigns x; to the f; field of the cell, and sets the pointer
to the cell into RLCi 1.

2. The retrieval functions Laf (x),..., Laf, (x), similar to Lcar(x). Each Laf;(x)
receives a pointer to an a cell and returns the pointer in the f; field of the
cell.

3. The update procedures Larplacfi(x,y), ... Larplacf,(x,y), similar to

Lrpltaca(x,y). Each Larplacfi{x,y) receives two pointers, the first one
pointing to an « cell, and replaces the f; field of x with y.

As in Section 2, the system initialization procedure init() prepares freelists so that each
freelist afree_list consists of N cells of type a. Without loss of generality, we can
assume that cells in the freelist for type a are linked through their f, fields.

For this model with multiple cell types, our realtime system in Fig.3 is extended as
follows. Each allocation procedure Lacons(i,xi;» ..., X, ) begins with the same garbage
collection dispatcher as that in Lcons in Fig.3, except that the dispatcher in Lacons(i, x,,
«e+r Xp,) uses an a-specific number My instead of M (see Fig.7). That is, garbage
collection begins when the size of afree.list becomes less than or equal to My for some
type a. The rest of each allocation procedure is similar to that of Lcons. Like Lcar,
each retrieval function Laf;(x) simply returns the value of x."f;. Like Lrplaca, each
update procedure Larplacfj(x,v) checks the current phase before replacing x".f; with y.
If the system is currently in mark phase, then it executes gcs_push(x".f;).
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procedure Larplacf(x,yv);
begin if phase = mark_phase then gcs_push(x".f;);
X fi oty
end:

The loop body of mark() must be modified so that it pushes all the pointers in the pointer
fields. The procedure sweep(), when it encounters a non-marked a cell not in the
freelist, puts the cell into afree_list. Both mark() and sweep() check the type of a
cell by the type field of the cell. The call of consp(x) must be replaced by a call to the
boolean function that returns true if and only if its argument is a cell pointer. Other
primitive operations such as Lsetr(i,x) and Leq(x,y) need not be changed.

The proof in Section 3 applies also to this system. The only change we have to make
is to replace Invariant 3.7 with

Invariant 6.1. The freelist for each type is loop-free.

In order to make sure that the allocation procedures be executed successfully, we have to
prove

Invariant 6.2. For each type a, the freelist of type a consists only of a cells.

but this is obvious because sweep() adds a non-marked cell into the freelist of the type
of the cell.

Let us see the sufficient condition for successful garbage collections. As in Section 4,
we measure the course of computation by the total number of times that the allocation
procedures are called. Let A(t{) be the total number of accessible cells. For each cell type
«, let Dg(t) be the number of times that Lacons is called, until time t. Also, let Fq(t)
and Aq(t) be the number of freelist cells and the number of accessible cells, respectively,
of type « at time t. Obviously, at any time t, 0{Dq(¢){t and the sum of Dg(t) for all
types is equal to t. As in Section 4, assume that a garbage collection begins at t = a and
ends at t = ¢. Also assume that phase is turned from mark_phase to sweep_phase at £ =
b during the garbage collection. Fg(a) may be larger than Mg, since the garbage
collection may be triggered by the allocation procedure of the cell type other than a.

Fala) 2 Mg

The time for the mark phase and the time for the sweep phase are the same as in Section
4.

[A(a)k1]

o
Q
[]

]

¢ -b=N/k2

Here, N is the some of Nq for all type a. As in Section 4, we assume that N/k2 is an
integer. In addition, we assume that Nq/k2 is also an integer. By the same calculation as
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in Section 4, we can see that during the garbage collection, Fq(t) takes the smallest value
Fq(a) - (Dg(b+d+l) - Dg(a))
at t = b+d+l, where d = (N - Ng W/k2 + [(Aq(a) + Fa(a))Vk2). Dq(b+d+l) - Dq(a), which
represents the number of times that Lacons is called between t = a and t = b+d+l, is
bounded by (b+d+l)-a. Thus the sufficient condition for Fq(t)20 for agt{c+l is
Fa(a) - (b + (N - Ng k2 + [(Ag(a) - Fela))k2]+1-2a)20
which is equivalent to

Fa(a) 2 ((N = Ng Vk2 + Agla)kl + A(a)k2 + 1)/ (1 - 1/k2)

By using Agmex (maximum value of A4(t)), and by using Am.x (maximum value of A(t)),
we obtain the following sufficient condition for Fa(t)20 (astlc+l).

Mg 2 ((N = Ng /K2 + Agmax/K1 + Amax/k2 + 1) /7 (1 - 1/k2) (6.1)

Since

Fa(ctl) = Fq(a) + (Ng - 4aq(a) - Fa(a)) - (Dalc+l) - Dala))
Ne -.4a(a)‘(c—a—1)
Ng = N/K2 = Agmax = Amax/k1 =2

voiNv ol

the sufficient condition for Fa(c+l)2Mgy is
Ng = N/K2 = dgmax  Amax/K1 = 2 2 Mgy (6.2)
Theorem 6.1. Given a list processing program on our realtime system with multiple kinds of

cells, if both (6.1) and (6.2) hold for each type «, then all garbage collection proceeds
successfully.

The similar extension as in Section 5 enables the realtime system with multiple kinds
of cells to support the system stack and we obtain the following theorem. Here, NSS and
k3 are those introduced in Section 5.

Theorem 6.2. Given a list processing program on our realtime system with multiple kinds
of cells and with the system stack, if both

Mg 2 ((N = Ng VK2 + Aamax/k ] + Amax/k2 + (NR + NSS )/k3) / (1 - 1/k2)

and
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Nag = N/k2 = dgmax = Amax/k1 = (NR +# NSS)/k3 =12 My

hold for each type a, then all garbage collection ends successfully.

Unfortunately, the conditions of Theorems 6.1 and 6.2 are too strong: According to
Theorem 6.1, it is safe to set

Ma = ((N = Ng VK2 + damax/K 1 + Amax/k2 + 1)/ (1 - 1/k2)

for each type «, but this value of My seems too large if dgmax 1S much smaller than Anax.
The primary reason for this is that, in the above calculation, we replaced Dg(t) - Dq(t)
by t - t. The difference between these two values is quite large for those cell types that
are scarcely used by the given program. In order to obtain a more practical estimation,
we assume that the given program "proportionally” uses cell types. That is, we assume
that there is a non-negative number Cq for each type a such that

1. Da(t) = Cquxt

2. r&a(t) = Ca*A(t)
3. the sum of Cq for all type a is |

Under this assumption, (6.1) and (6.2) are respectively replaced by

Mg 2 Ca*((N = Ng VK2 + Amaxk(1/k1 + Cq/k2) + 1)/ (1 = Cq/k2)
and

Ng = CaxN/K2 = Amax*¥(Cq + Ca/k1) - 2%Cq 2 Mg
Thus, a sufficient condition on Ng and N for Fq{(t)20 is

Ne - N*(Z*Ca/k2 = Caz/k22)
2 Amax¥(Cq + 2xCa/k1 = Ca?/(K1%k2)) + (3%Cq - 2xCq?/k2)

Let us ignore (3xCq - 2%Cq?/k2) in this inequality. Then, by adding this inequality for
all type a, we obtain a sufficient condition on N.

Nx(l - 2/k2 + 1/(m%k22)) 2 Apax*(1 + 2/k1 = 1/(mxk 1%k 2 ))
where m is the number of cell types. Now a practically safe value of N is
N = Apaek(1 + 2/k1 = 1/(mxk 1%k2)) / (1 = 2/k2 + 1/(m*k2?))

Note that, if m=l, then this safe value is identical to that given in Section 4. As m
increases, this safe value of N also increases. For example, N = 1.220Amax In case k1 = k2 =
20 and m=3. In this case, the realtime system needs 22.0% more space as the heap than the

conventional system.
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7. Arrays and relocation

Our realtime system can support arrays simply by regarding them as variable-length
cells. The array allocation procedure Lmake_array (i, j,»x). which allocates an array of j
elements with all initial elements x and assigns (the pointer to) it to R[iJ], may be defined
similarly to the allocation procedures in Section 6. Laref(x,j), which returns the j-th
element of (the array pointed to by) x, and Laset(x,j,v). which replaces the j-th
element of x by vy, may be defined similarly to the retrieval functions and the update
procedures, respectively, presented in Section 6. In order for the execution time of
mark () to be bounded by a constant, we need special treatment when the pointer poped by

p = gcs_pop();

points to an "array cell” If mark() pushed all the elements of the array at once, then the
realtime-ness of the system would be lost, since the number of elements in an array is not
bounded by a reasonably small constant. If we assume that the elements of an array are
allocated in consecutive locations, which is usually the case, then the use of the save
stack in Section 5 will overcome this difficulty. That is, when mark() recognizes that p
points to an array. mark() copies the elements into the save stack so that they may later
be taken care of. By using block transfer, the time for this copying will be negligible. In
case that the user program uses many short arrays, it may be more efficient if mark ()
itself takes care of those arrays whose sizes are smaller than some small constant,
immediately when the pointers to them are poped from gcs.

In many modern Lisps, arrays are treated as "first-class” data types. They are objects
that can be assigned to variables, consed into list structures, and so on. There, it is
expected that the storage occupied by arrays that are not used any more be recycled for
further use. Unlike fixed-sized cells, simple linking of free arrays may cause the
situation that there is no consecutive space large enough for a new array. while the total
size of recycled space is large enough for the array. To avoid such a situation, it is
expected that the garbage collector relocates (or compacts) arrays in use so that they
may be packed into a consecutive memory area.

In order to discuss how our realtime algorithms can be applied for array relocation, we
use the following model, which is based on the Minsky garbage collection [1,4,7] restricted
on arrays. Each array is represented by a fixed-sized header and a body. The header
contains useful information on the array. such as the length the array. The elements of
the array are stored in the body. Since the size of array headers is fixed, the system can
treat array headers in the similar way as other fixed-sized cells. In particular, array
headers are allocated in the heap and headers of non-used arrays may be linked together
to form a freelist of array headers. Array bodies, on the other hand, are allocated in a
separate space. The body of an array occupies consecutive locations in that space and the
header of the array holds the first such location. Reference to an array is performed via
the header: No pointer can directly point to array elements. The space for array bodies
is divided into two semispaces. During execution of the user program, all array bodies are
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allocated in one of the semispace. During the mark phase, when the garbage collector is
going to mark an array header, the array body is copied into the other semispace and, at
the same time, the old location of the body stored in the header is updated. By copying
array bodies into successive locations, bodies of accessible arrays are compacted in the "to"
semispace (tospace) at the end of the garbage collection. The contents in the old
semispace (fromspace) are then discarded and bodies of new arrays are allocated in the
tospace. Next time the garbage collector is invoked, the role of the two semispaces is
interchanged; The previous tospace is used as the fromspace and the previous fromspace
is used as the tospace. Note that, since the location of an array body is stored only in

the header, this system need not leave the so-called "forwarding address" [1,3] in array
bodies.

Application of our realtime algorithms to this model is quite straightforward. The
procedure mark () now copies array bodies into two places: to the tospace and to the save
stack. The copying processes can be done in a short time, by using block transfer.
During garbage collection, bodies of new arrays are allocated in the tospace, not in the
fromspace. Thus the tospace consists of copies of accessible array bodies and new array
bodies. sweep() collects non-marked (i.e., inaccessible) array headers into a freelist, but
does nothing with array bodies.

Actually, mark() needs to copy array bodies only into the tospace, if the system
takes care of pointei-s in the tospace as well as pointers in the save stack. By making
only one copy for each accessible array, the size of the save stack can remain small, and
thus we can save memory space. As already stated, the tospace contains newly allocated
bodies as well, which need not be taken care of. It is not difficult to distinguish copied
bodies from newly allocated bodies. One method is to add an extra datum into the tospace,
when a body is copied from the fromspace or a body is newly allocated. Each such datum
should contain two kinds of information: whether the following body is copied or newly
allocated and how long the body is. With this information, the system can easily and
efficiently ignore newly allocated bodies in the tospace.

8. Conclusions and future work

We presented algorithms for realtime garbage collection in list processing systems
running on general-purpose machines. These algorithms enable the list processing system
to execute each list processing primitive within a small constant time and thus not to
suspend execution of list processing programs during garbage collection. Although the
execution efficiency decreases with the realtime garbage collection, the overhead is kept
small because the algorithms put no overhead on frequently used primitives such as
pointer references, variable references and assignments, and stack manipulations. In order
to see the memory overhead of the algorithms, we have shown sufficient conditions on the
size of the heap to keep the program running without exhausting the freelist. These
conditions are too strong in that the size of the heap can be much smaller in actual
situations. Nevertheless, they have proved that the memory overhead of our realtime
algorithms is relatively small. Application of the algorithms to already existing list
processing systems is easy since it does not require modification on the data
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representation. The primary disadvantage of the algorithms is that they do not support
compaction of the whole data space. However, we have seen that the algorithms
efficiently support array relocation which is highly desired in modern list processing
systems.

Since garbage collection proceeds while the user program keeps running, the
correctness of the algorithms are not obvious and the proof is much more complicated than
the proof of the conventional stop collector. In order to overcome the potential difficulty
of the proof, we postulated several system invariants, each of which can be proved
relatively easily. We naturally used induction on calls to the primitive operations for the
proof of each invariant. The invariants were then used as the theoretical basis for the
evaluation of the algorithms. One important thing we learned from this study is that
proof of an algorithm is useful not only for the correctness but also for the strict
discussion on the algorithm.

The algorithms presented in this paper are planned to be implemented in a portable
Common Lisp [17] system, called Kyoto Common Lisp [19], which is already running under
several operating systems on several general-purpose machines, including VAX and
MC68000. The kernel of this system is written in the C language and with the use of
preprocessor macros of C, all versions of the system share the same source programs. This
system allocates data cells in the heap and essentially uses the so-called BIBOP (Blg Bag
Of Pages) method [16] to manage them. Variable-length data such as arrays and hash
tables (in terms of Common Lisp) are allocated in another space and are garbage-collected
by copying compaction. Implementation of the realtime algorithms in this system is
straightforward and we expect that the same source programs can be shared also by the
coming versions of the system with realtime garbage collection.
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Fig.l. The conventional system with stop garbage collector

var free_list

procedure init();
begin free_list

pointer,;

=Nl

for p != Hbtm to Htop do
begin p®".mark := false;
pt.car = free_list;
free.list = p
end;
for i ‘= | to NR do RLi] :=

end (of init);

procedure Lcons(i.x,y):

begin if free_list = nil then
begin gc();

if free_list
end;
p = free_list;
free_list = p~.car:
pt.car = x.
pt.cdr = vy,
RLil = p
end (of Lcons);
function Lcar(x) pointer;
function Lcdr(x) pointer;
procedure Lrplaca(x,v);: x*.
procedure Lrplacd(x,y); X"
function Leg(x,y) Boolean;
procedure Lsetr(i,x): R[il
function Lgetr(i): pointer:

= ni

Lcar

Lcdr

car

cdr

Leg

C= X

Lgetr

"

then error( " no

nii

Xx".car,

x*.cdry

RCiT:

storage”)

30



procedure gc();
begin ( initialization )
gcs_init();
for i = 1 to NR do gcs_push(R[il);

( mark phase )
while not gcs_empty () do
begin p = gcs_pop();
gcs_push(p”®.car);
gcs_push(p”.cdr)
end.

{ sweep phase )

for p = Hbtm to Htop do
if p*.mark then
pt.mark := false
else begin p*.car = free.list;
free_list = p
end

end (of gc);
( primitive operations on gcs ?»

var gcs : arrayll..NGCS] of pointer;
var gcs_top ¢ integer;

procedure gcs_init(): gcs_top = 1

procedure gcs_push(x.);
if consp(x) and (not x".mark) then

begin x".mark = true;
gcsfges_topl = x
gcs_top = gcs_topti
end;

function gcs_pop : pointer;
begin gcs_top ¢ gcs_top-1;
gcs_pop = gcslges_topl
end;

function gcs_empty ! Boolean:
gcs_empty = (gcs_taop 1)3



Fig.2. An alternative definition of gc()

procedure gc();
begin ( initialization ?
ges_init();
for i = 1 to NR do gcs_push(RCil);

{ mark phase )
while not gcs_empty() do

begin p = gcs_pop();
while consp(p) and (not p~.mark) do
begin p~.mark = true;
gcs_push(p~,cdr);
p ‘= p~.car
end
end;

{ sweep phase ?

for p = Hbtm to Htop do
if p".mark then p~.mark := false;
else begin p~.car = free.list;
free_list = p
end

end (of gc);



Fig.3. The realtime system
(Operations not described here are same as in Fig.l)

var free_count ! integer:

type phases = (id!ling, mark_phase, sweep_phase);
var phase : phases;
var sweeper : pointer;

procedure init();

begin free_list = nil;
for p = Hbtm to Htop do
begin p*.mark := false
pr.car = free_list;
p*.cdr := leave_.me;
free.list = p
end;
free_count = N3
phase = idling,;
sweeper -~ Htop + 1;
for i = 1 to NR do R(i]l = nil;

gcs_init()
end (of init);

procedure Lcons{i,x,y);
begin ( garbage collection dispatcher )
if phase = mark_phase then
begin mark();

if gcs_empty() then phase = sweep_phase
end
elseif phase = sweep_phase then
begin sweep();
if sweeper > Htop then phase := idling
end
elseif free_count ¢ M then
begin phase := mark_phase:
sweeper = Hbtm:
for i = 1 to NR do gcs_push(RCil)
end;

if free_count £ 0 then error(“no storage");

p = free_list;
free_tist := p*.car.,



free_.count = free_count-1;

pt.car = x.

pt.cdr 1=y

p~.mark = (p 2 sweeper),;
RCil = »p

end (of Lcons):

procedure mark ()
begin i = 1:

while i £ K1 and (not gcs_empty()) do

begin p := gcs_pop();
gcs_push(p~.car);
gcs_push(p”.cdr),

LS
end
end (of mark);

procedure sweep(),;
begin i = 1;

while i £ K2 and sweeper § Htop do

begin if sweeper”.mark then
sweeper”.mark

elseif not sweeper”.cdr

begin sweeper”.car
sweeper ", cdr
free_list
free_count

end;
sweeper
o= 0+
end
end (of sweep?);

procedure Lrplaca(x,y);

sweeper+1;

false;

= |leave_me then

= free_list;
= leave_me;
sweeper;

free_count+t

begin if phase = mark_phase then gcs_push(x".car);

x".car =y
end;

procedure Lrplacd(x,y);

begin if phase - mark_phase then gcs_push(x",cdr);

x".cdr =y
end;
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Fig.4. The status of cells
(The arrows "— represent pointer references. Truth values of mark fields are
represented by 1 (for true) and 0 (for false).)

gcslges_topl:
RINRID:
8
——3|0
RL21: a
RL11]: 11

gcs




Fig.5. Primitive operations on the system stack

procedure ss_push(x);

begin SStop := SStop + 1;
RCESStopl = x
end;
function ss_pop : pointer;
begin ss_pop = R[SStopl;

SStop = SStop 1
end;

function ss_empty : Boolean; ss_empty := (SStop = NR);



Fig.6. Lcons of the realtime system with the system stack
(Operations not described here are same as in Fig.3)

procedure Lcons(i,X,y);
begin ( garbage collection dispatcher )
if phase mark_phase then
begin mark();
if gcs_empty() then
if SVtop > 0
( processing the save stack ?

then for i := S\Vtop downto max(SVtop-k3,1)
do gcs_push(SVLil)
else phase = sweep_phase

end
elseif phase = sweep_phase then
begin sweep();

if sweeper > Htop then phase := idling
end
elseif free_count { M then
begin phase := mark_phase;
sweeper = Hbtm;
( save contents of system stack ?
copy_system_stack(SStop);
SVtop := SStop
end;

if free_count £ 0 then error("no storage");

p = free_list;

free_list := p*.car:
free_count := free_count-1;
pt.car = x;

pt.cdr = vy,

p*.mark := (p 2 sweeper);
RCil = p

end {(of Lcons);
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Fig.7. The allocation procedure for type «a

procedure Lacons(isX;»Xzs «ess Xp,)»
begin ( garbage collection dispatcher ?

if phase = mark_.phase then

begin mark():
if gcs_.empty() then phase := sweep_phase

end

elseif phase sweep_phase then
begin sweep():

if sweeper > Htop then phase := idling
end
elseif afree_count £ My then
begin phase := mark_phase;
sweeper = Hbtm;
for i := 1 to NR do gcs_push(RLil)

end;

if afree_count £ 0 then error(“no storage for type a”);
p = afree_list:

afree_list = p~.fi;

afree_count = afree_count-1;

D'\~f| = Xy

P .f2 1= Xai

p“’f"« := Xn,,:

p~.mark = (p 2 sweeper);

RLil = p

end (of Lcons):
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