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Abstract 

The motion of a spherical dust cloud is described by the  Lemaitre-Tolman-Bondi 

solution and is completely specified by initial values of distributions of the rest 

mass density and specific energy of the dust fluid. From generic initial conditions 

of this spherically symmetric collapse, there appears a naked singularity at the 

symmetric center in the course of the gravitational collapse of the dust cloud. So 

this might be a counterexample to the cosmic censorship hypothesis. To investigate 

the genericity of this example, we examine the stability of the  'nakedness' of this 

singularity against non-spherical linear perturbations. We also study the gravita-

tional radiation from the naked singularity of this spacetime. Perturbations are 

decomposed into odd and even modes. The wave equations for gravitational waves 

are solved by numerical integration using the single null coordinate. It is found 

that the naked singularity is not a strong source of the odd-parity gravitational 

radiation, although the metric perturbation grows in the central region. Therefore, 

the Cauchy horizon in this spacetime should be marginally stable with respect to 

odd-parity perturbations. On the other hand, for the even-parity perturbations, the 

result implies that the metric perturbation grows when it approaches the Cauchy 

horizon and diverges there although the naked singularity is not a strong source 

of the even-parity gravitational radiation. Therefore, the Cauchy horizon in this 

spacetime should be unstable against linear even-parity perturbations. We perform 

Newtonian approximation analysis. The results show a good similarity with the 

relativistic numerical one. 
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Chapter 1 

Introduction 

This thesis is intended to provide a thorough introduction to our works on the 

gravitational radiation from a naked singularity. We adopt the geometrized units, 
c = G = 1. The signature of the metric tensor and sign convention of the Riemann 

tensor follow Ref. [1]. 

1.1 Background and Motivation 

General theory of relativity was established by Albert Einstein in 1915 and summa-

rized in his 1916 paper [2]. This was based on  'equivalence principle' and accom-
plished almost on his own. To formulate this theory, the unfamiliar and difficult 
mathematics for most physicists is needed. Hence, general relativity had been 

considered as a theory which had great significance only for mathematics, not for 

physics very much. The observational developments of the universe since 1960s, 
however, have revealed that this theory is inevitable for studies of stellar gravita-

tional collapse and of standard expanding cosmology. Nowadays many researchers 

conceive that theoretical study of the general relativity contribute to the develop-

ment of modern physics. 

  In the course of theoretical progress in general relativity, two important prob-

lems arose: the origin of the universe and the final fate of gravitational col-

lapse. As for the former case, we know that there appears a  'big-bang' singular-

ity in the  Friedmann-Lemaitre-Robertson-Walker spacetime. On the other hand, 

Schwarzschild discovered an exact solution of Einstein's equation for static spheri-

cally symmetric vacuum spacetime. The Schwarzschild spacetime contains a space-

time singularity hidden within a black hole. We regard this as an end product of 

spherically symmetric gravitational collapse. However there are strong assump-

tions, homogeneity and isotropy in the former example and spherical symmetry 

in the latter one. There appeared a doubt whether the occurrence of singularity 

is unphysical entity which originates from these unrealistic assumptions. The sin-

gularity theorems settled this dispute and revealed that singularities will occur in 
both cases without the assumption of unrealistic high symmetry. 

  The singularity theorems, however, do not refer to the property of singularity. 

Then, there are questions which are not answered by them: "What is a singular-
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ity?", "Where does it occur?", and so on. In the singularity theorems the occur-

rence of singularity is proved by incompleteness of causal geodesics. The expand-

ing universe begun in a singular state with infinite density and infinite spacetime 

curvature. In the Schwarzschild spacetime the spacetime curvature unboundedly 

blows up as r 0. Therefore, in the physical context, at the spacetime singu-

larity some physical quantities, say, the curvature, blow up or other pathological 

behavior of the metric takes place. Usually we examine a scalar constructed poly-

nomially from  Riemann tensor and its covariant derivatives. The precise definition 

of a spacetime singularity is extremely difficult task. Here we will not discuss more 

detail about this issue, referring to other excellent descriptions, for example [3]. 
Note that when the spacetime curvature radius becomes order of Planck length 

 (hGlc3)112  N 1.6 x  10'3 cm, the classical picture of spacetime should break 
down. We should replace the classical general relativity with a theory of  'quantum 

gravity' We are not yet able to predict phenomena beyond the Planck scale. Thus, 
we can consider the occurrence of such a strong-curvature region as an occurrence 

of singularity in a practical sense. 

  The singularity theorems established the existence of spacetime singularity. 

However this fact does not mean that the final product of complete gravitational 

collapse is a black hole, for the singularity can be naked. Intuitively, we can ex-

pect high energy density around a singularity. In such region the focusing of null 
congruences will occur. Then, it is suggested that a singularity may be contained 

in trapped surface. It seems plausible to consider that an end state of gravita-

tional collapse is not a naked singularity but a black hole. Penrose proposed this 

consideration, a naked singularity is forbidden, as cosmic censorship hypothesis. 

  In spite of much effort to prove it, the cosmic censorship hypothesis has not 

been rigorously proved. The difficulty is in the conundrum of precise provable 

formulation. In such a situation, a promising way to approach to the proof of 

it is to search a candidate of counterexamples. Now we know many examples 

of naked singularity formation in the spherical gravitational collapse. However 

Penrose already pointed out in his first proposition of hypothesis that "physical 

reasonableness" is important in the formulation of it. It is difficult to answer what 

is physically reasonable because of the ambiguity of the terminology. In stead of 

it, we should say what is physically unrealistic. For the above counterexamples, 

spherical symmetry seems unrealistic, that is, spherical gravitational collapse is 

only approximation of realistic non-spherical collapse. How does the non-sphericity 

affect to the occurrence of naked singularity? To answer this question is the first 

motivation of this thesis. 

  In the course of non-spherical gravitational collapse gravitational waves, in gen-

eral, will be generated. If a naked singularity occurs in this collapse, we can ob-

serve gravitational waves from a naked singularity. These waves would be short 

wave length and may be strong. Can we expect the gravitational wave burst at the 

occurrence of naked singularity? To answer this question is the second motivation 

for us. 

  In the rest of this chapter, we briefly review the singularity theorems proved 
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by Penrose and Hawking. Then we propose rather precise formulations for cosmic 

censorship hypotheses. At last, we describe about investigations which are related 

to counterexamples. 

   We demonstrate the occurrence of naked singularity in the inhomogeneous 

spherically symmetric dust collapse in Chap. 2. This model is described by an 

exact solution of Einstein's equation, so-called, Lemaitre-Tolman-Bondi (LTB) so-
lution. It has been shown by many authors that the naked singularity should occur 

from generic initial density and velocity profile in the LTB spacetime. 

  As mentioned above, sphericity looks like unrealistic assumption. To investigate 

how non-sphericity affects to the occurrence of naked singularity in the LTB space-

time, we perform linear perturbation analysis. Perturbations are divided into odd 

(axial) mode and even (polar) mode. These two modes decouple in the linear order 
perturbation equations. Investigation for each modes is performed separately. The 

results of odd mode are summarized in Chap. 3. Chapter 4 takes our attention onto 

the even mode. These analysis were performed by numerical analysis. In Chap. 5 

we try to realize the numerical results in the context of Newtonian approximation. 

These are original contribution. Chapter 6 summarizes the dissertation. 

1.2 Existence of Spacetime Singularity 

One of the most exciting developments of the study of general relativity is the proof 
of the singularity theorems by Penrose and Hawking [4, 5, 6]. Here we will sketch 
out those theorems following Hawking and Ellis [7]. 
  The first theorem, which proves the occurrence of a singularity in a context 

relevant to gravitational collapse, was given by Penrose [4]. This theorem shows 
that a singularity must occur after a trapped surface has formed. 

Theorem 1 (Hawking & Ellis Theorem 1) 
Spacetime  (M,  g) cannot be null geodesically complete  if: 

 I.  Rabka  kb  > 0 for all null vector  ka; 

  2. there is a non-compact Cauchy surface  li in M; 

  3. there is a closed trapped surface T in M. 

  This theorem contains unwanted hypothesis, condition (2), which implies that 
M is globally hyperbolic. To eliminate this condition we need some additional 

assumptions. Here we will merely quote a singularity theorem by Hawking and 

Penrose without detailed argument about elimination of hypothesis. 

Theorem 2 (Hawking  8z Ellis Theorem 2) 
Spacetime  (M,  g) is not timelike and null geodesically complete  if: 

  1.  Rabic'  kb  > 0 for every non-spacelike vector  ka 
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  2. The generic conditions satisfied, i.e., every non-spacelike geodesic contains 
    a point at which  k[aRb]cd[eknkckd 0, where  ka is the tangent vector to the 

     geodesic. 

  3. The chronology condition holds on  M. 

  4. There exist at least one of the following: 

     (a) a compact achronal set without edge, 

     (b) a closed trapped surface, 

     (c) a point p such that on every past (or every  future) null geodesic from p 
        the expansion of the null geodesics from p becomes negative. 

Condition (1) is satisfied for all plausible non-quantum matter. Condition (2) 
is serving only to rule out certain high symmetry. Condition (3), which means 
that there are no closed timelike curves, has no direct support but it seems to be 

reasonable to assume it. Condition (4a) is satisfied if the universe is compact. It is 
believed that condition (4b) is quite likely to be satisfied in gravitational collapse. 
It is also believed that condition (4c) is satisfied for any past-directed null cone 
in our universe from the fact that the expanding FLRW model is a very good 

approximation of our universe at least after the epoch of decoupling. Then this 

theorem gives us strong reason to believe the existence of the singularity in our 

universe. 

  Theorem 2 establishes the existence of singularities under very general condi-

tions. However this theorem does not show whether singularity is in the future or 

the past. Next theorem shows that there is a singularity in the past. 

Theorem 3 (Hawking & Ellis Theorem 3) 
If 

  1.  Rabkakb  > 0 for every non-spacelike vector  ka  ; 

  2. the strong causality condition holds on  (M,  g); 

  3. there is some past-directed unit timelike vector  wa at a point p and a positive 
    constant b such that if  va is the unit tangent vector to the past-directed timelike 
    geodesics through p, then on each such geodesic the expansion 0  va;a of 

    these geodesics becomes less than  —3c/b with a distance  bl  c from p, where 
    c  —wava, 

then there is a past incomplete non-spacelike geodesic through p. 

  Theorem 2 and 3 are the most useful theorem since their conditions are satisfied 

in a number of physical situations. However there exists a possibility that a closed 

timelike curve, violating causality conditions, occurs instead of singularity . There 
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is an opinion that it would be physically more objectable than a singularity . Never-
theless one would like to know whether such causality violations would prevent the 
occurrence of singularities. The following theorem shows that causality violations 
do not prevent the occurrence of singularities. 

Theorem 4 (Hawking & Ellis Theorem 4) 
Spacetime is not timelike geodesically complete  if: 

  1.  Rabka  kb  > 0 for every non-spacelike vector  ka  ; 

  2. there exist a compact spacelike three-surface S (without edge); 

  3. the unit normals to S are everywhere converging (or everywhere diverging) 
 on  S. 

Condition (2) may be interpreted as saying that the universe is spatially closed and 
condition (3) as saying that it is contracting (or expanding). 

   Thus the singularity theorems strongly suggest the existence of singularities in 

our universe and in generic continued gravitational collapse. 

1.3 Cosmic Censorship Hypothesis 

The singularity theorems revealed that the occurrence of singularities is a generic 

property of spacetime in general relativity. However, those theorems only prove 
the causally geodesic incompleteness of the spacetime and say nothing about the 

detailed features of the singularities themselves; for example, we do not get infor-

mation from those theorems about whether the predicted singularity is naked or 

not. Naked means that the singularity is in principle observable. A singularity is 

a boundary of spacetime. Hence, in order to obtain a solution of hyperbolic field 

equations for matter, gauge fields and spacetime itself in the causal future of a 

naked singularity, we need to impose a boundary condition on it. However, we 

do not yet know physically reasonable boundary conditions on singularities and 

hence, to avoid this difficulty, the cosmic censorship hypothesis  (CCH) proposed 
by Penrose [8, 9] is often adopted in the analysis of the physical phenomena of the 
strong gravitational fields. In spite of its importance, this hypothesis has remained 
unproved. Thus, the cosmic censorship hypothesis is the one of the most important 
unproved problems for classical theory of general relativity. 

1.3.1 Formulation of Cosmic Censorship Hypothesis 

Penrose asked, in his consideration of gravitational collapse theory [8], "Does there 
exist a  'cosmic censor' who forbids the appearance of naked singularities, clothing 

each one in an absolute event horizon?" The cosmic censorship hypothesis was 

presented at first like this. This statement is rather primitive and is not good for 
rigorous proof. Many researchers have proposed precise formulations to prove this 
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hypothesis ever since. Unfortunately no one has ever succeeded in the proof of any 

version of the CCH. Here we will formulate the CCH following Wald [10]. Some 
excellent reviews on the subject of  CCH are written in recent years [11, 12, 13, 14, 
15]. 

  Weak cosmic censorship hypothesis states that all singularities of gravitational 

collapse are hidden within black holes. This statement means the future predictabil-

ity of the spacetime outside the event horizon. To formulate it more precisely we 

need specify what conditions the matter fields must satisfy. We formulate a precise 

statement of weak CCH as follows: 

Hypothesis 1.1 (Weak CCH) Let  (E,  hab,  Kab) be an asymptotically flat initial 
data set for Einstein's equation with  (E, hab) a complete Riemannian manifold. Let 
the matter sources be such that Tab satisfies the dominant energy condition and 
the system of coupled Einstein-matter field equations is a quasilinear, diagonal, 
second order hyperbolic one. In addition let the initial data for the matter fields 
on E satisfy appropriate asymptotic  falloff conditions at spatial infinity. Then the 
maximal Cauchy evolution of these initial data is an asymptotically flat, strongly 
predictable spacetime. 
Here E is a three-dimensional manifold, hab is a Riemann metric on  E, and  Kai,  is 
a symmetric tensor field on  E. 

  We call the singularity which is censored by weak  CCH a globally naked singu-
larity. The existence of black hole is proved by the weak  CCH with the singularity 
theorem. The weak  CCH is often assumed in theorems on general properties of a 
black hole, such as that it cannot bifurcate, that every trapped surface must be 
entirely contained within it and that the area of the event horizon cannot decrease 
with time. 

  To determine whether the weak  CCH holds or not, the global properties of 
solutions to Einstein's equation would be needed. Such a global proof for the 
existence of solutions to the nonlinear hyperbolic equations is hard to establish for 
the poorness of mathematical techniques. Furthermore if the  CCH is a principle 
of Nature, we should not give an observer at infinity special treatment. Then, the 
strong version of the  CCH was first formulated by Penrose to prohibit a singularity 
visible to any observer [9]. It states that all physically reasonable spacetimes are 
globally hyperbolic. It is formulated more precisely as follows: 

Hypothesis 1.2 (Strong CCH) Let  (E,  hab,  Kab) be an asymptotically flat ini-
tial data set for Einstein's equation with (E,  hab) a complete Riemannian manifold 
and with Einstein-matter field equations of the quasilinear, diagonal, second or-
der hyperbolic system with Tab satisfying the dominant energy condition. Then, if 
the maximal Cauchy development of this initial data is extendible, for each p  E 

 H+  (E) in any extension, either strong causality is violated at p or  1.-(p)  f1 E is 
noncompact. 

Here  H+(S) is a future Cauchy horizon of the, closed, achronal set S and  [is) is 
chronological past of the set S. And also  S is the closure of the set S. 
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  A singularity which is censored by strong CCH but not by weak one is called 

a locally naked singularity. Note that the violation of the  CCH does not always 

mean the existence of the naked singularity. Also the strong  CCH does not imply 

the weak one. This is because, if a singularity is formed from asymptotically flat 

initial data and it propagate out to null infinity destroying asymptotic flatness 

while preserving global hyperbolicity, this would violate weak  CCH but not strong 

one. 

  Intuitively, it seems that singularities should be associated with high energy 

density. Around them null congruences focusing would occur. This suggest that 

singularities may be contained inside trapped surface. Thus any version of  CCH 

looks like plausible. Some evidence in favor of  CCH exists. For example, the linear 

stability of Schwarzschild black hole was analyzed [16, 17]. We are convinced 
of this stability. It was shown that impossibility of getting a extremal charged 

Kerr black hole to swallow too much charge or angular momentum by the analysis 

of test particle motion [18, 19]. There is also some evidence for instability of 
the inner horizon of the  Reissner-NordstrOm spacetime and of the Kerr spacetime 

[20, 21, 22, 23, 24, 25]. 
  There is no precise statement of the  CCH which can be proved. In such a 
difficult situation for proof it is worth trying to obtain counterexamples. Much 
effort has been made to search for the naked singularity formation in gravitational 
collapse. We will introduce these counterexamples in Sec. 1.4. 

  At the last of this section, we provide the hoop conjecture which is originated 
from the doubts about general validity of  CCH [26, 1]. It is formulated as follows: 

Hoop conjecture 1 Black holes with horizons form when and only when a mass 
M gets compacted into a region whose circumference in EVERY direction in C  < 

 471-M. 

This conjecture states that if sufficiently elongated body collapses to singularity, it 
would be naked. A version of the "when" half of this conjecture can be established 
by the theorem of Schoen and Yau [27] if we assume the weak cosmic censorship. 

1.4 Gravitational Collapse and Naked Singular-

    ity Formation 

The first exact solution for Einstein's equation which denotes gravitational collapse 

is obtained by Oppenheimer and Snyder [28]. This solution relates to the collapse of 
a homogeneous spherically symmetric dust ball. It is well-known that the curvature 

singularity of this spacetime is not visible. So this model is an example of black 

hole formation. 

  The Oppenheimer-Snyder model is generalized by including density inhomo-

geneity. This solution was derived and examined in 1930s and 40s [29, 30, 31] and 
is often called the  Lemaitre-Tolman-Bondi (LTB) solution. The naked singularity 
formation in the LTB spacetime was first analyzed by Yodzis, Seifert and  Miller 
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zum Hagen [32, 33]. They pointed out that there appear shell-crossing singularity 
in the course of the gravitational collapse in the LTB spacetime from generic initial 

data. They also analyzed a perfect fluid with bounded pressure and imperfect fluid 

with pressure bounded above in a certain way by the energy density. In the LTB 

spacetime, a naked shell-focusing singularity appears from generic initial data for 

spherically symmetric configurations of the rest mass density and specific energy 

of the dust fluid [34, 35, 36, 37]. This fact was first discovered numerically by 
Eardley and Smarr. Christodoulou investigated this issue analytically and some 

researchers followed him. The initial functions in the most general expandable 

form have been considered [38]. The matter content in this spacetime may satisfy 
even the dominant energy condition. These results are summarized as follows; in 

this spacetime, a naked singularity appears from generic initial data for spherically 

symmetric configurations of the rest mass density and specific energy of the dust 

fluid. 

 Ori and Piran numerically examined the structure of self-similar spherical col-

lapse solutions for a perfect fluid with a barotropic equation of state [39, 40]. From 
the self-similarity this equation of state of the matter is restricted to the form 

p = kp. They showed that there is a globally naked singularity in a significant part 
of the space of self-similar solutions  (k0.0105). Joshi and Dwivedi analytically 
investigated the self-similar spherically symmetric collapse of a perfect fluid with 

a similar equation of state [41]. Harada numerically investigated spherical collapse 
of a perfect fluid without the assumption of self-similarity [42]. He found that a 
globally naked, shell-focusing singularity can occur at the center from relativisti-
cally high-density, isentropic, and time symmetric initial data if the adiabatic index 

 -y1 .01. The results are free from the assumption of self-similarity. These results 

suggest that pressure can not always prevent naked singularity formation. 

  A spherical cloud of counterrotating particles was considered by Datta, Bondi, 

and Evans [43, 44, 45]. The causal structure of this spacetime was investigated 
by Harada, Iguchi and Nakao [46]. They obtained an explicit solution for metric 
functions using an elliptic integral. They also succeeded in giving an expression 

by elementary functions for marginally bound collapse with particular angular mo-

mentum distribution. Their main results are as follows. If the the specific angular 

momentum L(r) = 0(r2) at r  —> 0, no central singularity occurs. On the other 
hand, if the order of L(r) is higher than that, a central singularity occurs and 
it can be naked. The spherical gravitational collapse of an imperfect fluid which 

has only tangential pressure are considered [47, 48, 49, 50, 51]. Magli solved an 
explicit solution with the mass-area coordinate. Harada, Nakao and Iguchi [51] 
investigated nakedness and curvature strength of the shell-focusing singularity in 

that spacetime. 

  Further the naked singularity produced by the gravitational collapse of radiation 

shells which is described by Vaidya spacetime were investigated [41]. Also more 
general matter case was investigated [52, 53]. 
  Christodoulou gave a remarkably complete analysis of the singularities in spher-

ically symmetric scalar field collapse [54, 55, 56, 57, 58]. He analytically proved 
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that naked singularity, which was referred to as "collapsed cone singularity", may 

arise from regular initial data and found that those solutions are not generic. He 

also showed for the collapse of the spherically symmetric scalar wave packet that 

sufficiently weak data evolve to a Minkowski-like spacetime and sufficiently strong 

data form a black hole. 

  Choptuik numerically analyzed what would happen between the weak and 

strong data in spherical scalar field collapse [59]. He discovered so-called "critical 
phenomena" in gravitational collapse in his numerical analysis. It was shown that 

the critical collapse forms a black hole with infinitesimal mass. This "zero-mass 

black hole" may be recognized as a naked singularity. Similar critical phenom-

ena have been discovered for other matter models, say axisymmetric gravitational 

waves, a spherically symmetric radiation fluid, and so on. 

  Thus various types of matter content have been considered. However we do 

not have sufficient results to determine the role of the matter form in the naked 

singularity formation. We must continue the detailed investigation for the problem 

what type of matter fields are plausible for the formulation of the provable  CCH. 

  As for the non-spherically symmetric collapse case, Szekeres discovered a class 

of exact solutions which describes the irrotational dust collapse with no Killing 

vector. This model is often said to be  'quasi-spherical' He found that shell-

crossing singularity which occurs in this spacetime can be naked. Joshi and Krolak 

revealed that a shell-focusing naked singularity appears in this spacetime [60]. 
Global visibility of this singularity is recently analyzed [61]. 

  Shapiro and Teukolsky numerically studied evolution of collisionless gas spheroids 

by fully general relativistic simulations [62, 63]. In their calculations, they evolved 
spacetimes describing collapsing gas spheroids using maximal time slicing. They 

found some evidences that the prolate spheroids with sufficiently elongated initial 

configurations and even with small angular momentum, may form naked singu-

larities. More precisely, they found that when the spheroid was highly prolate a 

spindle singularity formed at the pole where they could not continue the numerical 

evolution. They also found that singular region extends outside the matter region 

by showing the Riemann invariant grows there. Then they searched for trapped 

surfaces and found their absence. They considered these results as indicating that 

the spindle might be a naked singularity. However the absence of the trapped 

surface on their maximal time slicing does not necessarily mean the singularity is 

indeed naked. To be established whether it is naked or not, we would need to 

investigate the region of the spacetime future of the singularity. 

  Wald and Iyer  [64] proved that even in the Schwarzschild spacetime, it is possible 
to choose a time slice which comes arbitrarily close to the singularity, yet for which 

no trapped surfaces are found to its past. A simple analytical counterparts of 

the model of the prolate collapse numerically studied by Shapiro and Teukolsky is 

provided within the Gibbons-Penrose construction [65]. This construction considers 
a thin shell of null dust collapsing inward from past null infinity. Pelath, Tod, and 

Wald [66] gave an explicit example in which trapped surfaces are present on the 
shell, but none exist prior to the last flat slice, thereby explicitly showing that 
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the absence of trapped surfaces on a particular, natural slicing does not imply an 

absence of trapped surface in the spacetime. 

   Shapiro and Teukolsky also found that gravitational radiation carries away a 

negligible fraction  (< 1%) of the total mass energy by the time naked singularity 
forms in their numerical calculations. Intuitively at the formation of singularity, 

very short-wavelength disturbances of spacetime will be created. If there is no 

event horizon, these disturbances may propagate as gravitational radiation so that 

a naked singularity may be a strong source of very short wave length gravitational 

radiation. Nakamura, Shibata and Nakao [67] have suggested that a naked singu-
larity may emit considerable gravitational wave radiation. This was proposed from 

the estimate of gravitational radiation from a spindle-like naked singularity. They 

modeled the spindle-like naked singularity formation in gravitational collapse by 

a sequence of general relativistic, momentarily static initial data for the prolate 

spheroid. It should be noted that their suggestion is controversial. 

  It has long been known that collapsing cylindrically symmetric fluids form naked 

singularities [26]. These examples are not considered as direct counterexamples to 
CCH because these spacetimes are not asymptotically flat. There is an expectation 

that the local behavior of prolate collapse to spindle singularity will be very similar 

to that of an infinite cylindrical one. Thus properties of the cylindrical collapse 

have been studied in this context. Apostolatos and Thorne [68] investigated the 
collapse of a counter-rotating dust shell cylinder and showed that rotation, even 

if it is infinitesimally small, can halt the gravitational collapse of the cylinder. 

Echeveria studied the evolution of a cylindrical dust shell analytically at late times 

and numerically for all times[69]. It was found that the shell collapse to form a 
strong singularity in finite proper time. The numerical results shows that a sharp 
burst of gravitational waves is emitted by the shell just before the singularity forms. 
Chiba [70] showed that the maximal time slicing never has singularity avoidance 
property in cylindrically symmetric spacetime and proposed a new kind of time 
slice which may be suitable to investigate the formation of a cylindrical singularity. 

He numerically investigated cylindrical dust collapse to see the role of gravitational 

waves and found that negligible gravitational wave is emitted during the free fall 

time. 

  In summary, there remains an important issue to formulate the  CCH rigorously 

whether or not the spherical symmetry is essential to the occurrence of a naked 

singularity. Also it should be investigated whether or not a naked singularity, if 

such exists, is a strong source of gravitational radiation. These two points are the 

main theme of this thesis. 
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Chapter 2 

 Lemaitre-Tolman-Bondi 

spacetime 

It is difficult to solve the Einstein's equation for the dynamical system even when 

the system is assumed to be spherically symmetric. One of the exceptions is the 

exact solution for a dust fluid, which is a perfect fluid with zero pressure. The solu-

tion for the homogeneous spherical dust collapse was obtained by Oppenheimer and 

Snyder. This solution is the first model of black hole formation from gravitational 

collapse. Then this model supports the CCH. 

  This model can be generalized by relaxing the assumption of homogeneity for 

a density profile. The solution which describes the collapse of an inhomogeneous 

spherical dust cloud was derived more than fifty years ago and is often called the 

 Lemaitre-Tolman-Bondi (LTB) solution. This model has been studied by many 
researchers for simplicity and given us deep insight into the final fate of the gravi-

tational collapse. It was found that shell-crossing and shell-focusing naked singu-

larities occur from generic regular or smooth initial data. Hence, the LTB solution 

is considered as a candidate for a counterexample to the  CCH. In this chapter we 

introduce LTB solution and give a brief review of the study of the naked singularity 

occurrence in this spacetime. 

2.1 Spherically Symmetric Inhomogeneous Dust 

    Collapse 

Using the synchronous comoving coordinate system, the line element of the LTB 

spacetime can be expressed in the form 

 6-2 =  .0„,  de  de  —de +  A2  (t, r)dr2  +  R2  ( •                                   r)(d02 sin2  0  d02). (2.1) 

The stress-energy tensor for the dust fluid is 

                 =  p(t,  r)u-Afe, (2.2) 

where  #(t, r) is the rest mass density and is the 4-velocity of the dust fluid. 
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   Then the Einstein equations and the equation of motion for the dust fluid reduce 

to the following simple equations 

                                                     '                           R 

       A =   (2.3) 
 f  (r) 

                          1  1   
  fi(t,r) =  87r  R2 R'dFd(r)(2.4) 

 F (r)             =  f  (r), (2.5) 

where  f  (r) and  F(r) are arbitrary functions of the radial coordinate r, and the 
overdot and prime denote partial derivatives with respect to t and r, respectively. 

From Eq. (2.4),  F(r) is related to the Misner-Sharp mass function,[71] m(r), of the 
dust cloud in the manner 

      R(t,r)F(r)        m(r) =  47r jop(t,  r)R2  dR =  47rIp(t,  r)R2  R'  dr =2(2.6) 
Hence Eq. (2.5) might be regarded as the energy equation per unit mass. This 
means that the other arbitrary function,  f  (r), is recognized as the specific energy 
of the dust fluid. The motion of the dust cloud is completely specified by the 

function,  F(r), (or equivalently, the initial distribution of the rest mass density, -fi) 
and the specific energy,  f  (r). 

  Equation (2.5) is integrated as, 

                  t — to(r) =R312  f  R 

                                 — 

             F) (2.7) 
where G(r) is a real positive function given by 

                     arcsin -VT_ — y                                         < 1 
 Y213  Yfor 0 <y  2 

 G  (y)  1  —3 for y = 0, (2.8) 
 arcsinh  N/7-3  -V1 — y  

                                    for  y  <  0, 
                    (_y)2/3 

and to(r) is a constant of integration. Thus we have three arbitrary functions of r ,  F(
r),  f  (r), and to(r). Using the remaining coordinate freedom, i.e., the choice of 

scaling of r, we can reduce the number of such arbitrary functions . We rescale R 
like that it coincides with r at t 0, 

            R(0, r) r. (2.9) 
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Then to(r) becomes 
 r3/2fr) 

          to(r)= —G(2 .10) 

                            F 2.2 Final Fate of Spherical Dust Collapse 

We concentrate on the shell-focusing singularity. The nonextendibility beyond the 

shell-focusing singularity by the spherically symmetric spacetime with dust was 

shown by Eardley and Smarr. Equation (2.5) implies that every mass shell labeled 
by r which is initially collapsing inevitably results in a shell-focusing singularity if 

a shell-crossing singularity will not appear. 

   The shell-focusing singularity occurs when R = 0. Then, from Eq. (2.7), the 
singularity occurrence time is evaluated as t = to(r). Whereas, the time of apparent 
horizon  t  AH(r) is estimated by the investigation of R along the out-going future-
directed null geodesic. Along it we obtain 

                                         1/2 
         _dR =R,d

tr=FR(r)  

        d 

                        f (r)) — (1f (0)1/2, (2.11) 
     d where we use the inequality  R < 0 for collapsing phase and the relation for out-

going null lines 
       dt'  =  A  =(2 .12)                  dr1/R1 f (r) 

It follows that  dR/dt > 0, = 0, < 0 according to whether R > F, = F, < F, 
respectively. Thus the apparent horizon is given by the curve R = F which is the 

locus of turning points of the outgoing light rays. Using this relation and Eq. (2.7), 
we obtain 

                  tAH = to(r) —  F  G(—  f). (2.13) 

Therefore the shell-focusing singularity at r > 0 is in the future of the apparent 

horizon. Thus only the shell-focusing singularity at r = 0 may become naked. 

  To decide whether the central singularity is naked or not, we should examine 

the existence of the future-directed out-going null geodesics which emanate from 

the central singularity. From the examination of the radial null geodesic equation, 

Christodoulou mathematically showed the appearance of central naked singularity 

first. To generalize this result some authors have been investigated in this direction. 

Here we show that the LTB solution from generic smooth initial data results in shell-

focusing central naked singularity following  .loshi and his coworkers. We derive the 

root equation which probes the naked singularity. 

  The future-directed out-going null geodesic equation (2.12) can be written in 
the form 

              dR 1R,dt)                                                (2
.14)  d  (ra) ara-1dr) 
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The partial derivative of circumferential radius R with respect to the radial coor-

dinate r is written as 
                 R' =  ra-1H (X,  r)  , (2.15) 

where 

                                                 1                                                        1/2  H  (x,  r) = (71 —13)x +  {O — (7/—2,3)  x3/2G  (—Px)}  {P +2---x}1 , (2.16) 
with 

             R 
   x =  —, (2.17) 

 ra 

                rF 
   77(r) =F''(2.18) 

 1r f'  3(r) =  T, for  f  0                                               (2.19) 
                 0, for  f  =  0 

       F f    p(r) =—F' (2.20) 

   P(r) =  pra-1, (2.21) 

   A(r) = --1.-1-, (2.22) 
                         ra 

            tom _ 1 + 0 —ri (77—p) G (—p)  0(r)=  +(2.23) 
                  ra-i (1 + p)112  r3(a-1)/2r3(cx-1)/2 

Note that a is determined uniquely by the requirement that 0(r) goes to a nonzero 
finite value in the limit r  —> 0. Substituting Eqs. (2.5), (2.12), and (2.15) into Eq. 
(2.14), we obtain              dR =_.H(x,r)(1\I f+•b x)                                               (2.24)           dfra)aV1 +  f 

For out-going geodesics, both hands of the above equation should be positive. 

  The limiting value of x as r  —> 0 

                       R 
 xo = limn—=  lim dR(2.25)  7,--,o  ra  r—k)  d  (ra) 

gives the tangent of the out-going null geodesic at the singularity. Then we obtain 
the desired root equation from Eqs. (2.24) and (2.25) as 

            H (xo,0)(\If +1 
       xo =lim 1(2.26) 

                      a r--+0 V1 +f 

If a real positive value  xo satisfies this equation then the singularity will be naked. 
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If no real positive root of the above equation exists then singularity is not naked, 

and the collapse ends in a black hole. The existence of a real positive root depends 

on the model, i.e., the choice of the arbitrary functions F(r) and  f(r). 
  To investigate the conditions for the appearance of naked singularity, we assume 

the arbitrary functions F(r) and  f(r) as 

                F(r) =  F3r3  +  F5r5  +  F7r7  +  •  •  •  , (2.27) 

 f(r) = f2r2 +  f4f4 +  f6r6  +  ....                                                (2.28) 

This implies that the density field and specific energy field are initially not only 

regular but also smooth at the symmetric center. That is, the initial density and 

specific energy profiles are  C°° on the entire  'real space r if they are extended to 

negative r as even functions. Hereafter we assume F3 > 0, which ensures the 

positivity of the central energy density. 
  For the marginally bound  f(r) = 0 case, when F5 < 0, Eq. (2.26) has a real 

positive root 

 X0  =  (--F5)(2.29) 
                                2F3 7 

with a = 7/3. From Eq. (2.4) the condition F5 < 0 means  fl/(0, 0) < 0. Therefore, 
there exists naked singularity in the marginally bound collapse with  A"(0, 0) < 0 
initially. On the other hand, if F5 = 0, that is  p"(O, 0)  = 0, it is easily found that 
the root equation (2.26) has no real positive root for any  a  > 1. For a homogeneous 
cloud, which is expressed by the marginally bound Oppenheimer-Snyder solution, 

the singularity is covered by an event horizon because of F5  = 0. 

  For the collapse that is not marginally bound, we should include the specific 

energy function  f(r) in the analysis. In this case,the function 0(r) depends on the 
functions  #, p, and G(—p) in addition to the function  77. To investigate the root 
equation (2.26), we need limiting formula of 0(r) as r  —> 0. Then we express 0(r) 
as 

 0(r)=Q(2.30)                        (r)  
            r3(a-1)/21 

where 

                   Q(r) = Q2r2 + Q4r4  +  •  -  •  . (2.31) 

The coefficient Q2 is given  by' 

          Q2 = 
 2 (.i4F5)+2F5 - 3ftGf2)                                                (2.32) 

 (1  +1-2F-)1/2 f2 F3 F3 f2 F3 
 'The expression for Q2 given by Singh and Joshi is not correct. The complete expression is 

given by Jhingun and Joshi as Eq. (17.46) in [38]. However there contains apparent misprint. 
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If  Q2 is positive, then the root equation (2.26) has real positive root 

                      3Q2)2/3  X0 = (4(2.33) 
                                                                  , with a = 7/3. Therefore the singularity is naked when Q2 takes a positive value. 

   Singh and Joshi [72] and Jhingun, Joshi and Singh [73] also investigate more 
general class in which  F(r) and  f  (r) are of the form 

 F(r)  =  F3r3  +  F4r4  +  F5r5  +  For6  +  F7r7  +  •  -  •  , (2.34) 

 f  (r) = f2r2 + f3r3 +  flf  4 + f5r5 +  f6r6  +  •  •  •  - (2.35) 

This choice corresponds to the initial density and specific energy distributions which 

are not  C°° on the entire real space r if they are extended to negative r as even 

functions. They found that a naked singularity also occurs from generic initial data 

in this extended space of data. They also showed that, for F3 >  0, F4 = F5 = 0 and 

F6 < 26-1-1.25F35/2 for marginally bound collapse, Eq. (2.26) has a real positive 
root  xo with a = 3 and hence the singularity is naked.  xo is given by the root of 

some quartic equation. 

2.3 Summary 

The numerous investigation for the final fate of the inhomogeneous spherical dust 

collapse show that this collapse results in a shell-focusing central naked singularity 

from generic initial data. However, it is not so plausible for a counterexample to the 

 CCH for its non-generic character. At first, we should be more careful of the choice 

of matter model. The dust fluid, which is treated in the LTB solution, is a perfect 

fluid with null pressure. In realistic situations, it is expected that pressure is not 

negligible. Therefore it would be much significant to study examples with a more 

suitable form of matter. As has been quoted in Chap. 1, various examinations on 

this concern exist. Also, the assumption of spherical symmetry is a matter of grave 

concern. The physically reasonable gravitational collapse model should contain 

non-spherical nature in it. Only a few studies of non-spherical collapse have been 

carried out. Another extraordinally consideration for a naked singularity is about 

the way to observe it. Particle creation in the LTB spacetime which comes from 

quantum effect in curved spacetime was considered [74]. In it, the authors shows 
that the radiation on future null infinity tends to infinity as the Cauchy horizon 

is approached. Gravitational radiation should be produced in the generic non -
spherical gravitational collapse. I and my collaborators investigated linear non -
spherical perturbations of the LTB spacetime to settle the problems on the effect 

of nonsphericity and on the production of gravitational radiation in the occurrence 

of naked singularity. The results of our investigations will be described in the 

following three chapters. 
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Chapter 3 

Odd-parity Perturbation of LTB 

 Spacetime 

As mentioned in the previous chapter, central shell-focusing naked singularities 

should occur from  'generic' initial data in the LTB spacetime. There remain some 

unrealistic assumptions to state generic initial data, e.g., pressureless dust matter, 

spherical symmetry, and so on. Here we consider whether the spherical symmetry 

is essential to the occurrence of the shell-focusing naked singularity in the LTB 

spacetime. At the same time, we investigate whether the naked singularity can 

be a strong source of gravitational wave burst. For this purpose, we introduce a 

non-sphericity into the LTB spacetime by the linear perturbation method. Cun-

ningham, Price and Moncrief studied linear perturbations of Oppenheimer-Snyder 

collapse [75, 76, 77]. Seidel and his coworkers extended this work [78, 79, 80]. They 
investigated a variety of collapse models based on a May-White hydrodynamic code 

[81]. The angular dependence of perturbations is decomposed into series of tensorial 
spherical harmonics. Spherical harmonics are called even-parity if they have parity 

 (-1)' under spatial inversion and odd-parity if they have parity  (-1)1+1 Even and 
odd perturbations decouple each other in the linear perturbation analysis. 

  At first, because of the simplicity of the equations, we consider odd-parity modes 

of these perturbations in the marginally bound LTB spacetime and examine the 

stability of the  'nakedness' of that naked singularity against those linear pertur-

bations. We also attempt to investigate whether the naked singularity is a strong 

source of gravitational radiation of this mode. 

  In this chapter we mainly follow Iguchi, Nakao, and Harada [82] and Iguchi, 
Harada, and Nakao [83]. 

3.1 Basic equations 

We consider the evolution of odd-parity perturbations of the LTB spacetime up to 

linear order. We follow the gauge-invariant formalism for a general spherically sym-

metric spacetime established by Gerlach and Sengupta [84, 85]. We will describe 
their formalism briefly in Appendix A. For the odd-parity mode, there are 2 gauge-

invariant metric variables ka and 3 matter variables La and L, where subscript a 
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refers to t and r 

   In the LTB case, the odd-parity gauge-invariant matter variables become 

 Lo  =  p(t,r)U(t,r) and L1  = L = 0, (3.1) 

where U(t, r) represents the perturbation of the 4-velocity as  Sui, =  (0,  0, U(t,  r)SA). 
Because there is no odd-parity scalar harmonics, the density perturbation does not 

exist. The evolution equation for the matter variable (A.29) is 

 at  (AR2L0) = 0. (3.2) 

This equation is easily integrated, and we obtain 

 1  dJ(r)   (3.3) 
 AR2 dr 

where J(r) is an arbitrary function depending only on r. From Eqs. (2.4), (3.1), 
and (3.3), we obtain the relation 

 U(t,r) =  87rV1  f  (r)dJ(r)I  dr                                                 (3.4)  dF(r)I  dr 

         U(r), (3.5) 

so  U(t,  r) is independent of the time coordinate t. We introduce a gauge-invariant 
variable for the metric  as 

              = 1[atko  —AR2  jR2 j(3.6) 

Using this, the linearized Einstein equations become 

 at  (Ako)  —  a,  (—A) = 0, (3.7) 
 or  (R403) + A  (1 — 1)  (1 + 2)  ko =  167AR2Lo, (3.8) 

         at (R403) +711(1-1)(1+ 2)= 0. (3.9) 

From these equations we obtain wave equation for the odd-parity perturbation as 

                                       / 

 at (R2atat  (R403))—  Or(AR2iar0408)) +  (1  —1)  (1  +  2) AO, 
               (  \  =  —161-ar 1  dJ 

 AR2 dr(3.10)                  ) 

  Let us consider the regularity conditions for the background metric functions 

and gauge-invariant perturbations at r = 0. Hereafter we restrict ourselves to the 
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axisymmetric case, i.e., m = 0. Note that this restriction does not lose generality 

of our analysis. Further we consider only the case in which the spacetime is regular 

before the occurrence of the singularity. This means that, before the naked singu-

larity formation, the metric functions, R(t, r) and  A(t,  r), behave near the center 
in the manner 

             R  Rc(t)r  0(r3), (3.11) 
              A  —>  Ra(t) 0(r2). (3.12) 

To investigate the regularity conditions of the gauge-invariant variables , ka and  Lo, 
we follow Bardeen and Piran [86]. The results are given by 

 Lo  ---->  Lc(t)r1+1  0(r1+3), (3.13) 
 k0  koc(t)r1+1  0(r1+3), (3.14) 
 kia(t)r1+2 +  0(7.1+4). (3.15) 

From  Eqs.(3.6), (3.11), (3.12), (3.14) and (3.15), we find that  Os behaves near the 
center as 

 Osc(t)r1-2 0(r1) for 1  > 2, (3.16) 
 —)  0 .9c(or +  0(r3) for  l = 1. (3.17) 

In the case of 1  > 2, the coefficient,  Osc(t), is related to  Ra(t) and  koc(t) in the 
 manner 

                  Osc(t)  =  (/ 1) kc                            o(t)                    R(t). (3.18) 

From the above equations, we note that only the quadrupole mode, 1 = 2, of  Os 
does not vanish at the center. 

3.2 Perturbation of Riemann Tensor 

In this section, we consider the perturbation of the Riemann tensor,  limy,'  , of the 

LTB space-time to investigate the relation between the singularity formation and 

the perturbations. The Riemann tensor is decomposed into the Ricci tensor,  RIA,„ 

and the Weyl tensor, 

 1D 
             CAvo-Rtwa+Rci z,gv[o.RAiaiditga,[crgAi,•(3.19) 

We shall give them in the form of the components of the following tetrad basis, 

 = in(3.20)           -(t)n-'hoPI'e 
R2 sin 9) 
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               1 hiPi3O— e4—(0' A'0'  AR' sin  0) '(3.21)              (r)— 

       e(sin °PIA()—  cos  0PI,e) ,  1  h2(3.22)          ''=(0, 0,           (19)R'2R3sin2 0 

                  1  
                                             (3.23)         6'4)  = (°'CI' °' R sin 0) ' 

where  Pi  (cos 0) is the Legendre polynomial and the comma followed by 0 denotes a 
derivative with respect to  0. The Weyl tensor is then decomposed into the so-called 

electric part,  Eap, and magnetic part,  Bap, which are defined as 

 Eap  --.E  C,A0,,qt)e(t), (3.24) 

 Bap 2e«,'"1CA,PAe(t)qt), (3.25) 

where  EA,ap is the 4-dimensional skew tensor. In the background LTB space-time, 

the Ricci tensor has a non-zero value in the region of non-vanishing rest mass 

density,  p 0, through the Einstein equations and also the electric part has a non-

zero value. On the other hand, the magnetic part is identically equal to zero in 

the background LTB space-time. However, when axisymmetric odd-parity metric 

perturbations exist, the Riemann tensor is perturbed and the magnetic part may 
also have a non-vanishing value. 

  The perturbation of the Ricci tensor is expressed by the matter perturbation 

through the Einstein equations as 

 87r  87r-  dJ               6(R(t)(0)  = RLoPI,e = AR3 dr131'0'(3.26) 

and the other components vanish, where we have used Eq.(3.3) in the last equality. 
The perturbations of the tetrad components of the electric part are given in the 

form 

          1 1  
     6(E(r)(0)  =r  2LAR3 (1  1)(l +  2)k1 +  R(atR)s1 sin  013z,e, (3.27) 

 8(E(0)(0) = 
2AR2I_rat(kAi —                              (atA)ko(sin 0/31,0,0 — cos 0131,0) , (3.28) 

and the other components vanish. The perturbations of the tetrad components of 

the magnetic part are obtained in the form 

 S(B(,.)(0) = 2—1(/ + 1)0,1'1, (3.29) 

           r     (5(BHo)) =  I
_              4AR3R2 (R.,,q0 8), —  A(1 —  1)(l +  2)koI  P1,8, (3.30) 
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          ii,ik",)),+(RR -4) 1  8(B(e)(°))  = —AR21
_—kJ. +AR2'11)., -PIA° 

                    ( I_)'R._  2Az+ G  R2 [RA)ki +  AR20,11(1 + 1)P1, (3.31) 

               

'  • A  (5.(R(0)(0) =  AR2  [R (if.,) +  GI  — A)  k1 +  21 A,.,2,s1                                            It1pcot  OP1,0 
                ' . A 

           2AR2[R(ki)+(RR-A)k1 + AR20,11(1 +  1)P1, (3.32) 
and the other components vanish. 

  Now we will investigate the behavior of the Ricci and Weyl tensors near the 

center where the naked singularity appears. From the regularity conditions  (3.11)-
(3.18), we can see that the perturbations of the Ricci and Weyl tensors obtained 
in the above behave near the center in the manner 

 8(R(t)(0))  —>  IT87:LcPi,eri  , (3.33) 
for the Ricci tensor, and 

 a  (E(r)(4)))  ---'  2  R4(")[(1 +  2)k1c — RcidRte kocl131,8r1-1 , (3.34) 

                           R 

    45(49)(0)—'21-0[(1 + 2)k1, —1:/eddtkoci (49,0 — cot OP/Ar1-1, (3.35) 
 S(B(r)(r))  —>  —y1:t(1 — 1)1(1 +  1)koc_Pir1-2  , (3.36) 

                 1 

 S(13(T)(8)) —> --2R
2(1 —  1)(l + 1)koc-2, , (3.37) 

 8(B(0)(0))  —p —2R2(l+  1)koc(P1,e,e +  1Pi)r1-2, (3.38) 

 S(B(0)(0))  —> —2R
2(/ +  1)koc(cot 0131,0 + 1.10-1', (3.39) 

for the Weyl tensor of 1  > 2. For the 1 = 1 mode, we find 

                .5(E(r)(q5))—>  2l
t  1 ditc  .7'2 sin  0, (3.40) 

 8(13(r)(0)  ---).  —IP  scr cos  0, (3.41) 

 5(B(r)(9))  —>  ltkscr  sin  0, (3.42) 
 S(B(9)(0)) --* 20.scr cos 0, (3.43) 

 S(B(0)(0) =  8(B(0)(6)). (3.44) 
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   From the above equations, we see that the perturbations of the tetrad compo-
nents of the Ricci and  Weyl tensors, except for the quadrupole mode, 1 = 2, of the 
magnetic part,  Bap, identically vanish at the center. This means that the central 
naked singularity formation is affected only by the quadrupole mode up to linear 
order. Therefore, hereafter we shall consider the quadrupole mode only. It is also 
shown that  Os is closely connected to the tetrad components of the magnetic part 
of the Weyl tensor. 

3.3 Numerical Methods and Results 

We numerically solve the wave equation (3.10) in the case of marginally bound 
collapse,  f(r) = 0, and the quadrupole mode, 1 = 2. At first, we investigate the 
purely gravitational wave case and next we include the matter perturbations. 

3.3.1 Methods 

By virtue of the relation  f(r) = 0, we can easily integrate Eq. (2.5) and obtain 

 R(t,  r)=(-49F)113[to(r) — t]213, (3.45) 
where to(r) is an arbitrary function of r. The naked singularity formation time is 
to = to(0). Using the freedom for the scaling of r, we choose R(0, r) r. This 
scaling of r corresponds to the following choice of to(r): 

                          2  

                          F 
                to(r) =

3\Cr3/2 (3.46) 

Here note that, from Eq. (2.3), the background metric variable, A, is equal to R' 
Then, the wave equation (3.10) becomes 

         1 

 =(6R'R")74,(RR*le\14        - 
RI2S.1:1/ 2RR')jR+R')5 

                                                                                                                                                     •  

  -4 [i?'  R 2R)] 167r (r2 p(r)U(r)y, (3.47)             R' R2 R'R2  R'R2 

where p(r)  =p(0, r) is the density profile at t = 0. We solve this partial differential 
equation numerically. 

  We have a disadvantage when we use the  (t,  r) coordinate system, because of 
the restriction on the region in which we can numerically construct the solution 

of the wave equation, (3.10). Therefore, instead of the  (t,  r) coordinate system, 
we introduce a single-null coordinate system, (u, f.), where u is an outgoing null 
coordinate and chosen so that it agrees with t at the symmetric center and we choose 

 = r. We perform the numerical integration along two characteristic directions . 
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The transformation matrix is formally expressed in the form 

 dr = dr, (3.48) 
                 du =  (atu)  r dt  (aru)t dr. (3.49) 

Because u is the out-going null coordinate, the following relation holds, 

 (atu), 1                                                (3.50)  (a
ru)t  R' • 

Using these relations, we obtain the line element of the 2-dimensional sub-space-

time, (t, r), in the following new form 

 ds2(2) —a2du2 —  2a  le  dudi  , (3.51) 

where we have introduced 

        a 1(3.52)  (a
tu)r 
  By using this new coordinate system, (u,  F), Eq. (3.47) is expressed in the form 

    dOs1••5• 
       du[3R' +—2RRR' ——4R2R1            a  [  R" 2  — —— — /0v s87a r2 p(r)U(r)1 (3.53)         2 R'2RR R'  R2 ) 

        1R'      (97-1b=—ROs — 377-  (1 +  -h)  03, (3.54) 

where the ordinary derivative on the left-hand side of Eq. (3.53) and the partial 
derivative on the left-hand side of Eq. (3.54) are given by 

 ndi; n a  a n      — —u uUU=-Ut(3.55) 
    du2R'22R' 

                 (aru)t  af at + or  =kat+ or, (3.56)  (0
tu)r 

respectively. Also,  Os is defined by Eq. (3.54). We integrate Eq. (3.53) using the 
scheme of an explicit first order difference equation. We use the trapezoidal rule, 

 Or'              Osi+i =  Osi ((ar'Os)i  (Oriks)j+1) (3.57) 

to integrate Eq. (3.54). 
 For  the  boundary  condition  at  the  center  we  demand  that  '1,bs  behaves  as  „(t) 

 Os2(t)r2  on  a  surface  of  t  =  const.  We  numerically  realize  this  condition  by  two-
step interpolation. First the values of  Os are derived at two points on the surface 
of t = const from the interpolation on the slices of u = const. Next, using these 
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two values, the central value of  Os is derived from the interpolation on the slice of 
t = const. Another way to determine the central value of  Os is as follows. We first 
obtain the central value of  Os from Eq. (3.53). From Eq. (3.54) and the boundary 
conditions, the relation of  Os and  Os at the center is given by 

 Os = 33,,R0.9. (3.58) 

Using this relation the central value of  Os is obtained. In our numerical analyses 
the results of these two methods agree well. 

   The numerical code used here was checked in the Minkowski spacetime. We 
compared the numerical results with the analytic solutions described in Sec. 3.3.2. 
Also, the numerical results shown here were almost independent of the number of 
grid points. 

3.3.2 Purely Gravitational Wave case 

For the first step we perform the analysis of the perturbations without matter mat-
ter perturbations, i.e., U(r) = 0, in order to isolate the effects of pure gravitational 
waves. 

  We adopt the following initial rest mass density profile so that the central naked 

singularity appears; 

                po[l — 2(r/rb)2 + (r/rb)4] for 0  <  rrb    p(0, r) = (3.59)                  0 for  r  >  rb, 

where po is a positive constant and rb denotes the radial coordinate at the surface 

of the dust cloud. The total (gravitational) mass of the dust cloud is 

                               \ 327r                 M = m(rb) = 
105—port. (3.60) 

The time of the central naked singularity formation is 

           t =41(0) =   . (3.61)  V6
rpo 

Whether the naked singularity is global or local is determined by a non-dimensional 

constant  port  . It is known that the singularity is globally naked for sufficiently 
small  poi [35, 72]. However, the critical value of port can not be obtained explic-
itly. Hence, after  port is given, we have to investigate whether the central naked 
singularity is global or local, by numerically solving the future directed null ray 

from the central naked singularity. Here we consider two cases. One is that of 

 port = 3 x 10-2, which corresponds to a globally naked singularity, and the other 
is that of  poll = 3 x  10-4, which corresponds to a locally naked one. 

  In the globally naked case, the initial radius of the dust cloud and the time of 
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the central naked singularity formation are given by 

 R(0,  rb) rb 105  
 M  M  327rporl34.8, (3.62) 

 to  (0) 105  
 M 46.3. (3.63)                           32V-6-7r3/2(por03/2 

On the other hand, in the locally nakedcase,they are given by 

 R(0,  rb) rb                       =— c=s---' 3.48, (3.64) 

 to(0)                 r=-' 1.46. (3.65) 

   The initial conditions which we consider are a Gaussian-shaped wave packet 

with respect to the coordinate, r', 

                                               (3.66)                   I.=.„ =exp[V2-0.2ric)21 
where  IP!,  a, and  r'c are constants and characterize the amplitude, width and initial 
position of the initial wave packet, respectively. The initial null hypersurface, 
u =  u0, is chosen so that it includes a world point (t, r)  = (0, 0), except for the 
analysis of the scattered waves which will be discussed in this section. 

  We investigate models with three different initial positions of the wave packet, 

i.e., in Eq.(3.66), on the initial null hypersurface. In Case 1, the wave packet 
reaches the  center of the dust cloud before the formation of the central naked 
singularity. In Case 2, a significant portion of the wave packet hits the central 
naked singularity. In Case 3, the packet does not hit the central naked singularity 
but reaches the Cauchy horizon associated with it. Fig.3.1 shows these situations 
schematically. In each case, the value of  0, at the center is plotted as a function of 
the coordinate time, t, in Fig.3.2 for the globally naked case and in Fig.3.3 for the 
locally naked case. Note that it is impossible to perform the numerical calculation 
in the causal future of the central naked singularity. Therefore we plot  Os at the 
center only before the occurrence of the central naked singularity. Although such a 
difficulty exists, we find that violent growth of the amplitude of  Os is not observed 

 near the central naked singularity and Cauchy horizon associated with it. 
  Next we show the dependence of  03 at the center on the width of the initial 

wave packet. Fig.3.4 depicts  Os at the center for various widths of packets in Case 
2. It is found that the amplitude of  g,b, with smaller initial width becomes larger 
at the center. The relation between the width,  o, and the maximal value of  10,1 
at the center is shown in Fig.3.5. We find that there is the following power-law 

relation 

 114,o  cx  a-3                                                (3.67) 
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 Figure  3.1:  Conformal  diagram  of  the  LTB space-time with a globally naked singu-

larity.  i+(i-) denotes future (past) timelike infinity respectively, while i° denotes 
spacelike infinity.  sr+  (sr-  ) denotes future (past) null infinity respectively. The dot-
ted line H+ indicates a future Cauchy horizon associated with the central naked 

singularity. The broken line is a null hypersurface on which we put initial wave 

packets. The initial positions of the wave packets are classified into Cases 1-3. For 
the locally naked singularity case, the Cases 1-3 are defined in the same manner as 

the globally naked case. 
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Figure 3.2: Plots of the gauge-invariant variable,  Os, at the center, r = 0, with 
an initial width  a =  0.05rb for the Cases 1-3 for globally naked cases. In (a), the 
dotted line denotes Case 1  (r'c = 0.5rb), the broken line shows Case 2  (ric =  0.82rb), 
and the solid line denotes Case 3  (r'c = 1.2rb). In (b), the results of Case 2 are 
shown in more detail. The broken line in (b) is the same as the broken line in (a). 
The solid and dotted lines show the cases that the wave packets were put on the 

initial surface at  r' =  0.76rb and at  r'c =  0.88r5, respectively. 
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Figure 3.3: Plots of the gauge-invariant variable,  Os, at the center, r = 0, with an 
initial width  a =  0.02rb for Cases 1-3 for locally naked cases. The dotted, broken, 
and solid lines denote Case 1  (r/c =  0.28rb), Case 2  (r'c = 0.38rb), and Case 3 

 (r', =  0.58rb), respectively. 

  We also observe the time dependence of  0, along the line of a constant circum-
ferential radius outside the dust cloud. Since we would like to see the effect of the 
central naked singularity on  Os, we consider the globally naked case only. We set up 
an initial wave packet of  a  =  0.05rb at R  =  100M on the initial null hypersurface 
which does not include the space-time point (t, r)  = (0, 0) but is chosen so that the 
wave packet will reach the neighborhood of the central naked singularity. 

  The results are shown in Fig.3.6 in which  Os at R =  100M is plotted as a 
function of t. Note that the point, R =  100M, is located in the vacuum region 
which is the Schwarzschild space-time by Birkhoff's theorem. Hence the value of t 
along the curve of R  =  100M agrees with that of the usual static time coordinate 
of the Schwarzschild space-time. 

  In Fig.3.6(a), the solid line corresponds to Case 1 while the broken line is for 
Case 2. The dotted line denotes the result for Case 3. The left-hand peaks in 

Fig.3.6(a) correspond to the initial incident waves. On the other hand, the right-
hand peaks of Cases 1 and 2 in this figure correspond to the scattered outgoing 

waves. In Case 3, the right-hand peak does not exist and this is because, in this case, 

almost all portions of the incident waves enter into the Cauchy horizon associated 

with the central naked singularity and hence it is impossible to follow numerically 

the scattered waves in the causal future of the central naked singularity. Fig.3.6(b) 
shows detailed behavior of the scattered  03 for Case 2. It is a most important fact 
seen in these figures that the amplitude of the scattered waves is almost the same 
as that of the initial incident waves in Cases 1 and 2. 
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Figure 3.4: Plots of the gauge-invariant variable,  Os, at the center, r = 0, in the 
LTB space-time for various widths of initial wave packets. The wave packets are 

put at r =  0.88rb on the initial null surface. The widths of initial wave packets 
are varied from  0.03rb to  0.12rb. The solid line (a) corresponds to the wave form 
of the wave packet with the initial width  o =  0.03rb. The broken line (b) is that 
of the initial width  o =  0.05rb while the dotted line (c) corresponds to that of the 
initial width  o =  0.08rb. The broken dotted line (d) is that of the initial width 

 o- =  0.12rb. 
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Figure 3.5: The relation between the widths of initial wave packets and the maximal 

values of  10,9  I at the center, r  = 0. The results for the case of the LTB space-time 
with globally naked singularity are marked by open circles. The results of the 

locally naked case are marked by the triangles. The results of the Minkowski space-

time are marked by cross marks. The broken line denotes the relation,  1081  'max  oc 
 U-3. 
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Figure 3.6: Plots of  Os with an initial width  a =  0.05rb at R =  100M as a 
function of time, t, in the LTB space-time. In (a), the solid line shows the result 
for the case with an initial time when we put the wave packet on the initial surface 

 ti/M  = —65.310 (Casel), the broken line is for  ti/M = —38.529 (Case2), the dotted 
line is for  ti/M = —13.610 (Case3). (b) depicts the details of the Case2. The solid 
line shows the plot of  0, with the initial time,  ti/M = —34.336, the broken line is 
for  ti/M = —38.529, the dotted line is for  ti/M = —44.677. We find no diverging 
tendency of the gauge-invariant  Os when it approaches the Cauchy horizon. In (c), 
we vary the width of the initial wave packet in Case2. The solid line is a plot of 

 =  0.02rb, the broken line is the case of the initial width  a =  0.25rb, the dotted 

line is that of  a =  0.5rb. 
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   In order to investigate the effect of the wavelength of  b8, we perform the nu-

merical integration for Case 2 but with different initial widths of wave packets. 

The results of narrower (a =  0.02rb) and broader (a =  0.25rb and 0.5rb) widths 
than the case plotted in Fig.3.6(a) and (b) are shown in Fig.3.6(c). The narrower 
wave is similar to a =  0.05rb while the broader packets have different forms of 

scattered waves from the narrower one. However, in both cases, the amplitude of 

the scattered wave is not so different from the incident one. 

  Next, in order to isolate the effect of the spacetime curvature on the propa-

gation of gravitational waves, we compare the analytic solution in the Minkowski 
spacetime with the results of the LTB space-time obtained in the above. In the 

Minkowski case, since R(t, r) = r, Eq.(3.47) becomes 

                 at2os  -  azos =_6aros.(3.68) 

The solution of this equation which is regular at r = 0 is obtained in the form 

           -3 f (t - r)- f (tr)3 f (1) (t -f (1) (tr)  
 r5r4 

               f(2)(t  -  r) -  f(2)(t  r)                                                (3.69) 
 r3 

where  f  (x) is an arbitrary function and  f  (n) (x) denotes the n-th order derivative 
of  f  (x) with respect to  x. We set the following initial wave packet on the null 
hypersurface, t = r, 

      [ 

                      = exp(r
2a2c)21                                               (3.70) 

Using the above solution, we compare the evolution of wave forms in the Minkowski 

space-time with that in the LTB space-time. The initial wave packet in the LTB 

space-time has been given by Eq.(3.66) as a function of the coordinate radius, 
r' However, note that r' does not agree with the circumferential radius, R, in 

this case but in the Minkowski case, the coordinate radius, r, agrees with the 

circumferential radius, R. Since the circumferential radius, R, is tightly connected 

with the behavior of the amplitude of the wave, we should set the same initial data 

with respect to R both for the LTB and Minkowski cases. Hence first we plot the 

initial wave packet (3.66) as a function of  RI  M on the initial null hypersurface and 
then the values of  a and  T., in Eq.(3.70) are adjusted so that the initial wave form 
fits well with that of the LTB case. 

  First we consider the evolution of  Os at the center. Using  Eqs.  (3.69) and (3.70), 
we obtain  0, at the center in the form 

                        \   1t)      8(t, 0) = [1  -—1t-                 a(-- r                22c)  2 4a2214o-4222)r)2(22—-- 

                        32



              1   ( t\31  ( t3(t3 
                rt              20a4 2c)2)6006re) 2) 

       1 2  X  exp[—22trc(3.71) 
The parameters,  a and  re, in Eq.(3.70) are chosen so that the initial wave packets fit 
well with those of the Cases 1 and 2 of Fig3.2. The results are given in Fig.3.7(a) and 
(b), respectively, and in this figure, we also plot the results for the corresponding 
cases of the LTB space-time. It should be noted that there is scarcely any difference 

between the wave forms of the Minkowski and LTB cases. 
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Figure 3.7: Results of the comparison of the wave forms at the center. In (a), the 
solid line shows the LTB case, as a function of t/M, that is the same as the Case 
1 in Fig.3.2(a). The dotted line shows the corresponding one of the Minkowski 
case, as a function of t, where  a = 1.18 and  re  = 13.9. In (b), the LTB case is the 
solid line and Case 2 in Fig.3.2(a). The Minkowski case is the dotted line where 

 0= 1.25 and  re  =  21.4. 

  Next we consider the behavior of  Os at a finite circumferential radius which 
agrees with the numerical value of R =  100M in the LTB case. Here the wave 
form is obtained numerically by the same procedure as in the LTB case. The result 
is shown in Fig.3.8. We also plot the corresponding case of the LTB space-time in 
the same figure. We find that there is a little difference of the phase between the 
Minkowski and LTB cases. However, the behavior of  Os in the Minkowski case is 
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basically the same as that in the LTB case. The effect due to the dust cloud and 
the existence of the central naked singularity on the propagation of  03 is rather 
small. 

 - 
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Figure 3.8: Wave forms along the constant circumferential radius both for the 

Minkowski and LTB cases are plotted. The solid line shows the LTB case, as a 

function of  t/M, that is identical with Case 1 in Fig.3.6 (a). The dotted line shows 
the corresponding one of the Minkowski case, as a function of t, where a = 1.33 

and  re = 100. 

  We consider the relation between the maximum value of  10,1 observed at the 
center and the width, a, of an initial wave packet in the Minkowski space-time. 

This relation is obtained from Eq.(3.71). The results are also shown in Fig.3.5. The 
power-law relation Eq.(3.67) is also valid in the Minkowski case. From Eq.(3.69), 

 Os is approximately proportion to 1/r3 except for the region of r > a around the 
center. If the initial amplitude of the wave packet has a  value  tki at r  re, then 
the value of  Os at r = a is roughly estimated as  i x  (a  Irc)-3 This will be the 
reason why the relation (3.67) holds in the Minkowski space-time. As we have 
discussed above,  03 behaves outside the Cauchy horizon of the LTB space-time 
in approximately the same manner as in the Minkowski space-time. Therefore it 
would be also the reason why the relation (3.67) holds in the LTB space-time. 
  As a result, we conclude that even in the neighborhood of the central naked 

singularity and of the Cauchy horizon associated with it, the metric perturbation , 
 08, does not show any peculiar behavior. However, we should note that  Os does 

not vanish in the neighborhood of the central naked singularity although it is 
well-behaved. Therefore, the formation process of the central naked singularity is 
marginally stable against the odd-parity metric perturbations. 
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Table 3.1: Parameters of initial density profiles, power law indices and damped 

oscillation frequencies. d.o.f denotes damped oscillation frequency.  

     final state  po  ri r2 n power index d.o.f  

 (a) globally naked 1 x  10-2 0.25 0.5 2 5/3 
 (b) locally naked 1 x  10-i 0.25 0.5 2 5/3 0.37+0.089i 

 (c) black hole 2 x  10-2 2 0.4 4 0.37+0.089i  

3.3.3 Including Matter Perturbations 

When the matter perturbation exists, the source term in the wave equation (3.47) 
does not vanish. In the previous subsection, we have found that the homogeneous 

solution of the wave equation (3.47) does not show any violent behavior. So, if 
the solution with nonvanishing source term shows divergent behavior, it does not 
depend on the choice of initial data for  Os because the divergent behavior is due 
to the particular solution part. Here we assume  Os vanishes on the initial null 
hypersurface. 
  We adopt the initial rest mass density profile 

                        1 exp (-129 
                                        r2  

 p(r) =  Po (3.72) 
                         1 + exp 

                                                    2ri r2 

where po,  ri and r2 are positive constants and n is a positive even integer. As a 

result the dust fluid spreads all over the space. However, if r  r1, r2, then p(r) 
decreases exponentially, so that the dust cloud is divided into the core part and the 

envelope which would be considered as the vacuum region essentially. We define a 

core radius as 
 r2  'core =  T1—2•(3.73) 

If we set n = 2, there appears a central naked singularity. This singularity becomes 

locally or globally naked depending on the parameters (p0,  ri, r2). However, if 
the integer n is greater than 2, the final state of the dust cloud is a black hole 

independently of the parameters. Then we consider three different density profiles 

connected with three types of the final state of the dust cloud, globally and locally 

naked singularities and a black hole. The outgoing null coordinate u is chosen so 

that it agrees with the proper time at the symmetric center. Therefore, even if the 

black hole background is considered, we can analyze the inside of the event horizon. 

Corresponding parameters are given in Table 3.1. Using this density profile, we 

numerically calculate the total gravitational mass of the dust cloud M. In our 

calculation we adopt the total mass M as the unit of the variables. 

  The source term of Eq. (3.53), 

              S(t,r)  — —87ra(r2p(r)U(r)\(3.74)  ar 
          R(arR)R2) 
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is determined by U(r). As mentioned above, the constraints on the functional form 
of U(r) are given by the regularity condition of  Lo. From Eq. (3.76), U(r) should 
be proportional to  r1+1 toward the center. We localize the matter perturbation 

near the center to diminish the effects of the initial ingoing waves. Therefore we 

define U(r) such that 

                        2)5                    Uo7-r-j5 (1 — (7')for 0  <  r < rb,  r2  p(r)U(r) =(3.75) 
 0 for  r  >  rb, 

where  U0 and  rb are arbitrary constants. In our numerical calculation we chose  rb 

as  rcore/2. This choice of  rb has no special meaning, and the results of our numerical 
calculations are not sensitive to it. 

  Before the detailed explanation of the numerical results, we comment on the 

behavior of the matter perturbation variable  Lo around a naked singularity on the 

slice t =  to. The regularity conditions of  Lo and  p determine the behavior of U(r) 
near the center as 

              U(r)  oc  r1+1 (3.76) 

This property does not change even if a central singularity appears. However, the 

r dependence of R and A near the center changes at that time. Assuming a rest 

mass density profile of the form 

 p(r)  = po  pnrn  • , (3.77) 

we obtain the relation 

                 to(r)  a  to +  tnrn (3.78) 

from Eqs. (2.4) and (3.46), where n is a positive even integer. After substituting this 
relation into Eq. (3.45), the lowest order term is absent from the square brackets 
of it. Then we obtain the behavior of R and A around the central singularity as 

 R(to,r)  oc (3.79) 

and 

 Alto,  r)  a  ran (3.80) 

on the slice t = to. As a result, we obtain the r dependence of  Lo around the center 

when the naked singularity appears as 

 Lo(to,r)  a  73-2n+1 (3.81) 

For example, if  1 = 2 and n = 2, then  Lo is inversely proportional to r and 
diverges toward the central naked singularity. Therefore the source term of the 
wave equation is expected to have a large magnitude around the naked singularity. 
Thus the metric perturbation variable  Os as well as matter variable  Lo may diverge 
toward the naked singularity. 
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Figure 3.9: Plots of  Os at the center as a function of the time coordinate t. The 
solid line represents the globally naked case (a), the dashed line represents the 
locally naked case (b), and the dotted line represents the black hole case (c). 

  First we observe the behavior of  Os at the center. The results are plotted in 
Fig. 3.9. The initial oscillations correspond to the initial ingoing waves. After 
these oscillations,  Os grows proportional to  (to —  0' for the naked singularity 
cases near the formation epoch of the naked singularity. For the case of black hole 
formation,  Os exhibits power-law growth in the early part. Later its slope gradually 
changes but it grows faster than in the case of the naked singularity. For the naked 
singularity cases, the power-law indices  S are determined by  (to —  008/0, locally. 
The results are shown in Fig. 3.10. From this figure we read the final indices as 

5/3 for both naked cases. Therefore the metric perturbations diverge at the central 
naked singularity. 

  We also observe the wave form of  0, along the line of a constant circumferential 
radius outside the dust cloud. The results are shown in Figs. 3.11-3.13. Figure 3.11 
displays the wave form of the globally naked case (a), Fig. 3.12 displays the wave 
form of the locally naked case (b), and Fig. 3.13 displays the wave form of the black 
hole case (c). The initial oscillations correspond to the initial ingoing waves. In the 
case of a locally naked singularity and black hole formation, damped oscillations 

dominate the gravitational waves. We read the frequencies and damping rates 

of these damped oscillations from Figs. 3.12 and 3.13 and give them in terms of 

complex frequencies as 0.37  + 0.089i for locally naked and black hole cases. These 
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Figure 3.10: Plots of the local power indices  (to —  t)7,bs/03. The solid line cor-
responds to the globally naked case (a), and the dashed line corresponds to the 
locally naked case (b). Both of them approach a value near 5/3. 

                        38



agree well with the fundamental quasi-normal frequency of the quadrupole mode 

(2Mw =  0.74734  +  0.17792i) of a Schwarzschild black hole given by Chandrasekhar 
and Detweiler [87]. In the globally naked singularity case (a), we did not see this 
damped oscillation because of the existence of the Cauchy horizon. In all cases the 

gravitational waves generated by matter perturbations are at most quasi-normal 
modes of a black hole, which is generated outside the dust cloud. Therefore intense 

odd-parity gravitational waves would not be produced by the inhomogeneous dust 

cloud collapse. We should not expect that the central extremely high density region 

can be observed by this mode of gravitational waves. 

 _,I,..1...1.1.1.1.1  

 10-7 

 0 

                 0  L 

 -1x10-7 -  -  

1  1  11  1  1  1  1  1  ,..1  

 220  240  260  280  300  320 

          (a) 
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 -3x10-6   
ti  

         322 324 326 328 

          (b) 

Figure 3.11: Plots of  Os for the globally naked case (a) at R = 100. In (a) the left 
hand side oscillation originates from the initial ingoing wave. In (b) we magnify 
the the right-hand edge, which is just before the Cauchy horizon. The dotted lines 
represent the time at which the observer at  R= 100 intersects the Cauchy horizon, 
which is determined by numerical integration of the null geodesic equation from 
the naked singularity. 

  We can calculate the radiated power of the gravitational waves and thereby 
grasp the physical meaning of the gauge-invariant quantities. The result is de-
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Figure 3.12: Plots of  0, for the locally naked case (b) at  R = 100. In (a) the left 
hand side oscillation originates from the initial ingoing wave. After this oscillation, 

the damped oscillation dominates, and this part of the wave form is magnified in 

(b). 
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Figure 3.13: Plots of  Os for the black hole case (c) at  R= 100. In (a) the left-hand 
side oscillation originates from the initial ingoing wave. After this oscillation, the 

damped oscillation dominate, as depicted in (b). 
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Figure 3.14: Plots of the radiated power P for globally naked case (a) at R = 100. 
The horizontal axis is the out-going null coordinate u. At the Cauchy horizon, this 

coordinate has the value  uo. 

scribed in Appendix B. Using Eqs. (3.9) and (B.24), the radiated power P of 
quadrupole mode is denoted as 

 P 32-3R"[a (R3 3) ] 2 (3.82) 
                                  7r 

Fig. 3.14 shows the time evolution of the radiated power P The radiated power 

also has a finite value at the Cauchy horizon. The total energy radiated by the odd-

parity quadrupole gravitational waves during the dust collapse would not diverge. 

3.4 Discussion 

First we consider the behavior of the source term S(t, r) around the naked sin-
gularity. From the regularity conditions and Eqs. (3.76), (3.79), and (3.80), the 
asymptotic behavior of the source term is obtained as 

 S(t,  r)  a  7-1-1 (3.83) 

for t  <  to and 

 S(t,r)  a  r1-37                                              (3.84) 
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Figure 3.15: Plots of  os and the estimated value  Ws at the center for the globally 
naked case (a). The solid line represents the  ';1)  , and the dotted line represents the 
estimated value  Ts. Both lines exhibit power-law behavior with power indices 5/3. 

at t =  to. For example, in the case  1 = 2 and n = 2, the source term behaves on 

 t  =  to as 

 S  (t  ,  r)  a  r-13/3, (3.85) 

and then it diverges at the center. Thus the divergency of at the center originates 
from the source term. To confirm this, we numerically integrate the source term 
along the ingoing null lines with respect to u and estimate the central value of  Os. 
We define this  'estimated' value as 

 (Ds  S  (t, r)du. (3.86) 

Using Eq. (3.58) we can define the estimated value of  Os as 

                                             (3.87)                              39R • 

We plot it in Fig. 3.15 together with the corresponding The The estimated value has 
the same power-law index of  Os. We conclude that the behavior of  Os is determined 
by the source term in the dust cloud. 

  We next consider the stability of the Cauchy horizon. We found that the metric 
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perturbation produced by the source term does not propagate outside the dust 
cloud, except for quasi-normal ringing. The source term, which controls  Os, does 
not diverge at the Cauchy horizon. Therefore  Os should not diverge at the Cauchy 
horizon and should not destroy it. Then, even if odd-parity perturbations are 
considered, it will not be the case that the LTB spacetime loses its character as a 
counterexample to  CCH due to Cauchy horizon instability. Also, it does not seem 
that such collapse is a strong source of gravitational waves. 

  Here we have dealt with the marginally bound case. For the case of non-
marginally bound collapse, the condition of the appearance of the central naked 
singularity is slightly different from that in the above case [72, 73] and hence there 
is the possibility that the behavior of  Os in this case is different from that in the 
marginally bound case. However, it is well known that the limiting behavior of the 
metric as t  --- to(r) is common for all the cases:[88] 

     R H9F)1/3(to  —  t)  213  , A,c,.,2,(LT'1/3t'o  
                           3)-V1 + f  (to —0-113 (3.88) 

         4 We conjecture that the results of the perturbed analysis for the non-marginal col-
lapse would be similar to the results for the marginal bound. 

3.5 Summary 

We have studied the behavior of the odd-parity perturbations in the LTB spacetime. 
For the quadrupole mode, where gravitational waves exist, we have numerically 
investigated the wave equation. 

  We have derived the wave equation for the gauge-invariant variable,  Os. From 
the analysis of the regularity for  is and the perturbations of the Riemann tensor, 
only the quadrupole mode,  1 = 2, of  Os and of the magnetic part of the Weyl 
tensor does not vanish at the symmetric center of the background LTB space-time, 
where a naked singularity appears in the course of the gravitational collapse of the 
dust cloud. Therefore this quadrupole mode is the most important for the stabil-
ity analysis of naked singularity formation in the LTB space-time. Then we have 

performed numerical experiments on how a Gaussian-shaped incident wave packet 
behaves under this wave equation for the  1 = 2 mode without matter perturbations. 
From those numerical experiments, we have obtained the following results. When 
this wave packet approaches the center, its amplitude becomes larger but finite. 
The amplitude at the center depends on the width of the initial wave packet ac-
cording to a power law. On the other hand, when the incident wave packet initially 
located outside the dust cloud returns back to the same circumferential radius as 
the initial one, the amplitude of the returned wave is almost equal to that of the 
incident one. 

  In order to reveal the characteristic effects of the LTB space-time on the be-
havior of  05, we have also investigated  Os in the Minkowski space-time. Then we 
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have found that in the outside of the Cauchy horizon associated with the central 
naked singularity, the behavior of  Os in the LTB space-time seems to be not so 
different from that in the Minkowski space-time at least except for the extreme 
neighborhood of the naked singularity. Therefore the power-law dependence in the 
LTB space-time described above is basically realized by the analytical discussion 
about the case of the Minkowski space-time. Further the propagation effect due 
to the existence of the dust cloud and the occurrence of the central naked singu-
larity is rather small. In other words, there is no peculiar behavior of  Os even in 
the neighborhood of the central naked singularity. However, it should be noted 
that the odd-parity metric perturbation does not vanish in the neighborhood of 
the central naked singularity and Cauchy horizon associated with it. As a result, 
we conclude that the central naked singularity formation in the LTB space-time is 

 `marginally' stable against the odd-parity metric perturbations . 
   For the case of naked singularity formation, the gauge-invariant metric variable, 

 Os, diverges according to a power law with power index 5/3 at the center. This 
power index is closely related to the behavior of the matter perturbation around 
the center. We have also observed  0, at a constant circumferential radius. For the 

globally naked case, we cannot see intense gravitational waves propagated from the 
center just before the crossing of the Cauchy horizon. For the locally naked case, we 
have confirmed that there exist quasi-normal oscillations. As a result, we conclude 
that the type of singularity changes due to the odd-parity perturbation because 

 Os diverges at the center. However, the Cauchy horizon is still marginally stable 
against odd-parity perturbations even when we include matter perturbations. 

  At the final stage of the collapse, the effects of the rotational motion are im-

portant and the centrifugal force might dominate the radial motion. If this is true, 
the central singularity would disappear when an odd-parity matter perturbation is 
introduced. For the dipole mode, such a situation seems to be inevitable. However, 
we should note that it is a non-trivial and open question how non-linear aspheric-
ity affects the final fate of the singularity-formation process. Further, in the case 
of initially sufficiently small aspherical perturbations, the radius of spacetime cur-
vature at the center might reach the Planck length, and hence there is still the 

possibility that the naked singularity is formed there in a practical sense. However, 
as our present analysis has revealed, since the Cauchy horizon is stable with respect 
to odd-parity linear perturbations, there is little possibility that this collapse is a 
strong source of odd-parity gravitational waves. 
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Chapter 4 

Even-parity Perturbation of LTB 

 Spacetime 

We have analyzed the behavior of odd-parity perturbations in the LTB  spacetime 

in Chap. 3. At the case of the odd-parity perturbation, however, the evolution of 

the matter perturbation decouples from the evolution of the metric perturbation, 

while the even-parity matter perturbation couples to the metric part. Therefore an 

even mode seems to be more essential. Particularly, the existence of matter per-

turbation seems to play a significant role in the evolution of perturbations. Thus, 

to investigate the generation of gravitational waves in LTB spacetime we should 

analyze even-parity perturbations. Generally, there are more gauge invariants for 

even-parity perturbations than for odd-parity ones. Equations for perturbations 

are also more complicated. 

  Here we investigate the behavior of the even-parity quadrupole metric and mat-

ter perturbations in the marginally bound LTB background. We numerically solve 

the time evolutions of the gauge invariant metric variables. We show that some of 

metric perturbation variables and Weyl scalar diverge at the Cauchy horizon but 

the energy flux does not. In this chapter we follow Iguchi, Harada, and Nakao [89]. 

4.1 Basic Equations 

We consider the evolution of even-parity perturbations of the LTB spacetime to 
linear order. We follow the gauge-invariant formalism established by Gerlach and 
Sengupta [84, 85] which is described in Appendix A. Here we restrict our numerical 
investigation to the quadrupole mode in the marginally bound background. We 
derive the perturbed equations in that case. 

  There are 4 gauge-invariant metric variables, kab and k, and 7 matter variables , 
 Tab, Ta, T2, and T3, where a refers to  t,  r. The energy density  p is perturbed by 

adding the scalar term  SpY, while the 4-velocity  7-14 is perturbed by adding the 
term 

                  =  (vo(xd)y,  V1(xd)Y,  v2(xd)y,A).  (4.1) 
The normalization for the 4-velocity yields the relation  iii4Sup, = 0. This relation 
implies that  V0 vanishes exactly. Then there are only three matter perturbation 
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variables, 

 Too =  p(t,r), (4.2) 
 Tot  (t,  r), (4.3) 
 T0 =  fiV2(t  ,  r) (4.4) 

The others exactly vanish: 

 T11  =  T1  =  T3  =  T2  =  0. (4.5) 

Now we can write down the perturbed Einstein field equations for the background 

LTB spacetime. The resulting linearized Einstein equations are given in Appendix 

C. 

  We have obtained seven differential equations, (C.1)—(C.7), for seven variables 
(four metric and three matter). The right-hand sides of four of these equations 
vanish exactly. Then we can obtain the behavior of the metric variables through 

the integration of them. We transform these equations into more favorable forms. 

From Eq. (A.26), 

 1 

 koo =—R/2kn.(4.6) 

Using this relation and the remaining equations whose r.h.s. vanish, we obtain 
evolution equations for gauge-invariant metric variables as 

    1 „42R",R'.k     _ 4 +_q"=q (_) q'3_q+ 4__) 
    R12R2RR'k3R'RR' 

                 2  2R/211  R"  i?  2R' R'  2R"  k) 
          4-R/3k01— R2R' ) 

       4_2LirR' R\(4.7)  )L                                                   K011, 

                      R'3 

 k=2 
 R. R;2 (R' R. (4.8) 

                                                                                                       , 

                    RR' +—Rq— 4k +-RR'——R'—R)   R2 q   

                          R' ,  k
oi =R'—  q', (4.9) 

where q k —  k00. If we solve these three equations for some initial data and for 

the appropriate boundary conditions, we can follow the full evolution of the metric 

perturbations. When we substitute these metric perturbations into Eqs. (C.1), 
(C.2) and (C.4), the matter perturbation variables  Sp, V1 and  V2 respectively, are 
obtained. 

  We can also investigate the evolution of the matter perturbations from the 
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linearized conservation equations  S  (7  111;,)  = 0. They reduce to 

                                                       / 

     (45p1 (R2fi6T,               /5R2R,—R,(koi + 171))-—R2v2 - k- (k  -  4)  , (4.10)  Pi2 

     V1 = --2(k' - V) , (4.11) 

     V2= --2(k - q) . (4.12) 

Integration of these equations gives us the time evolution of the matter perturba-

tions. We can check the consistency of the numerical calculation by comparison of 

these variables and those obtained from Eqs. (C.1), (C.2) and (C.4). 
   To constrain the boundary conditions in our numerical calculation, we should 

consider the regularity conditions at the center. These conditions are obtained from 

requiring that all tensor quantities be expandable in non-negative integer powers of 

locally Cartesian coordinates near the  center.  [86] The detailed derivation of these 
conditions is too complicated to be presented here. We simply quote the results. 

The regularity conditions for the metric perturbations are 

               k  ,-,  ko(t)r2  , q  --,  q0(t)r4  , k01  -  ko(t)r3  . (4.13) 

For the matter perturbations, the regularity conditions at the center are 

 Sp  ,--,  Spo(t)r2,  V1  ̂'' Vio(t)r,  14  ' V20(t)r2 (4.14) 

Therefore all the variables we need to calculate vanish at the center. 

4.2 Numerical method and results 

We numerically solved the wave equations (4.7)-(4.9). Following the method of 
previous chapter, we transformed the wave equation (4.7) into the out-going single-
null coordinate system. In this section, we present this coordinate transformation 
and explain our background and initial data of the perturbations. In the later half 
of this section, we give our numerical results. 

4.2.1 Numerical method 

In the previous section it was shown that the perturbation variables q, k and  k01 
vanish at the center. A careful treatment of the differential equations may be 
required near the center for proper propagation through the center . Hence we 
define the new variables 

 -4 =  q  R/7  I  R4 k  =  kR/4  /  R2,  k01  =  koar  /  R3 (4.15) 
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Table 4.1: Parameters of initial density profiles and damped oscillation frequencies, 

where M = 1.  

       final state  Po r1 r2  n damped oscillation frequency  

 (a) globally naked 1 x  10-2 0.25 0.5 2  — 
 (b) locally naked 1 x  10-i 0.25 0.5 2 0.36+0.096i 

 (c) black hole 2 x  10-2 2 0.4 4 0.36+0.093i  

These new variables are not identically zero at the regular center and do not diverge 

when they approach the central singularity because of the suppression factor  R' 

We rewrite Eqs. (4.7)-(4.9) in terms of these new variables. 
  Next we perform a coordinate transformation for Eq. (4.7) from the synchronous 

comoving coordinate system (t, r) to the single-null coordinate system (u, where 
u is the outgoing null coordinate and f. = r. We perform the numerical integration 

of this equation along two characteristic directions. Therefore we use a double null 

grid in the numerical calculation. Whereas we integrate Eqs. (4.8) and (4.9) along 
the direction r = const. (Detailed explanations of the single-null coordinate used 
in our calculation is given in INH.) As a result, we obtain the first order differential 
equations 

            1 d  

  a duv. 
                   =  aiX + a2W + a3Z + a4k + a54, (4.16) 

            1/.1T =  biX  b2W  b3Z  b54, (4.17) 

 2  =  cix  +  cw  +  c3z  +  c4k  + c5-4,(4.18) 

 k  =  dix  +  d2w  +  d3z  +  d4k  +  d54, (4.19) 

               aTq =  eiX + e2W + e3Z +  e4k +  e5q, (4.20) 

where we have introduced X and  W, which are defined by Eqs. (4.20) and (4.19), 
respectively, and 

 R 
 (4.21) 

The coefficients  al,  a2,  •  • are shown in Appendix C. Equations (4.16) and (4.20) are 
integrated along the double-null grid. We integrate Eq. (4.16) using the scheme 
of an explicit first order difference equation, and we use the trapezoidal rule to 

integrate Eq. (4.20). Equations  (4.17)-(4.19) are integrated along the timelike 
directions r = const using a first order difference method. We interpolate variables 

to estimate the right-hand sides of Eqs. (4.17)-(4.19) at the same radial coordinate 
r on the previous out-going null slice. 

  We adopt Eq. (3.72) in Sec. 3 as the initial rest mass density profile. Using this 
density profile, we numerically calculate the total gravitational mass of the dust 

cloud M. In our calculation we adopt the total mass M as the unit of the variables. 
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  We give the numerical results from the initial conditions for the perturbations 

 X =of-4— (63z + 654)                                                (4.22) 
 el 

    W = (4.23) 

        Z = 4RR'4, (4.24) 

                       (3R'bib5— b2d5)4  k — (4.25) 
                                b4 

 5 

                          r\2)—2 R2                = (1 +(r3 ) R2—b4,(4.26) 
on the initial null surface. Here  k vanishes on this surface and  W and  Z are dimin-
ished near the center. We chose r3 =  0.3rc.„. The main results of our numerical 
investigation do not depend on the detailed choice of the initial conditions. 

4.2.2 Results 

First we observe the behavior of the metric variables q, k, k01 and the Weyl scalar, 
which corresponds to out-going waves, 

        1F4CpamvnPm (4.27) 

                   3.1Tsine —  (k — q)     =—4.28 
         32r R2  R'() 

where 

                     1 

                  = 

             (2' 2R,, u) (4.29) 
 1()       TV'=(0,0,4.30                        AfiR'\/-2-R sin 0) 

outside the dust cloud. The results are plotted in Fig. 4.1. We can see that 

the metric variables q, k01 and the Weyl scalar  W4 diverge when they approach the 

Cauchy horizon. The asymptotic power indices of these quantities are about  N 0.88. 

On the other hand the metric quantity k does not diverge when it approaches the 

Cauchy horizon. The energy flux is computed by constructing the Landau-Lifshitz 

pseudotensor. We can calculate the radiated power of gravitational waves from this. 
The result is given in Appendix B. For the quadrupole mode, the total radiated 

power becomes 

 P =32(4.31) 

The radiated power of the gravitational waves is proportional to the square of k. 

Therefore the system of spherical dust collapse with linear perturbations cannot 
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Figure 4.1: Plots of perturbed variables q, k,  k01 and the Weyl scalar  ‘114 at constant 

circumferential radius R. The results for R = 1, R = 10, R = 100, and R = 200 

are plotted. The solid lines represent the results for R = 1, the dotted lines for 

R = 10, the dashed lines for R = 100, and the long dashed lines for R = 200. 

u = u0 corresponds to the Cauchy horizon. 

be expected as a strong source of gravitational waves. 

  Second we observe the perturbations near the center. The results are plotted in 

Figs. 4.2 and 4.3. In these figures we plot the perturbations at  t—  t0(0) =  —10-1, 
 —10-2 ,  —10-3,  —10', and 0. Before the formation of the naked singularity, the 

perturbations obey the regularity conditions at the center. Each line in these 
figures displays this dependence if the radial coordinate is sufficiently small. In 
this region, we can also see that all the variables grow according to power-laws 
on the time coordinate along the lines of r = const. The asymptotic behavior of 

perturbations near the central naked singularity is summarized as follows: 

                q  oc  At-2.1r4, k  oc  At-1.4_2 k01  OC1.0r3, 
             by  

c(  At-1.6r2,  oc  At-0.4r,  V2  AroAr2, 
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Figure 4.3: Plots of perturbed variables  Sp,  V1, and V2 near the center. The values 

for  At =  10-1,  10-2,  10',  10', and 0 are plotted. The solid lines represent the 

results for  At = 0, the long dashed lines for  At =  10-1, the dashed lines for  At  = 

 10-2, the dotted lines for  At  =  10-3, and the dotted dashed lines for  At =  10-4 

where  At =  t0(0) — t. On the time slice at  At = 0, perturbations behave as 

                     q ar-0.09k  a r-(174,k01cc r0.92, 

 Sp r-1.4 V1 7,0.25, -172 r1.3 

 p On this slice k and  Splfi diverge and q diverges weakly when they approach the 
central singularity. On the other hand, k01 and V2 go to zero and V1 vanishes slowly. 

  In cases of a locally naked singularity and black hole formation, we expect to 

observe damped oscillation in the asymptotic region outside the dust cloud, as 

in the odd parity case. The results are plotted in Fig. 4.4. These figures show 

that damped oscillations are dominant. We read the frequencies and damping 

rates of these damped oscillations from Fig. 4.4 and give them in terms of complex 
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Figure 4.4: Plots of perturbed variables q at constant circumferential radius R = 
100 in the locally naked and black hole cases. q is normalized with respect to its 
maximum value, and the origin of the time variable is adjusted to coincide with 
the time when q is maximum. 

frequencies as  0.36+0.096i and  0.36-F0.093i for locally naked and black hole cases, 
respectively. These results agree well with the fundamental quasi-normal frequency 
of the quadrupole mode  (2Mw = 0.74734 +  0.17792i).[87] 
  The numerical accuracy of our calculations was checked with the equations that 

were not used for the derivation of Eqs. (4.7)-(4.9), e.g., Eq. (C.4). We define the 
maximum relative error  E  as 

 —  2  gx  + -14 (6IR4 -- 71,4+ 8-1t)  z 
                     + (4A- 6k) k + 167rfiv21 

 E— R17  r R14 R 191                                                (4.32)  E  leach  term of  numerator' 

We calculated this quantity on the last null surface where the matter variable V2 

is obtained from the integration of Eq. (4.12) using a method similar to that used 
for Eqs. (4.17)-(4.19). The results are displayed in Fig. 4.5. Except the region 
of small r say, (r < 3 x  10-4), this value is less than 0.01. Both the numerator 
and denominator of Eq. (4.32) vanish at the center. Therefore it seems difficult to 
estimate the numerical errors from Eq. (4.32) when r is small. 
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          Figure 4.5: Maximum relative errors on the last null slice. 

4.3  Discussions 

In this section we consider the physical interpretation of our numerical results for 
even-parity perturbations. The divergence behavior of the perturbations implies 
that the linear perturbation analysis near the Cauchy is invalid. This fact shows 
that aspherical effects are important in the naked singularity formation. 

  To consider where these effects are important and what would happen in this 
region, we should discuss our results more carefully. The perturbations grow ac-
cording to power-laws and diverge only at the Cauchy horizon. Therefore, except 
for the region very near the Cauchy horizon, the perturbations are finite and small 
when we choose sufficiently small initial values. This means that the central region 
can reach an extremely high density before the breakdown of the linear perturba-
tion analysis. While in the region of spacetime just before the Cauchy horizon, 
aspherical property becomes important for the dynamics of the spacetime. Our 
results suggest that the Cauchy horizon is unstable and that a singularity appears 
along it. 

  The naked singularity of the LTB spacetime is considered as a massless sin-

gularity. Gravitational waves, even if they have finite energy, would affect the 
naked singularity. To investigate this effect we should consider back-reaction of 
the gravitational waves. 
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4.4 Summary 

We have studied the behavior of even-parity perturbations in the LTB spacetime. 

We have numerically solved the linearized Einstein equations for gauge-invariant 

variables in the case of the quadrupole mode and marginally bound background. 

We have constructed a numerical code which solves the perturbation equations on 

an out-going single null coordinate. For the globally naked case, the perturbed 

variables q,  km and the Weyl scalar  W4 grow as powers of (uo — u) outside the dust 
cloud, where the power index is approximately —0.88. Then the Cauchy horizon 
of this spacetime is unstable with respect to linear even-parity perturbations. On 
the other hand, the perturbed variable k is finite just before the crossing of the 
Cauchy horizon. The energy flux, which is proportional to the square of k, is also 
finite. Therefore inhomogeneous aspherical dust collapse is not expected to be a 
strong source of gravitational wave bursts. 

  We have investigated the asymptotic behavior of perturbations near a central 
naked singularity. If the radial coordinate is sufficiently small, the dependence on 
it is determined by the regularity conditions at the center. Our numerical results 
show this dependence. The time dependence is an inverse power-law in  At. At the 
time of naked singularity formation, q, k and  Sp/p diverge when they approach the 
central singularity, while  kol,  VI and V2 do not. 

  For the cases of locally naked and black hole formation, there appear the 

damped oscillations outside the dust cloud. This is consistent with the funda-

mental quasi-normal frequency of the quadrupole mode of a Schwarzschild black 

hole. 
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Chapter 5 

Newtonian Analysis of 

Gravitational Waves around a 

Naked Singularity 

In the previous chapter we have numerically shown that some perturbed variables 

and Weyl scalar grow according to the power of u0 — u outside the dust cloud, 

whereas perturbed variable k and energy flux are finite. Here we attempt to ex-

plain these properties by analytical treatment. To do so, we perform Newtonian 
approximation and estimate gravitational waves by quadrupole formula. For the 

globally naked case, the inequality R < F is satisfied outside the Cauchy horizon 
except for the center in the dust cloud. Then the gravitational potential  101 and 
the velocity v of each dust shell component satisfy the relations 

 IC  v,  2  ,  /12  , ___<FL          R(5.1) 

Thus the relativistic effects may be small. The results show a good similarity. 

5.1 Newtonian Background Metric and Coordi-

     nate System. 

First, we make relations between the Eulerian, Lagrangian and synchronous-comoving 

(SC) coordinate systems in the Newtonian approximation clear. In the Newtonian 
approximation, the maximal time slicing condition and the Eulerian coordinate are 

often adopted; the line element is assumed to be the following form: 

 ds2E  = — (1 +  20N) dT2 + dR2 +  R2c/122, (5.2) 

where  ON is Newtonian gravitational potential and we have adopted the spherical-

polar coordinate system as a spatial coordinates. 
  For the purpose to follow the motion of a dust sphere, the Lagrangian coordinate 

is more suitable. The transformation matrix between the above coordinate system 
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and the Lagrangian one is given by 

      dT =  dT, (5.3) 
                dR =  (a  „R)sdr +  (a  x  R),  dx (5.4) 

Then the line element in the Lagrangian coordinate system is obtained as 

 ds2L = —  {1 +  241.N —  (a,R)2s}  d-r2  2(a,-R)x(ax  dx 
 H-(88R),2  dx2 +  R2 (T,  x)dfl2 (5.5) 

In the Lagrangian coordinate system, the equations for the circumferential radius, 

Newtonian gravitational potential and the dust fluid are given by 

           FRx)=  f  (x)FRx)(5.6) 
                    AR),        (ax1'F(x), (5.7) 

                          2R2 

 F(x) = 871- Ip(r, y)(ayR), R2 dy(5.8) 
where  f  (x) is an arbitrary function and F(x) is also regarded as an arbitrary 
function which determines an initial configuration of the density  p of the dust 
fluid. 

  In the LTB solution, the SC coordinate system is usually adopted for com-
binience. We should note that the SC coordinate system is different from the 
Lagrangian one. The transformation matrix between the SC coordinate system 
and Lagrangian one is given by 

         dt =  {1 +  4:13'N —  2(34:)2 -  (ari)x(axR)Tdx, (5.9) 
   dr = dx. (5.10) 

The derivative of the circumferential radius R with respect to the Lagrangian time 

coordinate  T is written as 

                                 1  (a,R)x = (ams(atR), + (aTox(arR)t =  ti +'T•IV—2-09.4:02x} (atR)„(5.11) 
  In the Newtonian approximation, expansion parameter  e is the ratio between 

typical speed of the system and speed of light. The order-counting is given as 

follows: 

 R =  O(E),  (a  rit), =  O(E),  (a,  R)x =  0(e), and  t'N =  0(e2). (5.12) 

Then the line element in the SC coordinate system up to the Newtonian order is 
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written as 

                ds2sc = —dt2  (arR)  t2  dr2 +  R2  dip                                                (5.13) 

Further we obtain the equations up to the Newtonian order in the SC coordinate 

system are given in the completely same form as that in the Lagrangian one: 

                  ( 

           (atR),2=  f  (r)FRr)(5.14) 

               F(r) = 87r j#(7, y)(arR)tR2dy. (5.15) 
Here note that in the  SC coordinate system, the Newtonian gravitational potential 

 ON does not appear. The above equation is the Newtonian order equations of the 

LTB space-time, which are completely the same form as the relativistic one. 

5.2 Perturbation 

We consider non-spherical perturbations in a system of a spherically symmetric 

dust ball. First, we consider perturbations in the Eulerian coordinate system. The 

line element is written as 

 ds2E = — (1 +  24DN  2SON) dT2 dR2  R2d12, (5.16) 

where  SON is a perturbation of the Newtonian gravitational potential. Using the 

transformation matrix (5.3) and (5.4), we obtain the perturbed line element by 
using the background Lagrangian coordinate system: 

 ds2L, = —  {1  +  20N +  280N —  (8,1)2}  dT2 +  209,RmaJordrdx 
    +  AR)  dx2  R2d1e. (5.17) 

  Hereafter we discuss the behaviors of perturbations in this coordinate system. 

The density p and 4-velocity are written in the form 

 P =  +  6  ), (5.18) 
             =  ft" +  , (5.19) 

where  id and  '0 are the background quantities. By definition, the components of 
the background 4-velocity is given by 

                 =  (0,  0,  0,  0) (5.20) 

From the normalization of the 4-velocity, we find 

 Su° =  SON +  (OTR)x(axR),Sul (5.21) 

  The order-counting with respect to the expansion parameter of the Newtonian 
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approximation is given by 

 Su° =  0(E2),  SuP =  0  (6)  ,  Sp =  0(6°) and  81)N =  0  (e2)  . (5.22) 

Then the equations for the perturbations are given by 

 ars, +
PA ae(p\FIsuf)0, (5.23)  .FY 

 arSui  aeS  )  N = 0, (5.24) 
                                    „„                    Ve  /  77-77-6  a  matIP  N)  470  p = 0, (5.25) 

            AFY 

where 

 (axR),  R2 sin  0, (5.26) 
and  ryEm is a contravariant component of the background 3-metric. 

   Here we focus on the axisymmetric even modes of perturbations. Hence the 
perturbations are expressed in the form 

 Sp =  E  Ap(i)(7,  x)Pi  (cos  0), (5.27) 

 SAN =  E  Aflo(r,  x)13i  (cos 0), (5.28) 

 Sul =  E  x)Pi(cos (5.29) 

 8u2 =  E  U9  (r, x)Tio-Pi (cos 0), (5.30) 

 6%13 = 0. (5.31) 

From  Eqs.(5.23), (5.24) and (5.25), we obtain 

              1F' 

     22 
 'T1p(1)=ax(—U(0R                       )—  1(1 + 1) 0, (5.32)     Fax 

 aru40+  (vo,.(i) = 0, (5.33) 
 aTuou,+  A.(1) = 0, (5.34) 

                       2 

 R1  R2ROx(R"axAvn) 1(1  + 1)AR2"47rp/p(1) = 0, (5.35)        -' 

where R'  (ax.R), and F'  dF  dx. 
  Hereafter we focus on the case where the background is marginally bound . The 
solution of the background is given in the form 

 R(T, x) =  (-9F4)3  [TR(x)                                              (5.36) 
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where 
                          2   

 TR(X) =X23  (5.37) 

  The background variables are written in the form of Taylor series 

             F =  x34 (--En)x2n)(5.38) 
                            9n=1 

 co 

            TR =  1  +  TR(n)x2n, (5.39) 
 n=1 

 co 

             R =  x  E  R(n)(r)x', (5.40) 
 n=0 

 oo 

 p =  E  p(n)(T)x2n                                                (5.41) 
 n=0 

Here we choose a normalization factor of F so that TR is equal to unity at the 

origin. On the other hand, the perturbation variables are written in the form 

 Op =  x2  E  Ap(n)(T)x2n, (5.42) 
 n=0 

 ao 

                   =  x2  E  04.(1)(T)x2n, (5.43) 
 n=0 

 co 

 Us =  X  E  u(n)(T)x2n, (5.44) 
 n=0 

                U9 =  X2  E  ue(n)(r)x2n. (5.45) 
 n=0 

We introduce the following hatted variables: 

 F'Ap =  x4Ap, (5.46) 
 F'U =  x30  F'Ue =  x40  9, (5.47) 
         =  x2A4,. (5.48) 

To obtain the solution of Eq.(5.35), we introduce the following variable, 

                             rc(
R3r,x)         = (5.49) 

Substituting the above form of  Ad) into Eq.(5.35), we obtain the equation for  tz, as 

 (  1  arc)F' p  
 oxax 2R3 (5.50) 
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Integrating the above equation, we obtain 

          a:2„
RF3(r(x,xi) 

where xi),(5.51) 

       —= --11 ,111,4axi 

where we have chosen the integration constant so that  axr/ax is finite for x  oo. 
Further integration leads to 

 w(r,  x) =1 2/R'(r,xi)R4(1-,xi) 1°°F                                    dx2'(x2))p(T, x2) 
       oF13(T,x2 

           =fxdxilrxi)R4(7,x1)10°dx2F'          2f(xX2)2)p(T I x2)                               xR3(T) 

            -1 f R3( 
                   x 

dx2 Fi(x2))AP(T,x2                               (r,x2)dxiir(7-, xi)R4 (7-, x1) 
        2o7-,x2 

          =  --10  {R5  A(r,  x)  +  x7B(r,  x)} (5.52) 
where 

                 ()              x)IdxlR3( T)Ap (T, xi), (5.53) 
 fz 

                xxixi) 

 B(T,  x) 
Xdxtr(xi)LS.p(r, xi)R2(T, xi), (5.54) 

 o and we have chosen the integration constant so that q vanishes at the origin, x = 0. 
Hence  no and  A4) are written as 

          3,0 10={OV+ x2 (x)3  f(5.55)                x)1=?) 

 Do  = --R: {2  (R)  A  —  3x2  ()  4  B1(5.56) 
            10 

5.3 Quadrupole Moment 

Hereafter we focus on the quadrupole mode  1 = 2. The mass quadrupole moment 

 Qj, is then given as 

        147r  Qi3 p  (XiX3 --3R2,5i d3  X =—15  Q  (T)diag[-1,  —1,  2], (5.57) 
where 

           Q(T)1fiApR4dR =— lira  x71(7-, x). (5.58) 
 87r 
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As well known, the gravitational waves  hii at the null infinity is given by 

                  1(d2Qij(Y)) 
                          hi.—÷                 3Rd

Y2IYT                =-(5.59) 

                                             R Hence the Weyl  scalar  klizi is proportional to the fourth order derivative of  Q(T  —  R) 
with respect to the Newtonian time T 

   By the transformation matrix  Eqs.(5.3) and (5.4), the derivative  (a/aT)R  is 
rewritten by use of the independent variables of the Lagrangian coordinates as 

         ( a ) ( a)(a)                                                (5.60)               aT) R)R' ax 

where  (a,R)x. Then for a finite function f(x) with sufficiently rapid fall off 
for r  —> oo, we find that 

                                       af  R'd
x    —dfdR1°°(-8fdR =)— 

 R'   dTooaToaT 

            = oaT°0(R'—afilif) dx —=lc° (R'f)dx. (5.61)  aT 

Using the above formula, we obtain 

 dm'  Q = C° am(pAPR'R4)dx = 1fc°      dTmF'(APR2) dx. (5.62)       o  aTm 87ro arm 

5.4 Analytic Estimate of the Asymptotic Be-

    havior 

From  Eqs.(5.33) and (5.34), we find 

 aT  (ux  —  axue)  =  0. (5.63) 

Hence  Ux is written in the form 

 Ux =  ax  U9  Cx(x). (5.64) 

Here we assume that  CC vanishes because it will not play an important role. This 

makes us to focus on only  &, and  Ue. 

  The numerical calculation in Chap. 4 revealed that the perturbation variables 

 6p/p,  V1, and V2 grow in accordance with power laws near the center. Then we 
assume that perturbation variables  &, and U9 grow at the origin x = 0 as  

AA  p  (X (1 —  T)-P and  Ue  a (1 —  T)-q (5.65) 
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where p and q are positive numbers. The perturbation variables becomes infinite 

only at the origin at  T = 1, while these do not elsewhere at this moment. Further, 

the perturbation variables are regular everywhere before the central singularity 

formation. These results imply that the perturbation variables take the following 

forms 

                  Op =  C  p(r, x)  [T„,(x) —  TFP  , (5.66) 

 Ug =  Ce(T,  x)  [TO  (X) —  , (5.67) 

where the functions,  Tp,  re,  C, and  Co are assumed to be everywhere regular. Hence 

those functions are written in the form of the Taylor series around  (T,  x)  = (1, 0) 
as, 

 T  p(X) = 1 +  E2m  Tp(m)X, (5.68) 
                                       m=1 

 co 

 TB(x) = 1 +  E  To(m)X2m, (5.69) 
                                     m=1 

                                  oo 00 

                       EE(m,n)(1 — Tr x271,  C  p(T,  x)  =p(5.70) 
 m=0  n=0 

                                  co co 

 Co(r,  x) =  E  E  Ce(rn,n)  (1  T)mx2n,                                              (5.71) 
 m=0  n=0 

where  Tp(i) and  To(i) should be positive for the perturbation variables should be 

regular everywhere before the central singularity formation. 

  Now our present purpose is to estimate the power p, q and the contribution of 

the central singularity formation to the quadrupole moment. For this purpose, we 

introduce two infinitesimal parameters,  e and  K, and assume 

 AT  1  —  T  = and  x  =  O(K), (5.72) 

Further introduce a new variable w defined by 

                w (TAT))2(1                        x = 0f-2 tc).(5.73) 

  First, in order to find p and q we focus our attention on the region in which the 

parameters  e and  K satisfy the following relation, 

 0  <  K4  <  6  <  K2                                              (5.74) 

The above equation implies  K-1 >> 1 and hence w is large number in this 
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region. Then we cam write the perturbation variables as 

              A1)— Cp(0,0)                        A
9ATp w 2p                          113P                            2 + 0(K2)}  , (5.75)    —

pw 

 aAp = pC po,o)  p + 1   1+0(K2)1,(5.76) 
 ar Or'ATP+1 w2(p+1) 0  pw2 

                              0 

              C0(,0)q         0 9 = 1+  0( K2) 1 , (5.77) 
                      1316,1-qw2g130)2 

and the background variables as 

 2  4                —R=  ATIW7{3w21 + —2+ 0(K2)}  , (5.78) 
                      x where 

 139  Te(1) and  Ao = TP(1) (5.79) 
 T  R(1)  T  R(1) 

  To obtain  A.I., we consider the functions A and  B. Using  Eqs.(5.75) and (5.78), 
they are estimated as 

                  oonzi      A =Al (I+Idy'A' 
         xAlR3 P 

                                   pi\ 

                                                  1 

 Cp(0,0) i(%,sa)')Al  dz {12,3P + p +0(K2)   A} 

        = 

           TR(i)igATP+1. Z2P+3/3p,Z2 
 +F1(00) —  Fi(Ai) 

             1 2          Cp(o,o),3p       =   +  p+ C9(K2)} , (5.80) 
              2rR(1)g6,7-p-Fiw2(p+1) p + 1 (p +  2)/pw2 

and 

     B =_. 1 (jA2 +I2S) dyy40pR2         X70A 

         177A
7Cp(0,0)              =----r2(112) — F2(0) + 

                          ‘ 

                            Ig-2%      xrki)ATP6 

 X f(TRL.) )1A2Z2dP-z 36 {1  + 433P3;23P + (K2)1 

 C 

 p(o,o) 34,3p —  3p       =8+ +  0(K2)  1  , (5.81) 
              ig ATP– 3 w2P– S  29 — 6p  (23  —  6p)13pw2 
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where  Al and A2 are constant numbers of order  K, 

                                              Y4^  Fi(z)Izdy—R3 p, (5.82) 
              F2(z)zdy  y4  p  R2  ,  (5.83) 

and we have used 

  Fi(oo) = F2(0) = 0, (5.84) 
 Cp(0,0)A1  f  1  

 2(Tr(1)A?)2(7p(i)A?)P  p 1 

                        p+ 

                        12 TR(1)( 2 +'rppAT+(9(s2)}  , (5.85) 

                            O 

                                A? 

 7 (TR(1)A2)1 3 1      F2(A2) =  Cp(0,0)A2  (Tp(i)ADp {29  -  6p + 23  - 6p 
                    (43P )+ O(K2)}(5.86)                                      TRWTp(i) 

Hence from  Eqs.(5.55), (5.78), (5.80) and (5.81), we obtain 

 Ao= Cp(0,0)  
             121-R(10P^TP—W2P— +  1)(p + 2)(6p - 23)(6p - 29) 

 x  {21(p + 2)(6p - 23) - 2(78p2 -  221p +  107)2 
 -21p(p +  1)(6p - 29) 

13PW2 +(.9(i£2)}. (5.87) 
  Substituting  Eqs.(5.75)-(5.78) and (5.87) into Eq.(5.34), and equating the terms 

of the same order about  c and  K, we obtain from the lowest order, 

                     4 
             q3,(5.88) 

                                                                      v-1                          7q20313A9 3   C
e(0,0)=(5.89)                     TR(102AP +  1)(3P - 4)(6p - 29)' 

and then from the next order 

 7(p  +  2)(3p-1)(6p-23)k  _21p(p+  1)(6p  -  29)-k =  2(78p2  -  221p  +107). (5.90) 
Further conditions are derived from the conservation law (5.32). By the same 
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procedure as in the above, and using  Eqs.(5.88) and (5.89), we obtain 

         6(6p2 - 23p - 28)/30 = 7p(p +  1)(3p - 4)(6p - 29)—, (5.91) 

                                                                     p 

        8(6p2 -  17p -  336)/30 = 49p(p +  1)2(3p - 4)(6p - 29)1 

 -14(3p - 4)(6p2 -  llp - 45). (5.92) 

By the numerical investigation, we find a ser of positive roots for (p,  i3p,  130) of 
 Eqs.(5.90)-(5.92) as follows; 

         p = 1.65752,  A, = 1.66227 and  i3 = 1.15420 (5.93) 

  Now we consider the quadrupole moment  Q  (T) and its time-derivatives  dm  C  drn 
Note that hereafter we do not assume Eq.(5.74). In order to observe the contribu-
tion of the central singularity to  dm  Q  I  drn  , we consider the integrand in the right 
hand side of Eq.(5.62). Using Eq.(5.66), we obtain 

 ama m—i 

 (F/ApR2)1-(m) (T. , x)(9.03 X4 E(m)aic.P c(rn —  i  ,  j)  arm4  i=0  j=0 

 X (TR —  T)1(4-3j)  (Tp —  Tr  (P+m—i—j) (5.94) 

where 
                     r  s-1 r—s-1            C(r,  s) — ()H -  4)(p + 1), (5.95) 

 3s  8  k=0  d=0 

and we adopt the convention 
 -1 

 g(l) =  1. (5.96) 
 1=0 

From  Eq.(5.94), we find that the following relation satisfies at the moment of the 
central singularity formation; 

 /(m)(1,  x) 4Cp(0,0)                            E C(m,n)Pirm for x 0. (5.97) 
                     p+m-apx2P+-2771— n=0  TR(1) PP 

By Eq.(5.93), we find that  f(m) diverges for x  -> 0 if m is larger than or equal to 
three.  I(3) is proportional to  x-°.65 near the origin and hence the integral (5.62) 
converges. On the other hand, since  /(4) is proportional to  x-2.65 for x  -+ 0, the 

integral (5.62) becomes infinite. This means that the forth order time derivative of 
the quadrupole moment diverges for  T  —+ 1 due to the central singularity formation, 

and is consistent with the relativistic perturbation analysis. By the quadrupole 

formula (5.59), the metric perturbation and the energy flux of the gravitational 
radiation do not diverge but the Weyl tensor due to the gravitational radiation 
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diverges by the central singularity formation. 

  In order to see the time-dependence of  d4Q/dT4, leaving only the i = 0 term in 
the summation of Eq. (5.94), we approximate  I(4) as 

                                 4 

  /(4)(T, w)  Cp(0,0)w6  Eco,ow21)3-n(opw2 +  1)-p-4+n (5.98) 
                   T3A7-23-           R(1)  n=0 

The function I has a maximum absolute value at 

 w =  win  N 1.3100. (5.99) 

Here it should be noted that by  Eq.  (5.73), the radial coordinate  xn, at the maximum 
absolute value of I is of the order  el and hence our approximation (5.98) is valid 
at the maximum absolute value of I. From Eq.(5.98), we find 

 /(7-,  wm) =  0(e3-P)  oo for  AT  —> 0. (5.100) 

The above result implies that the integral (5.62) is mainly determined by the con-
tribution around w =  win. Hence we can estimate  d4Q/dT4 by 

                                1 

   d4Q 1 (   AT  2  I(r,  w)dw 
  dT4 713(1)) Jo 

       A4         Cp(0,0)z-xT6pEwe4                        C(4
, n)dww6(w2 +1)-E-nopw2 +  1)-p-4+n 

                                            CI                 87TR2(1)  n=0 

 cc  AT-0.8242, (5.101) 

where  w, is a constant sufficiently larger than  w,n. The above result is also similar 

to the relativistic perturbation analysis. 

   In summary, the perturbations 

in the Newtonian analysis behave 

similar to the ones in the relativis- 

tic analysis. We summarize the                              Table 5.1: Power indices for Newtonian anal- 

power indices of the perturbation                             ysis (left column) and for relativistic numer- 
variables in Table 5.1. This sim- ical analysis (right column). 
ilarity suggests that, at the  glob  (1 —  T)-m  At-n  (up —  urn  
ally naked case, the relativistic  ef-                A 

m = 1.6572n=1.6 fect is not considerable until the 
formation of central naked singu- 0.3239 V1 0.4 
larity and Cauchy horizon.  U8 0.3239 V2 0.4 

                              d4Q                          0.8242 W4 0.88    dT4  
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Chapter 6 

Conclusions 

The occurrence of singularity is believed to be inevitable at the final stage of the 

gravitational collapse. It is accepted that the singularities are not the results of 
assumptions of symmetries. These facts were proved by Penrose and Hawking in 

their singularity theorems developed between 1965 and 1970. The singularity theo-

rems state only the existence of the singularity. We can  not derive the information 

about the properties of the singularities from these theorems, for example, where 

they exist, how strong they are, and so on. Anyway, the standard understanding 

about singularity would be that classical general relativity is violated there. Pen-

rose considered such a singularity should be covered by event horizon and not be 

visible. Then he proposed the so-called "Cosmic Censorship Hypothesis." No one 

has ever succeeded in the proof of this hypothesis. In such a difficult situation for 

proof it is worth trying to obtain counterexamples. The Lemaitre-Tolman-Bondi 

(LTB) solution is one of the most tractable solution in the suggested  counterexam-
ples. Therefore many researchers have investigated the properties of this solution. 

  The LTB spacetime denotes the spherically symmetric inhomogeneous dust col-

lapse. It seems that the LTB spacetime is unrealistic because of the assumptions of 

exact spherical symmetry and of the dust fluid as its matter content. In this thesis 

we have concerned the significance of the spherical symmetry for the naked singu-

larity formation. We have inspected the stability of nakedness of naked singularity 

against the linear non-spherical perturbation of the LTB spacetime. At the same 

time we have paid attention to the generation of the gravitational radiation from 

the naked singularity. 

  The odd-parity perturbations have been investigated in Chap. 3. The numerical 

analysis for the pure gravitational-wave case shows that, outside of the Cauchy 

horizon associated with the globally naked singularity, the propagation of this mode 

is similar to that of Minkowski spacetime. Including the matter perturbations in 

the analysis, we have concluded that the Cauchy horizon is not destroyed by the 

gravitational waves while the shell-focusing naked central singularity may change its 

properties, for example, the divergence of the magnetic part of the Weyl curvature 
tensor. 

  In Chap. 4, we have investigated the behavior of the even-parity perturbations 

in the LTB spacetime. In contrast to the results of the odd-parity mode, the 

numerical analysis for the even-parity perturbations shows that the Cauchy horizon 
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should be destroyed by the even-parity gravitational radiation. The energy flux of 

this radiation, however, is finite for an observer at constant circumferential radius 

outside of the dust cloud. Therefore the inhomogeneous aspherical dust collapse is 

not expected to the strong source of gravitational wave burst. 

   The difference between the odd and even modes seems to originate from the 

properties of matter perturbations. The odd-parity matter perturbations are pro-
duced by the rotational motion of the dust cloud and the evolution of them  decou-

ples from the evolution of metric perturbations. On the other hand, the even-parity 

matter perturbations contain the radial motion of dust fluids and the evolution of 

them couple to the metric perturbations. These two modes, the odd and even-

parity, couple to each other when we consider the second order perturbations. 
  Newtonian approximation analysis has been performed in Chap. 5. We estimate 

the even-parity gravitational waves and Weyl scalar by the quadrupole formula. 

The results have significant similarity to the relativistic analysis. This fact suggests 

that relativistic effects are not effective for the behavior of perturbations outside 

of the Cauchy horizon of the globally naked LTB spacetime. 

  The main conclusion of this thesis is that the spherically symmetric collapse is 

insufficient for the counterexample of  CCH. Non-sphericity has ability to change 

drastically the final fate of the gravitational collapse from that of the spherically 

symmetric collapse. Therefore we should consider well the significance of the in-

vestigations into the spherical collapse in the context of the counterexample to the 

 CCH. The possibility of gravitational wave burst from the naked singularity can-

not be supported by our perturbation analysis. The non-linear or full-relativistic 

analysis of the non-spherical collapse is important to get more deep insight into the 

above problems. Unfortunately, we cannot answer the problem how do we see a 

naked singularity. There are other channels to investigate the observational effects 

of the naked singularity, e.g., electro-magnetic radiation, emission due to quantum 

effects, and so on. 

                       70



Appendix A 

Gauge-Invariant Perturbations 

In this appendix we give a brief introduction to the formalism of Gerlach and 

Sengupta [84, 85] for perturbations around the most general spherically symmetric 
spacetime. 

  We consider the general spherically symmetric spacetime with a metric 

 gaudx"dx'  gab(xd)dxadxb  R2(xd)-YAB(xD)dxAdxB, (A.1) 

and stress-energy tensor 

 ta,,dxPdxv  tab(xd)dxadxb m-1--1pp2(xd)7AB(xD)dxAdxB(A.2) 
                                           2''14 

 where  -yABdxAdxB =  d02 sin2  Odcb2 Lower-case latin indices refer to radial and 
time coordinate, while capital latin indices refer to 0 and  0. 

  Now we introduce an arbitrary perturbation of this spacetime. The angular 
dependence of perturbations is decomposed into series of tensorial spherical har-
monics. The scalar spherical harmonics are  Yini(xA). A basis of vector harmonics 
is formed by Yim,A and  SiaA  EAYin:B. A basis of symmetric rank-two tensor har-
monics is formed by  limYAB,  ZrAB  Ylm:AB  +1  1+21 Yim7AB and SinA,B  SinmA. For 
1  =  0,  1 the last two tensors vanish identically. Linear perturbations with different 1 
and  m decouple. In the following we consider one value of 1 and m, and we suppress 
these indices. We also suppress the explicit summation over them. Perturbations 
with different values of m for the same 1 have the same dynamics on a spherically 
symmetric background, so that m will never appear in the field equations. Spheri-
cal harmonics are called even if they have parity  (-1)1 under spatial inversion and 
odd if they have parity  (-1)1+1 Even and odd perturbations decouple each other. 
  The odd-parity perturbations are expressed in the form 

 havdx"dxu  =11(°)(xc)SB(dxadxB  dxBdxa)dxAdxB, (A.3)                                    h(°)(xc)S(A:B) 

for metric and 

 Ati,,,dede =  Atnxc)SA(dxadxA  dxAdxa)  At(°)(e)S(A,B)dxAdxB, (A.4) 
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for matter. The even-parity perturbations are 

 h  hab(xd)Y  dxa  dxb +  ha(xd)Y:B(dxa  dxB  dxB  dxa) 
 +[K(xd)R21,ABy G(xcl,r.s2                                )1£Z ABidXA dXB (A.5) 

for metric and 

 Atm, =  Atab(xd)Y  dxa  dxb +  Ata(xd)Y:B(de  dxB  dxB  dxa) 
 +[At3(xd)R27ABY + At2(xcl)tt'-'2ZAB]dxAdxB , (A.6) 

for matter where  Y  =  Y""'(xD) are the scalar spherical harmonics and  Z  AB  = 
 YAB  1(i+21)Y7AB. Here covariant derivatives are distinguished as follows: 

 7.24.B:C  01  gable  =  O. (A.7) 

For the convenience of expression, we introduce 

 va  R,a  I  R, (A.8) 

and  1 

 pa ha —  2R2  G'a. (A.9) 

  We then introduce the gauge-invariant variables to eliminate gauge ambiguities 

in perturbations. The gauge transformation is induced by the infinitesimal vector 

fields: 

 M  (xc)S  AdxA  , (A.10) 

for odd-parity and 

 Gdx11.  a(xc)Ydxa +  (xc)IT:AdxA  , (A.11) 
for even-parity. The odd-parity metric variables are given by 

 kah(:)——2R2aa(—h(°))(A.12) 
                                   R2 

The odd-parity matter variables are given by the combinations 

 La  =  t(°)  TBB  h(0),                                               (A.13) 

 ( pe 
                         L  =  tka, _1_TBh(0)                                             (A.14) 

                      2 A set of even-parity gauge-invariant metric perturbations is defined as 

             kab  hab  —  (Palb  Pbla), (A.15) 
                      1(1+1)G2

v'p.(A.16)        k K  + a                           2 
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A set of even-parity gauge-invariant matter perturbations is defined as 

            Tab  Er-.  Atab —  table/3'.  ta'Pclb  tbCPCIa  7 (A.17) 
         Ta  Ata —  ta`Pc  — R2(tA A14)G,a, (A.18) 

         T3  At3  (pc/R2)(R2tAA/2)7c +  1(1  +  1)(tAANG,                                                (A.19) 
      T2  Ott  (R2tAA/2)G. (A.20) 

   The linearized Einstein equations, expressed only in gauge-invariant perturba-

tions, are 

 kola =  167rL (1  > 2), (A.21) 

 lc    —[R4(-(-Lk— R4(—e-ic) 
            l+ (1  —  1)(1 + 2)ka  = 167i-R2La (1  > 1X,A.22)        R2 cR2 la 

for odd-parity, and 

 2ve  (kabic — kcalb —  kcbla) [1(1 + 1) R2+ Gec+ GAA                                  + 27d kab 
 —2gabvc  (kedlc —  kccid —  kcdle) ged  + gab  (2061  4e-vd — Gcd)  kcd 

       1(11)1 +A)                                                   ,bVba   +fiab[kdd2(Vak,                                                      kk ,alb     R22A 

                         1)(l)                —gab [2k,c1c +  6cck,c (1  —)(2'  k = —167rTab, (A.23) 

                 k,a —  kacic  kc'  la —  vakcc  =  —167rTa, (A.24) 

     —  (k,c1c  2vck,a  GAAk)  [kedleld  2vckcdld  2(vcId  vcvd)kcd] 
                           1(1+  1)              —gab[kcc idld vckddicToccc R2 kl= —1671-T3, (A.25) 

 kcc  =  —167rT2, (A.26) 

for even-parity where  R. is the Gaussian curvature of the 2-dimensional submanifold 

M2 spanned by  Xa and 

          Gab  —2  (vaib  vavb) + gab  (2vala  3vava — .FT1 , (A.27) 
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          2  (vala  vava —  R.) (A.28) 

  The linearized conservation equation  (S(TII`L) = 0) reduce to 

           (R2La)ia =  (1 — 1)  (1 + 2) L  (1 1), (A.29) 
for odd-parity and 

     (R2Ta)la + T3
2R2(1—1)(1+  2)   T2  =2 
                               itA(k —kcc)ltabkab,  (A.30)  R2A22 

 (R2Tab)lb Tal  (1  + 1)                               2vaT3=kbaiatbckcibbe a —kccibtb a     R2R2 

                                 —10c a + 1(k,a —  kva)  to 

 +2vbkbatc, +  kb  ctcalb, (A.31) 

for even-parity. 
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Appendix B 

Power of Gravitational Radiation 

In this appendix we examine the asymptotic behavior of the gauge-invariant vari-

ables in the asymptotically flat spacetime with out-going wave condition. Then we 

can calculate the radiated power of the gravitational waves and thereby we grasp 

the physical meaning of the gauge-invariant quantities. 

  Note that in vacuum at large distance, the spherically symmetric background 

metric is identical to the Schwarzschild solution, where hereafter we adopt the 

Schwarzschild coordinates, 

       2M9m-—1    ds2 = —  (1 —dr2+(1—=-) dR2 + R2 (d02 sin2  Ode) (B.1) 
To relate the perturbation of the metric to the radiated gravitational power, it is 

useful to specialize to the radiation gauge, in which the tetrad components  h(e)(0— 

11(0)(0) and  lim(s) fall off as  O(1/R), and all other tetrad components fall off as 
 0(1/R2) or faster w.r.t. the following background tetrad basis: 

 21%1)1/2a                 e(T)  = (1 —(dr)                                                (B.2) 

                 a(2.111)—1/2dR)a                , (B.3)                     (                   e(R)  =1 

 cite) =  R(d9)a, (B.4) 
 e(4) =  Rsin  19(4)a (B.5) 

  In this radiation gauge, the metric perturbations in Eqs. (A.3) and (A.5) behave 
as 

 h0,  h1  =  0 (-R-1 ) , (B.6) 
                 h2 = w(r —  R.) +  0(1), (B.7) 

for the odd-parity and as 

                        1          hab =  0 (IT) , (B.8) 
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                       1           ha = 0 (-1—i) , (B.9) 
         K = 0 1(IT), (B.10) 
                G =  g(r — RR*)(1                     + 0IT) ' (B.11) 

for the even-parity where 

 R. = R +  2M  In (—R— 1)+ const, (B.12) 
                         2M 

and the out-going wave condition is respected.  Then, the gauge-invariant metric 

perturbations (A.15) and (A.16) are calculated as 

 ko = --2w(1)R+ 0(1), (B.13) 

 kJ. = 2—1tv(1)R + 0(1), (B.14) 

for odd-parity, and 

 k„  =  g(2)R+  OM, (B.15) 
 ki-R =  —9(2)R + 0(1), (B.16) 
 kRR =  9(2)R+ 0(1), (B.17) 

                               1 

                k  = —g(1) + 0 (w) , (B.18) 
for even-parity, where  w(n) and  g(n) denotes the nth derivative ofw and g with 

respect to its argument, respectively. 

  In this radiation gauge, the radiated power P per unit solid angle is given by the 

formula derived by Landau and Lifshitz [88] from their stress-energy pseudo-tensor: 

      dP  _  R2 [Ch(e)(0)21chow)ah,(0)(0)21 
                                             (B.19)         c/12— 167rar+4 or or 

For the axisymmetric mode, i.e.  m = 0, the above formula is reduced to 

                dP 1 fi, 

 Y-=-67r (W)2Al(6)7 (B.20) 

for the odd-parity, and 
 dP _(1)2 

               c/T/6,r(g)AIM' (B.21) 
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for the even-parity, where 

 2/  +  1  (d2 Pi (cos 0)) 2  Ai(0)  sin4  0(B.22)                      47r(d cos 0)2) 

It is found that, for the monopole and dipole modes, the radiate power exactly 

vanishes. By using the gauge-invariant quantities and integrating over all solid 

angles, the formula for the power of the gravitational radiation of  /  > 2 is obtained 

in the following form: 

              1 k2 1 k2              cl±) = —) ./11(0)=--LA1(0)(B.23) 
              dS/ 167r R2167r R2 

 1 k2 1  k2        =  ° =(B.24) 

 P 

                       167rR2 167rR2' 

for the odd-parity, and 

               —dP =  
 dfl—647rk2(B.25) 

             P =  —64
7rBik2, (B.26) 

for even-parity, where 

                     (12)!                        B1=(B .27)                            (l —2)! • 
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Appendix C 

Equations and Coefficients 

C.1 Even-Parity Equations of Marginally Bound 

    LTB Spacetime 

For marginally bound LTB spacetime linearized quadrupole Einstein equations are 

                  4 1R R. 
                           R2q +RR'q'  +  Rq 

     +k+( 2R")k, _ (2R.+_R.')k +1k„ 
     R2RR'R/3)RR'R'2 

         ( RRR" le      +2),, R,  +Km +zRR12k01' = —878p, (C.1) 
              R2 R' RR/3RR/2 

        R ,R'.( —R'kR R'),,, 3         ——Rq +—Rq+2w—+ k— —k01 = —87rfiVi, (C.2)                                     R2 

             R'2 R''R'2 RR'2it-           2
yq — wqR4+ 4Rk + R'2k 

 R'  it  R'  —2  
B2 kol — 2wk01 = 0, (C.3) 

 R'  k R"  1         — 2—
R'q —  4 + 2—k + 2k +—1c01 ——k01'  =  —167rPV2, (C.4)            R'R'3R/2 

 R' 
 q'  +  koi  +  —R'koi = 0, (C.5) 

 (R2R"2R) q'(2 RR + 3R2R'k) q——R2q"—R2q  R/3R'R/2 
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                      (RR"ftRR') +4,         (RR +R2 R)k + 2R2 k  +  2Kol        R'R'3R'2 

            -2RR + 2RR'3R'2R"R)R2•                                       kw.- 2'2kL= 0, (C.6) 
    R/2 

             -  koo +  kn. = 0. (C.7) 

Here we use Eq. (C.7) to eliminate  k11 in Eqs. (C.1)-(C.6). 

C.2 Coefficients of Differential Equations 

The coefficients of Eqs. (4.16)-(4.20) are 

             1itAR"'                         5i?  a/ =R --R--`±..-0- + 2k, (C.8) 
 a2 = 2-1rR23(R(RR'-k I?) , (C.9) 

                  9le.h2111RR'         a3 =t)3 
      R2R'(C.10) 

 R'4 R2  R'3 RR' 8k2k2  
          a4 =4  R3  +  12 

 R2R  ' (C.11) 
                 R'1 R'i01 

       a5 = 3R  4 R+F-2ith', (C.12) 

                 1 

 bi = --R-,71, (C.13) 

          Rk  b
2 = -8—R 8'' (C.14) 

 b3 = 0, (C.15) 
 ir  RR' k2 

              — 

 b4 = -7R2+  28 RR' 2 0R'2'(C.16) 

                  3 i?  9  .h2 ARit'ARkit'   b
5 = -- 4.r.3---                           li2 R'3-F-xR'4-F-R'4' (C.17) 

                1 

 cl-R'2' (C.18) 

 C2 = 0, (C.19) 

 c3 = -51-R+ 6-1(C.20) 
                           R'' 

 C4  = 0, (C.21) 

                         +
'./'  C5 =1R(C.22) 
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d1 = 0, (C.23) 
d2 = 1, (C.24) 

 d3  = 0, (C.25) 
 d4  = 0, (C.26) 

 R  (1  +  i?) 
d5  =  R'3(C.27) 

                        ' 

     1 el = TV(C.28) 

e2 = 0, (C.29) 
     k:_, e3 = 2—R2(kit —  RR')  , (C.30) 
 64  = 0, (C.31) 

    R" R' e5 = 7-171 — 3—R  (1 +  _h) +  5R'. (C.32) 
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