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           Abstract 

     The instability criterion of a star without rotation 

is derived by the method of variation, in the post-Newtonian 

approximation, and proved to coincide with the results of 

 Chandrasekhar's paper. 

     To apply this criterion to the supermassive stars, we 

have calculated the adiabatic exponent in the case of the 

electron pair creation, and then obtained the following re-

sults: the instability results from the general relativistic 

effect for the stars of M >  3.5 •  104M0, and from the electron 

pair creation for M  ( 3.5  • 104  Mo. 

     The application of our treatments are limited to 

 109.8M M >  103M0 from the following reasons: the upper 

limit results from that the star above this limit can not be 

in a quasi-static equilibrium but in a free fall contraction, 

and the lower limit results from our assumption on the struc-

ture taking a simple polytrope of index 3. 

 *  1-6 be  FlaakkLIA  P-ur  3s°  c.19‘6),J  o2



 §1 Introduction and Summary 

     In an attempt to understand the source of the energy 

emitted by the radio glaxies including the star-like objects, 

Hoyle and Fowler suggested the possibility that a mass of the 

order of 108M
0 has condensed into a super-massive star in 

                     2)*) the galactic  nucleus.1) Several attempts'3)4)to derive 

the energy from this supermassive star have met many difficul-

ties, but their model has proposed many theoretically interest-

ing problem; electron pair creation in the stellar  interior,2) 

equilibrium configuration and stability of the star allowing 

general relativistic  effect  ,5)  ,6)  and general relativistic 

 collapse.8)              The  purpose of this paper is to clarify the effects 

of the electron pair creation and the general relativity on 

the star, but a relation to the radio galaxies will not be dis-

cussed directly in this paper. 

     In the case of non-relativistic gravitational equilibrium, 

an instability of a star occurs when the adiabatic exponent 

is smaller than 4/3 as a result of the endothermic phase 

*) Recently Fowler proposed a new theory and has asserted 

their supermassive star to be a possible model of the radio 

 galaxies.7 According to him, a small amount of rotation 

of the star removes the general relativistic instability and 

the star with  M  -  108Mo can evolve stably into the stage 

where the hydrogen burning commences.
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 transition" of the constituent  matter -9) In the case of general 

relativistic equilibrium , on the contrary, this criterion is 

revised so that an instability occurs even when is greater 

than  4/3 as shown by Chandrasekhar and other  authors.10)'11),12) 

In the  investigation of the supermassive star, we must take 

into consideration the both  effects: (1) the value of  'becomes 

smaller than  4/3 because of the electron pair creation in the 

high  temperature gaseous mass around  T  109°K, and (2) the 

general relativistic effect becomes significant as supposed 

from that the Shwarzschild radius increases with mass and gets 

to the same order of the stellar radius. Then, we must make 

clear which effect between the  above two is really operative 

as the cause of the instability. 

     In this paper, we investigate mainly the above problem, 

and then make clear the applicability of our treatments. The 

conclusions of this paper are summarized in Fig. 1 and 2. In 

these figures, the lines designated by the mass values show 

the relations between the central temperature  Tc and the 

central rest-mass density  C c of the stars with these masses, 
and the shaded regions indicate the instability region and the 

free fall region, in which the star can not be in a stable 

equilibrium state. As a model of the star, we have taken a 

polytrope with index N = 3 because, in the supermassive star, 

*) These phase transitions are caused accompanying with dis-

sociation of hydrogen molecule, ionization of atoms, electron 

pair creation, dissociation of Fe nucleus and so on.
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the configuration is  considered to be in a wholly convective 

state and the radiation pressure is dominant over the gas 

pressure. 

                       Fig.  1, Fig. 2 

     From Fig. I, we can see that for the stars with mass 

 M>  3.5  •104M
e  the instability is caused by the general rela-

tivistic effect at temperatures lower than those at which 

 6  .  4/3. This general relativistic effect can be treated in 

the post-Newtonian approximation. In fact, the relativistic 

parameter (i.e., Schwarzschild radius divided by the actual 

radius of the star) is very smaller than unity, i.e., we have 

2GM/Rc2 <  3.10-3 even at the outset of the instability. 

     We can also see that the stars with mass M <  3.5  •  10Mo 

become unstable in the  3 4/3 region. The cause of 4/3 is 

due to the electron pair creation for M  <  (50--100)M0 and 

the dissociation of Fe nucleus into alpha-particles and neu-

trons for the smaller mass stars. In these cases, the instability 

will really occur only when a fairly large region of the stellar 

interior becomes to  be contained in  theX< 4/3 region, and the 

distance between the curve of the outset of instability and the 

distance between the curve of the outset of instability and the 

curve of  Y = 4/3 becomes greater as the mass becomes  smaller-

     For the smaller mass star (for example, M  103Mo), the 

configuration at the outset point of instability can not be 

represented by the simple polytrope with N = 3, because the 

influence of neutrino losses and nuclear burning to the stellar 

structure may be important.
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     It can be shown that, for a star with mass smaller than 

the Chandrasekhar mass limit,  T
c decreases steeply with the 

increase of  C-)
o after attaining a maximum temperature and at 

the center it becomes finally very low temperature and high 

 density-13)               Chandrasekhar's  remark11) that the general rela-

tivistic instability is significant for the white dwarfs is 

concerned with these stars. 

     Figure 2 shows that  T
c at the outset of instability 

decreases with increasing mass and becomes far below the criti-

cal temperature of hydrogen burning. In this case, the energy 

to retain the energy output determined by the opacity must be 

supplied from the gravitational energy- Then, if the cooling 

time by the energy output by photons tcpis shorter than the 

free fall time of the star  tff' the star can not be in an 

quasi-static equilibrium state and is in a free fall contrac-

tion state. This situation is the same as in the early 

stage of the formation of ordinary mass  stars.14) 

     The free fall region in Fig. 2 shows the region where 

tcp <  tff' and we notice from this figure that the stars with 

mass M >  109mo is always restricted in the instability region 

or the free fall region and can not be a stable quasi-static 

star throughout the  wnole lives. 

     In the following sections, the above mentioned results 

will be derived by the treatments as follows: In §2, the 

criterion of instability is recalculated in the post-Newtonian 

approximation using the method of  variation*). This treatment 

differs from that using the full set of Einstein's field equa-

tions, but gives the same results. In  §3, the value of  6' in 

*) Next page
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the case of electron pair creation is calculated. In §4, using 

the results of §2 and  §3, we represent the instability region in 

 Tc- ?diagram. In §5, the relation between T
c and Fis ococ 

obtained assuming the polytrope with N  _,.-  3, and so we can obtain 

the values of  T
c andocat the outset of instability. In §6, 

we consider about the ranges of applicable mass of our hydro-

static instability criterion and the assumption of a polytropic 

star. 

*) In the process of preparation of this paper
, the present 

author was aware of that the essentially same calculation with 

that in §2 is carried out in the book by Harrison et al.15) 

In comparison with their calculation, ours is more  simple and 

more instructive to  compare with the Newtonian case. 

     §2. Hydrostatic instability in post-Newtonian  approximation 

     In this section, we derive a criterion of instability of 

a spherically symmetric star without rotation, by the energy 

principle taking the variational method. The  calculation is 

carried out in the post-Newtonian approximation for the sake 

of simplicity and later applications. 

     We consider a spherically symmetric system with motions, 

if any, only in the radial direction. There, we use the 

Schwarzschild metric such  as16) 

 eAdy-2 (2.1) 

where  p and  X are functions of  Y and t only. If the radial 

motions of a gaseous mass are adiabatic, all the components of
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the energy-momentum tensor in the outer region of the star are 

always zero, and then the outer solutions of  Nand  V  are in-

dependent of time. This statement which has been known as 

Birkoff's theorem17)implies also that the inertial mass 

measured by an external observer,  M is independent of time, 

where M is given by 

                     T  M 2oo - dV 

 (2.2) 
                      (all space) 

and 

 —T:  (fc2-  +  (v/02-  p)K
ir  cv/c)2. (2.3) 

where V  (47c/3)  \r"  3,‘,/ the velocity of matter referring to 

the coordinate of Eq. (2.1) and  fC2" the energy density in the 

system locally moving with  V  .18) 

     We  separat9  T°0 into three terms; rest mass energy density 

of the particle whose number is conserved in the course of 

motion 10C2 interval energy density u and kinetic energy 

             0 density of the mass motion. Then, Eq. (2.3) becomes as 

 —T° =  C2 +  u +2,(2.4) 

where we have assumed (V/c)2..„ 1. 

     Using the rest mass energy density, we define the proper 

rest mass  Mo as 

        M°     =r 0   0 dV, (2.5)
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where  )\ is given from the one of Einstein's field equation  as16) 

              2G (Mr1p2+)(V/c)dV) 
Jo

e   = 1 -   (2.6) 

 r(72 

with 

 Mr = 5 .C° dV. (2.7) 

 0 

     Next, we make the post-Newtonian approximation in which the 

effects of general relativity are treated as first order correc-

tion to the Newtonian theory. In this approximation, we may 

assume for all r as 

 GMr 

             1, (2.8)   (c)  2 u N2 rc2 
since  u/r0C2 is of the order of  GMr  rc2 as it will be verified 

later in Eq.  (2.26), and since  (V/c)2 can be assumed infinitely 

small because we consider perturbational motions. Substituting 

Eq. (2.6) into Eq.  (2.5), we can express the binding energy E 

(taken minus) in the post-Newtonian approximation as follows, 

  E (M -  Mo) c2 - T (2.9) 

                      Mr, 

     c.2'ce 6             Y(                 2i )21 m         -Or 

 0 

                                                      (2.10)
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      Swhere T =21fil/ 2  dV, (2.11) 

                    fy 

    Mor= oe'\/2cAvi (2.12) 

  Y= GMr/C2 andE-= u/)C2 . (2.13) 

     We represent by  S the differences of the physical quantities 

between the hydrostatic equilibrium state and the perturbed state 

with radial mass motions. Taking the variation of each side of 

Eq. (2.9) and considering Birkoff's theorem, we have 

 S  c2  =SE+  O.  (2.14) 

If the perturbed states are realized by accompanying the mass 

motions.  C) T must be positive and  S E is negative, that is 

the criterion of  instability.9) 

     The variation of the binling energy,  S E, is calculated 

in Appendix A, where  S E is calculated in terms of the displace-

ment of each proper rest mass element  Sr  (Mor)° The final 

results are expressed in terms of  gr-7,E.'S V in place of  Cr up to 

the second order of g. 

     In these displacements, each proper mass element expands 

or contracts so quickly that the variation of the internal 

energy subjects to the adiabatic process which can be written as 

 S  6 =  -P +  (10/2v)  (5y)2  (2.15) 

and  i"  -(v/P)OP/jv) adi, (2.16) 

                               cc 2 
where P is pressure and vr./( ),, C).
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     As the coefficient of the first order term of g always 

vanishes as a result of an equilibrium condition of the unper-

turbed state,  8E can be obtained up to the second order of g 

from Eq. (A.5) as follows, 

 (R 

 $E  = - 4/3)  )  (P/2)(g/V)2 dV (2.17) 

where  ro is given by Eq.  (A.6). Therefore, the instability 

criterion is written as 

 < 4/3. (2.18) 

      If the contraction or expansion is uniform, i.e. g  c7e„ V, 

and if  y exceeds 4/3 only by a small amount of the order of  , 

the expression of Eq. (A.6) can be simplified into Eqs.  (A.7) 

and (A.8) as follows, 

     o  = 
 r - a)PdV/  S PdV (2.19) 

            r- is 2 (,(Tpv Fys 
and a.  =              (7)  + 04-77  + T

oC2*.—4(2.20) 

The above result is the same as that of  Chandrasekhar10) and 

 can be rewritten as follows, 

 )'" - 4/3 C q, (2.21) 

where =  ''PdV/ PdV (2.22) 

                        2 
     q = Pc/o(2.23)
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 and  R  R 

 C = a  PdV / (q  c  PdV), (2.24) 

 Pc and  COc being the central pressure and central rest-mass 
density  respectively-

     Considering a polytropic star with index N, Eq. (2.24) is 

written as 

  1r'rN+12              22      C =—
9.20(N+1)8'52+  2(N+1)G 

     + 8  (N+1)(-  )  eV-43/N+1 2  ,  (2.25) 

 0 where e is the Lane-Emden function. In this case, we can also 

show that 

         1 GM 

 q -     9 (2.26)  r
o  c  2   (N+1)  (-5161') RC2 

and the coefficient of GM/RC2is a number of the order of  unity.19) 

As u is the same order as  P,  ys/yt for all  Y implies that 

 u/FC2  1 as assumed in Eq.  (2.8), which will be  sat  sfied 

not only for the polytropic star but also for the nonpolytropic 

stars. 

 §3. Electron pair creation and adiabatic exponent 

     In a highly contracted supermassive star, the temperature 

reaches high enough to create the electron pair. To know the 

gaseous properties at these temperatures, we need to clarify the
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values of degeneracy parameter  Li) (i.e., Gibbs' free energy 

per electron divided by kT) and the ratio of the gas pressure 

to the total pressure,  (3 . The constant  4)curves and the 

constant curves whose characteristic properties are explained 

in Appendix B are shown in  Fig. 3. 

                             Fig. 3 

     Within the ranges of Tc and pocin the supermassive stars, 
about which we shall mention in §5, the electron gas is almost 

non-degenerate and the radiation pressure is dominant over the 

gas pressure, as can be seen by comparing Fig. 1 with Fig. 3. 

      The pressure and internal energy of gas are composed of 

those of electron, position and ions. In the non-degenerate case, 

these are given  as20),21) 

 r?  K  T  11.  -  "k"  NY1-0/TIA  )  (  3  •  1) 

and 

        ,(KE>n_--mlec2-^A.0)+<E>n_t vi-/(2/1-+-1) (3.2) 

where  n and n are number densities of electron and position 

respectively which are given by 

 e  C  X  )  e  ±_  cs,                                                 (3.3) 

 with x = meC2/kT;  (52 is chemical potential divided by kT; no is 

the non-created electron number defined by
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 no -n5(3 .4) 

 tUe  and  I), are molecular weights of electron and ion respec-

tively;  KE  ) is the total average energy  of an electron defined as 

                     K, oc) fy-hec2--1--112 _ for  x       KE---rrne c2-(T--1-- 
                       1‹.2_(.30/ 

 3  for  x<< ._ 1, 

                                               (3.5) 

and K1 and K2 are the  modified  Besse' functions of 1st and 2nd 

orders respectively. 

     For the later uses, we shall give the expressions of  p and 

the rest mass density 09as follows, 
                                     Jo 

 /  Pap(                                                  (3.6) 

 Pr being radiation pressure defined as 

 Er  (A1,/3  --=  7L2(  T  )V(  4-3-  0  ) 
 (3.7) 

and  f'0  Pena (3.8) 

mH being the proton mass. 

     Next, we calculate  y given in Eq. (2.16) taking account 

of the electron pair creation. In general, can be given  as22) 

 v   1q6-3-  PT)  ±  R,  vs  —  F,  Ut  )  (3.9) 
     F Niz — Vs 

where  -5' and  / are some thermodynamical parameters and  PI
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represents a partial  derivative of P with respect to  and so on. 

This expression is approximated assuming  p.<< 1 as follows, 

                              zo(nD\tafx ,   X 
= )Th

r AT:p 1 /  )  (3 .10) 

and -,?1,U(c, — p 
 7  (3.11) 

where we have taken  LA  \rand  (r in place of  and  3 

     Substituting Eqs. (3.1)  (3.7) into Eq.  (3.10), we have 

  Y=--  ()Lino  /‘ (3.12) 

     2  

     ,)3()[x ()2-A 
       chal)(3.13) 

 (3.14) 
          (4\-- /rcz) CtArec>3 (n-0 X3  (  Ht. itile/P), 

and 

 A-  =  /.1(.(ThQc-  /  )32  17(1c-x)}  rfl  (3.15) 

For x 1,  f(x,  no)  tends to unity like 

 5/{2i(1--hp  14A  -1_)-}.  (3.16) 

and  X becomes 

 4/3  /6  (3 .17)
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which coincides with the adiabatic exponent  T71 of a mixture com-

posed of radiation and a gas  with  a' = 5/3 in the case  of  fk<1.23) 

     The relation between T  and
o when  '= 4/3 can be obtained 

by solving the equation f (x ,  no) = 0. The ratio n+/n -at 
.?C 

= 4/3 is not constant but decreases with decreasing . For 

x  >  1, the ratio decreases like 

 ((1,  +  /rn  3C  10e/frtA-L)  (  X2) (3 .18) 

In table I, we show the density and the ratio n
+/n-at4/3 

for several values of temperature,  takingp e= 2 and  (A.I  =  56. 

                           Table I 

     In Fig. 3, the region where  6r< 4/3 is represented by the 

shaded region in the T-  50 diagram. This region has been obtain-

ed taking into account the following facts: (1) the upper boundary 

of the  6/K4/3 region is limited by the curve which approaches 

a horizontal line with x =  1.75 in the limit  no o or  ep---> o 

(see Appendix C), and (2) the  ' = 4/3 curve turns to leftward 

and has a maximum density as known from the calculation by  Chiu.24) 

In the upper branch of this region, the effect of the endothermic 

nuclear reaction is superposed on the electron pair creation. 

In the case of the dissociation  Fe56 13 He4 + 4n, the  <", 4/3 

region is drawn in Fig. 3, according to the calculations of 

 Kaminishi.  25) 

     §4. Instability region on T_u oc-?diagram 

                  and binding energy 

     In Newtonian theory, an instability will occur within the 

 )r< 4/3 region obtained in §3. But, if we take account of the
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general relativistic effect, the instability will occur even 

outside the  f< 4/3 region as supposed from Eq.  (2.21). Then, 

the general relativistic instability region will be more exten-

sive than the Newtonian instability region. 

     To obtain the instability region in the T
c-i°OCdiagram, we 

derive a relation between T
c and POCfrom Eqs. (2.21) and  (3.12) 

assuming that (1) the value of C is taken as 2.63 assuming a 

polytrope with N =  3,10) and (2) the average value  f is replaced 

by the central value  r
c_ As will be mentioned in §5, the above 

second assumption will be verified for the stars with M  3.5.104M
e, 

but not for the stars with M  3.5.104M. 

     Under the assumptions, the instability marginal curve can 

be written from Eqs. (2.21) and  (3.12) as 

  Cq = f (x,  no) /  6, (4.1) 

where the density and the temperature are the values at the center 

of the star but hereafter in this section we shall omit a sub-

script C. 

     To solve  q. (4.1) graphically, we draw the curves of  f (x,  no) 

and 6C  q/(?) as a function of  x1 for the several fixed values of 

 no as shown in Fig. 4, which shows that the  6Cq/ curves cross 

with the f (x,  no) curves when f (x,  no) is nearly equal to unity 

for  no  < no*            o and when f  (x,  no) is nearly equal to zero for no> no*, 

where n0is defined as 

      ,2tlYteC\3,n-3 . (4.2)     n
o* = i-5u=  3.53 °25J-L.,cm 

     2 That is, we can approximate the solution of Eq. (4.1) as follows 

   6Cq / =  1 for  f)o  Po*  (4.  3)
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and f (x,
o *= 0 fore                    )0 > )05(4.4) 

where C*/jkt 
    oe 

                 = mH  no = 5.86 • 10  gcm-3.  (4.5) 

Equation (4.3) is also written as 

                                              • -K-17pNci =-_ 2,, 3 S D 1-t- e //AA 7/0 e                                                     (4.6) 

 Fig. 4 

     In the vicinity of  ?0 =5  the above approximation will 
not be so good and there will be a solution to connect Eq. (4.3) 

with Eq. (4.4) smoothly. 

     In this way, we have obtained the instability region as 

shown in Fig. 1. For  F o  , a real boundary of the instability 
region would be above the  r = 4/3 curve which has been taken as 

the boundary in our approximation (see the footnote in §5.). 

     For  ro  yo  , the instability occurs on account of the 

relativistic effect, which can be treated in the post-Newtonian 

approximation. We can verify this fact as follows: as the in-

stability marginal curve has its  form like  T P2/7 and q  Jo 

varies as q T4 e0-1 for<<1, q changes like q501/7 on 

the instability marginal curve. Then, q's value is limited to 

         q 1.24 •  10-3, (4.6) 

for the general relativistic region, i.e.  ?o <  P  Jo
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     In the case of a polytrope, the binding energy given by 

Eq. (2.10) can be rewritten as 

                               r
s  E = - (3F' -  u)(1  + 7—) dV  +  2  qC  S PdV. (4.7) 

 2 It has been known that the binding energy in consideration of 

the relativistic effect becomes to increase after passing through 

a minimum values and becomes a positive value as the homologous 

contraction of a star with a fixed proper rest mass  proceeds.5)'6)' 

 26),27)
. In our case, this is also true and E takes the minimum 

value when 

 () (4.8) 

and E vanishes when 

 4/3 + 3qC/2, (4.9) 

where  y7 is the average value of  17 defined by  Fowler7) as 

 p/u  .  (4.10) 

      When <,'<=, 1 and pair  electrons are neglected, we notice that 

 =  -6c2.29(4.11)       3 

and then we have
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 0  7  )  /6  )`1_  )  e  (4.12) 

because is constant in the course of the homologous contrac-

tion under our assumptions. 

     In conclusion, the relativistic instability marginal curve 

given by Eq.  (4.3) and the minimum binding energy curve given 

by Eq. (4.8) are  found to  be the same, and the binding energy 

zero curve given by Eq. (4.9) is always contained in the in-

stability region. This implies that it is wrong to think the 

criterion E = 0 as that of the instability as it had been con-

sidered in  Hoyle-Fowler's  paper,2) about which Fowler himself 

has mentioned in the later  paper-28) 

           §5. Central temperature and density of 

                        a polytropic star 

     In an equilibrium state of a polytropic star, the relation 

between the central pressure  Pc and the central density is 

given as 

   Pc =  KG Mo2/3 Po (5.1) 

  ) here is a  nondimensional number of the order of unity and 

its value does not vary so large with polytropic index  N.13) 

In Table II, the values for N = 2 and  3 have been given. 

                          Table II
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     If we take into consideration of the relativistic effect , 

   varies with the relativistic  parameter q . For the post-

Newtonian case, this relation is given as follows , 

 V\(N, q) =  K(N, 0) (1 +  Kg) (5 .2) 

and 

  K — (21 ) `P' N S -Lot --\- 

 0 

 38;  x,3(3 \\-')=J  A  e()  -+4'73 
                                                  (5.3) 

where the function is defined in such a may that Tooper's 

relativistic polytropic solution  R 26)                                               is approximated in the 

post-Newtonian case as 

 =  8  +  qc. (5.4) 

Using the table of  dp given by  Chandrasekhar,10) we obtain the 

values of K as shown in Table II. As our consideration is 

limited to the case  q  10-3, we may neglect the relati 

effect on the equilibrium configuration. Then, hereafter, we 

do not distinguish  Mo from M. 

     When the radiation pressure is dominant, Eq.  (5.1) can be 

approximated as 

          I3 )1/311/4f/ \/; (           z_ To- ONE.)\, M )L 

                ( 1 5- 1/4 ( 
                                         -  ) 

                                                  (5.5)
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here  M( K ) is defined as 

                                 3)/  ./73-( C   (4-s-  ) 37          2- r\M )n
. (5.6) 

and, in the case of the polytrope with N = 3, this  m(v\ ) is 

Chandrasekhar's limiting mass defined as 

               5.75 
 M  C  h
6,1n 2  MO(5.7) 

 fe 

Now,  (3in  Eq.  (3.6) is represented in terms of M as 

       = 1.77 (Mch---)9(5.8) 

and the assumption that  1 is verified for  M >  103M
ch 

at least. 

     As the mass of the star increases, a convective region 

tends to grow in the stellar  interior-1)                                                   Therefore, we assume 

a  sholly convective star and then the structure of the super-

massive star is well  represented by the polytrope with N = 3 

because of 8<,‹ 1. 

     The evolutionary paths for several values of M are shown 

in Fig. 1, from which we can see that an instability of the larger 

mass results from the general relativistic effect but for the 

smaller mass star it results from the pair electron creation. 

Then, we may introduce a critical mass Mc at which the instability 

                                                                                         * mechanism changes from one another. Assuminggiven by Eq.  (4.5) 

as the critical density and  ge = 2, this mass is evaluated as 

 Mc = 3.5 •  io4Me,  (5.9)
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This value varies with the parameters in the vicinity of this 

density as follows, 

                         -1-k,S -I 
 McC0(5.10) 

     For the star with M  M
c, the physical quantities at 

the outset point of the instability are given as 

        = 1.18  •  1017(M /  M
ch)  -7/2 g  cm-3, (5.11) 

 T c = 1.30 •  1013(M /  Mch)-1  oK, (5.12) 

      R  = 4.87  •  10-5(M /  Mch)3/2  Me  -1                               R0, (5.13) 

and q = 5.36 °  10-1 (M /  Mch)-2 (5.14) 

where  Ro is the solar radius. For these stars, the replacement 

of  r by  yc can be verified because of f 1 and  (3 = constant 

throughout the stellar interior-

     For the star with M  <  Mc, the approximation to replace  y 

by  yc is not always verified. In fact,  tne star becomes 

unstable only after a considerable part of the interior gets 

in the  y< , 4/3 region. The degree how the central parts are 

contained in the  b' < 4/3 region depends on the stellar mass 

and becomes larger with decreasing mass for the stars with mass
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           ) b
elow M

c*' 

 Tooper29) has applied the general relativistic instability 

theory  even for the star with M <  M
c  and has obtained the rela-

tions corresponding to Eqs.  (5.11)-}  (5.14). However, it must 

be noticed that the instability for these stars results from 

the electron pair creation. 

     For the smaller mass star (M <  (50  — 100) xil ch')it is 
supposed from Fig. 1 that an instability results from the dis-

sociation of Fe  nucleus. In the treatment of the structure of 

these stars, however, our assumption of the polytrope with 

N 3 would not be verified. 

 *) As an example to know this degree , we only mention the 

following fact: For  103 Mch star, the instability criterion 

given by Eq. (2.21) is written as 

    4/3 - ( )r > 3.2 . 10-3 if :eoc = 2(r1) 

               1 and 4/3 -  (  y  )r
1 2.4  •  10-2 if poc5 ffo(r1) 

                                                                                                      ' where r1 is the radius of the layer inside which  )1<4/3 and 

 (  r  )r
1 means the averaging taken for the region  r  <  rl' i.e. 

the  )'  < 4/3 region. Referring the calculation of y by  Chiu24) 

we may conclude that the star is unstable for  5oc  =  5 Fo(r1) 

                                                                                                                ' but it needs more detailed calculation to decide whether the 

star is unstable for  r  oc= 2Po(r1).
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              §6 Applicable ranges of stellar mass 

                              in this paper 

     In  this section, we consider the applicability of our 

theory; first about an upper limit and next about a lower limit. 

     As seen from Eqs.  (5.11) and  C5.12)  ,!=
°cand  Tc decrease 

with increasing mass, e.g., for M =  1010M
ch we have 

 oc 
 10-18g  cm-3 and  T

c  103°K. (6.1) 

In these low temperature and low density, we must reconsider 

critically about the following two points, i.e., the equation 

of state and the energy balance between the energy output and 

the energy generation. 

     The first point is that the gaseous mass in these state 

may be in atomic or molecular state and the new instability 

region due to atomic ionization or molecular dissociation may 

appear. For example, a critical mass corresponding to  Mc in 

the case of the electron pair creation can be obtained for 

the case of hydrogen atom ionization as 

 M ne- 109'5  M
ch (6.2) 

However, as it will be  seen in the followings, this critical 

mass has not a physical meaning. 

     To consider the second point, we must first inquire the 

condition of opaqueness. The star becomes transparent with 

increasing its mass and it becomes completely transparent when 

the mass is above a critical mass such as 

    M  10  /  1025  1VIch  '  (6.3)
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here  a\ being the cross section of photon scattering in cm2. Then, 

the star above this critical mass is out of our consideration. 

     The above opaqueness condition, however, is not sufficient 

for a quasi-static equilibrium star but we must inquire the 

condition of energy balance that the energy output determined 

by the opacity in an equilibrium state must be supplied fully-

Since nuclear energy generation can not be expected in these low 

temperature, the output ,ust be supplied by the gravitational 

energy accompanying the contraction of the star. 

     The energy output L is evaluated following Eddington's 

standard  model30) as follows, 

 41"Gc(1-E:3) M 
 L=--  (6.4) 

here  Ke is an opacity for electron scattering given as 

 Ke = 0.19  ./t4e/2. The internal energy U in the case of 

is approximately given as 

   3GM
T  U= -2- ——  . (6.5) 

Then, the cooling time by photon diffusion tcpgiven .iven as 

             inio(  (kT t  = —=) (2                     --) sec . (6.6) 
 cp  L  Me  mc2 

The cooling time by photon-neutrino emission  tel, is given  as31) 

 cvT5-4    =  1053'3 no-1sec, (6.7)
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and it is evident that the neutrino process can be neglected . 

     On the other hand, the time scale of the gravitational 

energy generation is considered to be limited by the free fall 

time  tff' which is given  as14) 

       tff =  6.5  •  102                         Y-1/2 •  (6.8) 

     The relation between  T
c andOCderived from the equation 

 tff t
cp takes the form of Tc cx_jr=OC1/8 and is shown in Fig. 2. 

In the  tff> t
cpregion, the energy output can not be supplied 

even by the free fall contraction and the star can not be in a 

quasi-static equilibrium. In these stages, it is meaningless 

to consider an stability of a static star and our instability 

criterion is only applicable to the mass range such as 

      M  <-  108'7  Mch'  (6.9) 

which defines the upper limit of our investigation of the  in-

stability-

     Next, we consider about the lower limit, which arises from 

the use of the polytropic solution for the equilibrium  configura-

tion. As the mass decreases, the temperature at the outset point 

of instability increases and the neutrino flux becomes to dominate 

the photon flux. For example, their  comparison is given in the 

case of  102Mch star at  no =  1028  cm-3 as  follows,31) 

  t 10"sec t= 103.96x-1 e2xa-2-107sec. (6.10)  cp —c 

For the stars, the stellar structure can not be  represented 

by a simple polytrope but may have a more complex structure. 

Then, our treatment on the structure must be modified.
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     The condition that t cp</tc )./on the =  4/3 curve 
implies approximately that M >  103  M

ch' which defines the lower 
mass limit. In this paper, we have neglected the effects of 

nuclear reactions except the dissociation of Fe nucleus but 

these effects on the stellar structure would become large for 

the stars of this order of  mass.21) 

     However, it is worthwhile to mention that our treatment 

to obtain the criterion of instability assuming the adiabatic 

process is well founded even for the stars with these masses, 

because the time scale of the electron pair creation given  by32) 

            tpair --                    ^- 10-15.2  x3  e2x                   sec (6.11) 

and tff are much shorter than the neutrino cooling time. Then, 

we may only alter the relation between  Tc andfOc'the evaluation 

of C and the averaging of  . 
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Appendix A. Variation of binding energy 

     The variation of binding energy is calculated by  taking 

the variations of the terms on the right hand side of Eq .  (2.10)  , 

using Eq. (2.15) and the following relations such as 

   g  S V =  41=2  /L> r +  4nr  (  r)  2 ,  (A.1) 

    ,g\21,g\2 
4r( —r)=+ (A.2)  3rV9rV 

 A  Lc/          \, Ys and  v/  v = — Sr )'\,7\7) '7 3 ci )  V  j  (A.5) 

In the calculation, it must be also noticed that Mr/Mr is 
the order of q and we can rewrite this term using the relation 

derived from the Newtonian theory. 

     The first order variation E of the binding energy is 

obtained as 

 ct  -  t  7  ^  (7-7:c 2 'r ) 1 7-, ) (A.4) 

 The curlycurly  bracket  of  the  above  integrand  is  found to vanish. 

This is nothing but the equation of hydrostatic equilibrium in 

the post-Newtonian  qpproximation. 

     The second order variation 2E is obtained as 

2  E  =  (
o -4-3)g                           —(—)2(Ay        2V (A.  5)
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        (R «Aifv,/\-29-7lk and_ )61-7--H---=-)-VcYJiv 
 AL, \\I 

 (A.  6) 

     t 
 PrL\ 2_ (-A r\(/,KA,\- 

WhereE—( )  y
i y)(\'kk / V (A.?) 

      7 F.' 9,7. n K 
 L  )IV) and rL_ )3\T"3 V                                                                (

A418) 

     Appendix  B. Electron, positron and radiation gases 

 ( i) Constant curve 

      In a chemical equilibrium among electron, positron and 

radiation, we have the relation such as 

 r  (B. 1) 

and then 
 (B.  2) 

          /(A - = 11A 
here  70  ,  r + and  t)  are the  chemical potentials of electron, 
positron and radiation respectively. 

 Gibbs' free energies per an electron divided by  kT  ,  f  , 

are defined as 

     = (  p - m
ec2 ) / k T  (B.3) 

and then  = - 2x .  (B.4)  -
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Therefore, a trivial condition that 

 no  =  n -n 0 (B.5) 

introduces a restriction on such as 

      -  x .  (3.6) 

     The behavior of the constant curve for  Y  (i 0 and 

that for  t 2 0 are different from each other as shown in Fig.  3: 

for  Y > 0, increases monotonously with T, but for  K 0, 

   takes a maximum value and tends to zero as temperature 

approaches to kT/mec2  = - -1 

      In the case of non-degeneracy, i.e.  -T 1, each physical 

quantities are expressed in the expansion formulae by Chandrasekhar 

and Eqs.  (3.l)'-/(3.5) are the first terms of these expansion 

 formulae. The ratio of the second terms to the first terms are 

the order of ef -2xfor electron and  e'v for positron and the 

ratio of the positron density to the electron density,  11+/11 _ , 

is the order of e2q. 

     (ii) Constant  C) curve 

      In the case of no electron pair creation, the constant 

curve takes the form such  aso increases monotonously with T, 

but when the electron pair are created, the behavior of this 

curve varies with the value of  . 

     For 7  /11, kT/meC2 is bounded by the maximum value 

- 1/u„ and C;'
atends to zero when x-1 -1/*'0, whereis   io 

defined by the following equation such as 

  - - 

 0\ 7`4/)  /  2-  `-1"
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where  G(*,00 is one of the relativistic Fermi-Dirac functions 

defined  as33) 

                                    L k -t- -4 k2-,, 2_ ) 
                                                                              ________              t''t-Qr t l  (B.8) 

     In the limiting case that  T
o  --.) 0,  6 tends to 

     = 7/11 , (B .9) 

which is derived from Eq.  (B.7) 

     For  P  > 7/11. the curve is monotonous one as in the 

case of no electron pair creation. 

     In the above discussion, we have neglected the effects by 

the phase changes due to nuclear dissociation or pair creations 

of the other particles. A general behavior of the curve in 

consideration of these effects is that the curve turns to left-

ward in Fig.  3 if the mean molecular weight of electron increases, 

and vice versa. For example, the =  7/11 curve behaves in the 

 Fe-dissociation zone as shown in Fig.  3.25) 

     Appendix C. The upper boundary of the  )c  4/3  region 

     In the  limito  ---) 0 without T tending to zero, the gas 

pressure nay be composed mainly of the created pair electrons. 

In this limit, which implies  Vri  ----  0, we can approximate Eq.  (3.9) 

as 

 4+  xK1/D 

 -  (C.  1) 

 3 + x2K2 /  ( xK1 + 4D) 

with4_2     D = K2 +7-[ x / 90,  (C.2)
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      Putting 6 = 4/3, we have the temperature of the upper 

 boundary of the < 4/3 region as 

   x 1.75. (C.3) 
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Table I. The temperature-density relations and the ratio 

           n+/n-when(J = 4/3. 

 x  T(°K)  ,/i),A(gcm-3) n+/n 

                                                               - 

  5 1.19  109 2.31  104                                        1.80  10-2 

  8 7.43  108                       8.45  102                                        6.42  10-3 

  10 5.94  108  9.54  10 4.35  10-3 

  12  4.95  108                  1.14 10  3.05  10-3 

  15 3.96 108  4.37  10 2.48  10-3 

  20 2.97  108                    2.99  10-3 9.55  10-4 

Table II.  K and C for polytropes of N 2 and 3. 

In post-Newtonian case,  K is given as 

 mN, q)  K  (N,  0)(1 + Kq). 

 N  K(N, 0) KCtO) 

   2 0.435 9.35 2.4968 

   3 0.364 8.85 2.6325



 34 

            Figure Caption 

Fig. 1. The relations of the central temperature and density  of 

          the stars with mass,  104  M
ch'  102  Mch and 0.1  Mch' 

          where M
ch is the Chandrasekhar's limiting mass defined 

          as Mch =  5.750}e2  Mo. The shaded area represents the 

          instability region in which the star can not be in 

          a stable equilibrium. 

Fig. 2. The free fall contraction region in which the star 

          can not be in a quasi-static equilibrium and the in-

          stability region. 

Fig. 3. The temperature-density diagram for the characteristics 

          of electron, position and radiation gas. Gross features 

          of the constant  * curve, the constant  c3 curve and the 

 < 4/3 region are shown. The  )/(4/3 region is obtained 

 refering the calculations in 3 in this text, and the 

          references 22) and 23). 

Fig. 4. The solution of Eq. (4.1) for the densities 

          =  (10-2,  10-1, ,  102) o*, where 

 o*  Ole = 5.86 10 g  cm-3. 
         The ordinate denotes the values of f (  Fo, x) and 

          6C  qi9 , and the abscissa does the kT/m c2 =  x-1
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