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1. INTRODUCTION 

   The Japan arc—Japan Sea pair is one of the most intensely studied island 
arc—back arc basin systems in the western Pacific (Fig. 1). The Japan arc is divided 
into Southwest Japan, west of the Itoigawa-Shizuoka tectonic line (ISTL), and 
Northeast Japan, east of the ISTL (Fig. 1), on the basis of Neogene tectonics. 
Recent paleomagnetic studies (OTOFUJI et  al., 1985a,b) have revealed that 
Southwest Japan and the northern part of Northeast Japan, north of the Tanakura 
tectonic line  (Tit), had undergone clockwise and counterclockwise rotations, 
respectively, on account of the back-arc opening of the Japan Sea. 

   Paleomagnetic results obtained from Southwest Japan gave a significant 
constraint on the opening mode of the western part of the Japan Sea. Using 
detailed record of paleomagnetic field directions in the San'in area (Fig. 1), 
OTOFUJI & MATSUDA (1987) concluded that Southwest Japan had rotated 
clockwise through more than  40  ° with respect to the eastern margin of Eurasia. 
Large amount of rotation of Southwest Japan around the pivot fixed at the 
southwestern end of the arc (Fig. 1) is not explained by the opening in parallel 
mode linked with the formation of pull-apart basin (LALLEMAND & JOLIVET, 
1985) or Atlantic-type marginal basin (TAYLOR & HAYES, 1983). Fan shape 
opening seems the dominant mode of back-arc opening in case of the western part 
of the Japan Sea. 

   Precise determination of the duration and timing of the large amount of 
clockwise rotation is important to understand the kinematics of fan shape opening 
and the behavior of asthenosphere beneath the continental margin.  OTOFUJI et 

 al. (1985a) compiled paleomagnetic data in Southwest Japan and suggested that the 
climax of the rotation was at 14.9 Ma and its duration was 0.6 m.y. However, widely 
distributed data in their paper might include unwanted information about the 
differential block motions in the marginal regions of the arc. Moreover, quite short 
duration might be affected by systematic error introduced through the compilation 
of K—Ar, fission track and paleontological ages. 

   In order to solve above-mentioned problems, the present study is focused on 
the paleomagnetic data reported from fossiliferous Neogene sections in the Yatsuo 
area (ITOH, 1986, 1988; ITOH & HAYAKAWA, 1988), a rather limited area 

(extent of  20km  x  20km) in the eastern part of Southwest Japan (Figs. 1 and 2). 
Based on paleomagnetic results obtained from Cretaceous and Neogene rocks, 
ITOH (1988) suggested that the eastern part of Southwest Japan including Yatsuo 
area had rotated counterclockwise relative to the central and western parts of 
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Fig. 1. Index map of geotectonic divisions in Japan with the distribution of 

pre-Neogene Shimanto (1), Chichibu (2) and Sambagawa (3) terranes (YAMADA 
et  al.. 1982). Abbreviations are  TTL. Tanakura tectonic  line;  ISTL. 
Itoigawa-Shizuoka tectonic line; ATL, Akaishi tectonic line; MTL. Median tectonic 
line; Mz,  Mizunami area; Sm, Shimane peninsula. Base map shows contours and 

possible position of remnant spreading centers in the Japan Sea (AMERICAN 
ASSOCIATION OF PETROLEUM GEOLOGISTS, 1981). The present trench 
system around the Japanese Islands is also shown. Pivot of clockwise rotation of 
Southwest Japan is shown by a star at  34°N,  129°E (OTOFUJI  (_:- MATSUDA. 
1987). 
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 Fig. 2. Distribution of Cretaceous and Tertiary rock units around the eastern part of 
 Southwest Japan (YAMADA et  al., 1982). Bold enclosures show the areas of which 

 paleomagnetic data are discussed in this paper. 
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Southwest Japan succeeding to the coherent clockwise rotation of the arc. 
   It is, therefore, expected that a reliable data-set compiled from the 

paleomagnetic data in the Yatsuo area describes  clockwise rotation and 
counterclockwise rotation on account of back-arc opening and intra-arc 
deformation, respectively. The rotational history of Southwest Japan is established 
in this study using age estimations by magnetostratigraphy  (ITOH & 
HAYAKAWA, 1988), radiometric method and biostratigraphy (HAYAKAWA & 
TAKEMURA, 1987) in the Yatsuo area.  Paleoenvironment during the clockwise 
rotation, which is monitored by geological data such as lithofacies and paleodepth 
inferred from benthic foraminiferal assemblages, sheds light on the understanding 
for the motive force of continental rifting. 

   Mode of the intra-arc deformation succeeding to the back-arc opening is also 
viewed from available paleomagnetic directions reported from six areas (Fig. 2) in 
the eastern part of Southwest Japan (after NAKAJIMA & HIROOKA, 1986; 
ITOH, 1986, 1988; ITOH & HAYAKAWA, 1988; ITOH & ITO,  H., 1988;  ITOH & 

ITO, Y., 1988;  ITOH & WATANABE, 1988) and the Kanto area (HYODO & 
 NIITSUMA, 1986) between the ISTL and  TTL (Fig. 1). In this study, the author 

attempts to describe the comprehensive tectonic movements of Southwest Japan 
related to the individual rotational motion of above-mentioned areas. Rheology of 
the continental crust is further argued in regard of the sliver bounded by the ISTL 
and the Median tectonic line (MTL), respectively on east and south sides (Fig. 1). 
Since the sliver, which is generally called the inner zone, consists of sedimentary 
and metamorphic complex which was widely intruded by Cretaceous granite, it can 
be regarded as a uniform test-piece of granitic crust under tectonic stresses during 
the Miocene deformation. 

2. DATA SELECTION 

   In order to certify the reliability of rotational movements, the following criteria 
were adopted to select paleomagnetic data in the Yatsuo area. 

(1) Site-mean directions which have a radius of 95% confidence circle smaller than 
 20° were selected. 

(2) Bedding planes of the strata should be clearly defined so that the paleomagnetic 
directions can be corrected for the tectonic tilting. Because the Neogene strata 

within the Yatsuo area generally dip  10°  —40° to the north with neither serious 
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Fig. 3. Typical vector-demagnetization diagrams of progressive alternating field (A) 
and thermal (B) demagnetization tests for sedimentary rocks obtained from the 
Yatsuo area. Solid (open) circles are projection of vector endpoints on the 
horizontal (N-S vertical) plane in in-situ coordinates. Unit of coordinates is  bulk 
remanent intensity. Numbers attached to symbols are demagnetization levels in mT 
or °C. Progressive change of vector endpoints shows a straight trend indicating 
stable magnetization. 
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tectonic disturbance nor slumping structure (HAYAKAWA & TAKEMURA, 
1987), tilt-corrected paleomagnetic data are expected to be free from local 
movements in the investigated area. 

(3) Stability of remanent magnetization should have been examined by means of 
progressive demagnetization using both thermal and alternating field methods. In 
case that the site-mean direction of stable magnetic component coincided with the 

present magnetic field direction before tilt correction, the site was rejected because 
such a magnetization might be of the secondary overprint. Fig. 3 shows the typical 
results of progressive demagnetization tests. Primary magnetic components are 
successfully identified as linear trends on the diagrams. 

   Table 1 is a summary of the Neogene paleomagnetic data which were selected 
according to the above-mentioned guidelines. As presented in the table, there is no 
time-dependent change about inclination values within the studied section. 

3. MIOCENE ROTATIONAL MOTIONS AROUND  THE YATSUO AREA 

   Fig. 4 shows the temporal change of declination values in the Yatsuo area with 
their uncertainty defined by KELLOGG & REYNOLDS (1978). As for the 

paleomagnetic data of the Yatsuo Group, enlarged declination plot is also given in 
Fig. 5. Based on magneto-biostratigraphic study (ITOH & HAYAKAWA, 1988), 
the Yatsuo Group is correlated with Chron C5C and C5B of standard geomagnetic 

polarity time-scale (BERGGREN et  al., 1985). The Tonami Group is correlated to 
the time-scale using fission track ages and biostratigraphic data compiled by 
HAYAKAWA & TAKEMURA (1987). Declination values shift remarkably from 

positive (easterly deflected) to negative (westerly deflected) ones in the upper part 
of the Yatsuo Group. There is no systematic change or significant deflection in 
declinations obtained from the Tonami Group. 

   Both of the data with normal and reversed polarities show similar declination 
shift in the upper part of the Yatsuo Group. On the basis of magnetostratigraphic 
estimation of sedimentation rate (ITOH & HAYAKAWA, 1988), each site-mean 
data is considered to be an average direction through more than 1000 years except 
for samples of volcanic materials. The declination shift is, therefore, not attributed 
to fluctuation of geomagnetic field linked with the field-reversal or secular 
variation but to clockwise rotation of the landmass containing the Yatsuo area 
around a vertical axis. Westerly deflected directions in the uppermost part of the 
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       Table 1. Summary of paleomagnetic data for the Yatsuo area. 

    Site DEMAG D(°) I(°) Dc(°)  Ic(°) N  a95(°) k P  .1(°N)  P(°E)  lithology 

 Tonami Group 

Otogawa 
Formation 
   HK98***  lOmT 148.5 -57.4 177 .2 -55.0 12 5.9 54.9 R -87.5 -157.6 tuff 

   HK100*** 5mT 135.0 -57.6 176.0 -60.1 5 1.9 1650.0 R -84.6 -76.9 silty tuff 
  32* 120°C -38.7 61.2 -6.4 50.8 8 3.2 294.4 N 82.7 5.1 tuff 

  31*  20mT -43.4 63.4 -10.4 59.4 11 7.4 39.2 N 81.1 74.2 tuff 
   16*  lOmT -32.4 75.1 6.9 58.0 10 2.0 572.0 N 84.2 -155.6 tuff 

Tenguyama 
Formation 

  18*  10mT -40.4 71.8 -0.1 53.4 8 4.6 145.1 N 87.3 -41.1 tuff 

Yatsuo Group 

Higashibessho 
Formation 

 HR40*** 250°C -45.4 65.4 -19.4 43.3 7 6.8 78.7 N 69.9 18.0 mudstone 
   YT11*** 350°C 130.8 -75.9 170.4 -53.1 8 19.5 9.0 R -81.6 -150.7 siltstone 
   HR11***  15mT 142.2 -73.7 177.2 -60.6 9 7.9 43.6 R -84.6 -65.7 silty tuff 

   HR43*** 200°C 151.2 -69.9 175.6 -54.1 8 9.7 33.5 R -85.9 -160.6 siltstone 
   05*  20mT -143.5 -84.9 -172.5 -51.7 12 3.2 190.1 R -82.5 79.5 tuff 
   YTO4** 400°C -36.9 -63.0 -164.9 -73.1 10 5.9 68.9 R -65.8 -23.7 tuff 
   YT28***  30mT -179.3 -53.6 -163.4 -34.2 9 9.5 30.1 R -67.0 93.3 mudstone 
   YT25*** 200°C -25.3 42.3 9.3 40.9 8 10.8 27.1 N 74.6 -76.8 shale 

Kurosedani 
Formation 
   33* 190°C 171.6 -52.3 -174.0 -45.7 12 4.9 80.1 R -79.3 107.1 tuff 

 Iozen 
Formation 
   36*  20mT 42.7 58.2 18.3 48.7 8 2.0 790.8 N 73.2 -113.9 welded tuff 

 Iwaine 
Formation 
   HK58***  lOmT 42.6 55.8 26.5 41.3 12 3.3 176.4 N 63.9 -110.9 andesite 

   35* 330°C 70.3 61.4 17.9 41.7 9 4.3 143.1 N 70.2 -98.8 andesite 
 Nirehara 

Formation 
   HK53** 400°C -70.1 -73.6 -166.8 -60.6 9 4.8 114.2 R -78.6 16.9 silty tuff 

 HK50**  lOmT -140.6 -72.9 -160.1 -49.8 12 2.7 262.9 R -72.4 61.0 siltstone 

Note:  DEMAG=demagnetization level in  C or millitesla (mT); D,  I= mean 
declination and inclination before tilt correction; Dc, Ic= mean declination and 
inclination after tilt correction; N=number of specimens;  a95=radius of 95% 

confidence circle; k=Fisher's precision  parameter;  P  =  magnetic polarity (N and R 
are normal and reversed polarity, respectively.); lambda, phi=latitude and 
longitude of virtual geomagnetic pole position. 
* Data from ITOH (1986) . ** Data from ITOH (1988). *** Data from ITOH & 
HAYAKAWA (1988). 
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group express succeeding counterclockwise rotation of the Yatsuo area relative to 
Eurasia because the paleomagnetic poles obtained from Eurasia (IRVING & 
IRVING, 1982) almost coincide with the present geographic pole around 15 Ma . It 
is most probable that the temporal change of declinations in the Yatsuo Group 
represents clockwise and counterclockwise rotations around the Yatsuo area . 

   It is obvious that significant rotation took place during the deposition of the 
Higashibessho Formation which was correlative to the magnetic Chron  C5BN 

(15.27-14.87 Ma; BERGGREN et  al., 1985). The termination of the clockwise 
rotation is concealed by the unconformity between the Yatsuo and Tonami Groups. 
Paleomagnetic declinations obtained from the Tonami Group (Fig. 4) suggest that 
the succeeding counterclockwise rotation occurred during the stage of the Ikahama 
unconformity ranging in age from 15 to 12 Ma (HAYAKAWA & TAKEMURA, 
1987). 
   Although the process of counterclockwise rotation can not be observed, the 
amount of differential rotation linked to intra-arc deformation can be determined 
by comparing early Miocene paleomagnetic directions of the eastern and the 
western parts of Southwest Japan. Because the apparent polar wandering path 

(APWP) during last 100 m.y. has been proposed from the San'in area in the 
western part of Southwest Japan (Fig. 1) by OTOFUJI & MATSUDA (1987), the 
San'in area is used as a reference to estimate the amount of differential rotation. 

The mean paleomagnetic declination (D) and inclination (I) of the western part of 
Southwest Japan are calculated from APWP for the San'in area at the 
representative location of the Yatsuo area  (36°35'N,  137°5'E). For early Miocene, 
D and I are  62.2° and  47.4°, respectively.  A95 (circle of 95% confidence about the 
reference pole) and p (angular distance from the area to reference pole)  are  10.9° 
and  61.4°, respectively. On the other hand, the mean direction of early Miocene 
data in the Yatsuo area (site-mean data in the Nirehara, Iwaine and  Iozen 
Formations) is  D=19.6°,  1=48.5° and  a95=8.0° at the same representative location. 
Using these data, the angle of relative rotation (R) and its uncertainty (dR) defined 
by BECK (1980) are given as  —42.6° and  17.4  °, respectively. It is concluded that 
the Yatsuo area has undergone a counterclockwise rotation relative to the western 

part of Southwest Japan through  43° 
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4. TECTONIC IMPLICATION OF THE ROTATIONAL MOTIONS 

4-A. Clockwise rotation 

   As stated before, the clockwise rotation of the Yatsuo area occurred during 
deposition of the upper part of the Yatsuo Group (around 15 Ma). It has been 
shown that easterly deflection in declination decreases within some sequences of 
the Setouchi Miocene Series, sporadically distributed in Southwest Japan, which 
can be correlated with the upper part of the Yatsuo Group on the basis of 
age-diagnostic fossils (TORII, 1983;  HAYASHIDA, 1986). The synchronous 
rotational motions can be attributed to coherent clockwise rotation of Southwest 
Japan associated with Miocene back-arc opening predicted by geological and 

geophysical studies (e.g., CHINZEI, 1986;  ISEZAKI, 1986). 
   Declination shift in the  Higashibessho Formation exceeds  30  °. As the amount 

of clockwise rotation reported from the central and western parts of Southwest 
Japan ranges from 40° to 60° (OTOFUJI et  al., 1985a; OTOFUJI & MATSUDA, 
1987), it seems that more than a half of the rotation had been attained during the 
short interval (less than 0.4 m.y.). Although the later stage of the rotation is not 
observed in the studied section, present result suggests that the duration of 
coherent clockwise rotation is less than 1 m.y. Thus short duration of the rotational 
motion insisted by OTOFUJI et  al. (1985a), which implies anomalously rapid 
back-arc opening, has been reconfirmed through the paleomagnetic data of 
well-dated Miocene sequence in the Yatsuo area. 

4-B. Counterclockwise rotation 

   Counterclockwise rotation in the eastern part of Southwest Japan was also 
reported from late Cretaceous welded tuffs which were collectively named the Nohi 
rhyolite (ITOH, 1988). The amount of differential rotation between the San'in area 
and the area covered by the widespread Nohi rhyolite (see Fig. 6) was calculated as 

 R  —56.8  °  (dR  =16.6  °). It is, therefore, suggested that the differential rotation of 
the Yatsuo area is not attributed to the intra-arc deformation only on the coast of 
the Japan Sea but to the bending motion of whole Southwest Japan during or just 
after the back-arc opening of the Japan Sea. 

   Plausible mechanisms of the differential rotation linked to arc bending are 

presented as the following two models (Fig. 7). In the models, rotational motion of 
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the Kanto area (Fig. 1) is also taken into account because the zonally arranged 

pre-Neogene terranes of Southwest Japan (see Fig. 1) can be continuously traced as 
far as the Kanto area, suggesting that the Kanto area was situated in the eastern 

part of continental sliver which rotated clockwise associated with the back-arc 

opening in Miocene. 

(Model 1) An intense shear drag force may have been produced on the margin of 
the rotating arc associated with the fan shape opening of the Japan Sea. Because 
Southwest Japan was rotated clockwise around a pivot fixed at the western end of 
the arc, left-lateral shear in the eastern margin of the arc caused counterclockwise 
rotation of the Yatsuo and the Kanto areas. 

(Model 2) Collision of the landmasses on the Philippine Sea plate is a possible 
cause of the deformation of the island arc. Though the present length of the slab 
under the Japan arc suggests that the subduction of the Philippine Sea plate can go 
back to 5 Ma (MATSUBARA, 1980), the subduction in middle Miocene is surmised 
from the ages of ophiolite and surrounding rocks in the Mineoka belt (OGAWA, 
1983). Back-arc opening of the Japan Sea would be the direct cause of middle 
Miocene subduction of the Philippine Sea plate. On account of the subduction, the 
Izu-Bonin arc on the Philippine Sea plate collided against the island arc which had 
been separated from the margin of Eurasia. Such collision caused counterclockwise 
rotation of the Yatsuo area and clockwise rotation of the Kanto area. 

   Model 1 seems not to be realistic because the model requests the accretionary 

prism of Paleogene Shimanto terrane to be abruptly bent around the Kanto area 
before Miocene intra-arc deformation (see Fig. 1). Moreover, the paleomagnetic 
data obtained from the Kanto area prefer Model 2. HYODO & NIITSUMA 

(1986), who studied paleomagnetism of the early Miocene Series in the Chichibu 
Basin of the Kanto Mountains, revealed that the mean direction of the  sedimentary 
rocks which were correlated to BLOW's zone N8 (16.5-15.5 Ma) showed easterly 
deflection as much as  94° They attributed half of the deflection to the rotation of 
Southwest Japan (about  47  °) and the remainder to the differential rotation 
between the Kanto Mountains and Southwest Japan after 15 Ma. Therefore it is 
concluded that the differential rotations of the Yatsuo and the Kanto areas 
occurred in consequence of collision of the  Izu-Bonin arc in middle Miocene. Since 
the collision event, the Yatsuo and the Kanto areas have belonged to different 
tectonic domains and the eastern limit of Southwest Japan has been situated 
around the ISTL (Fig. 1). 
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Fig. 7. Two models for the mechanism of the differential rotation as confirmed by 

paleomagnetic data in the Yatsuo area. (Model 1) Left-lateral shear is produced 
on the margin of a rotating  arc, resulting in counterclockwise rotation of the 

Yatsuo and Kanto areas. (Model 2) Landmasses on the Philippine Sea plate collide 

against the Japan arc. resulting in counterclockwise rotation of the Yatsuo area and 

clockwise rotation of the  Kanto area. 
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5. ENVIRONMENTAL CHANGES DURING THE ROTATIONAL MOTIONS 

5-A. Clockwise rotation 

  The thick (1500-1800 m) sequence of fining-upward sediments in the 
Kurosedani and Higashibessho Formations yields the benthic foraminifers which 
suggest that the Miocene sedimentary basin in the Yatsuo area changed its depth 
considerably as shown in Fig. 8-D (CHUI, 1986). On the basis of 
magnetostratigraphy (ITOH & HAYAKAWA, 1988), it has been confirmed that 
the sedimentation was accelerated within the upper part of the Yatsuo Group and 
the massive fine-grained sediments in the Higashibessho Formation accumulated at 
extremely high rates of 4-3 m per 1000 years (Fig. 8-C). These data suggest active 
block-faulting and subsidence around the margin of continental sliver of Southwest 
Japan during the rifting and breakup of the continental lithosphere related to the 
clockwise rotation because the global sea level change around 15 Ma was in 
negligible amount  (HAQ et  al., 1987). 

   Synchronous subsidence has been reported from some areas within Southwest 
Japan.  TAI (1973) showed that the Miocene sedimentary basin in the Shimane 

peninsula (see Fig. 1) had rapidly subsided in middle Miocene. Using foraminiferal 
biostratigraphy (NOMURA, 1986), the stage of rapid subsidence (Josoji 
Formation) can be correlated with the Higashibessho Formation in the upper part 
of the Yatsuo Group.  TAI (1975) also stated that the remnants of coeval marine 
sediments of Bihoku Group scattered in the mountain ranges and inner-arc basins 
of Southwest Japan. SHIBATA (1985) suggested that the middle Miocene 
Oidawara Formation in the Mizunami area (Fig. 1), which was correlated with the 
Higashibessho Formation on the basis of diatom biostratigraphy (KOIZUMI, 
1981), had been formed by distinct marine transgression. These data seem to 
denote that the whole of the southwestern Japan arc was subsiding during the 
clockwise rotation. 

5-B. Counterclockwise rotation 

   Based on the paleomagnetic data, a paleogeographic reconstruction of the 

pre-Neogene terranes in Southwest Japan and the western part of Northeast Japan 
can be made for the period before the differential rotation. Fig. 9 delineates the 
distribution of the Sambagawa terrane, showing the typical trend of the terranes 
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(Ryoke, Sambagawa, Chichibu and Shimanto). On the paleomagnetically distinct 
three segments of the terrane, horizontal components of the mean paleomagnetic 
directions in early Miocene are plotted as arrows . Paleomagnetic data of the 
central part of Southwest Japan (OTOFUJI & MATSUDA , 1987), the Yatsuo area 
(ITOH, 1988) and the Kanto area (HYODO & NIITSUMA, 1986) are assigned to 
segments a, b and c, respectively. Even if some differential rotations occurred 
between the Yatsuo area and segment b of the Sambagawa terrane , the rotation 
angle is supposed to have been of a negligible amount because the rotational 
motion of the area covered by the Nohi rhyolite is comparable to that of the Yatsuo 
area as shown in Chapters 3 and 4. To obtain the paleoposition , segment b is 
rotated so as to parallel the arrow on it with the arrow on segment a. Then the 
segment is translated toward segment b' so as to cancel the offset of the terrane 
along the Akaishi tectonic line, which is estimated to be 60 km (MATSUSHIMA, 
1973). As for the reconstruction of segment c, it is rotated toward segment c' so as 
to parallel the arrow on it with the arrow on the segment a around the pivot of 
rotation (pivot C). Pivot C is tentatively situated at  35.8  °N,  140.5  °E, where the 
Sambagawa crystalline schist has been confirmed by the results of deep drilling 

(YAMADA et  al., 1982). As clearly shown in Fig. 9, reconstructed segments a, b' 
and c' stand almost on a straight line. This result suggests that the rotational event 
of the Yatsuo and the Kanto areas associated with arc-arc collision is equivalent to 
the formation of northward bending structure of the pre-Neogene terranes. 

   It seems that collision of the Izu-Bonin arc in middle Miocene brought about 
not only bending but also uplift within the Japan arc. The Tonami Group is mostly 
composed of coarse clastic rocks deposited in the shallow water (Fig. 4) with some 
interruptions of sedimentation (HAYAKAWA & TAKEMURA, 1987), which 
contrasts with rapidly deposited fine sediments in the underlying Yatsuo Group. 
Using diatom biostratigraphy, ITO (1986) detected similar environmental change in 
the Neogene System distributed along the Japan Sea coast of the eastern part of 
Southwest Japan. Fig. 10 illustrates the principal Neogene sedimentary basins 

(Ichishi, Morozaki, Mizunami, Shidara, Yatsuo, Kanazawa, Kakegawa and 
Chichibu) which are settled on the pre-Neogene terranes and distributed around 
the southern Fossa Magna, highly deformed region in front of the colliding 
Izu-Bonin arc. In these Neogene basins, sedimentary rocks were deposited 
dominantly under marine conditions during late Early Miocene. However, all of 
the Neogene sequences in the basins are cut off abruptly at the horizons assigned to 
the zone N8 or N9 of BLOW (1969) (TSUCHI, 1981; ITO, 1986; HAYAKAWA & 
TAKEMURA, 1987). The remarkable environmental change around these areas is 
not attributed to eustatic sea level changes but to tectonic uplift on account of the 
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collision event since the biostratigraphic studies (e.g., NOMURA , 1986) have not 
detected coeval interruption of sedimentation within Miocene sequences on the 
western part of Southwest Japan. The uplift would be brought about by buoyant 
subduction of the Izu-Bonin arc as suggested by ISHIBASHI (1986) and thickening 
of the crust on account of arc bending. 

6. POSSIBLE MODEL FOR BACK-ARC OPENING IN THE JAPAN SEA 

   The extensive subsidence described in Chapter 5 can be attributed to tensional 
stress of Southwest Japan associated with the back-arc opening. This is 
contradictory to previous opinion about the stress state of Southwest Japan. Based 
on the azimuth of dike swarms dated by K—Ar method and fault mechanism, 
TSUNAKAWA (1986) stated that Southwest Japan had been under compressional 
stress directed nearly orthogonal to the morphological elongation of the arc 
between 15 and 12 Ma. The compression was related to the viscous force of mantle 
convection beneath the continental margin (SLEEP & TOKSOZ, 1971) during the 
back-arc opening. However, it is difficult to select the dike swarms intruded in the 
stage of opening because the present paleomagnetic result has clarified that the 
duration of the opening is shorter than 1 m.y. Middle Miocene stress field inferred 
from dike swarms would be affected by succeeding arc-arc collision event in the 

period between 15 and 12 Ma. Hence tensional field prevailed in Southwest Japan 
during rapid opening of the western part of the Japan Sea. 

   Tension in the drifting Southwest Japan is a significant clue to inference for the 
model which can explain the extensional tectonics of the Japan Sea. In this case, 
mantle convection generated by the drag of downgoing slab did not play any 
important role in splitting the continental rim because viscous force induced by the 
convection should result in compression around the drifting continental sliver 

(TSUNAKAWA, 1986). The tensional stress seems to be explained by the trench 
suction force (CHASE, 1978) which is raised alternatively by motion of the 
overriding plate away from the downgoing slab anchored in the mantle (UYEDA & 
KANAMORI, 1979) or oceanward rollback of the hinge of the downgoing plate 

(MOLNAR &  ATVVATER, 1978). The large amount of clockwise rotation of 
Southwest Japan suggests directly that the back-arc opening of the western part of 
the Japan Sea in fan shape mode was raised by hinge migration of the oceanic plate 
which was downgoing along the continental margin. 
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 Fig.  11. Schematic reconstruction around Southwest Japan before, during and after 

 the back-arc opening of the Japan Sea in middle Miocene. A: Pre-opening stage 

 (20 Ma). Paleopositions of Southwest Japan and the plate boundary are adapted 
 from OTOFUJI & MATSUDA (1987) and SENO &  MARUYAMA (1984), 

 respectively. EUR=Eurasia  plate: PAC=Pacific plate:  PHI=Philippine Sea plate. 

 B: Opening stage (about 15 Ma). Southwest Japan is rotating clockwise associated 

 with rapid hinge rollback of the downgoing Philippine Sea plate. t-t' shows the 

 final position of hinge. Star represents the pivot of rotation (OTOFUJI & 

 MATSUDA, 1987). C: Post-opening stage (10 Ma). Differential rotations within 

 Southwest Japan raised by the collision of the Izu-Bonin arc have already finished, 

 too. Arrows a and  b show horizontal components of paleomagnetic directions in 

 the lower and uppermost part of the Yatsuo Group, respectively. Arrow c 

 corresponds to paleomagnetic data in the Tonami Group acquired after the 

 clockwise and counterclockwise rotations of the Yatsuo area. 
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   Since paleomagnetic results indicated that the clockwise rotation had taken 

place during Chron C5B, the event of hinge rollback postdated the spreading of the 
Shikoku basin (Fig. 11) which had ceased by Chron C5C at the latest after 
KOBAYASHI & NAKADA (1978). In this case, therefore, the oceanic plate in 
front of the rotating Southwest Japan was the Philippine Sea plate . It seems 
difficult to bring about the rapid rollback by gravitational subsidence (MOLNAR & 

 ATWA1ER, 1978) of the young and buoyant oceanic lithosphere within the 
Shikoku basin. The rollback event would be caused by asthenospheric flow beneath 
the continental margin inferred from Miocene volcanism in the Japan arc 

(NOHDA et  al., 1988; TATSUMI et  al., 1988). Asthenospheric material could be 
injected into the mantle wedge and eventually raise the oceanward migration of 
dam-up slab of the Philippine Sea plate. 

7. DUCTILE DEFORMATION OF THE JAPAN ARC 

7-A. Deformation mode of Southwest Japan revealed  by  paleomagnetism 

   In order to clarify the deformation mode of Southwest Japan during middle 
Miocene linked to collision of the Izu-Bonin arc, reliable paleomagnetic directions 
of Paleogene or early Miocene are compiled in six areas (Fig. 2) distributed around 
the deformation zone predicted by the Cretaceous and Neogene paleomagnetic 
data (ITOH, 1988). The criteria for selecting reliable paleomagnetic data were as 
follows. 

(1) Ages of sampled rock units must have been determined by radiometric dating or 
by biostratigraphic age assignments using marine planktonic microfossils or by 
magnetostratigraphy. 

(2) Estimated age is older than 15.5 Ma (assigned to the upper part of BLOW's 
foraminiferal zone N8) at which the coherent clockwise rotation of Southwest 
Japan had not started. 

(3) Bedding planes of the strata are defined in each site so that the paleomagnetic 
directions are corrected for the tectonic tilting. As the strata in the six areas have 
not been subjected to serious tectonic disturbance, mean direction of tilt-corrected 

paleomagnetic data of each area reflects rotational movement around the area free 
from local deformation within area. 

(4) Stability of magnetization must have been examined by means of progressive 
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Table 2. Tectonic parameters (R, F) and their uncertainties defined by BECK 

(1980) on N sites of each area in Fig. 2. 

                      representative point   Area Age*R(°) F(°) Ref.**                        l at.(N) long.(E) 

 Tomari***  N8 36°55' 137°35' 3-107.3115.4-8.4113.7 1 
                                                      (-52.1±29.0) 

 Uozu 59Ma(FT) 36°45' 137°30' 5 -50.6±21.1  3.7113.4 2 

 Yatsuo  17-16Ma(MG) 36°35' 137°05' 5  -42.6117.4  -1.1115.2 3 

 Kanazawa  N8  36°30' 136°40' 7 -36.4±21.0  -2.3±17.1 4 

 Daishoji  N8 36°15' 136°20' 6  -25.2116.0  -7.3114.5 4 

 Niu  27-19Ma(FT) 36°00' 136°05' 10 -14.9±26.8  -5.4119.6 5 

* FT and MG mean age estimations on the basis of fission track dating and 

magnetostratigraphic study, respectively. 
** References: 1-ITOH & WATANABE (1988); 2-ITOH & ITO, H. (1988); 

3-ITOH (1986, 1988), ITOH & HAYAKAWA (1988); 4-ITOH &  ITO. Y. (1988); 
5-NAKAJIMA & HIROOKA (1986). 

 *** R value in parentheses for the  easternmost Tomari area shows the data 

eliminating the effect of local rotational motions since late Pliocene observed 
between the ISTL and Tomari area (ITOH & WATANABE, 1988). 
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demagnetization using alternating field and/or thermal methods . 
   Mean paleomagnetic direction calculated for each area in Fig. 2 (see Table 2 

for data sources) is compared with the contemporaneous geomagnetic direction 
which is expected from the apparent polar wandering path of the San'in area 

(OTOFUJI & MATSUDA, 1987) at the representative point of the area (see Table 
2) in order to reveal the intra-arc deformation of Southwest Japan . As clearly 
shown in Table 2, significant F values  (N—  S transportation) are not obtained from 
the studied areas. On the contrary, significant negative R values , which correspond 
to counterclockwise rotations around vertical axes, are detected within all areas 
excepting the Niu area. 

   Fig. 12 delineates the R values of the discussed areas versus longitudinal value 
which represents the geographic distribution of the areas along approximate 
elongation of the arc. As for the Tomari area, the effect of counterclockwise 
rotation since late Pliocene, which had occurred between the Tomari area and the 
ISTL (ITOH & WATANABE, 1988), is corrected (as much as  55  °) in the figure . A 
major point which can be noticed in the results from all the areas is that the 
absolute value of R becomes greater gradually from the westernmost Niu area 
toward the east. Another remarkable feature is that the R value in the Niu area 
seems to be insignificant, suggesting that the counterclockwise rotation which was 
related to the arc-arc collision event in middle Miocene mainly occurred between 

 136°E and  138°E, that is, in a rather restricted portion of the uniform continental 
sliver of the inner zone from  130°E to  138°E (as long as 750 km). 

7-B.  Rheology of the continental crust of the Japan arc 

   Apparently the paleomagnetic directions obtained from the supracrustal brittle 
layer basically follow the motion of deeper part of the crust because there has not 
been detected any significant Cenozoic transportation associated with superficial 
nappe in the inner zone of Southwest Japan. Petrologic investigations have shown 
that the mantle wedge beneath the volcanic arc is partially melted (TATSUMI et 

 al., 1983). Therefore gradual change in R values, together with the absence of 
remarkable faults around the investigated areas, suggests that the continental crust 
of the sliver, which is bounded by the ISTL and MTL and underlain by fluidal 
mantle, had deformed ductilely during the arc-arc collision event between 15 and 12 
Ma. 
  Based on a long-term creep test of rocks, ITO (1979) pointed out that granitic 

rock has a vanishingly small yield stress and it can be regarded rheologically as a 
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Maxwell liquid. The granitic crust under external forces  will behave as a Newtonian 
liquid over a long period of time in case that the maximum shearing stress is smaller 
than the shearing strength of the crust (about 100 bar) . He estimated that the crust 
of Southwest Japan had been flowing with a viscosity of 1022 poise under a 
compressional regime on account of global plate motions during Quaternary . The 
present paleomagnetic result indicates that middle Miocene deformation of the 
Japan arc linked to the arc-arc collision was also governed by viscous flow of the 
crust without fracture. 

7-C. Tectonic stress  inferred from confined deformation 

   As stated in Chapter 7-A, the intra-arc deformation in middle Miocene mainly 
occurred around the eastern part of the continuous sliver of Southwest Japan. 
Confined mode of the deformation can not be attributed to the inhomogeneity in 
the continental sliver because it consists of Paleozoic and Mesozoic terranes 
intruded entirely by Cretaceous-Paleogene granites. This fact leads us to the 
concept of irregular horizontal compression on fore-arc side linked to the collision 
of the Izu-Bonin arc settled on the subducting Philippine Sea plate. A working 
hypothesis is assumed that resisting compressive force is induced along the back-arc 
side of the Japan arc associated with the irregular compression on fore-arc side. 
Tectonic feature within the Shimane peninsula (see Fig. 1) affords a clear 
illustration of such resistance.  TAI (1973) showed that the  E—W trending folded 
zone and reverse fault in the Shimane peninsula had started to develop in middle 
Miocene. It is, therefore, probable that compression directed orthogonal to the 
elongation of Southwest Japan existed on back-arc side during the collision event 
on fore-arc side. 

   Fig. 13 is a cartoon showing a possible mechanism of confined ductile 
deformation in the Japan arc. Shaded parts in Fig. 13-A indicate indenters on the 
Philippine Sea plate. The inner zone, a fault-bounded uniform sliver as stated in 
Chapter 1, is regarded as a beam of continental crust of 750 km in length, 200 km in 
width and 20 km in thickness (Fig. 13-B). The beam is floating on inviscid mantle 
and normally loaded by the indenters which are assumed to have the same thickness 
as the beam. Let us adopt a pressure of 100 bar in front of the Izu-Bonin arc 

(frontal area is about  109 m2), which is the recent compressive stress in the Japan 
arc estimated from the in-situ rock stress measurements and stress releases of 

earthquake faults (ITO, 1979). Philippine Sea plate does not affect the Japan arc 
except in the shaded areas in Fig. 13 because compressive stress raised by 
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Fig. 13. Possible mechanism of the confined deformation within the Japan arc. A: 
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resistance acted on the back-arc side. C: Distribution of bending moment (M) 
within the simplified beam of crust. External forces loaded on the Japan arc are 
described in the text. 
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conventional subduction of an oceanic plate is not transmitted far into the 
overriding plate (NAKAMURA & UYEDA, 1980). Assuming that Southwest 
Japan is kept in equilibrium and resisting force on the back-arc side increases 
linearly toward east and reaches its maximum around the collisional zone of the 
Izu-Bonin arc (Fig. 13-B), the distribution of bending moment within the beam is 
calculated as shown in Fig. 13-C. Under these conditions , maximum shearing stress 
upon the surface of the beam is determined to be 54 bar, suggesting that the 
tectonic stress is low enough to allow the granitic beam to flow without fracture 

(ITO, 1979). 
   The normal strain,  e, on any cross-section of a bent beam is given by: 

 e=yk (1) 
where y is the distance from neutral plane of the beam, and k is the curvature. The 

present result suggests that the beam of the Japan arc was bending during middle 
Miocene associated with viscous flow. Substituting the value of  e from  eqn.(1) into 
the  'theological equation of a Newtonian liquid,  a=31-1(deldt) (a is the normal 
stress,  q is the viscosity), we obtain: 

 cr=3/7y(dk/dt) (2) 
   Bending moment, M, can be calculated by integrating the normal stress,  a, over 

the cross-section of the beam. Substituting  eqn.(2) into  a, bending moment is given 
by: 

 M=377I(dkidt) (3) 
where I is the moment of inertia of the cross-section of a beam with respect to its 
neutral plane. In the case that the bending moment is not a function of t, 
integrating both sides of  eqn.(3) with respect to t, we obtain: 

 Mt  =  3r/Ik (4) 
   Table 3 lists the approximate curvature of the bent Japan arc estimated for each 

interval terminated by neighboring two areas in Fig. 2. It is obvious that the 
curvature decreases toward the eastern Tomari area, which is concordant with 

 eqn.(4) considering the distribution of M (Fig. 13-C) around the paleomagnetically 
investigated six areas (Fig. 13-B). 

   Let us assume in  eqn.(4)  that: 
 M=1021 Nm,  t  =1014 sec (approx. 3 m.y.),  n=1022 poise and  I=1.3  x  1019 m4 

then k is 2.6  X10-3 /km, which is comparable with actual curvature listed in Table 3. 
This result indicates that the present intra-arc deformation can be made by viscous 
flow of the crust within a few million years. Thus it is confirmed that the ductile 
deformation of the Japan arc occurred in a rather short interval as predicted by a 

previous paleomagnetic study  (15  —12  Ma; ITOH, 1988) under plausible tectonic 
stress. Ductile bending seems to be a common phenomenon for an island arc even 
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  Table 3. Deformation of the Japan arc estimated from paleomagnetic data. * 

           Interval dR(°) a(km)  k(/km) 

         Tomari-Uozu 1.5 25.3 0.00103 

         Uozu-Yatsuo 8.0 39.3 0.00355 

          Yatsuo-Kanazawa 6.2 38.1 0.00284 

            Kanazawa-Daishoji 11.2  41_0 0.00476 

          Daishoji-Niu 10.3 35.9 0.00500 

* Columns give the interval terminated by neighboring two areas in Fig. 2, 
difference in R between the two areas (dR), distance between the central points of 
the two areas (a), curvature of the bent arc around the interval (k) which is 
approximately given by  [2sin(dR/2)]/a. 
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where an intense deformation is brought about by arc-arc collision . 

8. SUMMARY 

   Tectonic movements of Southwest Japan have been clarified using reliable 

paleomagnetic directions obtained from well-dated Cenozoic strata. 
(1) Based on plot of the declinations in respect to the age, it is shown that the 
Yatsuo area, in the eastern part of Southwest Japan, had rapidly rotated clockwise 
at about 15 Ma and then rotated counterclockwise between 15 and 12 Ma . 
Geological and geophysical data around the Japan arc suggest that the clockwise 
and counterclockwise rotations of the Yatsuo area were brought about by back-arc 
opening of the Japan Sea in fan shape mode and intra-arc deformation associated 
with collision of the  Izu-Bonin arc on the Philippine Sea plate, respectively. 

(2) The Yatsuo area was considerably subsiding in the short period (less than 1 
m.y.) of the clockwise rotation associated with the back-arc opening. On the basis 
of biostratigraphic correlation, synchronous subsidences are detected in some areas 
sporadically distributed in Southwest Japan, suggesting that the arc was under 
tensional stress during the rapid back-arc opening. Predominant tension could be 
attributed to the rifting and drifting of Southwest Japan from the margin of Eurasia 
due to hinge rollback of the downgoing Philippine Sea plate. 

(3) Based on early Miocene paleomagnetic data, a paleogeographic reconstruction 
of the pre-Neogene terranes in Southwest Japan and the western part of Northeast 
Japan can be made for the period before the counterclockwise rotation of the 
Yatsuo area associated with collision of the  Izu-Bonin arc. Reconstructed segments 
of pre-Neogene Sambagawa terrane stand almost on a straight line, suggesting that 
the rotation of the Yatsuo area related to the collision event is equivalent to the 
formation of northward bending structure of the pre-Neogene terranes around the 
southern Fossa Magna. The arc-arc collision raised not only differential rotation 
but also uplift around the Yatsuo area recognized as remarkable environmental 
change in middle Miocene. 

(4) Mode of the deformation of Southwest Japan on account of the collision event 
is also described using reliable paleomagnetic directions reported from six areas 
around the eastern part of Southwest Japan (Niu, Daishoji, Kanazawa, Yatsuo, 
Uozu, Tomari). Paleogene or early Miocene paleomagnetic data of the six areas 
distributed along the  E—  W trending morphological elongation of Southwest Japan 
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indicate that the angle of counterclockwise rotation relative to the western part of 

Southwest Japan increases gradually toward the east . Because there has not been 

detected any Cenozoic transportation associated with superficial nappe around the 

studied areas, the paleomagnetic result and the absence of remarkable faults to 

compensate differential rotations imply that whole of the granitic crust of 

Southwest Japan was ductilely bending during the collision event . It is also 

suggested that significant rotation related to ductile bending occurred in eastern 

confined portion of the uniform continental crust of the inner zone of Southwest 

Japan. The confined deformation of the continental sliver floating on inviscid 

mantle wedge would be attributed to the irregular compressive force in front of the 

colliding landmasses on the subducting Philippine Sea plate on fore-arc side and 

the resisting force induced on back-arc side. Under the supposed tectonic stress 

which is lower than the breaking strength of the crust, the actual amount of 

deformation around the studied areas can be attained within a few million years as 

predicted by the paleomagnetic results in the Yatsuo area. The granitic crust of 

Southwest Japan was flowing as a Newtonian liquid during the period of intense 

intra-arc deformation. 
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                         Appendix  1 

   In Chapters 3, 4 and 7 of this study, differential movements within Southwest 
Japan have been described using R and F values defined by BECK (1980). 
Observed mean direction (Do,  Io) and expected direction (Dx, Ix), calculated from 
the appropriate reference pole, are used to determine values of R (rotation) and F 

(flattening). R, F and their uncertainties (dR, dF) are defined mathematically 
below: 

    R=Do—Dx  (A1) 
 F=  Ix  —  Io (A2) 
 dR=(dDo2+dDx2)1 (A3) 
 dF=(dIx2+dIo2); (A4) 
 dDo=  sin-  1(sin  «95/cos  Io)  (A5) 
 dDx=sin-1(sin  A95/sin p) (A6) 

 dIo=a95 (A7) 
 dIx=2A95/(1+3cos2p)  (A8) 

where  «95 is the circle of 95% confidence about the observed direction, A95 is the 

equivalent circle about the reference pole and p is the ancient colatitude (angular 
distance from sampling area to reference pole). Positive R implies clockwise 

rotation of the sampling area in relation to the reference area. Positive F implies 

relative northward transport. 
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                         Appendix 2 

   Paleomagnetic data obtained from the Tomari, Uozu, Kanazawa and Daishoji 
areas. 

Tomari area (ITOH & WATANABE, 1988) 

  20°C  WW  b.  WW             onael 
 HK20HK20 
PThD  so PAFD 

     54.PH Fig. 3. Typical vector-demagnetization dia-                    / . grams of progressive demagnetization tests .         I 330 
 / Solid (open) circles are projection of vector 

 ! 

                                 end-points on horizontal (N-S vertical) plane 

                                   in in-situ coordinates. Numbers attached to  470
. 
                                 symbols are demagnetization levels in °C & mT. 

 520.•• 

                       W 

 soo 
 600  570 

 1.0E-8am2  E  oN  1.06-8Am, E  ON 

  Table 2. Tilt-corrected site-mean 
 Site N  DMG D(°)  I(°)a90(°)  A(°N)  0(°8) R(°)  F(°) Lithology directions in the Tomari area . 

                                   Late  Pliocene 
HK72 8 400°C 123.0 -49.6 14.4 -42.8 -122.8  -57.0322.6 6.8±14.4  siltstone DMG: demagnetization level,  D, I: 
HK22 8 260°C 123.4 -60.2 7.1 -46.6 -108.7  -56.6114.4  -3.83 7.1 siltstone 

               Middle Miocene mean declination & inclination, 
HR19 8  20mT 129.1 -65.4 5.6 -51.6 -99.9  -50.9113.6 -9.0± 5.6 andesite-radius of 95% confidence cir- 

          Early Miocenea95- 
 HK20 8  10mT 134.4 -58.3 2.5 -54.4 -114.8  -108.1313.4  -10.3113.0 tuff cle,  /1,0: latitude & longitude of 

HK71 8 250°C 134.4 -52.7 16.2 -52.9 -124.1 -108.1±30.1 -4.7±20.6 shale 
HK18 8  10mT -43.0 58.2 3.2 56.3 64.3  -105.5113.9  -10.2313.1 rhyolite VGP position,  R,F: tectonic para-

                                                 meters defined by BECK (1980). 
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                                        Fig.  4. R value versus age for the Tomari 
 B area

. Error bars are uncertainty in R 
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Uozu area (ITOH & ITO, H., 1988) 

  a)  HR16 b) HR12 
 W  UP  W  UP 

                                     26oIN:Fig . 3. Typical vector-demagnetization 
 3204.                                             •720°Cdiagrams of p rogressive thermal de- 

                                                                    magnetization. Solid(open) circles  are 

 \144i:projection of vector end-points on  hori-                                                                     zontal (N-S vertical) plane in in-situ 

                            • 

                                              •500 coordinate. Numbers attached to  sym-
             • 500 bols are temperature in °C

. Progressive              • 560  \60 change of vector end-points shows a 
                                                                    straight trend indicating stable  magnet-

                _ ization. In (a), spectrum of blocking 
                                                                        temperature indicates that stable  mag-

                                *600                                                                     netization is carried by magnetite and 
 S N S  600 N                                                                     hematite . In (b), stable magnetization                    5E-7Arn21E-13Am, 

                  E DOWN E DOWN is carried by magnetite. 

         Table 1. Paleomagnetic site-mean directions obtained from the Futomiyama Group in the Uozu area. 

           Site DEMAG Dc Ic N  a95  k Lat(N) Lon(E) 

                HR12 260°C -161.1 -53.2 9 3.5 221.5 -74.3 52.7 
                 HR13  15mT -146.0 -51.4 8 1.7 1126.9 -61.7 46.8 
                HR14  15mT -154.9 -66.7 10 2.0 574.2 -67.9 4.9 

                HR15  10mT -153.9 -48.5 8 2.1 694.0 -67.1 58.3 
 HR16 440°C -159.0 -57.7 8 1.5 1305.8 -73.3 35.7 

 mean 25.2 55.6 5 7.5 106.2 

        DEMAG demagnetization level, Dc, Ic mean declination and inclination in degrees after tilt 
         correction, N : number of specimens,  a95 : radius of 95% confidence circle in degrees, k  : Fisher's 

        precision parameter, Lat(N), Lon(E) : north latitude and east longitude of virtual geomagnetic 
         pole. position in degrees. 

 N 

                                                        Fig. 4. Equal-area plots of  paleomagnetic di-
                                                           rections. Open circles show site-mean directions 

                                                     obtained from the Futomiyama Group after tilt 
 correction (on the upper hemisphere). Stars show 

                        b                                                         average paleomagnetic directions for the Futo-                " 
                           tor miyama Group (59 Ma) in the Uozu area (a) and 

                                                     the Sakurae Group (63-58 Ma) in the San'in 
                                                     area (b) (lower hemisphere). Direction for  Sa-

                   0-1-1R14  kurae Group is after  areFult &  MA-rsuDit (1987). 
 HR13-0 Q-HR16 Average directions (a,b) are presented as the values 
              HR15j3R12 at the representative point of the eastern part of 

                                                     Southwest Japan (36°N,  137°E).



Kanazawa and Daishoji areas (ITOH & ITO, Y., in press) 
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 Fig. 3. Stratigraphic successions in the Kanazawa and Daishoji 

 areas after Sugimoto (1983) and Bito et al. (1980). Possible 

 horizon of planktonic foraminiferal N8/N9 boundary (15.2 Ma) is 

 shown on the basis of biostratigraphic data. Equal-area plots of 

 site-means after tilt correction are also shown with 95% 

 confidence circles. Asterisk represents axial dipole field 

 direction. All the directions are plotted on the upper 

 hemisphere. 
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Fig. 5. Typical vector-demagnetization diagrams of progressive 

thermal demagnetization. Solid (open) circles are projection of 

vector endpoints on the horizontal (N-S vertical) plane in in-

situ coordinates. Unit of coordinates is bulk intensity of the 

remanence. Numbers attached to symbols are temperature in centi-

grade. Progressive change of vector endpoints above 260°C shows 

a straight trend indicating stable characteristic remanent 

magnetization. 
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                                                                Loc F
ormation Site DEMAG n Dc(°)  Ic(*) a95(°) kl

at.(N)a Lithology                                                             litylong.(E) 

                                KANAZAWA AREA 

Nanamagari HK79 300°C 9 -179.3 -70.0 6.8 58.9  36°40.1' 136°42.4' fine tuff 
            HK24 330°C 8 -160.3 -43.8 6.4 75.4 36°30.1'  136°43.6' fine tuff 
            HK83 200°C 8 -137.9 -52.4 2.5 479.0 36°30.0' 136°41.7' fine tuff 
            HK80 300°C 10 -159.1 -26.9 14.2 12.5  36°30.1' 136°42.4' fine tuff 

Sunagozaka HK82 250°C 8 -147.9 -52.5 14.5 15.6 36°30.8' 136°46.0' tuff 
            HK56 300°C 11 -152.0 -47.3 1.5 923.4  36°30.1' 136°43.9' tuff 

 Iozen HR30 25mT 8 -152.7 -49.4 3.9 202.0 36°29.5' 136°42.1' tuff 

TOTAL&MEAN  N=7 25.6 49.3 11.0 31.1 

                                 DAISHOJI AREA 

Kasano- HR35 200°C 8 -165.2 -53.1 6.0 86.3 36°18.8' 136°17.9' fine tuff 
misaki  HRO2  40mT 8 -177.1 -58.8 5.1 119.2 36°18.8' 136°17.9' fine tuff 

            HRO1 320°C 8 177.4 -52.1 17.6 10.9 36°18.8'  136°17.9' fine tuff 

TOTAL&MEAN  N=3 5.1 54.9 9.7 162.0 

Kawaminami HR36 250°C 9 -144.8 -50.3 2.9 311.5 36°15.2' 136°20.0' siltstone 
            HR37  15mT 8 -145.5 -57.6 3.2 302.9 36°15.2' 136°20.0' siltstone 
            HR38 200°C 8 -150.8 -52.7 1.7 1028.7 36°15.2' 136°20.0' siltstone 
            HR39  15mT 9 -145.0 -50.4 5.9 77.1 36°15.2' 136°20.0' siltstone 

Kayano  HRO3 260°C 12 -137.4 -65.0  •2.4 328.4 36°13.7' 136°21.8' tuff 
 HRO4  10mT 10 -136.8 -46.9 6.8 51.6 36°13.4' 136°20.9' tuff 

TOTAL&MEAN N=6 36.5 53.9 6.0 125.7 

 TABLE 2 

 Paleomagnetic site-means obtained from the studied areas* 

 * Columns give the formation name, site name, demagnetization 

 level (DEMAG), number of specimens (n), declination (Dc) and 

 inclination (Ic) of site-means after tectonic tilt correction, 

 radius of 95% confidence circle  ((x95) and Fisher's precision 

 parameter (k), locality of sampling site, lithology of samples. 
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