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0. Introduction.

  In the previous paper [4] of Kawai and the author we studied the relationship between 
the geometry of bicharacteristics and the (semi-)global existence of holomorphic solutions 
of single linear differential equations. The main result of [4] is that, in order to discuss 
the (semi-)global existence of holomorphic solutions, we have to take into account not only 
the convexity of the domain in question with respect to bicharacteristic curves, but also 
the pseudo-convexity of some manifold given through the foliation structure determined 
by bicharacteristic curves. In this article we generalize this result to the case of over-
determined systems of linear differential equations with one unknown function; of course, 
we have to replace bicharacteristic strips by bicharacteristic manifolds. 

  We proceed in a similar way as in [4]. When we study the existence of holomorphic 
solutions, we should consider the Cauchy-Riemann equations together with the linear 
differential equations under consideration. Then, due to the' Cauchy-Riemann equations, 
we can apply the theory of boundary value problems for elliptic systems developed by 
Kashiwara-Kawai [1]. In fact, making use of this theory with a result of Sato-Kawai-
Kashiwara [7], Kawai has presented in [2] and [3] some theorems on finite-dimensionality 
of cohomology groups attached to elliptic systems. In the situation we are considering, his 
results give sufficient conditions which guarantee the (semi-)global existence of holomorphic 
solutions. (See Theorem 2.1 below). We will investigate the geometric meaning of his 
conditions, supposing the second order tangency of the bicharacteristics and the boundary 
of the domain in question (Theorem 2.4). As a result we can obtain our main theorems 

(Theorem 1.5 and Theorem 1.8) which describe the relationship between the geometry of 
bicharacteristics and the (semi-)global existence of holomorphic solutions. 
 Here we should mention that the geometric conditions discussed here have its origin in 

the work of Suzuki [8]. He has given a complete description of the conditions which guar-
antee the global existence of holomorphic solutions of single linear differential equations 

of first order. Besides the work of Suzuki, for single linear differential equations there 

are several works closely related to our problem of the global existence of holomorphic 

solutions: For example, Pallu de la Barriere [6], Trepreau [9], [10], and so on. Compared



with the case of single euations, almost no global existence theorems are known for general 

systems, as far as the present author knows. 

 Now let us describe briefly the plan of this paper. In §1, we prepare some notions and 

notations, and state our main results. In §2 we give the outline of the proof of our main 
results. The proof consists of two theorems: One is Kawai's theorem, which is explained 

in this section, and the other is Theorem 2.4, which will  be proved in the subsequent 

three sections. First we study in §3 the geometric situations of bicharacteristics under a 
non-degeneracy condition. Then we prove the decomposition theorem of some Hermitian 

form in §4, assuming one proposition (Proposition 4.4). The main part of this paper is in 

a sense this decomposition theorem, from which Theorem 2.4 easily follows. And finally 
in §5, we give the proof of Proposition 4.4. 

 The author would like to express his heartiest thanks to Professor T. Kawai for many 

valuable discussions and encouragement. This paper was written up during the author's 
stay at the Mathematical Sciences Research Institute as a postdoctoral fellow. The author 

expresses his heartiest thanks to members of MSRI, especially to Professor A. Weinstein. 
for their warm hospitality and many kindnesses.

1. Notations and main results.

 Let us first prepare some notations. For an open subset U of C", T*U denotes the 

cotangent bundle of U and 0 denotes the sheaf of holomorphic functions on U We denote 

by z the standard coordinate of Cr' and by c the corresponding cotangential coordinate of 

T*C" We also denote by x and y the real part and the imaginary part of z respectively. 

Let Py(z, aj (1 < ly < d) be linear differential operators with holomorphic coefficients 
defined on U Let us denote by py(z, c) the principal symbol of the operator P (z, a_ ). 

Throughout this article we suppose that 1 < d < n — 1 and that P.1(z, a;,) (1 < 7 < d) 
satisfy the following conditions:

(1.1)

(1.2)

[P7,/36], the commutator of Py and P6, 
identically vanishes for -y,(5 = 1, .. , d.

grads pi (z, ~), ... , grads pd(z, () are linearly 
independent over C on { (z, O E TX U; c 0, 

pi(z,O _ .. = pd(z,S) = 0}.

We denote by fit the coherent left D-module determined by P. (z, az) (1 < y < d) , i.e.

fi't=D/(DPI+ ••+DPd),
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where  D denotes the sheaf of linear differential operators (with real analytic coefficients) 

on U 

 Let p be a strictly plurisubharmonic real analytic function defined on U and 52 be a 

relatively compact strongly pseudo-convex domain defined by 

(1.3)52 = {z E U; y(z) < 0}. 

We suppose that 

(1.4)acp = grade cp never vanishes on the boundary 052 
                of Q. 

Here, and in what follows, a; and a; denote 

a 

a 1                 a
~ = a4 .=2(ax;+~ay; ),1= 1,• , n, 

respectively. Let us denote by Co the set of characteristic boundary points, 

Co={zEU;cp(z)=0 and py(z,a(p(z))=0, r =1,...,d}. 

and also denote by C and C_ the following sets: 

C={z EU;py(z,acp(z))=0, y=1,...,d}, 

C_ = {zEU;cp(z)<0 and py(z,ayo(z))=0, -y=1,. .,d}. 

  The purpose of this article is to find a geometric condition which guarantees the solv-

ability of an over-determined system of linear differential equations 

(1.5)Pyu = f y = 1, ... , d 

in the space of holomorphic functions on 52, when f = (f 1, ... , fd) satisfies the obvious 
compatibility conditions: 

(1.6)PP.f6 = Pofy, 7, b = 1, ... , d. 

 In studying this problem, bicharacteristic manifolds play an important role. Here let us 

recall the definition of a bicharacteristic manifold. 
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DEFINITION 1.1: For a point  (zo,  (o) in {(z, () E T*U; C 0, = • • • = Pd(= ~) 
0}, the bicharacteristic manifold of 97t through (zo, ) is, by definition, the (complex) 
d-dimensional integral manifold through (:o, (.o) of the system of Hamiltonian operators 

         HP7(op-ra 0p(a ) 
                         a(-; az; az;a(-;' l = 1,..,d. 1<j<n 

We denote by b(z0,w its projection to the base manifold U. 
REMARK 1.2: It follows from (1.1) and (1.2) that {Hp,}y_1,...,d satisfies the integrability 
condition. In fact, they commute each other. Hence the bicharacteristic manifold really 
exists for any (zo, (o) by Frobenius theorem. In particular, for a given point (zo. ) there 
exist a neighborhood of (zo, (o) and d complex parameters t = (t1, ... , td) E Cd such that, 
for any point (z, 0) in that neighborhood of (zo, (0), the bicharacteristic manifold through 

(z, 0 is given locally by the imbedding 

(t1,...,td) H (z(ti,...,td; z, S), ((t1,. .,td; 

which satisfies the following equations:

(1.7)

Here we  should 

both t and 

complex d-dimensional sub

a=•(t;,C)          =aC
;a~y 

         —(z(t;.,~)•((t;.,O), for j = 1,.. n, -y= 1.. .d, 
 at7 

aCj (t, =.S) _aP,(z(t;~ ,),S(t•~,()), for j = 1,.. ,n,y= 1,d, at.?——az; 

z(0,...,0,z~)=z 

((0,...,0; = c• 

 ould
_notice that this map (z (t; z ) ("(t;  z, (;)) is holomorphic with respect 

also remark that the assumption (1.2) entails that b(:a.Co) is 
manifold of U given by 

(t1,...,td) H (z(tl, ,td; z0,(0))•

to 

a

 On the other hand, according to Kawai's theorem (whose precise statement will be found 

in the next section), the "boundary behavior" of 97t, especially its behavior on Co, should 
be essential in order that the solvability of the system (1.5) may hold in the above sense. 

Hence it can be considered the most important to study how the bicharacteristics of JJt 

are situated against the boundary of ft 

 First we should notice that, for a point zo in Co, Euler's identity for homogeneous 

functions implies 

(1.8) az(zo),(z0,a~(.z0))=0 for -y=1,...,d, 
                 1<j<7.1~j 
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which show that the bicharacteristic  b(zo  O  (:o)) is tangent to Of2 at zo. Now let us introduce 
the following convexity condition: 

DEFINITION 1.3: The domain 52 is said to be bicharacteristically convex with respect to 

fiT at zo in Co if 

(1.9)a2(P(z(r(4.1, ... , rdd; zo, ay( zo ))) > 0 arer=o 

holds for any 0 _ (01, ... , ¢d) E Cd with MOM = 1. 

  Here z(ti, ... , td; zo, a(p(zo )) is the local expression of b(zo,a,p(:o)) explained in Remark 1.2. 
It is obvious that the bicharacteristical convexity guarantees b(zo,ay;( 2.o)) does not intersect 
with the closure of fl except zo in a sufficiently small neighborhood of zo. 

  As stated in the introduction, we have to take account of another condition besides the 
bicharacteristical convexity. To formulate the condition, let us prepare more notations. 

Let zo be a point in Co and suppose that S2 is bicharacteristically convex at zo. As we 
will prove in §3, under the assumption of the bicharacteristical convexity C and Co are 

analytic submanifolds of real codimension 2d and (2d + 1) respectively in a sufficiently 

small neighborhood of zo. Furthermore, C intersects transversally with b(zo,a,(_o)) at zo 

(Proposition 3.5 and Proposition 3.8). Let us consider all bicharacteristics of the form 

b(; ,a4,(z)) with z E C. 

As a matter of fact, these bicharacteristics define an analytic foliation of real dimension 

2d near zo (Proposition 3.9). We denote this foliation by b. Now let us define Co and C_, 
the bicharacteristic hull of Co and C_ respectively, as follows: 

(1.10)Co = U b(z,a,a(z)) = U b(.,awtz)), 
:ECozEC 

w(:)=0 

(1.11)C_ = bt:,aat:)) = U b(z,a~t:)) 
zEC_zEC 

40(:)<o 

Because C intersects transversally at zo with a leaf b(zo,ay(z0)) of the foliation b. Co is a 
non-singular real hypersurface and C_ is an open subset with Co as its boundary in a. 
neighborhood of zo (Proposition 3.10). 

 Then our main theorem is 

THEOREM 1.4. Let fit = DA D131 + • • + DPd) be a coherent left D-module satisfying 

(1.1) and (1.2), and let S2 be a relatively compact strongly pseudo-convex domain defined 
by (1.3) and satisfying (1.4). Suppose that S2 satisfies the following condition, that is, 
suppose that (i) and (ii) below hold at any point zo in Co. 

  (i) S2 is bicharacteristically convex at =•o with respect to 9R.
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 (ii) For a (complex) d-codimensional complex submanifold S passing through zo and 
     being transversal to  b(zo,aw(zo)), C_ n S is strongly pseudo-convex at zo in S. 

Then Ext?(52; 9R, 0) is of finite dimension for every j > 1. In particular, 

{(P1u,...,Pdu); u E 0(S2)}

is of finite codimension in

{(fi, ... , fd) E Q(s2)d; P-f6 = Pof, 7, b = 1,... , d}. 

REMARK 1.5: In the condition (ii), "the strong pseudo-convexity of C_ n S at zo in S" 
means that there exist an open neighborhood w of zo and a real valued real analytic 
function zi) defined on S fl w such that

C_nSnw={wESflw;zi'(w)<0}

holds and the Levi form Lzo(a) (o E CR—d) of at zo, restricted to 

{a E Cn_d; (grad 0(zo), a) = 0}, is strictly positive-definite. Note that Co f1 S n w. the 
boundary of C_ n S n w, is a non-singular real hypersurface in S n w for a sufficiently small 

neighborhood w, because S intersects transversally with b( _o,a4,( :o)) and Co is a non-singular 

real hypersurface under the condition (i). 

REMARK 1.6: As a d-codimensional complex submanifold S through zo. we can take an 

arbitrary submanifold as far as it is transversal to bf zo.a<P(_o)). In fact, if the condition 
(ii) holds for some S, it holds for any S provided that the condition (i) is satisfied. (See 
Theorem 2.4 below.) However, it is very important that S must be a "smooth" complex 
submanifold in the complex-analytic sense. Roughly speaking, the condition (ii) is con-

cerned with the complex-analytic structure of the domain 52 in the transversal direction 

with respect to the foliation b. 

 Further, if S2 can be contracted to one point with the condition in Theorem 1.4 being 

satisfied in the course of contraction, then we can obtain the following vanishing theorem: 

THEOREM 1.7. Let 'm and 52 be the same as those in Theorem 1.4. Suppose that there 

exists a point z1 in 52 such that c,.) satisfies

(1.12) 

(1.13)

(1.14)

(p(z)>(P(z1) holds for any zin U. 

fl {zEU;(p(z)<t}={z1}, 
t)'p(zi) 

gradz(,o(z) 0 on {z E U; z z1}. 

          6



Suppose further that  12E  _ {z E U; cp(z) < E} satisfies the condition in Theorem 1.4 for 
any E with 0 > c > cp(zi ). Then Ext? (52; fi7, 0) vanishes for every j > 1. In particu-
lar, the system (1.5) of linear differential equations has a holomorphic solution u for any 
holomorphic functions (f 1 ... , fd) satisfying (1.6). 

 In case d = n — 1 (i.e. 931 is subholonomic ), we should take a 1-dimensional complex 
submanifold, i.e. a holomorphic complex curve, as S in the condition (ii) in Theorem 1.4. 
Hence the condition (ii) becomes trivial and actually it can be shown that the condition 

(ii) always holds when d = n-1 (cf. Remark 1.5. See also Theorem 2.4 and Theorem 4.2.). 
This observation leads to 

COROLLARY 1.8. Let fit and 12 be the same as those in Theorem 1.4. Suppose that 
d = n — 1, and that 12 satisfies the following condition: 

 At any point zo in Co, S2 is bicharacteristically convex with respect to 9)Z. 
Then the same conclusions as those in Theorem 1.4 hold. 

COROLLARY 1.9. Let fit, 12 and cp be the same as those in Theorem 1.7. Suppose that 
d = n-1, and that Ste _ {z E U; cp(z) < E} satisfies the condition in the preceding corollary 
for any E with 0 > E > cp(z1). Then the same conclusions as those in Theorem 1.7 hold.

2. Kawai's theorem and the condition (Pos). 

  In order to explain how our main theorems are proved, we first recall Kawai's theorem 

in this section. Though his theorem deals with more general situations, we present it in a 

form suitable for our purpose. 

 Let us define a D-module fit' by

(2.1)fit' = D/ E DPy + E Dok 
1<y<d 1<k<n 

By the assumption Py and ak commute for every y and k. Since 12 is strongly pseudo-

convex, we have 

(2.2)Ext?(12; 9)1, 0) Ext?(52; fit', 8) 

for every j > 0, where B denotes the sheaf of hyperfunctions on U C Cn R2n Note 
that, since we suppose the conditions (1.1) and (1.2), we can construct a Koszul complex 
using Pi, ... , Pd (resp• P1, . . . , Pd and al , ... , an) and it is a free resolution of fit (resp. 
93r) with length d (resp. d + n). 

 Kawai's result asserts the finite-dimensionality (or vanishing) of the right-hand side of 

(2.2). In fact, he has proved 
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THEOREM 2.1 (Kawai [2],  [3]  ). Let 931 and S2 be the same as those in Theorem 1.4 and 
let 931' be defined by (2.1). Suppose that fit' and S2 satisfy the following condition: 

(2.3) The generalized Levi form of the positive tangential system 
91+ on as2 induced from 931' is positive-definite at each 

            characteristic point of 91+. 

Then dimExtD(S2; 931',13) is finite for every j > 1. Furthermore, if (t2 satisfies the conditions 
(1.12)—(1.14) for some point z1 in 52, and if 931' and S2, = {z E U.; cp(z) < E} .satisfy the 
above condition (2.3) for any E with 0 > E > p(zl ), then Ext? (S2; 931',13) vanishes for every 

j > 1. 
 The definition of the generalized Levi form is given in [7], Chapter III, Definition 2.3.1. 

Concerning this theorem see Kawai [2] (Theorem 1) and [3] (Corollary of Theorem 2) for 
details. See also [1], [5] and [6]. 
 Now we want to write down explicitly the generalized Levi form of 07+ at its characteristic 

point. Its explicit form is given in [6] in the case of single equations, and in [5] in the case 
of systems. First, by straightforward calculations, we find the characteristic variety of 01+ 
is 

{(z,—N1--iay(z)); z E Co}. 

Namely the cotangential component of each characteristic point of `/+ is determined by 
its base point z and the projection of the characteristic variety of `n+ to the base space 

coincides with Co. For zo in Co we denote by Q:0 the generalized Levi form of 9T+ at the 
characteristic point (z0, — acp(zo) ). To give the explicit form of Q:o . let us introduce 

the following symbols, which will be used repeatedly in the subsequent part of this article. 

(2.4) 

    c(z) _ E P(z,a~p(z))pbk)(z,a4c)(z))a.akw(z) for y,b = 1,....d. 
              1<j,k<n 

(2.5) 
0-0(z) _ E p'r(j)(z,a(P(=))p(6j)(z AP( z)) 

1<j<n 

           + E pcj)(z,a(p(z))p(6k)(z,a,,(z)) ajak,p(z) for -y ,b = 1 d  
                    1<j,k<n 

(2.6) 

K z= E pCk)(z,aso(z))a a• for 1 n 1 d. 
              1<k<n 

(2.7) 
A j- (z) =pry(i)(z,a,o(z)) + E pyk)(z,a(t2(z)) ajaky(z) 

                              1<k<n 

for j = 1,...,n, y = 1,. .,d.
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Here, and in what follows,  p(j)(z,  0 and p(j) (z, O denote (5p/o(j)(z, () and (Op/cz j)(z. c ) 
respectively. 

REMARK 2.2: Among thse symbols, a-0 and /.3.(6 are independent of the choice of a holo-
morphic local coordinate system for any r and 6. That is, if , -n ) is another 

holomorphic local coordinate system, and if the above symbols calculated in this new 

coordinate system z are denoted by aya (E- ), ,37c (z=) and so on, then we have 

(2.8)ab(z) = ayb(z), r3b(z) = 13y0(z) for -y, b = 1,... , d. 

On the other hand, jy or Ail, is not so. They satisfy the following relations: 

(2.9)icjy(z) _ Ea4k Kky(z) for j = 1 n, 'Y = 1, d, 
1<k<n azj 

(2.10)^i-y(z) _ Eazkak y(z) for j = 1,..., n, 'Y = 1,... , d. 
                      1<k<n7 

 In terms of these symbols, the generalized Levi form Q:o (zo E Co) is given as follows: 

(2.11)Qsa(T) = E gj,k(zo)Tjrk 
                                      1<j,k<n+d 

considered with the constraint 

(2.12)E Dj(7"(zo)7j = 0, 
1<j<n 

where

(2.13)

REMARK 2.3:  Taking 

that this generalized 

coordinates, if we vie 

a complex 1-codimensional 

H

Moreover, we should consider Cd, the other direct 

conjugate of the tangent 

in Remark 1.2. See Remark

gj,k(zo) = ajakcio(zo) (1 < j, k < n), 

qj,n+y(zo)=Aj-r(z0) (1 < j <n., 1 <y < d). 

qn+y,j(zo) = Ajy(zo) (1 < j < n, 1 < y < d), 

qn+y,n+b(zo) = &y6(z0) (1 < y, b < d). 

aunt of the transformation relations (2.8) and (2.10). we find 

Levi form Q:0 is independent of the choice of holomorphic local 
     as an Hermitian form on the space of Hz0 Cd, where H-o is 

sional subspace of TZo Cn. given by 

{(r1,...,771) E T 0Cn;ajl~(z0)Tj = O}. 
1<j<n 

consider Cd, the other direct summand of Hz0 ED Cd, as the complex 

ent space at the origin of the parameter space (t1,... , td) explained 

emark 3.2 and Lemma 3.4 elow. 
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 As in [4], let us denote by (Pos), or more precisely by  (Pos)YQ7 the condition that Q:0(7) 
is positive-definite. 

(Pos)The generalized Levi form Qzp(r) is positive-definite, 
              i.e., Qz0(r) is strictly positive-definite on 

{T = (TT E Cn+d. am z0)7; = 
1<j<n 

The following Theorem 2.4 is a generalization of Theorem 2.8.1 in [4] to the case of over-
determined systems. 

THEOREM 2.4. Let DI and S2 be the same as those in Theorem 1.4. For a point zo in Co 

the condition (Pos)zo holds if and only if the following two conditions are satisfied: 

  (i) 52 is bicharacteristically convex at zo with respect to 9/4. 

  (ii) For a (complex) d-codimensional complex submanifold S passing through zo and 
      being transversal to b(z0,ay,(z0)), C_ fl S is strongly pseudo-convex at zo in S. 

COROLLARY 2.5. Let fit, 5-2 and zo be the same as those in Theorem 2.4. Suppose that 
d = n — 1. Then the condition (Pos)zo is equivalent to the bicharacteristical convexity of 

52 at zo with respect to 931. 

  It is obvious that our main theorems (Theroem 1.4 and Theorem 1.7) follow from The-

orem 2.1, Theorem 2.4 and the isomorphism (2.2). We will prove this Theorem 2.4 in the 
subsequent three sections.

3. The geometry of bicharacteristics. 

 In this section we give several propositions which describe some geometric properties of 

C, Co and b introduced in §1. 
 First let us introduce the non-degeneracy condition of the domain Q with respect to the 

bicharacteristics of 9934. Let zo be a point in Co and z(t1, ... , td; :0,0:,.(z0)) be the local 

expression of b(zo,aW(zo)) explained in Remark 1.2. We denote by cp the restriction of to 
b(zo,a,P(zo»: 

(3.1)43(t1,...,td) = 4%(z(t1,...,td; zo.3 (z0)))• 

Now let Bz0 = (b.),,s(zo))1<-y,b<2d be the Hermitian matrix defined by

(3.2)

 a2  by,b(.-o) =  at-a6  (0) 

            by,d+6(zo) = a82C'at6(0) 

                  2 bd+y,6(=o) =at(0) 

bd+y,d+b(4o)=at -y(94            (0) 
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On the other hand, we denote by  B°o the real Hessian of Y, that is, B!. = (b', 6(:o ))i<-r, b<2d 
is given by

(3.3)

                             z- by,6(zo)  =a,~ci,F(0) (1  < 
by,d+6(=o) -----------(0) (1 < 

                    z bd+7,6('o) =a(0)(1 < 
a2 bd+y,d+6(Zo) av7a,(0) (1 < I,

where uy (resp. vy) is the real (resp. imaginary) part of t~.. The matrix B;0 is tied up with 

Bz through the following formula: 

(3.4)BR='LI-BZOT-', 

where W is the (2d) x (2d) matrix given by 

(3.5)W = Id T Id Id —1Id)' 
(Id is the d x d identity matrix). 
DEFINITION 3.1: For a point do in Co we call the Hermitian form whose matrix is given 
by Boo the bicharacteristic form of 931 at zo. When the bicharacteristic form of 931 at :o is 
non-degenerate, the domain 52 is said to be non-degenerate with respect to 932 at :o. 

REMARK 3.2: It is obvious that the matrix B;,0 does not depend on the choice of holo-
morphic local coordinates. (See also (2.8) and the expression (3.7) of B_o below.) In 
fact, according to (3.2)—(3.5), Bto should be considered as an Hermitian form on the corn-
plexification of the real tangent space To Cd of the parameter space (t1, ... , td) at the 
origin, more precisely, as an Hermitian form on the complexification of the following real 

2d-dimensional vector space: 

{(7,t); T E Cd = ToCd}. 

  The non-degeneracy of 52 at zo means the second order tangency of the boundary OC2 of 
52 and the bicharacteristic b(„o,a,(to)). 

  Since the left-hand side of (3.4) is a real symmetric matrix, it follows from (3.4) and 

(3.5) that the positive-definiteness of B;,0 is equivalent to the following condition: 

(3.6)For any 0=(01,...,¢d)ECd with (15 0, 

(4, ~) Boo t(¢, ~) > O. 

As is easily seen, the condition (3.6) is nothing but the bicharacteristical convexity (1.9) 
of S2 at :,o. Hence we have 
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LEMMA 3.3. The domain  S2 is bicharacteristically convex with respect to fit at zo in Co 
if and only if the bicharacteristic form Bzo of 9J1 at zo is positive-definite. 

 Here let us write down Bzo explicitly in terms of p and the principal symbols p1.....Pd • 

LEMMA 3.4. For Bzo = (b.y,6(zo))1< -7,s<zd defined by (3.2). we have the following formula:

(3.7)

 by,6(zo)=ozy6(=o) for y,6= 1. 
by,d~ b(=o) = /3-yo(zo) for 7,6 = 1, 
bd+y,b (zo) = 0-0 (zo) for y, b = 1, 
bd+y,d+6(zo) = a-05(.:,-0) for y,b = 1, 

the symbols given by- (2.4) and (2.5).where and and 13y6 are 

 Note that, as a consequence of the assumption (1.1), we have 

(3.8) E p(j)(z, O pb(z,C)(i)(for7,6=1... .d.            y(i)~)=py(i)(z,pbz, ~)~, 
1<j<n1<j<n 

Lemma 3.3 follows from (1.7) and this formula (3.8). We do not present the detailed 

calculations here. But we should remark that (3.8) implies /3y6 is symmetric, i.e., 3y6 = 36 
holds for every 7 and 6. 

  From now on, let z0 be a point in Co and suppose 

(3.9)S2 is non-degenerate with respect to 931 at -7o. 

Note that, if Q is bicharacteristically convex at zo, then this condition (3.9) is satisfied by 
Lemma 3.3. Under this condition (3.9) we have the following geometric property of C. 

PROPOSITION 3.5. Under the assumption (3.9), C is a real analytic submanifold of real 
codimension 2d in a sufficiently small neighborhood of .yo. Furthermore. C and b(_o,aw(_o 
are transversal at zo. 

  In order to prove Proposition 3.5, we make use of the following two lemmas. 

LEMMA 3.6. Let fy(z) = f(z,:f) (1 < y < d) be complex-valued real analytic functions 
defined on an open subset U of Cn, and let V denote the set {z E U: f-,(z) = 0, , 

d}. Let zo be a point in V, and suppose that, if 

(3.10)E ayaify(zo) + E d-fai fy(zo) = 0, j = I,. . , n. 
1<y<d 1<y<d 

hold for (a1, ... , ad) E Cd, then (a1, ... , ad) must be equal to zero. Then V is a real 
analytic submanifold of U with real codimension 2d in a small neighborhood of -0. 

LEMMA 3.7 Let fy, V and zo be those in the preceding lemma, and let F be a real 

2d-dimensional real analytic submanifold through zo. Suppose that, if a tangent vector 

12



 w=(1(1,•••,wn) E Cn of r at zo satisfies 

(3.11)E wjajfy(zo) + E u'jajf-r(zo) = 0, -y = 1, ... , d, 
        1<j<n 1<j<n 

then w must be equal to zero. Then V and F are transversal at zo. 

 Because these lemmas are almost self-evident, we do not present their proofs here. 

PROOF OF PROPOSITION 3.5: By definition, C is given by 

                    {z E U; p (z,acp(z)) = 0, 'Y = 1,...,d}. 

To prove the first assertion of Proposition 3.5, we choose p(z, acp(z)) as f(z) and use 
Lemma 3.6. Suppose that (a1, ... , ad) E Cd satisfies (3.10). Here let us remark that 

(3.12)ajfy(zo) = Ai-r(zo), ajfy(zo) = Ni-y(zo) 

hold for j = 1, ... ,n and -y = 1, ... , d in the notation of (2.6) and (2.7), and that the 
symbols of (2.4)—(2.7) satisfy the following equalities: 

(3.13) E Aj- (zo)P(6j)(zo, 042(zo )) = 13y6(zo) for 7,8 = 1.. ..d, 
1<j<n 

(3.14)E s z) (i)c 4 for b= 1, d  
1<j<n 

Hence (3.10) implies that

By

E 
1<j<n 

= E 
1<y<d

EayAjy(zo)+ E ayjy(zo) p(6j)(z0,042(zo)) 
 1<y<d1<y<d 

ay,Qyb(zo)+ E ayay4zo) for 6 = 1,...,d. 
1<y<d 

ans that 

(al,..., ad, a.1,...,ad)B7,0 = 0• 

;3.9), we obtain (a1, ... , ad) = 0. Therefore, Lemma 3.6 guarantees 
c submanifold of real codimension 2d in a neighborhood of zo. 

It C and b( z0,aw(z0)) are transversal at zo, using Lemma 3.7. Any 

, ... , wn) of b(,0,a,,( zo)) at zo has the following form: 

          c u =cyPyj)(.:o, ap(zo)), j = 1, ... , n, 
1<y<d 
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Lemma 3.4 this means

Since we are assuming (3.9), we obtain  (a1,  ..  . 
that C is a real analytic submanifold of real c 

 Next let us prove that C and b(=0,aw(=0)) ai 
tangent vector w = (w1,... , w,i) of b(,0,a,,,(=0)) 

~c-P(.i~( w=•-• a~                                                   o,



where each  cy is a complex number. Now suppose that w satisfies (3.11). It follows from 

(3.12)—(3.14) that

0. E E cpyj)(zo, a (zo))
//))jb(zo) + EIECyPf(zo; &P(zo))IK o(zo )   1<j<n 1<y<d1<j<n 1<y<d 

= E cy,dby(zo) + E yaby(zo), b = 1, ... , d, 
1<y<d1<y<d 

which means 

                                  t 

                               Bzo(l,..., cd,cl,...,cd) = O. 

Again by the assumption (3.9) we find (cl, ... , Cd) = 0, i.e. w = 0. Hence Lemma 3.7 

shows the transversality of C and b( zo,ap( z.o)) at zo. 

 As is shown in §1 (cf. the equality (1.8)), b(zp,ap(z0)) is tangent at zo to the boundary 
an of f2. Since Co is the intersection of C with aft, we immediately obtain the following 

proposition from Proposition 3.5. 

PROPOSITION 3.8. Under the assumption (3.9), Co is a real analytic submanifold of real 

codimension (2d + 1) in a neighborhood of z0. 

 Next let us study the "foliation" b, i.e., the family of bicharacteristics of the form 

(3.15){b(=,aw(z))1zEc• 

Making use of Proposition 3.5, we can prove that b is actually an analytic foliation at least 
locally. More precisely, we have the following 

PROPOSITION 3.9. Under the assumption (3.9), the family of bicharacteristics of the form 

(3.15) defines a real 2d-dimensional real analytic foliation in a neighborhood of z0• 

PROOF: Let us consider the following map F: 

(3.16) F : C x Cd 3 (z, (tl, ... ,td)) ' —' z(t1 i ... , td; E Cn, 

where z(tl, ... , td; z, a,o(z)) is the local expression of b(=,aa(E.)) explained in Remark 1.2. 
This map F is defined and real analytic in a small neighborhood of (z0, (0, . . , 0)) because 
C is a real analytic submanifold near zo and z(ti, ... , td; z, ~) is holomorphic with respect 
to (t1, ... , td) and (2, (). Moreover, the transversality at z0 of C and b( Zo,a,p( Zo)) implies 
that the differential of F at (z0, (0, ... , 0)) is surjective. Hence F is a local diffeomorphism 
near (zo, (0, ... , 0) ). Since by this diffeomorphism F each bicharacteristic b~ 8 (Z)) (z E C) 
is transformed into the subset

 E  cypyi)(zo,  ap(zo)) Aj6(zo) + 
1<y<d

 E _yP7~zo,c~(p(zo))  Kj6(Zo) 
1<y<d

 {(z,(t1,...,td)); z = z,(ti,..., td) : arbitrary} 
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of C x Cd, we find that the family of bicharacteristics in question is a real analytic foliation 

of real dimension 2d in a neighborhood of  zo and the above map F is its distinguished local 

chart.^ 

 We have defined by (1.10) and (1.11) Co and C_, the bicharacteristic hull of Co and C_. 
The following proposition is an immediate consequence of the preceding propositions. 

PROPOSITION 3.10. Under the assumption of (3.9), Co is a non-singular real hypersurface 

and C_ is an open subset with Co as its boundary in a neighborhood of zo. 

 In fact, if we consider Co in using the distinguished chart F defined by (3.16). it is locally 

the image of Co x Cd, which is a non-singular real hypersurface of C x Cd Similarly C_ 

is locally the image of C_ x Cd, which is an open subset of C x Cd with Co x Cd as its 
boundary.

4. The decomposition theorem. 

  In this section we investigate the relationship between the generalized Levi form Qzo 
introduced in §2 and the geometry of bicharacteristics. The main theorem is the decom-

position theorem of QZ0 (Theorem 4.2 below). Theorem 2.4 is a consequence of that 
decomposition theorem. 

 Let us begin with the following 

PROPOSITION 4.1. Let zo be a point in Co and suppose that the generalized Levi form 

QZ0, considered with the constraint (2.12), is positive-definite. Then the bicharacteristic 
form Boo at zo is also positive-definite. In other words, if (Pos) is satisfied at zo. S2 is 

bicharacteristically convex with respect to 931 at zo. 

PROOF: We use the explicit forms of Qz0 and Bzo given by (2.11)-(2.13) and (3.7). 

  For o = (a1, • • • , .2d) in C2d, let us define q(z, () and 0 by 

q(z,() _ E oypy(z,O, 
                 1 <y<d 

               = (q(1)(zo,ay(zo)),...q(n)(zo,zo)),ad+1,...,cr2d) E Cn+d 

Note that this q5 satisfies the constraint (2.12), that is, 

E aicp(zo) q( (zo, ap(zo)) = 0 
1<i<n 

holds, since each py satisfies (1.8). Now let us calculate Qz0(0) for 0. A straightforward 
calculation shows that 

Qzo(4) = o Bzo tQ.• 
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Hence  (Pos)zp entails the positive-definiteness of Bzo.^ 

 This Proposition 4.1 states a relationship between the generalized Levi form Q and the 

bicharacteristic form B. But, in order that the generalized Levi form Q is positive-definite, 

we have also to take account of the complex-analytic structure of St in the transversal 
direction with respect to the foliation b, which is the reason why the condition (ii) appears 

in the statement of Theorem 1.4 and Theorem 2.4. To describe that structure, let us 

prepare some notations. 
 Let zo be a point in Co and suppose that the condition (3.9) holds, i.e., St is non-

degenerate with respect to 931 at zo. Take a (complex) d-codimensional complex submani-
fold S passing through zo and being transversal to b(zo,a<P(z0)). We want to consider C_ n S 

in S. Since under the assumption (3.9) b is a real analytic foliation in a neighborhood of 
zo and C is also transversal to b(zp a(p(zo)) as well as S, we can define a real analytic local 

diffeomorphism g from S to C along b as follows:

(4.1) g: S D w 1--g(w)EC,

where the image g(w) of w is determined by the following property:

(4.2) g(w) and w lie on the same leaf of b.

Remark that, using the distinguished chart F of b defined by (3.16), we can also represent 

g in such a way that

(4.3) g = 1r1 o F-1 Is

where 1r1 is the projection from C x Cd onto C. Thus we have defined an analytic local 

diffeomorphism g : S —* C. By definition, the images of C_ n S and its boundary Co n S 

under this diffeomorphism g are C_ and Co respectively. Therefore, if we define a real 

analytic function V on S by

(4.4) 0 = solc o g,

then we find 

C_fSnw—{wESnw;0(w)<0} 

for a sufficiently small neighborhood w of zo. 
 Now let us state the decomposition theorem. 

THEOREM 4.2. Let 9)1 and St be the same as those in Theorem 1.4. Let zo be a point in 
Co and suppose that St is non-degenerate with respect to 9)1 at zo. Let S be a (complex) d-
codimensional complex submanifold passing through zo and being transversal to b( 

zo ,aw(zo 
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at zo, and let  ' be a real analytic function on S defined by (4.4). Then the generalized 
Levi form Qzo at zo, considered with the constraint (2.12), is equivalent to the direct sum 
of the bicharacteristic form 13,0 of 931 and the Levi form Lzo of zk at zo. 
REMARK 4.3: The Levi form Lzo (o) (a E Cn—d) of 0 at zo is, by definition, the Hermitian 
form 

                           820 ----------(
z0) aj& 

                  1<j,k<n-dOW3k 
                                          k considered with the constraint 

                     E8w(zo)o= 0, 
                            1<j<n-d 7 

where (w1, ... , wn_d) denotes a holomorphic local coordinate system of S at Z. This is a 
well-defined Hermitian form on the complex 1-codimensional subspace Ii zo of Tzo S defined 

by 

Kzo =Q= (ail ...,an-d) E TzoS; Ea-(4o)aj = 0 , 
                                             1<j<n-daw- 

that is, Lzo(a) is an Hermitian form on Iizo which is independent of the choice of holo-
morphic local coordinates of S. Notice that Ii zp is contained in the real tangent space of 

{0 = 0} at zo. As is well-known, the Levi form of 0 at zo is an Hermitian form on the 
space of holomorphic tangent vectors of {0 = 0} at zo. 

 It follows from Lemma 3.3 and Proposition 4.1 that, if Si is bicharacteristically convex 
at zo, or if (Pos)zo holds, then the assumption in this theorem of non-degeneracy of SZ at 

zo is satisfied. Hence, Theorem 2.4 is an immediate consequence of this decomposition 

theorem and Lemma 3.3. 

  In order to show the decomposition theorem, we will make use of the following proposi-

tion which describes the explicit form of Lzo. 

PROPOSITION 4.4. Let 931, Si, zo, S and 0 be the same as those in Theorem 4.2. Let 
Lzp(U) =El<j ,k<nrj,k(zo)Qjak be an Hermitian form on Hzp defined by 

(4.5)rj,k(zo) = 0.160,44)— pj(zo) B,o1 tpk(zo), j,k = 1, ... , n, 

where pj(zo) is a 2d-vector given by 

(4.6)pj(zo) = (k i(zo),...,K,jd(zo),A l(zo),•• ,Ajd(zo)), j = 1,...,n, 

and Hzp is the following subspace of Tzo Cn:

(4.7) Hzp =  Q  = (Q1...,Qn) E T;,ocni E ajy(zo)cj = 0 
1<j<n

17



Then, when we regard  Tzo  S as a subspace of Tzo C" through the canonical inclusion S 

C", the Levi form Lzo of at zo coincides with the restriction of L', 0 to Hzo fl Tzo S. 

REMARK 4.5: By (2.8)—(2.10) we find that L'_o(o) is independent of the choice of holo- 
                                                                                    ~ morphic local coordinates when viewed as an Hermitian form on Tz0C". Note also that the 

assumption of the transversality of S with b(zo,a<p(zo)) at zo and the equality (1.8) imply 
that Hzo n Tzo S is a complex 1-codimensional subspace of Tzo S. 
REMARK 4.6: We can consider Lzo (c) itself as an Hermitian form on Tzo S, because the 
tangent space of b(zo,a,p(zo)) at zo is contained in Hzo by (1.8) and

(C717...7a")

 ri ,i(zo) .. ri,n(zo) 

r„ ,i(zo) .. rn,„(zo)

 =0

holds for any tangent vector  a- _ (o i ... , an) of b(03(0)) at zo. In fact, for any k and y 
(1 < k < n , 1 < 7 < d), we have 

E pyj)(zo, ap(z0)) rj,k(zo) 
1<j<n 

= E p/)(z0,a(P(z0)) {ajakc4z0) — pj(z0)Bzpl tpk(zo)} 
1<j<n 

kk7(zo) — («'Y1(z0),...,a-rd(z0) ,1ryl(zo),...,13yd(zo)) Bzo1 tpk(zo) 

V = kk7(2.0) — (0,...,0, 1,0,...,0) tpk(zo) 
= 1k7(2.0) — kk7(z0) = 0. 

  The proof of Proposition 4.4 requires many straightforward calculations. We will prove 
it in the next section. Here, assuming Proposition 4.4, let us finish the proof of the 
decomposition theorem. 

PROOF OF THEOREM 4.2: First remark that , since the generalized Levi form Qzo, the 
bicharacteristic form Bzo and the Levi form Lzo of are all independent of the choice of 
holomorphic local coordinates as explained in Remark 2.3, Remark 3.2 and Remark 4.3, 
it suffices to prove this theorem in one arbitrarily chosen holomorphic local coordinate 
system. Let us choose a system (z1, ... , :in) so that zo is the origin in this system and 
that {zn_d+1 = • • • = in = 0} coincides with S in a neighborhood of zo. For simplicity we 
denote z by z in what follows . 

 Let 

Qo(T) _ E gj,k(0) T,Tk 
1<j,k<n+d 
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be the generalized Levi form at zo = 0, where each  qi,k(0) is given by (2.13) and T = 
(Tl, ... , Tn+d) satisfies 

(4.8)> = 0. 
1<,j<n 

Let us transform T = (T1 ,...,Tn+d)into X= (Xi, ..., Xn+d) as follows: 

(4.9)(T1,...,Tn) = (X1,...,Xn—d,0,...,0) 

               + E Xn-d+y (pç')(o,a(o)),. .. , Pyn)(0, 50(0))) , 
1<y<d 

(4.10)(n-1-1, • • , 7 _ (Xn+1, ... , Xn+d), 

that is,

(4.11) (T1, ... , Tn+d) = (X1, ... , Xn+d)

1

0 

Pill 

Pdl

0

1

0

0

P1n) 

      • P(an)
1

0

0

0

0

1

Note that, since S is assumed to be transversal to b(=o,acc,(-'o)), the matrix

P(d+1)

P(d+ 1)

 (0,  o  (o)) ... p1n)(0, ov(0)) 

(O, o<P(0)) ... P(dn)(O, op(0))

is non-singular. Hence the transformation  (4.9)—(4.10) or (4.11) is invertible. Remark also 
that the transformation (4.9) is nothing but the decomposition of T0Cn, the tangent space 
of Cn at zo = 0, into the direct sum of ToS and the complex tangent space at the origin 
of (t1 i ... , td), the parameter space of b(zo,aw(r.o)) explained in Remark 1.2. 

 After this transformation we further transform X= (X1, Xn+d) into = (a1, , Crn+d ) 
in such a way that

(4.12) (Xi ,...,Xn+d) = (al,...,Crn+d)

19

1

0

0

 0  01,1 

1 On—d,1 
   1

0

01,2d 

On—d,2d 
 0

1



where  0j = (03,1, ... , cj,2d) (1 < j < n — d) is a 2d-vector given by 

          = —p1(0)B0-1 

           = —(Kjl (0), ... , kjd(0), A31(0), ... , Ajd(0)) Bo 1 , j = 1,...,n — d. 

 Then, by a straightforward calculation, we find that Qo(r) is transformed into the form 

E Cr .7 
1<j,k<n+d 

which is defined in the following manner: 

Qj k = 5j0k0(0) - P3(0) Bo-1 tpk(0) (1 < j, k < n — d), 

qj,n—d+y = qn—d+y,j = 0 (1 < j < n — d, 1 < 'y < 2d), 

qn—d+y,n—d+6 = «y6 (1 < y, 6 < d), 

                                        < 

              qn—d+y=,n+6—gn+b,n—d+y=13-Y6(1<y                         b,bd), 

4'n+y,n+6 = «yb (1 < y, S < d). 

Furthermore, using (1.8), we find the constraint (4.8) of Q0(r) is transformed into 

(4.13)E a (0)(7j = 0 
1<j<n—d 

under these transformations (4.11) and (4.12). 

  Now Proposition 4.4 tells us that, in the coordinate system we are using now, the Levi 
form Lo(o) at zo = 0 is 

Lo(a) = > (5jak(0) — P3(0)130-1 tPk(0))aj&k, 
1<j,k<n—d 

where cr _ (ai, . . . , 0n—d) is a tangent vecotr of S at zo = 0 satisfying 

E am0)o, = 0. 
1<j<n—d 

In fact, in the current coordinate system, the tangent space ToS of S at zo = 0 can be 

identified with the subspace 

                      (cr1, ...,an) E ToCn, an—d+1 = ... = Qn = 0} 

of ToCn Hence, the Hermitian form

(Cr1, ... , Crn—d)

 i 

q1,1 • •  ql,n-d 

qn-d,1 ' • qn-d,n-d 
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with the constraint (4.13) is exactly the Levi form  Lo(o). On the other hand, Lemma 3.4 
implies that

Thus we obtain

 qn—d+1,n—d+1 ' 

qn+d,n—d+1 '

qn—d+1,n+d 

qn+d,n+d

 =  Bo.

QO(T) = LO(617 ... , Un—d) + BO(0n—d+1, ... , CI-n+d), 

which means that Qo is equivalent to the direct sum of Bo and Lo.

5. Proof of Proposition 4.4. 

  Finally, let us prove Proposition 4.4. 

PROOF OF PROPOSITION 4.4: As in the proof of Theorem 4.2, let us choose a holomorphic 

local coordinate system (zl  ... , z`n) on a small neighborhood W of zo so that zo is the 
origin in this system and that S = “n—d-1-1 = • • = zn = 0} holds in W For the sake of 

simplicity, we will denote z by z in what follows. 

  In this coordinate system, every point w of S n W is represented by w = 

(w1, . . . , wn_d, 0, ... , 0), and w' = (wi, ... , wn_d) gives a holomorphic local coordinate 
system of S around zo. Hence, in this system, the Levi form Lo(o) of /' at z0 = 0 has the 
form 

a2, _ ------------(0)~j~k 
                                  1<j,k<n—d                                 awau'k 

with the constraint 

                        au(0) 0"j = O.                                 1<j<n—d~~ 

On the other hand, in this coordinate system the restriction of the Hermitian form L(a), 

given by (4.5)—(4.7), to the subspace H0 n T0S is expressed as follows: 

Lo(o-) = E (3,00,00)- pj(0) BO 1 ',k(0)) ojuk 
                             1<j,k<n—d 

where 

pi(0) = (K)1(0),. . , rcjd(0), a j1(0), ... , a jd(0)), j = 1, ... , n, 

and 

a E Ho n To = _ (01, ... , n—d, 0, ... , 0); E aj4,(0)(7j = 0 
1<)<n—d 
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Therefore, since both  Lo(Q) and Lo(u) are independent of the choice of holomorphic local 
coordinate systems as stated in Remark 4.3 and Remark 4.5, it suffices for us to prove the 

following equalities: 

192 (5
.1) a

k(0) = a,akp(0) — p;(0) Bo1 tpk(0) for j, k = 1,..., n — d 

and 

(5.2)aw(o) = a;(p(o) for j=1,..., n — d. 
The proof of (5.1) and (5.2) will be done in the similar way as in [4]. We divide it into 
four steps. 

STEP 1: First let us investigate how we can obtain an explicit form of the real analytic 
local diffeomorphism g defined by (4.1) and (4.2). Once we find an explicit form of g, we 
can easily obtain the one of according to (4.4). 

  Let w = (w', 0, ... , 0) be a point in SnW, and let 9 = (611, ... , On) denote a point in a set 

{0 E Cn; 10 — 042(0)I < c} where c is a small positive constant. Let (z(t; w, 0), ((t; w,0)) 
(t = (t1, ... , td) E Cd) be the local expression of the bicharacteristic manifold through 
(w, 0) explained in Remark 1.2. Let us define 

(5.3)fj(t; w', 0) = ((t; w, 0) — ajcp(z(t; w, 9)) (1 < j < n),

(5.4)fn+.y(t; w', 9) = p.y(z(t; w, 9), acp(z(t; w,0))) (1 < y < d), 

and consider the simultaneous equations 

(5.5)f(t; w', 9) = 0, a = 1, ... , n d. 

 It is obvious that, if (5.5) holds for some t = (t1,... ,td), then z(t; w,0) belongs to C and 

(w, 0) lies on the bicharacteristic manifold of OY1 passing through (z(t; w, 9), acp(z(t; w, 9))). 
In other words, if (5.5) holds for some t, b(,,,,o) is a leaf of the foliation b. Since b is 
a real analytic foliation in a neighborhood of zo = 0, we can expect that for any point 

(w', 0, ... , 0) in S near 0 there exists a unique (t, 0) near (0, acp(0)) such that (t, w', 0) 
satisfies the equations (5.5). As a matter of fact, we will show in the next step that the 
Jacobian matrix of (fl, . . . , fn+d, f1, ... , fn+d) with respect to 0, 0, t and t is non-singular 
at (t, w', 0) = (0, 0, acp(0)). Hence, by the implicit function theorem, (5.5) can be converted 
to the form

(5.6) (t, 9) = (T(w'), 0(w')) 
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in a neighborhood of (t,  w', 8) = (0,0, ap(0)). Remark that T(w') and e(w') are real 
analytic in w' but not necessarily holomorphic in w' Then, by the definition (4.1) and 

(4.2) of g, we find that 

                   g(w) = g((w', 0, ... , 0)) 
                        = z(T(w'); (w', 0, ... , 0), O(w')). 

Thus we obtain the following expression of zi): 

(5.7)0(w') = (p(z(T(w'); (w', 0, ... , 0), 0(W'))). 

STEP 2: Let us now prove that the equations (5.5) can be converted to (5.6). To do so, 
it suffices to show that the following Jacobian matrix J is non-singular at (t, w', 0) = 

(0, 0, (3p(0)). In what follows the evaluation of some function, say f , at (t, w', 8) _ 
(0, 0, acp(0)) will be indicated by the symbol f IY.

J=

                         afl 
 aeILL  ail af,.  l ael 8e2 • • aeonat1• • atd 

aflaflafl afl afl a9 ae
1 ae2aen at1 • • • Std 

Pia 1912_2ja 
8910910e2atd 

afn+d afn+d afn+dafn+d , ae
i ael 0e2atd 

tions are immediate consequences of (1.7). 

=p(1,3)(0,ap(0)), J = 1,...,n, y= 1,... 

_ —PY(i)(0, ap(0)), 7 = 1, ... ,n, y = 1, 

=b~ ,,~, j=1,...,n,k=1,...,n—d, 

=0, j=1,...,n,k=1,...,n—d, 

= 0, j,1 = 1,...,n, 

= 6 ,i, j,1 = 1, ... , n, 

ronecker b. Moreover, since z(t; w, 6) and 

, we have 

=a~~,         =01, ... ,n,y= 1,...,d,  at
?, 
  a( • 

awk= 0, j = 1,...,n, k = 1,...,n — 
 a~~ 

== 0, .7, l = 1, ... , n. ae
1 
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  Now the following relations are immediate consequences of (1.7). 

              az 
(5.8) at'7 IY = PY')(0, a(p(0)), j = 1, ..., n,y=  1,...  ,  d, 

                      y (5.9)ateIY=—P-(i)(0,'9(p( 0)),  7 = 1,...,n, y = 1,. . 

                      r 

            az; (5
.10) a

wkI t=o = 6j,k, j =1,..., n, k = 1, ... , n — d, 

(5.11) awkI t=o = 0,,n, k = 1, ... , n — d, 
            az; (5.12)a8

1,=o= 0,7,l= 1,...,n, 

(5.13) ae
lI t=o = 6;,t, j, 1 = 1,... , n, 

where 8j,k denotes the Kronecker b. Moreover, since z(t; w, 6) and ((t; 
phic functions of (t, w, 6), we have 

az; a(-; (5
.14)at

,=ate=0, = 1,...,n,y= 1,...,d, 
a z; _a .7 (5.15)a
wk awk= 0,1,...,n,1,...,n—d, 

(5.16)az;=a(-;= oj,l=1,..., n.            ae ~ae1'

Y

d.

w,9) are holomor-



Using these relations, we can easily calculate each component of J. For example, 

 a9lI Y =bj,i,j,1 = 1, ... , n, 

              C~elIY=O, 

              IY= — E ajak~(o)-kIY 
       y1<k<ny 

_ — E a jak(o)Pyk)(o, aP(0)) 
                              1<k<n 

= j-r(0), j = 1,...,n, y = 1,...,d, 

an~ IY = E Py(j)(0, a~(o))at,IY 
1<j<n 

              + E Pyj)(o,ay(o))ajakp(o)- 
                                    at,IY 

                              1<j,k<n 

E p_to o, ap(o))P(/)(o, ap(o)) 
                         1<j<n 

                 + E P(,,j)(0,'3 (0))P(k)(0, ap(o))ajaky(o) 
1<j,k<n 

=,376(0), y,6 = 1,...,d, 

       (j)y 
            at, 

             yIY=E Py(o, a4~(o))ajak(o)6 ~Y                              1<j,k<n 

              = E pci)(0,'3 (0))P6k)(0, a(o)) ajak p(o) 
                           1<j,k<n 

= ay6(0), 7,b = 1,...,d, 

and so on. Thus we find

J=

 10 

0 

0 ..

0

.. 0 —.Aii(0) —n,ii(0) .. 

-Aii(0) .. 

0 

0 1 —tca1(0) —A 1(0) .. 

   /311(
(0) ai1(0)    all(0) 0ii(0) .. 

adi (0) Ndi (0) 
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—Kid(0) 

—Aid(0) 

—And(0) 

aid(0) 

/31d(0) 

Qdd(0)



Since  Bo is non-degenerate by the assumption ,

 /11(0) aii(0)

it follows 

.. aid(0) 

• - 131d(0) 

... Odd(0)

the matrix

 ci  (0) 011(0)

adi(0) ,dd1(0) ... /3dd(0) 

is non-singular. Hence, J is so, too. Thus we have proved that the equations (5.5) have 
a unique solution (t, 9) = (T(w'), ®(w')) for each w' in a neighborhood of (t, w', 9) _ 

(0, 0, acp(0)). 

STEP 3: Before proving (5.1) and (5.2), let us calculate the first derivatives of T(w') at the 

origin. Besides this we prove some equalities which the first derivatives of O( w') satisfy at 

the origin. They will be used in the calculation of a2o/awiawk(0). It is a little amazing 
that, though we have to calculate the second derivative of V, we need not know the second 

derivative of T(w') or O(w') as we will see in the final step. 
 First let us consider the derivatives of T(w'). By the definition of T(w' )  and ®(w' ), we 

have 

(5.17)fn+y(T(w'); w'.0(w' ))  = 0 for y = 1, .. , d. 

We differentiate these equalities by wk and evaluate at w' = 0, then we find 

               J afn + y lYaT6(0) +a.fn+1, aT6(0)?+a.fn+y lY. 
1<6<dat6 awkat6awk1OW 

+ jafn+y~Yawaok(o) +aae!y~ Yao~(0)l= 0,                     a9! 1 <!<n.J 
7 = 1,...,d, k = 1,...,n — d. 

Now we have already known the derivatives of f0+.7 with respect to t, t, 9 and 9 at 

(t, w', (9) = (0, 0, &p(0)). Using (5.10) and (5.15), we can also easily calculate 

(afn+7/awk)(0,0,a(p(0)). Thus we obtain 

        87'6aT6 
E Iy6(0) a(0)+Eay6(0)awk(0) + )ky(0) = 0,                            wk (5.18) 1<6<d1<6<d 

y=1,...,d,k=1,...,n—d. 

Similarly, by differentiating (5.17) by wk, we obtain 

E Qy6(0) 'n(0) (0) + E ay6(0)awk(0) + Kk.(0)0, 
(5.19) 1<6<d1<6<d 

y= 1,...,d, k = 1,...,n—d. 
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5.2620 e,^) 
         y1 

(5.27a2 z      )ja wkaelIto = 0,j, 1= 1,...,n,k = 1,..., n.— d, 

              2 (5.28)az; It=o = 0, 7,1,1' = 1, ... , n. aelael, 
(5.29) Every second derivative of z3 (1 < j < n) containing the 

         differentiation with respect to t wk or e1 (1 < y < d, 

         1 < k < n — d, 1 < 1 < n) is equal to zero. 

Using (5.8)-(5.16) and (5.24)-(5.29) together, we obtain the following equality: 

(5.30)aaa-------k(0)—aiak~+Epyµ'a;at60ak +~pi-µ'a;°y~aw~~
+ Pryu)aµak(p +~PYµ'a1`ak7uWi 

+P(A)Pbv>aµav4~aTYaT6     Yaw;awk 

Pb>aP, av ̀Pat + P-ya
w k   L~Y 

Y,6,µ,v 

+P-IPbv'a,L av ~aTY aT6 
9w; aw k 

   Y,6,k,y 

+PV)P6'1)aTYaT6            aav'ra
w; awk 

                        aTaT6 +1P.(y(v,)P8—P6(v)}at`~awi awk 
          (1)) cµ,v>aTYaT6 +1P.1(v(~) ()Po —19"YP6(v) } a"' aw; awk 

    cµ)aTY()ally•EP
Y(i)aµ~awk +~Py(k)aally 

              Y,µY,µ 

+ P(r~, v) a j aTY aO v+aO v aTY}      Yaw; awkow; awk 

     cµ,)a^aTYao, aovaTY +P
Y~~a w;awk+au); au,k 

 EP(YNµ)a0a3;awk+ EP), aµ(powjywk, 
,µY,µ 

           27



 j,k  =  1,...,n  —  d. 

 Applying Euler's identity to (5.30), and then using py(0, acp(0)) = 0 (1 < y < d) and (3.8), 
 we find 

(5.31)a wa-------(0) = ajak(P + E Ajyawy~'EKjyy 
     7kykyk 

aTyaTy                        + E sky aw,+aky  aw, 

                       aTyaT6 EaTy aT6 
                     +3 6a

wj awk+ay6awj awk 
           y,6y,6 

                   +«6aTyaT6+6aTy aT6 

                                       y 

                           OWaft) yawjOW 
                                       7,6                          y,67 

                       aTyaTy                      +Efrit7 — 1) {Pi) a,Wk+P7(k) aw 
y + p(1) (aTy aol+aol 571„) 

                               awj awk awj awk 

                  Y,,(02-7                            S®1
+aol STy 1 awj OW awjawk)j 

j,k=1,...,n—d. 

Here my denotes the order of the operator P
y. 

  Remark that (5.22) and (5.23) imply the last term E y(my -1) {.. } of (5.31) vanishes. 
Moreover, denoting the vector 

C8T1aTd ST1 aTd \ awk'..., awk' awk'• ' awk/ 

by wk, we have the following equality by (5.20): 

                           wk=—pkBo1 fork=1,.. .,n—d. 

Hence we obtain 

52,0 
         awjawk(0) = ajak(P+ Pit Wk + Wit Pk +wjBotwk 

                   = ajakc - PjBO 1tPk — PjBO ltpk + pjBo 1B0Bc ltPk 
= aj ak cp — p, Bo l t plc for j, k = 1,... ,n — d. 

Thus we have proved (5.1). 
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 Finally let us prove (5.2). It follows from (5.7)  and (5.8)-(5.16) that we have 

         ow(o)=a;p(o) + E pyl'a1,ay(0)      Ji-yi 

+ E Pyl) 060a,wy(0),7= 1,...,n - d. 
                                              l,-y 

Since 

pylo(0,ap(o))a14p(0) = 0 

1 holds for -y = 1, ... , d by Euler's identity, we obtain 

                aw(o)=aj`p(o) for j=1, ... , n - d, 
that is, we have (5.2). This completes the proof of Proposition 4.4.
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