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The Geometry of Bicharacteristics and
the Global Existence of Holomorphic Solutions
of Systems of Linear Differential Equations

By YosHITsUuGU TAKEI

0. Introduction.

In the previous paper [4] of Kawai and the author we studied the relationship between
the geometry of bicharacteristics and the (semi-)global existence of holomorphic solutions
of single linear differential equations. The main result of [4] is that, in order to discuss
the {semi-)global existence of holomorphic solutions, we have to take into account not only
the convexity of the domain in question with respect to bicharacteristic curves. but also
the pseudo-convexity of some manifold given through the foliation structure determinec
by bicharacteristic curves. In this article we generalize this result to the case of over-
determined systems of linear differential equations with one unknown function; of course,
we have to replace bicharacteristic strips by bicharacteristic manifolds.

We proceed in a similar way as in [4]. When we study the existence of holomorphic
solutions, we should consider the Cauchy-Riemann equations together with the linear
differential equations under consideration. Then, due to the Cauchy-Riemann equations.
we can apply the theory of boundary value problems for elliptic systems developed by
Kashiwara-Kawai [1]. In fact, making use of this theory with a result of Sato-Kawai-
Kashiwara [7], Kawai has presented in [2] and [3] some theorems on finite-dimensionality
of cohomology groups attached to elliptic systems. In the situation we are considering, his
results give sufficient conditions which guarantee the (semi- )global existence of holomorphic
solutions. (See Theorem 2.1 below). We will investigate the geometric meaning of his
conditions, supposing the second order tangency of the bicharacteristics and the boundary
of the domain in question {Theorem 2.4). As a result we can obtain cur main theorems
{(Theorem 1.5 and Theorem 1.8) which describe the relationship between the geometry of
bicharacteristics and the (semi-)global existence of holomorphic solutions.

Here we should mention that the geometric conditions discussed here have its origin in
the work of Suzuki [8]. He has given & complete description of the conditions which guar-
antee the global existence of holomorphic solutions of single linear differential equations
of first order. Besides the work of Suzuki, for single Linear differential equations there
are several works closely related to our problem of the global existence of holomorphic
solutions: For example, Pallu de la Barzitre [6), Trepreau [9]. [10], and so on. Compared



with the case of single enations, almost no global existence theorems are known for general
systems, as far as the present author knows.

Now let us describe briefly the plan of this paper. In §1, we prepare some notions and
notations, and state our main results. In §2 we give the outline of the proof of our main
results, The proof consists of two theorems: Ome is Kawai's theorem, which is explained
in this section, and the other is Theorem 2.4, which will be proved in the subsequent
three sections. First we study in §3 the geometric situations of bicharacteristics under a
non-degeneracy condition. Then we prove the decomposition theorem of some Hermitian
form in §4, assuming one proposition (Proposition 4.4). The main part of this paper is in
& sense this decomposition theorem, from which Theorem 2.4 easily follows. And finally
in §5, we give the proof of Proposition 4.4.

The author would like to express his heartiest thanks to Professor T. Kawai for many
valuable discussions and encouragement. This paper was written up during the author's
stay at the Mathematical Sciences Research Institute as a postdoctoral fellow. The author
expresses his heartiest thanks to members of MSRI, especially to Professor A. ¥Weinstein.
for their warm hospitality and many kindnesses.

1. Notations and main results.

Let us first prepare some notations. For an open subset U7 of C", T*[7 denotes the
cotangent bundle of I/ and O denotes the sheaf of holomorphic functions on I” We denote
by z the standard coordinate of C® and by ( the corresponding cotangential coordinate of
T*C* We also denote by 2 and y the real part and the imaginary part of = respectively.
Let P,(z,8:) (1 £ 4 <€ d) be linear differential operators with holomorphic coefficients
defined on U/ Let us denote by p.(z,{) the principal symbol of the operator P.{z,.).
Throughout this article we suppose that 1 < d < n — 1 and that Py(z,8) (L < v < d)
satisfy the following conditions:

(1.1) [Py, Ps), the commutator of P, and P,
identically vanishes for 4,6 =1,.. ,d.
(1.2) gad; pr(2,), ... grad, pa(z, () ave linearly

independent over C on {(z,{) € T*U; { #0,
p{z.{) = - =palz.{) =0}.

We denote by I the coherent left D-module determined by Py(z,8.) (1 < vy < d), i.e.

M =D/(DP, + .-+ DFy),
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where T denotes the sheaf of linear differential operators (with real analytic coefficients)
on U7

Let ¢ be a strictly plurisubharmonic real analytic function defined on " and Q be a
relatively compact strongly pseudo-convex domain defined by

(1.3) Q= {zel:p(z) <0}
We suppose that

(1.4) B¢ = grad, ¢ never vanishes on the boundary 5
of .

Here, and in what follows, 8; and §; denote

3 .
8j = 7— (fh, v=18,), i=1,..,m
~i
. Vil ]
3-=—_-—(6, W — 3J), ]=1,. a7l
L azj T i

respectively. Let us dencte by C) the set of characteristic boundary points,
Co={z€U; ¢{z}=0and p,{z,09(z)) =0, ~r=1,....d}.
and also denote by ' and C. the following sets:

C={zelU;pz,00(z)) =0, v=1,...,d},
= {z €U; p(z) <0 and py(2,8p(2)) =0, v=1,. ..d}.

The purpose of this article is to find a geometric condition which guarantees the solv-
ability of an over-determined system of linear differential equations

(1.5) Pu=f, v=1,....d

in the space of holomerphic functions on 2, when f = (fi1,..., fg) satisfies the obvious
compatibility conditions:

(1.6) P.fs=Psfy, 1.6=1,....d.

In studying this problem, bicharacteristic manifolds play an important role. Here let us
recall the definition of a bicharacteristic manifold.
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DEFINITION 1.1: For a point (20,C) in {(z,€) € T*U; ¢ # 0, pi(2,€) = --- = pal 2.4} =
0}, the bicharacteristic manifold of 91 through (zq, (e} is, by definition. the {complex)
d-dimensional integral manifold through {zo. (o} of the system of Hamiltonian operators

_ dpy @ _apva) =1 d
H.P-r"_ E (aCJazJ 3233';.1 « ¥T=E Ly L4

1<5%n

We denote by b, ¢,) its projection to the base manifold U.

REMARK 1.2: It follows from (1.1) and (1.2) that {H}, }4=1,....4 satisfies the integrability
condition. In fact, they commute each other. Hence the bicharacteristic manifold really
exists for any (g, (o) by Frobenius theorem. In particular, for a given point (zo.(p) there
exist a neighborhood of (2o, {o) and d complex parameters ¢t = (¥1,...,%a) € C4 such that,
for any point (,¢) in that neighborhood of (=g, (o), the bicharacteristic manifold through
(%,() is given locally by the imbedding

(t].'l""ltd) = (Z(t],...,td; 516}!' ':(tl&* 'atd; E:E]L

which satisfies the following equations:

(a2 _ By 5,00 (6 54). forj=1.. =1 ..d
an ) S o B 5.0 (6 B0, forj =1 oy =1 d

#(0,...,0: 5,0) =%

[ ¢(0,...,0; ,{) =¢.

Here we should notice that this map (z(¢; 3,{), C(#; %)) is holomorphic with respect to
both # and (£,{). Let us also remark that the assumption (1.2} entails that b, ., is a
complex d-dimensional submanifold of I’ given by

(119'”1td:| — l::"-{t].l' --1td; 301(:0”'

On the other hand, according to Kawai's theorem { whose precise statement will be found
in the next section), the “boundary behavior™ of 901, especially its behavior on Cy, should
be essential in order that the solvability of the system (1.5} may hold in the above sense.
Hence it can be considered the most important to study how the bicharacteristics of 9
are situated against the boundary of {2.

First we should notice that, for a point zy in y, Euler’s identity for homogeneous
functions implies

(18) Y st gt da(a)) =0 fory=1.....4

15j<n 0C;



which show that the bicharacteristic b(,, 5..(.,)) is tangent to 8 at =g. Now let us introduce
the following convexity condition:

DEFINITION 1.3: The domain € is said to be bicharacteristically convex with respect to
MM at 25 in Cy if

(19) 3'2‘19(2-‘(7'@11- - -&a:fd; =y a’l’(zﬂ)})
r=al

holds for any ¢ = {é1,...,¢4) € C® with ||¢] = 1.

Here 2(ty,...,t4; z0,8:(2p)) is the local expression of b ;, a,(zo)) €xplained in Remark 1.2
It is obvious that the bicharacteristical convexity guarantees .y au(z,)) does not intersect
with the closure of { except 2 in a sufficiently small neighborhood of zg.

As stated in the introduction, we have to take account of another condition besides the
bicharacteristical convexity. To formmulate the condition, let us prepare more notations.
Let zp be a point in C; and suppose that £ is bicharacteristically convex at . As we
will prove in §3, under the assumption of the bicharacteristical convexity C and Cp are
analytic submanifolds of real codimension 2d and (2d + 1) respectively in a sufficiently
small neighborhood of zp. Furthermore, C' intersects transversally with b, 5.0z at o
(Proposition 3.5 and Proposition 3.8). Let us consider all bicharacteristics of the form

>0

b=.801:)) With z € C.

As a matter of fact, these bicharacteristics define an analytic foliation of real dimension
2d near z {Proposition 3.9). We denote this foliation by 5. Now let us define €y and £,
the bicharacteristic hull of {y and C'_ respectively, as follows:

(1.10) Co= | bzop=n = |J Brzsptom
€00 zeC
wiz)=0
(1.11) Co= | beaen = |J Bpwen-
t€C. t€C
w{z)<0

Because C intersects trausversally at o with a leaf b, 5.z of the foliation b, € is a
non-singular real hypersurface and C_ is an open subset with € as its houndary in a
neighborhood of 2y (Proposition 3.10).

Then our main theorem is

THEOREM 1.4. Let D = DJ(DP, + --- + DFy) be a coherent left D-module satisfying
(1.1) and (1.2), and let Q be a relatively compact strongly psendo-convex donmain defined
by (1.3) and satisfying (1.4). Suppose that ) satisfies the following condition. that is,
suppose that (i) and (ii) below hold at any point 7y in Cy.

(1) Q is bicharacteristically convex at zp with respect to 2R.
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(ii) For a (complex) d-codimensional complex submanifold § passing through zo and
being transversal to b, 8.(20))» €'_ N S is strongly pseudo-convex at % in 5.

Then Exth(Q; M, O) is of finite dimension for every j > 1. In particular,
{{Pry,.... Pau); v € O(2}}
is of finite codimension in
{(Aienr f) €O Pyfs = Psfyy mé=1,....d}

REMARK 1.5: In the condition (ii}, “the strong pseudo-convexity of C_NnSatzin S
means that there exist an open neighborhood w of zy and a real valued real analytic
funection ¥ defined on § Mw such that

C.NSnw={weSnw; Pw) <0}

holds and the Levi form L_{¢} (¢ €& C*"%) of 4 at zp, restricted to
{e € C*4; (grady(zy), o) = 0}, is strictly positive-definite. Note that Cp N S Nw, the
boundary of . NS Nw, is a non-singular real hypersurface in §Nw for a sufficiently small
neighborhood w, becanse S intersects transversally with by, ae(s,)) and Co is a non-singular
real hypersurface under the condition (i}.

REMARK 1.6: As a d-codimensional complex submanifold 5 through zy. we can take an
arbitrary submanifold as far as it is transversal to by., au(z,)y- In fact, if the condition
(ii} holds for some S, it holds for any § provided that the condition (i} is satisfied. (See
Thecrem 2.4 below.) However, it is very important that S must be a “smooth™ complex
submanifold in the complex-analytic sense. Roughly speaking, the condition {ii) is con-
cerned with the complex-analytic structure of the domain  in the transversal direction
with respect to the foliation b.

Further, if {2 can be contracted to one point with the condition in Theorem 1.4 being
satisfied in the course of contraction, then we can obtain the following vamshing theorem:

THEOREM 1.7. Let "M and {} be the same as those in Theorem 1.4. Suppose that there
exists a point z; in §2 such that o satisfies

(1.12) w(z) 2 (z1) holds for any = in U.

(1.13) (] {zel;plz) <t} ={a},
t>p(51)

(1.14} grad, p(z) £ 0on {z € IT; z # 2 }.
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Suppose further that R, = {z € U; p(z} < ¢} satisfies the condition in Theorem 1.4 for
any & with 0 2 ¢ > ¢(z). Then Ext},(Q; 9, ©) vanishes for every j 2 1. In particu-
lar, the system (1.5) of linear differential equations has a holomorphic solution u for any
bolomorphic functions (f),..., fi) satisfying (1.6).

In case d = n — 1 (i.e. M is subbolonomic), we should take a l-dimensional complex
submanifold, i.e. a holomorphic complex curve, as S in the condition (ii) in Theorem 1.4.
Hence the condition (ii) becomes trivial and actually it can be shown that the condition
(ii) always holds when d = n — 1 (cf. Remark 1.5. See also Theorem 2.4 and Theorem 4.2.}.
This observation leads to

COROLLARY 1.8. Let M and Q be the same as those in Theorem 1.4. Suppose that
d =n ~ 1, and that § satisfies the following condition:

At any point zg in Cy, Y is bicharacteristically convex with respect to 9.
Then the same conclusions as those in Theorem 1.4 hold.

COROLLARY 1.9. Let M, Q and ¢ be the same as those in Theorem 1.7. Suppose that
d =n—1, and that Q, = {z € U; ¢(z) < =} satisfies the condition in the preceding corollary
for any ¢ with 0 > £ > ¢(z,). Then the same conclusions as those in Theorem 1.7 hold.

2. Kawai’s theorem and the condition {Pos).

In order to explain how our main theorems are proved, we first recall Kawai's theorem
in this section. Though his theorem deals with more general situations, we present it in a

form suitable for ocur purpose.
Let us define a P-module 9%’ by

{2.1) M =D/ ( > DP+ Y, Dék)

1€y<d 1<k<n

By the assumption P, and & commuie for every ¥ and k. Since § is strongly pseudo-
convex, we have

(2.2) Ext}h(2; M, ) = Exth(Q; M, B)

for every j = 0, where B denotes the sheaf of hyperfunctions on U € C® ~ R** Note
that, since we suppose the conditions (1.1) and (1.2), we can construct a Koszul complex
using P,,..., Py (resp. Pi,....Ps and 8....,8,) and it is a free resolution of M {Tesp.
t'} with length d (resp. d + n).

Kawai’s result asserts the finite-dimensionality {or vanishing) of the right-hand side of
(2.2). In fact, he has proved



THEOREM 2.1 (Kawai (2], [3]). Let 90t and Q be the same as those in Theorem 1.4 and
let Y be defined by (2.1). Suppose that M’ and N satisfy the following condition:

{2.3) The generalized Levi form of the positive tangential system
91, on #Q induced from 9’ is positive-definite at each
characteristic point of My.

Then dim Ext,(02; OV, B) is finite for every j > 1. Furthermore, if ¢ satisfies the conditions
(1.12)1.14) for some point z, in . and if W' and Q. = {z € U; (z) < &} satisfy the
above condition (2.3) for any ¢ with 0 > ¢ > (), then Ext},(§; 9, B) vanishes for every
;21

The definition of the generalized Levi form is given in [7], Chapter III, Definition 2.3.1.
Concerning this theorem see Kawai [2] (Theorem 1) and [3] (Corollary of Theorem 2} for
details. See also [1], [B] and [8].

Now we want to write down explicitly the generalized Levi form of 91 at its characteristic
point. Its explicit form is given in [6] in the case of single equations, and in [3] in the case
of systems. First, by straightforward calculations, we find the characteristic variety of 914
is

{{z,—V-13p(2)); = € Gy}.
Namely the cotangential component of each characteristic point of 9, is determined by
its base point z and the projection of the characteristic variety of 9, to the base space
coincides with Cs. For 59 in Cy we denote by Q-, the generalized Levi form of 91, at the
characteristic point (zy, —v/=18(20)). To give the explicit form of Q.,. let us introduce
the following symbols, which will be used repeatedly in the subsequent part of this article,

(2.4)

yp{2) = Z m(Z Oyl z ﬂpgh( Bp(2)) 8;Bep(z) for 4,8 =1,....d.
1<5,k<n
(2.5)
Bas(2) = 3 pyiip(2,00(2)) By (.09 2))
1<i<n
+ 3 P02 BT (5, 80()) 8kplz) for v.6=1.....d
1< k<n
(2.6)
Kjy(2) = Z PNz, 00(2)) B3Bup(z) forj=1,...,m,v=1,....d
1<k<n
(2.7)
Mrl2) =Py 80(=) + D7 Pz, B0(2)) ;Bus0( )
1<k<n

forj=1,....,n,vy=1,. ..d.
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Here, and in what follows, p'/)(z,() and pyj;(+.() denote (9p/8¢;)(#, ¢} and (8p/Fz; N =.C)
respectively.

REMARK 2.2: Among thse symbols, a,s and 3.4 are independent of the choice of a holo-
morphic local coordinate system for any 4 and §. That is, if £ = (3,.. , ) is another
holomorphic local coordinate system, and if the above symbals caleulated in this new
coordinate system # are denoted by &-5(%), 3,5(%) and so on, then we have

(28) &1‘5(5) = a-,a(z}, 5'!6(5) = ﬂ‘rﬁ(z} for 716 =1,... .d.

On the other hand, x;, or A;, is not so. They satisfy the following relations:

. gz .
(2.9) Riy(2) = E a—_*'ﬁk.,.(z) forj=1,...,n,v=1,....4d,
1<k<n Y50
T s oz ,
(2'10) AJT(Z) = '_."-Ak (:) for 1= 1! ERR AL S 19- o ad-
. ¥
1<k<n i

In terms of these symbols, the generalized Levi form @:,(z9 € Cp} is given as follows:
(2.11) Quolr) = Y. galzo)ri®
1</, k< nd
considered with the constraint
(2.12) Y Bi(z0)T; =0,
1<5<n
where

gia(20) = 8iGp(za) (1 £, k< n),
Zin+r(20) = Ajy(z0) (1£)jsn,15y<4d)
ttri(70) = Ajglz0) (17 <n 127<d),
Gatv,n+s{20) = ays(20) (1<, 6 < d)

(2.13)

REMARK 2.3: Taking account of the transformation relations (2.8) and (2.10). we find
that this generalized Levi form ., is independent of the choice of holomorphic local
coordinates, if we view ., as an Hermitian form on the space of H, ® C?, where H., is
a complex 1-codimensional subspace of 7', C” given by

Hey = {(71,- - Ta) € T, €% )~ Bjeplz0)r; = 0}
1<5%n

Moreover, we should consider C¥, the other direct summand of H., & C?, as the complex
conjugate of the tangent space at the origin of the parameter space (t,,...,#4) explained
in Remark 1.2. See Remark 3.2 and Lemma 3.4 below.
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Asin [4], let us denote by (Pos), or more precisely by (Pos)s,, the condition that Q:(7)
is positive-definite.
{Pos) The generalized Levi form Q,(7) is positive-definite,
i.e., Q. (7) is strictly positive-definite on

{T =(T1y..yTntd} € C"H: Z 3;‘99(30)7';' = 0}.
1€j8n
The following Theorem 2.4 is a generalization of Theorem 2.8.1 in [4] to the case of over-
determined systems.
THEOREM 2.4. Let M and Q be the same 2s those in Theorem 1.4. For a point =y in Co
the condition {Pos),, holds if and only if the following two conditions are satisfied:

(1) 12 is bicharacteristicaily convex at 7o with respect to IN.
(ii) For a {complex) d-codimensional complex submanifold § passing through o and
being transversal to b, ay(z)), €= N § is strongly pseudo-convex at 7y in 5.

COBOLLARY 2.5. Let 2R, Q and zp be the same as those in Theorem 2.4. Suppose that
d = n — 1. Then the condition (Pos);, is equivalent to the bicharacteristical convexity of
Q at zq with respect to M.

It is obvious that our main theorems (Thercem 1.4 and Theorem 1.7) follow from The-
orem 2.1, Theorem 2.4 and the isomorphism (2.2). We will prove this Theorem 2.1 in the
subsequent three sections.

3. The geometry of bicharacteristics.

In this section we give several propositions which describe some geometric properties of
C, Cy and b introduced in §1.

First let us introduce the non-degeneracy condition of the domain  with respect to the
bicharacteristics of M. Let z be a point in Cp and z(#;,...,%4; 20, 82( %)) be the local
expression of b, ac(z,)) explained in Remark 1.2. We denote by ¢ the restriction of - to

Bra, B0z’

(3.1) Pt1, ... ta) = @l=(tr, ... ta; 20, B0(20))).
Now let B., = (b,,5(20))1<v.6¢24 be the Hermitian matrix defined by
[ bysl20) = 3o (D) (1< 71,8<d),

) by,a+s(z0) = -9%3_’,—,(0) (1<y,6<d),
birvalzo) = 54(0) (1<, 6<4d),

| batvara(so) = g2-(0) (1<, 6<d).
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On the other hand, we denote by BR the real Hessian of 3, that is, B = (b, s(z0))144, 6524
is given by
(8, 45(z0) = 522—1(0) (1£1,6<d),
) Hrarsleo) = o5-(0) 1<y é<d),
By slzo) = g2E=(0) (1<, 6<d)
| Hoppanslo) = 52d(0) (1Sv.6<4d),

where u. (resp. v,)is the real (resp. imaginary) part of t.. The matrix B., is tied up with
BR through the following formula:

(3.3)

(34) BR —'W B, W,

where W is the {(2d) x (2d) matrix given by

(s )

(I4 is the d x d identity matrix).

DEFINITION 3.1: For a point = in €y we call the Hermitian form whose matrix is given
by B, the bicharacteristic form of ™ at z;. When the bicharacteristic form of 9 at 2y is
non-degenerate, the domain (2 is said to be non-degenerate with respect to I at =q.
REMARK 3.2: It is obvious that the matrix B,, does not depend on the choice of holo-
morphic local coordinates. (See also (2.8) and the expression (3.7) of B., below.) In
fact, according to (3.2)-(3.5), B., should be considered as an Hermitian form on the com-
plexification of the real tangent space TRC? of the parameter space (#;,....14) at the
origin, more precisely, as an Hermitian form on the complexification of the following real
2d-dimensional vector space:

{(r.7); e C? = TyC%}.

The non-degeneracy of {I at zy means the second order tangency of the boundary 9Q of
¢ and the bicharacteristic b-; s,(z,1)-

Since the left-hand side of (3.4) is a real symmetric matrix, it follows from (3.4) and
{(3.5) that the positive-definiteness of B, is equivalent to the following condition:

(3.6) For any ¢ = (61,...,64) € C? with ¢ #0,
(6, ¢) Bz, '($,¢) > 0.

As is easily seen, the condition (3.6} is nothing but the bicharacteristical convexity (1.9}
of {t at zy. Hence we have
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LEMMA 3.3, The domain © is bicharacteristically convex with respect to I at 2 in Co
if and only if the bicharacteristic form B., of D at sy is positive-definite.

Here let us write down B, explicitly in terms of & and the principal symbols p1. .. .- Pd-
LEMMA 3.4. For By, = (by,5(z0))1<.5<24 defined by (3.2). we have the following formula:
by.5(30) = ays{=0) forv,6=1....d.
bygri(z0) = Bys(z0)  fory,b=1.....d,
bagrs(70) = Bys(20}  fory,6=1,...,4d,
bity.ats(z0) = ays(z0) forv.6=1....d,

(3.7)

where a5 and B.5 are the symbols given by (2.4) and (2.5).
Note that, as a consequence of the assumption {1.1), we have

(3.8) Y A 0mG (50 = 3 pus P00 fryvb=1.. .d

1<j<n 1<3<n

Lemma 3.3 follows from (1.7) and this formula {3.8). We do not present the detailed
calculations here. But we should remark that {3.8) implies 3.3 is symmetric, i.e., J.s = .35
holds for every v and é.

From now on, let zp be a point in Cy and suppose

(3.9) {2 is non-degenerate with respect to I at =p.
Note that, if 2 is bicharactenstically convex at 7p, then this condition {3.9} is satisfied by
Lemma 3.3. Under this condition (3.9} we have the following geometric property of C'.

ProOPOSITION 3.5. Under the assumption (3.9), C is a real analytic submanifold of real
codimension 2d in a sufficiently small neighborhood of z4. Furthermore, C and by, a:q))
are trapsversal at zg.

In order to prove Proposition 3.5, we make use of the following two lemmas.

LEMMA 3.6. Let f,(z) = f1(2,3) (1 £ ¥ £ d) be complex-valued real analvtic functions
defined on an open subset U of C", and let V denote the set {z € U; f.(z) = 0.4 =
.,d}. Let zp be a point in V', and suppose that, if

(8.10) Y arBifalzmdd Y EGdifpl20)=0, j=1. .,n

157<d 15v<d

hold for {ay,...,aq) € C%, then {a,,...,as) must be equal to zero. Then V is a rea]
apalytic submanifold of I with real codimension 24 in a small neighborhood of z,.

LEMMA 3.7 Let f,, V and 2y be those in the preceding lemma, and let T be a real
2d-dimensional real analytic submanifold through zo. Suppose that. if a tangent vector

1%
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0 = (w1,...,w,) € C® of T at z, satisfies

(3.11) Y widifsz)+ Y. @8ify{z)=0. v=1,....d.

1<i<n 1<5<n
then w must be equal to zero. Then V and T are transversal at =p.

Because these lemmas are almost self-evident, we do not present their proofs here.
PROCF OF PROPOSITION 3.5; By definition, C is given by

[z €U py(2,80()) =0,y =1,...,d}.

To prove the first assertion of Proposition 3.5, we choose p,(z,0¢(z)) as f,(z) and use
Lemms 3.6. Suppose that (ai,...,a4) € C* satisfies (3.10). Here let us remark that

(3.12) B; f1(z0) = Ajalz0). 8;fy(20) = Kjy(20)

hold for j = 1,...,n and ¥ = 1,...,d in the notation of (2.6} and (2.7), and that the
symbols of (2.4)-{2.7) satisfy the {ollowing equalities:

(3.13) Y Aial20) 05 (70, 0(20)) = Baslzo) for 7.6 = 1. ..d.
15j&n

(3.14) > kixl20)05 (20, 82(20)) = apslae) for v.6=1,....d.
1%j<n

Hence (3.10} implies that

0= Z { Z ayAjy(Z0) + Z ﬁvﬂhkn)}:?fs”(:o.@@(:o])

1<jen | 15y&d 1<y<d

= Y ayfulzo)+ Y @yogslz) foré=1,....d

1£y<d 1<y<d

By Lemma 3.4 this means that
(e1,...,84,81,...,84)8;, = 0.

Since we are assuming (3.9), we obtain (@,,...,aq) = 0. Therefore, Lemma 3.6 guarantees
that C is a real analytic submanifold of real codimension 24 in a neighborhood of zy.

Next let us prove that C and b, ap(z,)) are transversal at zp, using Lemma 3.7. Any
tangent vector 0 = (wy,...,wa) of b, 501=)) at 2o has the following form:

Wy = E c.,p‘,f)(;u,ayo(zo}}, i=1,...,n,

1<ysd
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where each c. is a complex number. Now suppose that w satisfies (3.11). It follows from
(3.12)«(3.14) that

0= >, (Z c-,pif’(za,asa(zon) Ms(zo}+ Y (Z a-,pff’(zo,aw(z.,n) w55(70)

12i<n \18v<d 157<n \1Sv5d
= Z 67'86'1'(20}-'- E E’)'alﬁ‘f(zﬂ)! b= 11'“1d|
15454 1<+<d

which means

Bgoi{‘é],”-,aj,(:l,---,fd)= 0.
Again by the assumption (3.9) we find (¢;,...,c4) = 0, i.e. w = 0. Hence Lemma 3.7
shows the transversality of £' and b, a,1:)) 8t 20. O

As is shown in §1 (cf. the equality (1.8)), b(s,.84(=)) is tangent at zo to the boundary
30 of Q. Since Cy is the intersection of C' with 8%, we immediately obtain the following
proposition from Proposition 3.5.

PROPOSITION 3.8. Under the assumption (3.9), Cy is a real analytic submanifold of real
codimension (2d + 1) in a neighborhood of zq.

Next let us study the “foliation™ &, i.e., the family of bicharacteristics of the form

(3.15) {12,000 }zec-

Making use of Proposition 3.5, we can prove that b is actually an analytic foliation at least
locally. More precisely, we have the following

ProprosITION 3.9. Under the assumption (3.9), the family of bicharacteristics of the form
(3.15) defines a real 2d-dimensional real analytic foliation in a neighborhood of 2.

PROOF: Let us consider the following map F:
(3.16) F:CxC¥3(5(t,... . ta)) — z(t,.-.. ta; 5 3p(3)) € C",

where z(ty,...,14; %, 0p(Z)) is the local expression of b; 5,3 explained in Remark 1.2.
This map F is defined and real analytic in a small neighborhood of (2g,(0,. .,0)) because
C is a real analytic submanifold near zp and 2(¢y,...,%4; £,()is holomorphic with respect
to (£1,...,%4) and (E,E). Moreover, the transversality at 2y of C and b, (s, implies
that the differential of F at (2y,(0,...,0)) is surjective. Hence F is a local diffeomorphism
near (zg,(0,...,0)). Since by this diffeomorphism F’ each bicharacteristic by; 5, (z € C)
is transformed into the subset

{(E,(fl,...,fd)); z= z,(tl,...,td}:arbitrary}
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of € xC4, we find that the family of bicharacteristics in question is a real analytic foliation
of real dimension 2d in a neighborhood of ¢ and the above map F is its distinguished local
chart. |
We have defined by (1.10) and (1.11) €; and C'_, the bicharacteristic hull of C and €.
The following proposition is an immediate consequence of the preceding propositions.

PROPOSITION 3.10. Under the assumption of (3.9), Cy is a non-singular real hypersurface
and C_ is an open subset with C, as its boundary in a neighborhood of z,.

In fact, if we consider € in using the distinguished chart F defined by (3.16). it is locally
the image of Cp x C?, which is a non-singular real hypersurface of C x C¢ Similarly C.
is locally the image of C_ x C¢, which is an open subset of C x €% with Cp x €7 as its
boundary.

4. The decomposition theorem.

In this section we investigate the relationship between the generalized Levi form @,
introduced in §2 and the geometry of bicharacteristics. The main theorem is the decom-
position theorem of Q. (Thecrem 4.2 below). Theorem 2.4 is a consequence of that
decomposition theorem.

Let us begin with the following

PROPOSITION 4.1. Let z¢ be a point in Cy and suppose that the generalized Levi form
Q)+, contsidered with the consiraint (2.12), is positive-definite. Then the bicharacteristic
form B, at zy is also positive-definite. In other words, if (Pos) is satisfied at zy. ¥ is
bicharacteristically convex with respect to M at zy.
PROOF: We use the explicit forms of @, and B;, given by (2.11)-(2.13) and {3.7).

For ¢ = (#1,....024) in C**, let us define ¢(z,() and ¢ by

q(z,£)= Z an‘f{z1C}7

1574
¢ = ('Y (z0,0(z0 ). ., €™ (20, Bp(20)), Fug1s .. ., 024) € C*FE

Note that this ¢ satisfies the constraint (2.12), that 1s,

Z ajtp(zﬂ)qu}(zﬂ1atp(30)} =10

1€j<n

holds, since each p. satisfies (1.8). Now let us calculate @, (¢#) for ¢. A straightforward
calculation shows that

Q:o(ﬁf’] = O'an 3.
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Hence (Pos);, entails the positive-definiteness of By,. t

This Proposition 4.1 states a relationship between the generalized Levi form Q and the
bicharacteristic form B. But, in order that the generalized Levi form Q is positive-definite,
we have also to take account of the complex-analytic structure of {2 in the transversal
direction with respect to the foliation b, which is the reason why the condition (ii} appears
in the statement of Theorem 1.4 and Theorem 2.4. To describe that structure, let us
prepare some notations.

Let zo be a point in Cp and suppose that the condition (3.9) holds, i.e., @ is non-
degenerate with respect to 9 at z9. Take a (complex) d-codimensional complex submani-
fold § passing through zo and being transversal to bz, s¢(z0))- We want to consider c_n§
in S. Since under the assumption (3.9) & is a real analytic foliatien in a neighborhood of
zo and C is also transversal to bz, 8p(z,)) 25 well as S, we can define a real analytic local
diffeomorphism ¢ from S to C along b as follows:

(4.1) g: 52w v+— gw)eC,
where the image g(w) of w is determined by the following property:
(4.2) ¢{w) and w lie on the same leaf of b.

Remark that, using the distinguished chart F of b defined by (3.16), we can also represent
g in such a way that

(4.3) g=moF s

where 7y is the projection from C x C* onto €. Thus we have defined an analytic local
diffeornorphism g : § = C. By definition, the images of C_ N § and its boundary & N §
under this diffeomorphism g are C_ and C; respectively. Therefore, if we define a real
analytic function 1 on § by

(4.4) ¥y =@lcog,
then we find
C_NSNw={we 8§nw;¥w) <0}

for a sufficiently small neighborhood w of z;.
Now let us state the decomposition theorem.

THEOREM 4.2. Let M and @ be the same as those in Theorem 1.4. Let zy be a point in
Co and suppose that () is non-degenerate with respect to MU at zo. Let § be a (complex) d-
codimensional complex submanifold passing through z, and being transversal to bizq,00(203)
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at zo, and let v be a real analytic function on $ defined by (4.4). Then the generalized
Levi form Q., at zg, considered with the constraint (2.12), is equivalent to the direct sum
of the bicharacteristic form B,, of M and the Levi form L,, of ¥ at 2.

REMARK 4.3: The Levi form L, (o) (6 € C*~9) of ¢ at zy is, by definition, the Hermitian
form

B
Z &Ujaﬁ?k (zﬂ)ajak

1<) k<n—d
coneidered with the constraint

1<j<n—d 7

where {w;,...,w,_4) denotes a holomorphic local coordinate system of § at z5. This is a
well-defined Hermitian form on the complex 1-codimensional subspace K, of T, 5 defined
by

Kgn= {0:(0‘1,...,6,.-‘)6:1,05; z %(zo)aj=0},

1gjgn—d =~ 7
that is, L.,(o) is an Hermitian form on K., which is independent of the choice of holo-
morphic local coordinates of §. Notice that K';, is contained in the real tangent space of
{3y = 0} at z. As is well-known, the Levi form of ¢ at z; is an Hermitian form on the
space of holomorphic tengent vectors of { =0} at 2.

It follows from Lemma 3.3 and Proposition 4.1 that, if @ is bicharacteristically convex
Bt zg, or if (Pos),, holds, then the assumption in this theorem of non-degeneracy of () at
2y 13 satisfied. Hence, Theorem 2.4 is an immediate consequence of this decornposition
theorem and Lemma 3.3.

In order to show the decomposition theorem, we will make use of the following proposi-
tion which describes the explicit form of L, .

PROPOSITION 4.4, Let MM, 2, 25, § and i be the same as those in Theorem 4.2. Let
L (o) =X c;s<nTik(20) ;54 be an Hermitian form on H,, defined by

(4.5) rix(z0) = 8;0kp(20) — pj(20) B ‘pr(20), 7k =1,...,m,

where p;(z9) is 2 2d-vector given by

(4'6} Pj(zﬂ}= [Ejl(zﬂ}r'"1de(zﬂ):)‘.i"l(zﬂ}s” 1’\'jd(zﬂ)): j = 11‘“1“1

and H,, is the following subspace of T;,C*:

(4.7) qu = {O’ = '(0'1._... .,O’n) e TzuC"; Z 3j<p{20]aj = 0}
1<)<n
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Then, when we regard T.,5 as a subspace of T;,C™ through the canonical inclusion 5 «—
C?, the Levi form L,, of 4 at 2y coincides with the restriction ofL'm to B, NT;,S.

REMARK 4.5: By (2.8)(2.10) we find that L/ (o) is independent of the choice of holo-
morphi¢ local coordinates when viewed as an Hermitian form on T,,C®. Note also that the
assumption of the transversality of § with b., 5,(z,)) at z0 and the equality (1.8} imply
that H,, N T,,S is a complex 1-codimensional subspace of T.,S.

REMARK 4.6: We can consider L' (o) itself as an Hermitian form on T, 5, because the
tangent space of by, a,(z,)) 8t 2o is contained in H,, by (1.8) and

r11{z0)} .- T1a(z0)}
(011“-:01’&) , : =0

realso) .. T‘n,n.(zu)

holds for any tangent vector o = (&,...,a,) of bizo,80(50)) 8t 2o. In fact, for any & and +
(L<k<n,1<+<d), we have

> P20, Bp(z0)) 7 plz0)

1<jsn
= Z P (20, 8p(25)) {3;0u0(20) — pj(20) B! "ox(z0)}
1<5%n

= Ki(20) — (@1(20)s. . ., aa(20), Bai(20); - - - ) Byd(20)) B! pt(z0)

N v -
= rky(70) ~ (0,...,0,1,0,...,0)"px(zq)

= Kiy(20) — Ky (20} = 0.

The proof of Proposition 4.4 requires many straightforward calculations. We will prove
it in the next section. Here, assuming Proposition 4.4, let us finish the proof of the
decomposition theorem.

PROOF OF THEOREM 4.2: First remark that, since the generalized Levi form Q.,, the
bicharacteristic form B,, and the Levi form L;, of ¢ are all independent of the choice of
holomorphic local coordinates as explained in Remark 2.3, Remark 3.2 and Remark 4.3,
it suffices to prove this theorem in one arbitrarily chosen holomorphic local coordinate
system. Let us choose a system (#,.,.,3,) so that z, is the origin in this system and

that {Z,_ 441 =--- = %, = 0} coincides with § in a neighborhood of 2. For simplicity we
denote Z by z in what follows.
Let

Qo(M)= ¥ (077
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be the generalized Levi form at zp = 0, where each ¢; (0} is given by {2.13) and 7 =
(r,... » Tn+d) satisfies

(4.8) Y Bw(0)r; =0.
1<ien

Let us transform © = (7y, ..., Tn4a) 100 X = (X1,-- -+ Xn<+d) as followe:

(4’9) (Tlll Tﬂ} - (x11 1Xn—d'! L 10)
+ 3 Xacary (PH0,00(0), . PSV(0, B(0D))
1<y<d
{4.10) (Trtises Tatd) = (Xnt1s-+ 00 Xntd)s
that is,
([t 0 \
. 0 0
0 1
o A
(4.11) (TLye ooy Toid) = (X1s---» Xntd) : : 0
pl;dl} . PS‘)
1 0
0
\ o 1/

Note that, since § is assumed to be transversal to by, 8.(s,)). the matrix

21FTV(0,80(0)) ... pi™(0,84(0))

Pi0(0,80(0)) ... 20, 80(0))
is non-singular. Hence the transformation (4.9)-(4.10) or (4.11) is invertibie. Remark also
that the transformation (4.9) is nothing but the decomposition of T5 €, the tangent space
of C® at z3 = (, into the direct sum of T5.5 and the complex tangent space at the origin
of (2,...,t4), the parameter space of by, su(s,)) explained in Remark 1.2.
After this transformation we further transform x = (x1,- .-, Xnt+d) i0t0 o = (71, ..., 0044}
in such a way that

10 ¢1p ... ¢1,2d\

0 1¢n-d1 .- Pn-d24a

(4.12) (x1:-+ -1 Xntd) =(01,.. ., 0n4a) 1 0
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where ¢; = ($;1,....,0j24) (1 £ j € n—d) is a 2d-vector given by

$; = —p;(0) By’
= —(k72(0),. .., %5a(0), Aj1(0), ..., X;2(0) B7?, G=1...,n—d

Then, by a straightforward calculation, we find that Qo(7) is transformed into the form
z 45k TiTk
1<,k n+d
which is defined in the following manner:

gia = 00p(0) = p(0) B 'p4(0) (1< 4k Sn—d),
Ginmdty = Tnmdiyj =0 (1EjSn-d 157= 2d),
Undiyn—dss =0y (17,6 <d),
Crdy,nts = Tapsn_dis =B (LE7.85d),
Iniynts =0y (1 £7,6<d).
Furthermore, using {1.8), we find the constraint (4.8) of Qp(r) is transformed into

{4.13) Y Bip(0)o; =0

1<5S=d

under these transformations (4.11) and (4.12).
Now Proposition 4.4 tells us that, in the coordinate system we are using now, the Levi
form Lo(o) at zp =0 is

Li(c}= Y. (3;8k0(0) ~ p;(0) By *or(0))o ;3¢
1<j,k<n—d

where 0 =(01,...,0,-4) i & tangent vecotr of § at 2z, = 0 satisfying
3 8p(0)g; =0,

1$j<n—d

In fact, in the current coordinate system, the tangent space Ty S of § at 5y = 0 can be
identified with the subspace

{(01,...,00) ETHC™; 0g_g41 =+ - =0, =0}

of ToC* Hence, the Hermitian form

qi1l ' q;.*ﬂ--d 6’1
(al'a“-lﬂn-d) :
T-d1 - Tne-da-d Tnod
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with the constraint (4.13) is exactly the Levi form Lq{s). On the other hand, Lemma 3.4
implies that

Cowdttn-dtl - Tnedilntd

. . = B,.

!
q:1+d.n-d+1 <+ Qutd,ntd
Thus we obtain

Qo(r) = Lo(01,-.-,0n—a}) + Bo(Ondt1,++++Ontd s

which means that Qy is equivalent to the direct sum of By and Lg. O

5. Proof of Proposition 4.4.

Finally, let us prove Proposition 4.4.
PrOOF OF PROPOSITION 4.4: As in the proof of Theorem 4.2, let us choose a holomorphic
local coordinate system (%;,...,%,) on a small neighborhood W of 2o so that 7o is the
origin in this system and that 5§ = {#,_441 = -+ = %, =0} holds in W For the sake of
simplicity, we will denote # by z in what follows,

In this coordinate system, every point w of § N W is represented by w =
{wy,.. . Wneg,0,...,0), and v’ = (wy,...,wp_y4) gives a holomorphic local coordinate
system of 5 around z,. Hence, in this system, the Levi form Ly{o)} of 4 at zo = 0 has the

9%
3. —(0) 7; 5%
1<ihen—d Ow ; Oy
with the constraint
X 0)o; =0
By 171 =0

1<ign=d 1

On the other hand, in this coordinate system the restriction of the Hermitian form Li(o),
given by (4.5)-(4.7), to the subspace Hy N TyS is expressed as follows:

Li{o) = Z (8;010(0) = p;(0) By o (0)) ;34
155, k<n—d

where
PJ(O) = (H:J'l (0)1' -3 de([}), ’\11[0}1 R | ‘\Jd(ﬂ})! J = 11 A | ﬂ's

and

UEHO0T05= {'a-=(ﬂ'l‘]'°".laﬂ"10$"‘$0); z a}ﬁp(o)aj'=0}

1<j<n—d
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Therefore, since both Lo(¢) and L)(o} are independent of the choice of holamorphic local
coordinate systems as stated in Remark 4.3 and Remark 4.5, it suffices for us to prove the
following equalities:

(5.1) &%(U) = 8;8:(0) — p;(0) By " *px(0) for jk=1,...,n—d
b
and
(5.2) %—(0) =89(0) forj=1,...,n—4d.
Fl

The proof of (5.1) and (5.2) will be done in the similar way as in [4]. We divide it into
four steps.

STEP 1: First let us investigate how we can obtain an explicit form of the real analytic
local diffeomorphism g defined by (4.1) and (4.2). Once we find an explicit form of g, we
can easily obtain the one of ¥ according to (4.4).

Let w = (w',0,...,0) be a point in SNW, and let # = (&y,...,0,) denote a point in a set
{8 € C™; |# ~ Bp(0)| < c} where ¢ is a small positive constant. Let (z(; w,#), {(t; w,8))
(t = (ty,...,tz) € C%) be the local expression of the bicharacteristic manifold through
(w, 8} explained in Remark 1.2. Let us define

(5.3) Filt; w',0) = (it w,8) — Bj0(2(t; w,8)) (LZj<n),

(5.4) Fara(t; w',8) = py(2(t; w,8), Bp(z(t; w,8))) (1< <d),
and consider the simultaneous equations
(5.5) ful; W', =0, u=1,...,n+d.

It is obvious that, if (5.5) holds for some ¢t = (¢;,...,t4), then z(t; w, @) belongs to C and
(w, 8} lies on the bicharacteristic manifold of 9R passing through (z{¢; w, 8), dp(z(¢; w, 8))).
In other words, if (5.5) holds for some 1, b, ) is a leaf of the foliation &. Since b is
a real analytic foliation in a neighborhood of 5, = 0, we can expect that for any point
(w',0,...,0) in S near 0 there exists a unique (¢,8) near {0, 80(0)) such that (¢,u', 8)
satisfies the equations (5.5). As a matter of fact, we will show in the next step that the
Jacobian matrix of (f1,..., fusds Fiy-- -, fasd) With respect to @, 8, ¢ and T is non-singular
at (¢, w’,0) ={0,0, &(0)). Hence, by the implicit function theorem, (5.5) can be converted
to the form

(5.6) (¢,8) = (T{w'), O{w'))
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in a neighborhood of (t,w',6) = (0,0,8¢(0)). Remark that T(x’) and ©(w’) are real
analytic in w’ but not necessarily holomorphic in ' Then, by the definition {4.1) and
(4.2} of g, we find that

y(w) - g((w’.(],. .- 10))
= z(T(w'); (v',0,...,0), O(w')).

Thus we obtain the following expression of ¥
(5.7) P(w') = p(z(T(w'); (w',0,...,0), B(w))).

STEP 2: Let us now prove that the equations (5.5) can be converted to {5.6). To do so,
it auffices to show that the following Jacobian matrix J is non-singular at (f.w',8) =
(0,0,80(0)). In what follows the evaluation of some function, say f, at (t,w',8) =
(0,0, 8¢(0})) will be indicated by the symbol f|y.

SR T
Now the following relations are immediate consequences of (1.7).
(5.8) gtii|y=pgﬂ(o,aw(ﬁ)), i=LlL....ny=1,...,4,
(5.9) %ly = —pyn(0.89(0)}), i=1,...,n,y=1,. ..4,
(5.10) gﬂ%h:.,:.s-,,,, j=1,...,mEk=1...,n—d
{(5.11) %ﬂ—aha:[}, j=1,....n, k=1,...,n—d,
(5.12) g—:flr=u=0» jd=1,...,n,
(5.13) %g'l|¢-n=.s~',, jil=1,....n

where 6;) denotes the Kronecker 8. Moreover, since 2(t; w,#)} and ({#: w,8) are holomor-
phic funetions of (2,1, #), we have

Bz; O :

(5‘14) _J=_'J=0? J=11"'1n17=11"'1d1
at, ~ oty
¥z _ B _ _

{5-15) 313;,_5;5;_0‘ j—l,...,ﬂ,k—l,...,ﬂ—d,
8zj 8 . ., _

(5.16) 5‘:—%—0, j,f—l,”.,ﬂ-.
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Using these relations, we can easily calculate each component of J. For example,

Of; .

_a%}’:aj'h J,I=1,...,n

afF‘Y—G .u""l sn+d'I=1"”’n1
Bf_f:|Y = - E 35’5@(0}—‘!'1"

1Sk<n

== 3 3;800(0)7 (0, 8(0))
1<k<n
=—rp{0), j=1,...,m,v=1,...,4d,
8fn
i = 3 it aw(ona"" v

1gj<sn

+ 3 PY0,80(0))0; (D) 5 az,, ¥

1<i.k<n

= 3" Pyi{0: 09(0))p5 (0, 85(0))

15jsn

+ > P0,80(0))85(0, 80(0))8;8e.2(0)

1<5,k<n

=ﬁ'\'5(0)r T,é:l,...,d,
af, _ o)
f +T = X o, 399{0))3,%3&9(0)3%:&

1<i,k<n

= 3 20,8000 7(0,54(0)) 0,8u(0)

1<i.k<n
=a1’5(0)! T!6= l,...,d,

and so on. Thus we find

10 ... 0 —=A11(0) —x1,(0) ... -rcl.;{())\
0 P =11(0) =211(0) ... —A34(0)
: 0 : :
0 .. 01 —kai(0) =2n1{0) .. —Ana(0)
Au0) en(0) .. a4(0)
0 an(0) Au(0) .. Bra(0)

\ aa(® Ba(®) ... B0} /
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Since By is non-degenerate by the assumption, it follows from Lemma 3.4 that the matrix

B11{0) &11(0) .. 0y4(0)
o (0} B11(0) .. Bral0)

ag1(0) Ba1{0) ... Bua(0)

is non-singular. Hence, J is s0, too. Thus we have proved that the equations (5.5) have
a unique solution (¢,8) = {T(w'),&{w')) for each w' in a neighborhood of (¢,w’,8) =
(0,0, 3p(0)).
STEP 3: Before proving (5.1) and (5.2}, let us calculate the first derivatives of T(w’) at the
origin. Besides this we prove some equalities which the first derivatives of O(w’) satisfy at
the origin. They will be used in the calculation of 8y /8w;0®(0). It is a little amazing
that, though we have to calculate the second derivative of i, we need not know the second
derivative of T(w') or ©(w') as we will see in the final step.

First let us consider the derivatives of T(1¢’). By the definition of T{w') and O{w'), we
have

(5.17) Fair(T(w'); ' . B(w')) =0 fory=1,.. ,d.

We differentiate these equalities by t and evaluate at w' = 0, then we find

Z {afn+".r| BTE(D)+3fn+"r| aTE(U)} 3fn-:‘rh.

1<6<d Ots

3fn+.,. afn+1 3'6 }
+Z{3ﬂlaw |aw¢o>

1<i<n
¥=L...,d, k=1,...,n—d.

Now we have already known the derivatives of fu+-, with respect to ¢, f, @ and & at
(t,w' @) = (0,0,30(0)). Using (5.10) and (5.15), we can also easily calculate
{0faty/Owe)(0,0, 3(0)). Thus we obtam

aT, a7,
> Bus(O) gon(0)+ D ags(0) 5o (0) + Ayl 0) =0,

(5.18) 1<6<d 1<8<d
wdo k=1,...,n~d.

Similarly, by differentiating {5.17) by @, we obtain

> Bas(0) oo o0+ aqaw)_ﬂ_tmmw} 0,

(5.19) 1<5<d 1<8<d
7=1,...,d,k=1,...,n—d‘
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5.26 ) B T £ S =1,....d,
( ) &ﬁaﬂ;ly f -+ Hhi=1l.. 0, v=1, d
e
(5'27} atukg’g'h-ﬂ:u, j,!=1,...,ﬂ,k=1,.“,n"d,
Fz; ,
(5.28) aﬂ;a;p =0 =0, ;5 L¥=1,...,n
(5.29) Every second derivative of #; (1 € j < n) containing the

differentiation with respect to £, oy or & (1 < 7 £ d,
l<k<n-—d 1<1<n)is equal to zero.
Using (5.8)(5.16) and (5.24)—(5.29) together, we obtain the following equa.lity:

&F aT.
(5.30) o, ;"w = (0} = 0; Bﬂo+z pL8; aﬁga y +mea 5,‘99 3w
T
+pr}5pakcp-"——+z "’5 &waw
¥ T4
aT., a7,
+ E Py Ps F‘l"&;ﬁt—;"
1.8, 4,0 J *
(u), (¥ Ei&
+ Z Py Ps 35&?’&0 Bwy,
ST R
(¥ aT, oTs
+ Dy " Ps a Byep
T%F 3&1 aw;.
BT o1
+T§v 7 P awk
{ v W aT 3T5
+ 2 {PJ-:'LPV Py )P“"?} ‘*"’aw dwx
T oy
aT., 315
+ Z {PE,'EL)P{J] R )Pm)}awaw Bus
b b
(w) g T
t ZPTTJ}B”(pa % "erJ -r
T

o7, 50, | 80, OT
(n.4) i Lt
Lp (B am}

‘y) m-"-r aey aép BTT }
+~§ i 5"['9{310:' Fur S By

T,
+ZP(#)3ﬂ¢aw Y +Z {Ma“waw S
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fk=1...,n—d.

Applying Euler’s identity to (5.30), and then using p,(0, #2(0)) = 0 (1 £ v < d} and (3.8},
we find

(5.31) 321[) or Z -""‘.1":_&IT

N utints . —

v, 0, - a—0)= 3:‘9&?4‘;)‘”3@&"‘ - By
aT. aT.
+ZT:~—h5w—T+ZlT~,ET

Ty 3T5 aT, 3T5

i

+Zﬂt~_gsawj +Zﬂ1§aw 3‘?-0.!:

BT aT.
+ (my—1) {P'r{.ﬂ ﬁi— + P Wj
,

+ZP§” (aT" P, 25 3T*)

Bw-atﬁ;; Bwﬂmk
~m [ oT, W 58, }
+2 (31.0 aw;, j-awk !
j,k..l,...,n-d.

Here m., denotes the order of the operator P,.

Remark that (5.22) and (5.23) imply the last term 2 Amy—1) {.. } of {(5.31) vanishes.
Moreover, denoting the vector

(3T1 8Ty 37, 31—})
Bor’ " By Buwp’ " B

by we, we have the following equality by (5.20):
we=-pByt fork=1,...,n-d.

Hence we obtain

62
aw-;mk (0) = 8;0c0 + ps* @ + w;*pr + w;Byiny
?

=80k = pi By 'Br = pi By + p; By Bo By 5y
= 0;0up — p; By B for j,k =1...,n—d.

Thus we have proved (5.1).
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Finally let us prove (5.2). It follows from (3.7) and (5.8)-(5.16) that we have
S (0) = Byp(0) + Zoipa 01 520
n 1 _
+ZP a"paw (0) j'_l 4T d-

Since

Z 0, 3(0))ip(0) =

holds for ¥ = 1,...,d by Euler’s identity, we obtain
sy :
E(ﬁ}:@jp(ﬂ} for j=1,...,n-4d,

that is, we have (5.2). This completes the proof of Propasition 4.4.
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