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ABSTRACT

   The thermodynamic theory of gravitational galaxy clustering gives a good description of 

the galaxy distribution for both N-body simulations and observations. However preliminary 

N-body simulations have been examined only for the present epoch. We now investigate how 

fast the distribution of galaxies reaches the state described by the thermodynamic theory 

and examine the dependence on the cosmological density  520 and effects of an initial velocity 

dispersion using single-component N-body simulations. Moreover the thermodynamic theory 

assumes that all the galaxies have the same mass m. We also investigate the effects of mass 

spectra using N-body simulations with two mass components (ml and m2). 

   Our N-body simulations of the single-component models show that homogeneous gravita-

tional clustering in an expanding universe evolves slowly through a series of quasi-equilibrium 

states. This fundamental result, in agreement with previous theory, greatly simplifies the 

description of clustering, especially in the non-linear regime. Detailed comparisons of the 

thermodynamic theory with N-body experiments show that for a given initial distribution 

the rate and degree of relaxation toward the thermodynamic distribution are greater for 

larger values of 520. This rate is modified if there is a large initial peculiar velocity dispersion, 

but the asymptotic state does not depend significantly on it. Initially cold or warm 520 = 1 

models with a Poisson distribution relax very quickly to the thermodynamic form. They 

come into agreement with the theory after the universe expands by a factor of about 1.5. 

The three-dimensional volume and the two-dimensional projected distribution functions also 

agree well with each other. 

   Two-component models show that thermodynamic theory is applicable to two-component 

systems as long as the mass ratio of two components is in the range of m1 : m2 = 1 : 1 , 1 : 10. 

Our analyses show that the massive galaxies provide nuclei for clusters and speed up clustering 

in early stages, but these individual effects disappear and collective interactions dominate in 

late stages. The number Of massive galaxies which are contained in clusters tends to increase 

as the mass ratio becomes larger. We describe the quantitative role that massive galaxies 

play in seeding clusters. The thermodynamic theory does not describe the distribution of 

galaxies for extreme mass ranges of m2/m1 > 15.
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                      1. INTRODUCTION 

   This thesis summarizes the portion of our studies on gravitational clustering of galaxies, 
which is in my charge. These studies are reported by Itoh, Inagaki and Saslaw (1988, 1990). 

   The quantitative description of the distribution of galaxies in the universe and its physical 

understanding are important problems of cosmology. One useful statistic is the two-point 

correlation function, (r). From observations, the two-point correlation function has the 

simple power law form (Totsuji and Kihara 1969; Peebles 1980; Davis and Peebles 1983) 

 (r) = (ro/r)',(1) 

with 7 = 1.77 and ro = 5.4h-1 Mpc (H0 = 100hkms-iMpc-1). This apparent simplicity has 

led many investigators to describe theoretical results and numerical simulations using (r). 

However, (r) contains very limited information. Extending this approach requires finding 

higher-order correlation functions. But this is not particularly effective, since they are difficult 

to calculate, uncertain to compute, and slow to converge. Moreover recent observational 

analyses give a considerable range of y and ro (e.g., de Lapparent, Geller and Huchra 1988), 

and suggest that the two-point correlation function may not have the simple power law form 

of equation (1). 

   Fortunately, there is another easy and more effective statistical approach which is de-

scribed by the probability distribution f (N) for finding N galaxies in a volume of size V 

Though f (N) does not have such a simple form as (r), Saslaw and Hamilton (1984) theoreti-

cally derived a formula for the distribution of galaxies based on gravitational thermodynamics: 

                N(1b)N-1N(1-b)-N(1 f (N) =
Ni[N(1 - b)+Nb]e-(2) 

where N = nV, n is the average number density of galaxies, each having mass m, and b is the 

ratio of gravitational correlation energy, W, to the kinetic energy, K, of the peculiar motions 

of galaxies: 
W

= 2irnGm2f     b=r 
          2K 3T---------J(r)dr.(3) 

                                                0 Here T is the temperature in energy units. 

   Preliminary N-body experiments have been examined for the present epoch, where they 

showed good agreement between equation (2) and the simulated galaxy distribution (Saslaw 
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and Hamilton 1984; Saslaw 1985a). The observed galaxy distribution was subsequently found 

to agree very well with the predictions of equation (2) for a value of b =  0.70±0.05 (Crane and 

Saslaw, 1986). This is the value of b expected from the N-body simulations, and it suggests 

that much of the observed galaxy distribution is produced by gravitational clustering. 

   Although the thermodynamic distribution function gives a good description for both 

observed . and experimental galaxy distributions, it also has some problems. First, the ther-

modynamic distribution function was derived for non-linear asymptotic equilibrium states. 

Neither the universe nor the N-body simulations have reached this state, or are likely to. Yet 

the result applies with high accuracy. Why? A possible explanation (Saslaw 1986) is that the 

system evolves through a series of quasi-equilibrium states, each of which satisfies equation 

(2) but with a value of b that increases slowly with time as clustering spreads to larger and 
larger scales. The time scale for b to change eventually exceeds the Hubble expansion time 

scale, and quasi-equilibrium conditions describe subsequent evolution. Second, the thermo-

dynamic theory assumed that all galaxies have the same mass m. However, real galaxies have 

a range of masses. So it is important to investigate how different mass components affect the 

f (N) statistics such as the form of f (N), the value of b, etc. 

   In this thesis I report the results of a new series of N-body experiments designed to 

explore the time evolution of f (N). Our first purpose is to determine how fast the distribution 

of galaxies reaches the state described by the thermodynamic theory. We find this can occur 

remarkably quickly. We also examine following important aspects of gravitational clustering 

as measured by f (N): 

   1) its dependence on the cosmological density C2o, 

   2) the difference between the three-dimensional f (N) and the two-dimensional projected 

f (N), the latter being more easily related to observations, 

and 

   3) effects of an initial velocity dispersion. 

   To investigate the effects of different mass components, we carried out simulations in 

which there are two mass components with less massive galaxies denoted m1 and the more 

massive galaxies denoted m2. Our main purpose is to examine several aspects of the effects 

of mass spectra on the f (N) statistics: 

—3—



   1) the effects of mass spectra on the agreement with equation (2) and the fitted values 

of b, 

   2) the dependence of fitted values of b on the mass ratio  (ml : m2 = 1 : 1 1 : 5), 

   3) the number of galaxies of each mass contained in clusters 

   4) the distributions for extreme mass ratios; m1 : m2 = 1 : 30 and 1 : 100, 

and 

   5) the transitional behavior of the distributions for intermediate mass ratios; ml : m2 = 

1:8 and 1:15. 

   We describe the N-body simulations in §2: their initial conditions, pictorial features of 

clustering and the evolution of their two-point correlation function. Section 3 describes the 

f (N) statistics and Section 4 describes the evolution of b. Section 5 describes our procedure 

for identifying clusters from simulations and the effects of mass spectra. We examine the 

extreme cases in §6 where the two components have mass ratios m1 : m2 = 1 : 30 and 1 : 100. 

This may help in understanding the distribution of dwarf galaxies. In §7 we discuss our 

conclusions.

                    2. N-BODY SIMULATIONS 

2-1. Initial Conditions 

2-1-1. Single-Componeni Models 

   Many initial conditions are possible, and may be related to conditions imagined in the 

early universe. Since our main aim here is to examine the physics of gravitational clustering, 

we make the system simple in order to make its physical interpretation easier. All 4000 

particles (i.e. galaxies) in each run have the same mass. The initial distribution of galaxies 

is Poisson. We examine several initial velocity distributions. Most cases start cold, with no 

peculiar velocities relative to the Hubble expansion. Some cases start `warm', with an initial 

Gaussian velocity dispersion (v2)1/2 = rHi, where T is the average initial distance between 

particles and Ha is the initial Hubble constant. Other cases start `hot' with (v2)1l2 = 3rHZ. 

   The values of the cosmological density parameters, in the standard Einstein-Friedmann 

models we adopt, are S20 = 1, 0.1, and 0.01 at a/ao = 32 where a is the cosmological expansion 

parameter with initial value ao. 
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2-1-2.  Two-Component Models 

   In order to investigate the effects of mass spectra and directly compare the results with 

the single-component models, we consider simple systems which have only two mass com-

ponents. All 4000 particles are divided into N1 = 3500 less massive galaxies and N2 = 500 

massive ones. We need a large enough number for N2 so that we can calculate f(N) for 

distributions of the massive and less massive galaxies separately. Several mass ratios of the 

less massive (ml) and massive (m2) galaxies are adopted. We set these ratios m1 : m2 = 1 : 1 

(single-component models), 1 : 2, 1 : 3, 1 : 4 and 1 : 5 in order to examine how the mass 

ratio affects the rate of clustering, and m1 : m2 = 1 : 30, 1 : 100 for the extreme cases 

where massive galaxies dominate and determine the dynamics of the systems, and the less 

massive galaxies form a satellite system around the massive ones. We have also inspected 

the cases of intermediate mass ratios, i.e., m1 : m2 = 1 : 8 and 1 : 15. For convenience, even 

if ml : m2 = 1 : 1, we call the N1 particles with mass ml the `less massive' galaxies and the 

N2 particles with m2 as the `massive' galaxies. The initial distribution of galaxies is Poisson 

and the initial velocity dispersion is cold. The value of the cosmological density parameter is 

SZo = 1 for all simulations. 

   The N-body simulations were done on the FACOM VP-200 and VP-400 at the Data 

Processing Center, Kyoto University using the COMOVEV code which was constructed by 

Dr. Sverre Aarseth (Aarseth and Inagaki 1986). This program solves the motion of particles 

in comoving coordinates in an expanding sphere of radius unity. A more detailed explanation 

of the integration method of this code is found in Aarseth (1985). 

2-2. Pictorial Features of Clustering 

2-2-1. Single-Component Models 

   Figure 1 shows, as an example, six projected distributions from an C20 = 1 cold run. The 

first is the initial state, the next three are at values of a/ao = 2.80, 7.86 and 15.62. These 

are all projected views of approximately 2000 galaxies in the same hemisphere, as seen by an 

observer at the center. The last two distributions, at a/ao = 7.86, are projections of this same 

hemisphere but confined first to the nearby galaxies with distances 0 < R < 0.5 and finally 

to distant galaxies with 0.9 < R < 1.0. The maximum comoving radius of the simulation is 

always scaled to R = 1. Clustering becomes noticeable first after one or two expansion time 
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scales, and then becomes non-linear very quickly. 

   All these pictures have interesting voids and filamentary structures formed simply by 

chance connections between different gravitationally clustering regions. It is easy to imagine 

a local observer of these pictures becoming quite enthralled with the view. Whether the view 

has any deeper significance, however, must be determined by objective statistical criteria . 

Any particular view of the universe is unlikely to be a fair example, since it does not embody 

the average properties. 

2-2-2. Two-Component Models 

   Figure 2 shows projected positions of galaxies for  m1 : m2 = 1 : 5 at a/ao = 7.86. At a 

glance, the massive galaxies appear to be concentrated in high density regions (i.e., clusters). 

This implies that these galaxies help seed the clusters and speed up the clustering. Clusters 

can, however, also form without being seeded. Note that the distribution of massive galaxies 

shows large voids and filamentary structures. 

   These impressions, however, are qualitative rather than quantitative. To quantify them, 

we will examine the number and proportion of massive galaxies contained in clusters and the 

rate of the clustering as a function of the mass ratio. A method for identifying clusters from 

the distribution of galaxies, and quantitative results are described in §5. 

2-3. Two-Point Correlation Function 

2-3-1. Single-Component Models 

   The two-point correlation function provides some very useful information about the 

galaxy distribution (e.g., Peebles 1980; Saslaw 1985b). Figure 3 shows (r) for a cold S20 = 1 

example at a/ao = 2.80, 7.86, and 15.62; a cold 5-20 = 0.1 example at a/ao = 2.80, 15.62, and 

31.06; and a cold C20 = 0.01 example at a/ao = 2.80, 15.62, and 31.06. For comparison we 

show a dashed power law of the form r-2, which is the asymptotic thermodynamic prediction 

(Saslaw 1980, 1985b). 

   Figure 4 shows the growth of e(r) for warm initial velocities with 5-20 = 1 (top raw), 

hot Qo = 1 (center raw), and hot Qo = 0.1 (bottom raw). From these figures we can see 

that (r) grows approximately self-similarly for this range of 520. Growth is faster and the 

correlation length scale is larger for higher values of 5-2o. The values of the exponent and the 

scale length increase rapidly at first and then more slowly as the expansion inhibits larger 
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scale structure from forming. It is important to note that the fits to a power law are  only 

approximate, because clustering develops at different rates on different scales. Higher initial 

velocity dispersion, for a given SZo, increase the time needed for substantial correlations to 

form. 

2-3-2. Two-Component Models 

   Figure 5(a) shows correlation functions for all galaxies (eT) in the case mi : m2 = 1 : 

5, a/ao = 1.41 ' 7.86 and Figure 5(b) shows correlation functions of the less massive galaxies 

(ELM) and the massive galaxies (EM). bLM has almost the same amplitude and exponent as 

T. On the other hand, em has larger amplitude than ST in small scales but has similar 

amplitude to ST and SLM in large scales. This implies that the massive galaxies concentrate 

in clusters and is consistent with the pictorial impression. 

   Comparison between Figure 3 and Figure 5(a) shows that it is very difficult to see 

differences in the rate of clustering from the growth rate of the amplitude of e(r) or from its 

exponents. This is because e(r) does not always have a simple power law form through the 

entire range of r, unlike equation (1), and it is hard to determine an amplitude and exponent 

of e(r) with high precision from simulations. As a result, e(r) is not a sensitive unambiguous 

measure for representing the rate of clustering. 

   On the other hand, the f(N) statistics contain much more information about clustering 

than does e(r) [although the set of all correlation functions would contain even more infor-

mation than f(N)1 and the time evolution of the fitted values of b in equation (2) is a very 

sensitive measure and is able to describe the behavior of clustering. We therefore turn to it 

them the next two Sections.

                     3. f(N) STATISTICS 

3-1. Methods of f(N) Statistics 

3-1-1. Three-dimensional Fitting 

   There are two parameters, N and b, in the thermodynamic gravitational distribution 

of equation (2). Since these can be determined directly for the N-body simulation, the 

theory has no free parameters. To examine the degree of agreement between the theory from 

which equation (2) follows and the numerical experiments, we determine first how well the 
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experimental  f(N) fits equation (2) by using b as a free-fitting parameter, and second how 

well the resulting value of bfit agrees with the value bab initio calculated for the simulation 

from first principles. To calculate bab initio we sum the gravitational forces between particles 

and subtract the mean field, taking the effect of the softening parameter into account (see 

Saslaw and Hamilton 1984). The thermal contribution to bab initio follows by simply summing 

the squared peculiar velocities (with respect to the Hubble expansion) of the particles. The 

value of Ti is also determined directly from the sample volume of the experiment, as described 

in Appendix A. 

   It is important to examine the fits to f(N) over the complete range of N, from the voids 

with N = 0 to very large volumes with N : 100. Each value of N emphasizes a different scale 

of the distribution. There are distributions that agree with observations or experiments for 

some values of N, but not for the entire range and these differences can be quite important. 

To examine the whole range, it is convenient to use two representations of f(N). One is to 

fix N and to consider it as a function of V We denote this by fN(V). The other is to fix V 

and to consider it as a function of N. We call this fv(N). Since N = TV we can also express 

this first representation as fN(N). The two forms have the normalizations 

                f00        fN77)dW=1(4) 

                              and 
                                                      00 

~fv(N)=1.(5) 
N=0 

From the positions of the particles in an N-body simulation, we compute its fN(V) and 

fv(N) as follows. The radius of the boundary of the simulation in comoving coordinates 

is unity. First we generate 9500 spatial points randomly a sphere of radius R = 0.8 from 

the center of the system. To compute fN(V) we only use the points with R < 0.6 to avoid 

boundary effects. We then measure the distances from the randomly generated points to the 

first, second, third, etc. nearest particles. The set of distances to the (N+1)-th particle gives 

fN(V) for spherical volumes. Previous analyses (Saslaw 1985a) showed f(N) to be essentially 

independent of the shape of the volume, so long as it is not pathological. 

   To compute MN) (N) we count the numbers of particles contained in spheres of radii 

r = 0.1, 0.2, 0.3 and 0.4 centered on the randomly generated points. When computing 
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 fv(N) for spheres of radii r = 0.1, 0.2, 0.3, and 0.4, respectively, we use points within the 

radius R= 0.8, 0.7, 0.6, and 0.6 from the center of the system. This maximum radius is 0.6 

for r = 0.4 in order to include sufficient particles for a reasonably smooth fit. 

3-1-2. Two-dimensional Fitting 

   Using simulations we also constructed two-dimensional f(N) distributions by projecting 

the spatial distribution onto the celestial sphere of an observer at the center. This is useful 

for comparison with the observed galaxy distribution on our sky in the Zwicky catalogue for 

which bfit = 0.70 f 0.05 (Crane and Saslaw 1986). For our two-dimensional analysis we first 

generated 4000 spatial points randomly on a sphere. Next we projected the particles onto 

the sphere, giving the view from the center. Then we measured the angles from the random 

spatial points to the first, second, third, etc. nearest projected particle position on the sphere. 

With a procedure similar to that for determining fN(V) we can calculate fN(0) as a function 

of the separation angle 0. To calculate fe(N) we count the number of particles projected into 

circles of radii 0 = 0.1, 0.2, 0.3 and 0.4 rad centered on the randomly generated points. 

3-2. Fitting to the Thermodynamic f(N) 

3-2-1. Single-Component Models 

   Figure 6 shows the evolving three-dimensional f(N) distributions for simulations with 

C20 = 1 and cold initial velocities at three epochs: a/ao = 2.80 when relaxation to the ther-

modynamic distribution is already significant; a/ao = 7.86, approximately the present epoch 

as judged by the slope and amplitude of the two-point correlation function (See Appendix 

B for estimates of the present epoch); and a/ao = 15.6, about twice the present epoch. The 

dashed curves are best least-square fits to equation (2) using b as a fitting parameter. The 

fits to the thermodynamic distribution are very good. Fits to simulations with C2o = 0.1 and 

C20 = 0.01 are of similar or even better quality. 

   Figure 7 shows two-dimensional fitting, fN(0) and fe(N) for the simulations with S2o = 1 

initially cold simulations at the present epoch a/ao = 7.86. Projection smooths out some 

of the local irregularities and the agreement, particularly of fe(N), with equation (2) is 

remarkable. Agreement at the other epochs is just as good.
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 3-2-2. Two-Component Models 

   Figure 8 shows three-dimensional fitting for m1 : m2 = 1 : 5 at a/ao = 7.86. The dashed 

curves are best fits to the solid experimental curves or histograms. Agreement between 

experimental and theoretical f (N) is very good and the fitted values of b are almost the same 

as for the single-component models. At least in the range of mass ratio, m1 : m2 = 1 : 1 ti 

1 : 5, the mass spectrum does not affect the form of f(N) expected from the gravitational 

thermodynamic theory and does not change the fitted values of b significantly. These results 

indicate that the thermodynamic f(N) represents the distribution of particles accurately for 

multi-mass systems even though the thermodynamic theory of Saslaw and Hamilton (1984) 

assumes single-mass systems. 

   We also calculated f(N) for each of the two mass components separately and fitted them 

to the thermodynamic f(N). Figure 9 shows fN(V) and 1v(N) of the less massive galaxies 

for m1 : m2 = 1 : 5 at a/ao = 7.86. Fitted values of b have slightly smaller values than those 

for all galaxies but the overall characteristics of the distributions are the same as those for 

all the galaxies. This is because the less massive galaxies are the dominant component: The 

mass of the less massive galaxies is about 60% of the total mass of galaxies for m1 : m2 = 1 : 5 

and their number is 88% of the total number. 

   Figure 10 shows the results for just the massive galaxies for mi : m2 = 1 : 5 at a/ao = 

7.86. Although the fitted values of b are much smaller than those for the less massive galaxies, 

agreement between the theoretical and experimental distributions is very good. The reason 

why the fitted values of b for the massive galaxies are small is as follows: 

   Saslaw (1989) derived the relation between b for the whole system and b' for the distri-

bution of particles selected randomly from the whole system by using the generating function 

of AN), 
                 1 _ 1 — (1 — p)(2 — b)b(6) 

(1—b')2 (1— b)2 

Here p is the probability that a galaxy is selected at random, in our case p = N2/N = 0.125. 

For example, if b = 0.8 and p = 0.125, b' is expected to be 0.5. The case of m1 : m2 = 1 : 1 

corresponds to this random selection and fitted values of b for the selected "massive" galaxies 

agree with the expected values of b' in equation (6) very well (see next Section, Figure 15(a)). 

For the other cases, however, the selection of the massive galaxies is biased by their own 
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masses. The values of b for the massive galaxies have slightly larger values than ones for a 

random selection because the massive galaxies are more clustered as discussed in  §2. 

   From equation (6), we can also understand why the fitted values of bLM for the less 

massive galaxies are smaller than bT. If p = N1/N = 0.875, equation (6) gives b' a slightly 

smaller value than b. For instance, b' = 0.787 when b = 0.8 and p = 0.875. We next consider 

the details of how bM and bLM are affected by differential clustering as the system evolves. 

                      4. EVOLUTION OF b 

4-1. Dependence on SZo 

   The most important property which determines the evolution of b from any particu-

lar initial state is the rate of expansion of the universe. This decides the maximum scale 

that gravitational clustering reaches before the expansion effectively ̀ freezes' development 

on larger scales with longer relaxation times. Section 3 showed that on the scales which 

are relaxed, the gravitational thermodynamic distribution of equation (2) is well satisfied. 

Therefore we fit equation (2) to the evolving simulation at intervals, to find how the best-fit 

value of b evolves with time, for both the three-dimensional and the projected distributions. 

We also calculate bab initio at these times for comparison. The range of values at any given 

time for the values N = 0, 1, 2, 3, 4 and r = 0.1, 0.2, 0.3 and 0.4, all weighted equally for 

each realization, give the standard deviation indicated by the error bars. 

   Figure 11 shows the time evolution of all three values of b for initially cold SZo = 1.0, 

0.1 and 0.01 single-component models. The two- and three-dimensional fits are made at the 

same time, but offset slightly in the graphs for clarity. Evidently in the case with most rapid 

clustering, SZo = 1, the fitted and ab initio values of b become nearly identical after about 

1.5 initial expansion time scales. In the less relaxed SZo = 0.1 and 0.01 cases they differ 

substantially. However, in all cases the two- and three-dimensional values of bfit agree within 

0.05. 

   Although relaxation has not progressed sufficiently to bring bab initioand bfit at all close 

to agreement in the SZo = 0.01 models, the individual fits to equation (2) are even better 

than for SZo = 1.0; indeed they are almost perfect. The large values of bab initio for low SZo 

occur because the kinetic energy of peculiar velocities is low in these cases. Being relatively 

— 11 —



unclustered, the velocities are dominated by the adiabatic cooling of the expansion of the 

universe. This is shown in Figure 12 which plots the evolution of W and K for the three 

values of  520. Figures 13(a) show that three-dimensional peculiar velocity distributions of 

the initially cold 520 = 1 models at a/a0 = 2.80 and 7.86, and the flo = 0.1 and 0.01 

models both at a/ao = 31.06. A Maxwell-Boltzmann distribution with the same dispersion 

is shown for comparison. In lower density universes the velocity dispersion is smaller and the 

most probable velocity is less. Figures 13(b) show the distributions of the radial velocities. 

Comparison with the Gaussian distribution having the same velocity dispersion shows that 

low-velocity particles are more abundant in the evolved distribution than they would be in a 

Gaussian distribution. 

4-2. Effects of Initial Velocity Dispersion 

   The role of different initial states is also of great interest in gravitational clustering. 

Here we report what happens if the initial velocity dispersion is increased. Initial conditions 

which start warm, with a Gaussian velocity distribution having (v2)1/2 = TH1, where r is the 

average distance between particles, evolve very similarly to the cold models of Figure 11. In 

the warm 520 = 1 models there is even better agreement between the 2 and 3-dimensional 

value of bfit, and both agree with bab initio• The warm 520 = 0.1 models are not significantly 

different from the cold ones. 

   Hot initial conditions (v2)1/2 = 3rHi, for no = 1 lead to the evolution shown in Figure 

14. By comparison with Figure 11, the hot initial state leads to slower relaxation, larger 

dispersion in the values of b, and lower average values of b at the same expansion factor. 

Eventually, however, the excess peculiar motions die away and the system relaxes strongly 

to the same quasi-equilibrium state as the cold 520 = 1 model. The hot model must expand 

about twice as much as the cold model to reach this state. It is a feature of the hot cases 

that the kinetic energy decreases as a function of time. 

   For the hot 520 = 0.1 case, the time evolution of b is shown in Figure 14. Unlike the 

cold or warm cases, bfit saturates at about bfit = 0.5 and the dispersion of bfit is quite large. 

The reason for this saturation is that clustering is weak at early times because the velocity 

dispersion is large, and subsequent clustering is suppressed by the rapid expansion of the 

universe. 
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4-3. Effects of Different Mass Components 

   Figure 15 shows the time evolution of the three-dimensional averaged fitted values of b 

for m1 :  m2 = 1 : 1 ti 1 : 5. Error bars give the standard deviations over the ten values of N 

and r Values of bT are linked by a spline-interpolation and are indicated by a solid curve . 

The values of b' given by equation (6) using interpolated values are shown by dashed curves: 

the upper curve for p = 0.875 and lower one for p = 0.125. From Figure 15(a), fitted values of 

bLM and bM for mi : m2 = 1 : 1 (corresponding to random selection) agree with the expected 

values of b' from equation (6) very well. However, bM for ml : m2 # 1 : 1 is much larger than 

the values for random selection, and its deviation from the dashed random selection curve 

becomes larger as the mass ratio becomes larger (Figure 15(b)N(e)). This shows that the 

massive galaxies cluster more rapidly and form the nuclei around which less massive galaxies 

cluster. 

   For m1 : m2 = 1 : 1, there are slight differences between bM and b' at a/ao = 2.0 and 

a/ao > 10. The reason for this is as follows: At the start, the positions of the galaxies are 

generated by the random number generator, however, the perfect random number generator 

does not exist. So there are some deviations from a Poisson distribution in the initial distri-

bution, especially in the distribution of the relatively fewer massive galaxies. This deviation 

disappears rapidly due to the mixing processes of clustering and b1— b' 0 for a/ao = 3 ti 10. 

In the later stages when a/ao > 10, it is likely that a large fraction of the `massive' galaxies 

are contained in the clusters or in the fields, so their selection will not be random. The values 

of bLM for ml : m2 = 1 : 1 in Figure 15(a) also agree with b' derived from equation (6). The 

departures of bM and bLM from the values of equation (6) therefore represent gravitational 

biasing of the sample. 

   In order to examine how different mass components modify the clustering, Figure 16 

shows the evolution of bi — b' where bi is an averaged fitted value of b for the massive galaxies 

in Figure 16(a) and for the less massive galaxies in Figure 16(b). The subscript i represents 

a mass ratio i - m2/mi. Since the initial distribution is Poisson, bi = 0 for i = 1 ti 5 

when a/ao = 1 (f (N) in equation (2) with b = 0 gives the Poisson distribution). From 

Figure 16(a), as clustering proceeds, differences between bi and b' for the massive galaxies 

grow rapidly until a/ao N 6 and have larger values for larger mass ratios. However, these 
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differences become small in the late stages of clustering for all cases. 

   This implies that in the early stages the massive galaxies speed up the clustering, but 

in late stages the distinction between different masses diminishes. In other words, although 

the mass of an individual galaxy is important at early stages, collective effects become more 

important at late stages and the effects of the mass spectrum are substantially reduced. 

   From Figure 16(b), the fitted values of  bi for the less massive galaxies are slightly smaller 

than b' in equation (6) with p = 0.875. Especially the difference bi -b' for a/ao < 3 is larger 

as the mass ratio is larger. This indicates that the less massive galaxies cluster more slowly 

than the massive ones during this stage. However, bi - b' approaches zero quickly in the 

late stages of clustering, and bi converges to the value for random selection after a/ao ti 3. 

This shows that the less massive galaxies are gathered together by the gravity of the more 

clustered massive galaxies and their subsequent clustering does not depend strongly on their 

smaller mass. 

4-3. On Individual and Collective Interactions 

    Peculiar velocities may arise from interactions between individual galaxies, as well as 

from collective interactions between a galaxy and a cluster. The transition from individual 

interactions to collective effects in clustering can be seen from the time evolution of the 

velocity dispersions of the less massive and more massive galaxies in the two-component 

models. Figure 17 shows the time evolution of T2/T1, where I is the temperature of j-th 

component of galaxies in energy units defined by 

N~ 

              =3Ni 2E vk'= 1, 2(7) 
k=1 

with Ni and m; the number and the mass of j-th component, respectively. If individual 

interactions dominate, the velocity distribution tends to relax toward a state of equipartition 

in which galaxies of different masses all have the same temperature, i.e., (v2) oc m-1 If 

collective interactions dominate, the relaxation is towards a state where all mass components 

have the same velocity dispersion (e.g., Saslaw 1985b), i.e., Ti oc m; . In the early stages, 

the more massive galaxies cluster more rapidly and their velocity dispersion increases faster 

than the less massive galaxies, so the ratio of temperatures has a larger value than the ratio 

of masses. Next, the less massive galaxies cluster around the massive ones. Consequently 

- 14 -



the less massive galaxies increase their velocity dispersion and the ratio of the temperatures 

begins to decrease. However, the ratio of the temperatures does not continue to decrease but 

converges to the value of the mass ratio . Thus equipartition is not established. Instead the 

two components of galaxies acquire the same velocity dispersions . This indicates that the 

collective effects dominate the later stages of clustering .

                5. IDENTIFICATION OF CLUSTERS 

    As described in §2, the massive galaxies in the two-component models seem to be pref-

erentially concentrated in high density clusters. To make this impression quantitative , we 

identify clusters in the simulations using the following procedure: 

   1) Calculate the local density at the i-th galaxy which is defined from j neighboring 

galaxies around the i-th galaxy (Casertano and Hut 1985) 

 j-1 

 771i  +Emk+mj/2 
(i) —  k=1  Pj V(r2i 

where mk is the mass of the k-th neighbor of the i-th galaxy and V(r1) is the volume of the 

sphere with radius rij , which is the distance between the i-th galaxy and the j-th galaxy. 

We adopt j = 6, because this number assures the small fluctuation and the localness of the 

density (Casertano and Hut 1985). 

   2) In order to search for galaxies in high density regions, first select one galaxy which has 

a high local density and regard its neighboring j galaxies as members of galaxies contained 

in a high density region. The criterion for `high' local density is 

                             pi(i) > ap 

where a is numerical factor and To is the average mass density of galaxies. Next select galaxies 

from members which satisfy the criterion of ̀ high' local density and regard their neighboring 

j galaxies as new members. Repeat this procedure until new members do not appear. 

   3) Obtain groups of galaxies which are contained in high density regions by continuing 

the procedure 2) until there is no galaxy which satisfies the criterion of high local density. 

   4) Identify those groups containing more than 10 galaxies as clusters. 
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   The number and population of clusters vary with the value of a. However, since our 

purpose is to investigate the dependence of the number of galaxies of each mass contained in 

clusters, we have no interest in determining the most adequate value of a to define clusters. 

Here we take a = 5 x 102, because the clusters identified with this value look reasonable. 

   Figure 18 shows the distribution of galaxies projected on the x-y plane and the clusters 

identified for m1 :  m2 = 1 : 1 at a/ao = 7.86. Figure 19 shows the magnified features of one 

of the clusters and its surrounding galaxies. Figure 19 indicates the central concentration and 

filamentary structures of galaxies clearly. The ratios of the number of less massive and massive 

galaxies which are contained in the identified clusters (N11n and N21n) to the total number of 

them (N1 and N2) are listed in Table 1. From Table 1, N21n/N2 becomes larger than N1in/N1 

as the mass ratio (m2/m1) increases. This indicates that there is a higher probability that 

the massive galaxies are found in clusters (high density regions) and supports the impression 

of §2 that the massive galaxies are concentrated in clusters and speed up the clustering as 

seeds of the clusters. 

   From observations, the cluster-cluster correlation function of rich, though not of poor, 

clusters appears to have a larger amplitude than the galaxy-galaxy correlation function (e.g., 

Bahcall and Soneira 1983; Postman, Geller and Huchra 1986). Recently Coleman and Saslaw 

(1989) examined the f (N) statistics for Abell clusters and found that their fitted value of b 

is about 0.3 ± 0.1. It would be very interesting to compare these observational results with 

the distribution of clusters in N-body simulations. Unfortunately the number of identified 

clusters in our simulations is too small to determine accurate statistical quantities from these 

simulations.

          6. EVOLUTION OF THE SATELLITE SYSTEMS 

   In §3, the thermodynamic f (N) was found to describe multi-mass systems with mass 

ratio m2/m1 < 5. This leads us to ask how well it may apply in extreme cases such as 

mi : m2 = 1 : 30 or 1 : 100. Figure 20 shows the projected positions for the case m1 : 

m2 = 1 : 100 at a/ao = 7.86. Its features are very different from those of Figure 2. Here 

the massive galaxies concentrate to form the compact cores of clusters with a great number 

of less massive galaxies gathered around them as satellite systems. These differences from 
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the less extreme mass ratio cases show up quantitatively in both the two-point correlation 

function and the  f(N) statistics. 

   The two-point correlation functions ST for all galaxies are shown in Figure 21(a). They 

have larger amplitudes at large scales than ST for ml : m2 = 1 : 5, but at small scales, T has 
a rather smaller amplitude. Figure 21(b) shows two-point correlation functions for the less 

massive and massive galaxies. 64 has a power law form. However eLM bends at CLM ti 10 

and departs from a power law. The less massive galaxies are only several percent of the 

total mass and their mutual gravity is negligible. Therefore they cannot agglomerate by their 

self-gravity and CLM does not grow on small scales. This is also why CT has a small amplitude 

on small scales. 

   Figures 22, 23 and 24 show the resulting f(N) statistics for the total, less massive and 

massive galaxies, respectively. The agreement between theoretical and experimental f(N) 

distributions is not so good. In particular, the deviation from the thermodynamic distribution 

of fv(N) for r = 0.3 and r = 0.4 is very large and there are remarkable peaks of fv(N) at 

N ti 70 for r = 0.3 for the total and less massive galaxies, and at N , 120 for r = 0.4. The 

massive galaxies have peaks at N ti 10 for r = 0.3 and at N N 15 for r = 0.4. From Figure 

20, there exist large clusters with these sizes and numbers of members. The typical size of 

clusters agrees with sampling volumes whose radius is r = 0.3 or 0.4. Thus these peaks in 

fv(N) indicate the typical number of galaxies which are contained in the sampling volumes 

with r = 0.3 or 0.4. Similar features are also found in the case of ml : m2 = 1 : 30. 

   The basic reason why the thermodynamic distribution function does not closely repro-

duce the form of the experimental f(N) for these extreme cases is because the number of 

galaxies in the sample volumes is not an accurate measure of the mass in the volume. So the 

assumption in the thermodynamic theory that mass is proportional to number is no longer 

correct for these cases. However f(N) statistics are still useful for making the more complex 

structure of galaxy clustering evident in comparison with the thermodynamic f (N). Thus the 

thermodynamic function of equation (2) can play the role of a fiducial distribution function 

even for these extreme cases. 

   It is interesting to ask at what value of m2/ml the thermodynamic description of galaxy 

clustering breaks down. To examine the behavior of the clustering with intermediate mass 
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ratios, we did two further simulations with m1 :  m2 = 1 : 8 and 1 : 15 . Since for the case of 

m1 : m2 = 1 : 8 the two components have almost the same total mass , it might be expected 

to give a marginal mass ratio which determines whether the thermodynamic distribution 

function can describe the experimental galaxy distribution. However, there is no obvious 

difference between the thermodynamic and experimental f(N) distributions. On the other 

hand, the small peaks which deviate from the thermodynamic f(N) are seen in the case of 

m1 : m2 = 1 : 15. Therefore we can safely conclude that the thermodynamic theory is not 

applicable to the cases of m2/ml > 15.

                        7. DISCUSSION 

7-1. Single-Component Models 

   The most striking results of these experiments are 1) the rapidity with which the cluster-

ing relaxes to the thermodynamic f(N) distribution and 2) the accuracy of the quasi-static 

approximation in which subsequent evolution occurs through a series of thermodynamic quasi-

equilibrium states. We discuss these two results. 

7-1-1. Relaxation 

   We can discern several measures of the type and degree of relaxation using these N-body 

simulations and the f(N) statistic. The weakest form of relaxation is when the thermody-

namic f (N) distribution describes the simulations for all values of N, but with a value of b 

which depends strongly on N, or on scale length. This would normally indicate that relax-

ation has only occurred among several near neighbors, and not spread to larger scales. We 

would expect this to be the early form of relaxation from initial conditions dominated by 

a Poisson distribution or by any distribution with more power on small scales. The larger 

fluctuations on smaller scales would then have relaxation times that are short relative to the 

global expansion time scale. 

   If there is time and the relaxation spreads to very large scales, then it will be possible 

to fit the thermodynamic f(N) distribution to all values of N with nearly the same value of 

b. Slight variations on larger scales may prevent b from being identical at all levels, but its 

dispersion should be small. 

   A further measure of relaxation, which is particularly informative about anisotropy, 
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is to compare the three-dimensional  f(N) distribution with the projected two-dimensional 

distribution for the same sample. Differences between the two fits and their values of b indicate 

the presence of oriented filamentary or cellular structure, including bubbles and froth . 

   Finally, the strongest degree of relaxation occurs when all these measures agree among 

themselves and with the value of bab initio calculated directly from the positions and peculiar 

velocities of the particles. In this case, all the information available from the f(N) distri-

butions points to the system being in a relaxed quasi-equilibrium state. We call this case 

`strong relaxation' 

   Our N-body simulations show that the degree of relaxation from an initial Poisson state 

depends mainly on the value of 520 and on the initial velocity dispersion. Progress toward 

strong relaxation is most rapid if the initial state is either cold or warm and if 520: 1. Figure 

11 shows that strong relaxation occurs by a/ao : 2.5 in these cases, and it persists for the rest 

of the evolution. The time scale for strong relaxation in cold 520 = 1 models is therefore very 

nearly the same as the expansion time scale. Hot 520 = 1 cases in Figure 14 take about twice 

as long to relax strongly, and the dispersion of the values of b remains greater. Evidently 

the closer the system starts to the quasi-equilibrium state, the faster it relaxes to this state. 

This is opposite to the evolution of a violently relaxing system, and confirms that most of the 

initial relaxation occurs among near neighbors. Less dense universes, with 520 < 0.1 expand 

so rapidly that strong relaxation never occurs, whether they start hot or cold. If, someday, it 

becomes possible to determine bab initio observationally , we will have a useful constraint on 

the value of 520. 

   When the relaxation is weak, for 520 < 1, the fitted value of b is less than its ab initio 

value. Adiabatic cooling dominates the velocities of the weakly clustered galaxies and their 

contribution, growing as 520 decreases, produces this discrepancy. If 520 < 0.1, relaxation is so 

feeble that the asymptotic value of bfit is less than the observed value bobs = 0.70 + 0.05. For 

example, with Sto = 0.01, we find bfit tends toward the value 0.25±0.1 after long times. So this 

may also be used for estimating the actual value of 520i although it is not very sensitive when 

520 > 0.1. Even for low values of 520i the individual fits to the thermodynamic distribution 

function are very good, but the values of b for different volumes vary more than in the case 

of large 520. 
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   Relaxation from an initially nonzero velocity distribution differs from the growth of 

initially cold distributions such as those in Figure 13. In the initially cold distributions , the 

velocities never have a chance to become completely Maxwellian, although a Maxwellian is a 

 reasonable zero-order approximation. 

   The velocity dispersion in the warm and hot models remains Maxwellian until about the 

time the system relaxes strongly. Then cooling of the unclustered galaxy velocities sets in. 

Figure 14 shows how this affects the evolution of b in the case of a hot S2o = 1 model, where 

the velocity distribution starts as a Maxwellian with a large dispersion at a/ao = 1, remains 

Maxwellian with a much reduced dispersion at a/ao = 7.86, when bfit •, bab initio, and becomes 

increasingly skewed and broad until the simulation was stopped at a/ao = 31. The warm 

Q0 = 1 model behaves similarly, and begins to depart from the Maxwellian form at a/ao 2.8. 

The corresponding Q0 = 0.1 models begin to depart from Maxwellian distributions at slightly 

greater expansion factors, consistent with their relatively slower clustering. 

   Differences in the values of bfit for fN(V) and fv(N) (N) are a useful measure of the re-

laxation of different initial velocity distributions. Figure 25 shows these quantities for the 

projected counts in the cold, warm, and hot Q0 = 1 simulations. The differences between 

fN(V) and fv(N) are somewhat larger for the projected counts than for the volume counts. 

The differences also increase as the initial velocity dispersion increases. In all these cases, 

the difference decreases as the universe expands, indicating the tendency toward relaxation. 

These differences also are reflected in the dispersion of each bfit value in Figures 11 and 14. 

Values of b for fN(V) are almost always less than those for fv(N). This tendency is especially 

strong for the hot simulations. The reason is that on small scales the initial energy of peculiar 

motions is larger relative to the gravitational correlation energy and inhibits clustering on 

these small scales. 

   As the value of 52o decreases, the differences between bfit for fN(V) and fv(N) become 

larger for a given initial velocity dispersion, compared with the differences for the SZo = 1 

cases. The observed values of bfit for fN(V) and fv(N) are therefore inconsistent with various 

combinations of initial velocity dispersions and values of Q0 in these models. In particular, the 

cases of hot 520 = 1, hot Q0 = 0.1, cold SZo = 0.01, warm S20 = 0.01 and hot 520 = 0.01 cannot 

represent the observations. Cold 520 = 1, warm 520 = 1, cold S20 = 0.1 and (marginally) warm 
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SZo  = 0.1 models do agree with the observed range of  bfit. 

7-1-2. Quasi-equilibrium Evolution 

   Perhaps the most remarkable feature of these simulations is that, after a short relaxation 

period, they subsequently evolve through a series of quasi-equilibrium states. It is well known 

that gravitating systems have no rigorous `equilibrium' state because an 'equilibrium' state 

should mean bab initio = bfit and no evolution. However it does not seem to have been appre-

ciated that the evolution of gravitational galaxy clustering may occur through a sequence of 
`quasi-equilibrium' states . A 'quasi-equilibrium' state is one which satisfies equation (2) with 

a value of b < 1 and in which bab initio may differ from bfit. In this state the clustering hier-

archy has not grown to encompass all scales. Quasi-equilibrium evolution was hypothesized 

previously (Saslaw and Hamilton 1984; Saslaw 1985a,1986), and our present simulations pro-

vide the first strong evidence for it. The evidence is of two types. The first is the previously 

discussed goodness of fit to the thermodynamic distribution at any stage of the evolution 

after the initial relaxation. The second, which we take up now, is the time evolution of b. 

   In the cold models, for all three values of 520, Figure 11 shows that the value of b(t) 

increases rapidly, about as fast as the expansion time scale, until a/ao 5. Subsequently 

b(t) evolves more slowly, on a time scale longer than the expansion time scale. It appears to 

tend toward an asymptotic limit when the expansion factor a/ao is large. By the time that 

a/ao = 15.6 in the most relaxed (520 = 1) model, the value of bab initio = 0.82, the correlation 

energy is still growing slowly as 0.2, and the kinetic peculiar energy increases as t0.15 

    The qualitative form of bab initio(t) agrees with what one expects from the cosmic energy 

equation (Saslaw 1986). If the expansion factor a a t" and the correlation energy W a t9, 

then the asymptotic value of bab initio = (s + 2a)/2(s + a). With a = 2/3 and s = 0.2, this 

gives bab initio = 0.88, showing that the system has not completely relaxed at a/ao = 15.6. It 

may also be the case that s will decrease further at longer times (which we have not computed 

yet), and the asymptotic value of bab initio will be unity. The simulations with smaller 520i 

computed for longer times, show this effect. After long times, for each 520i the growth of 

correlation energy is much slower than either the linear approximation or the self-similar 

solution suggest. This is because the system has relaxed and no longer evolves strongly on 

the small scales which contain most of the correlation energy. On large scales, particularly 
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in the low  C20 models, subsequent evolution is prevented by the expansion, and so the state 

of clustering is `frozen' 

   Models that are initially warm and hot, naturally behave quite differently. Instead 

of increasing, their kinetic energy starts to decrease due to the adiabatic expansion of the 

universe. The decrease continues until heating by clustering balances the adiabatic cooling. 

Then the kinetic energy increases again. The smaller S20 is, and the hotter the system starts, 

the longer it cools. During this cooling phase, the dispersion of the values of bfit is greater 

than for the initially cold models, indicating that the evolution is farther from equilibrium. 

Eventually the S20 = 1 and C20 = 0.1 models seem to reach approximately the same relaxed 

state, independent of their initial thermal energy. Expansion of the universe combines with 

gravitational clustering to remove the memory of most initial states of the system. After 

this occurs, the thermodynamic theory gives a very good fit to the f(N) distribution of the 

simulations. 

   The basic physical assumptions of the thermodynamic theory are that the system is 

statistically homogeneous and that b is independent of scale. This assumptions are best 

satisfied in the initially cold or warm models with S2o larger than about 0.1 which relax most 

rapidly and completely. These are also the models which best fit the theory. 

7-2. Two-Component Models 

    From the two-component models, we obtain following conclusions: 

   1) The thermodynamic distribution function f(N) agrees well with the experimental 

distribution for multi-mass systems as long as the mass ratio of the two components is in 

the range of m1 : m2 = 1 : 1 ti 1 : 10. The existence of such mass spectra does not require 

modification of the form of f(N) in equation (2) and does not change the fitted value of 

b significantly even though thermodynamic theory assumes that all galaxies have the same 

mass. 

   2) In the range of these mass ratios, the f(N) statistic applies to each mass component 

separately. The fitted values of b for the massive galaxies are larger than those expected 

from random sampling, indicating differential clustering. Furthermore the time evolution of 

b and also of the temperature ratio T2/T1 of the two components indicates that two-body 

interactions are important only at early stages of clustering and collective effects dominate 
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the late stages of clustering. 

   3) The number of massive galaxies which are contained in clusters tends to increase as 

the mass ratio becomes larger; these massive galaxies play the role of seeds of clusters. 

   It might seem strange that although many massive galaxies concentrate in clusters even 

in late stages, the fitted values of b for the massive galaxies are very close to b' for random 

selection. This is because the radii of volumes sampled for fv(N) is much larger than the radii 

of the clusters (see Figure 18) and the irregularities of distributions of the massive galaxies are 

smoothed. Moreover the fN(V) representation is not very sensitive to small scale structures 

because the main portion of this function generally occurs for r  > 0.1 (V = 47rr3/3), a scale 

much larger than the typical size of clusters. 

   It is therefore very interesting to ask whether small sample volumes can reveal the small 

scale structures. To explore this, we extended the small scale analyses to very small sampling 

volumes with radii r = 0.01 ti 0.08. The values of bi(r) — b' (r) for massive galaxies in the 

complete sample range 0.01 < r < 0.4 are shown in Figure 26. Here bi(r) is the fitted value 

of b for the sampling volumes of radius r and b'(r) is the expected value from equation (6) 

regarding the fitted value of bi(r) for all the galaxies as b. From Figure 26(a), bi(r) — b'(r) 

at a/ao = 7.86 has larger values for scales of r < 0.2 as the mass ratio become larger. 

This shows that the massive galaxies are more clustered at this stage as shown in Figure 

16(a). From Figure 26(b), however, the differences between bi(r) and b'(r) for r > 0.1 at 

a/ao = 15.62 become smaller, although the differences for the small scales do indeed become 

larger. This indicates that the massive galaxies concentrate in the clusters and give larger 

values to bi(r) on small scales. On the large scales, the large sampling volumes smooth small 

scale structures and the collective effects which do not significantly influence small scale 

structures are important. Therefore, bi(r) — b'(r) decreases as the radius r become larger. 

Thus we conclude that the fv(N) representation is especially useful for describing small scale 

structure. 

   4) The thermodynamic theory is not applicable to extreme cases of m2/ml > 15. How-

ever, f(N) statistics can still reveal the structure of galaxy clustering by using the thermo-

dynamic distribution function as a standard of comparison.
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7-3. Observational implications 

   Although we have simulated models with relatively simple initial conditions, it seems 

possible to draw some tentative observational conclusions from them. When the simulations 

are scaled to a radius of about 40 Mpc, the average nearest neighbor distance is several 

megaparsecs. This is of the same order as the galaxy separation in the Zwicky Catalog, 

so it is reasonable to compare our results with the observations on this scale. (On larger 

observed scales where relaxation may not have developed as far, the value of b is expected to 

be smaller.) 

   The observations of  f  (N) are consistent with Poisson initial conditions in 1Io > 0.1 single-

component models, but not with the other simulations. For example, in the hot C2o = 1 models 

the velocity dispersion has inhibited relaxation, and the fits for the number and the volume 

distributions give discordant values of b. Other initial conditions may also be quite consistent 

with the observations, especially since most homogeneous but non-Poisson initial states will 

be washed out by the strong gravitational relaxation (Suto, Itoh and Inagaki 1990). 

   The good agreement between observations which involve galaxies with a very wide range 

of masses, and these single-component models suggests that individual galaxy masses are 

fairly unimportant in the clustering process. This is confirmed by two-component models 

which show that most of the relaxation, after near neighbors form the first level of the 

clustering hierarchy, is a collective process. However these models with mass spectrum have 

only two mass components, so we intend to explore the effects of a continuous mass spectrum. 

It may be that collective interactions dominate more rapidly when the mass spectrum is 

continuous, producing somewhat less mass dependence of clustering than in two-component 

systems. This is would be consistent with an observed tendency for dwarf galaxies and bright 

galaxies to have generally similar distributions (Thuan, Gott and Schneider 1987; Binggelli, 

Terenghi and Sandage 1989; Eder, et al. 1989), as well as with the good agreement between 

equation (2) and the overall observed galaxy distribution (Crane and Saslaw 1986). This 

agreement might also imply that the mass range of galaxies is narrower than their luminosity 

range, especially if dark matter is significant (cf. Carignan and Freeman 1988). It is also 

likely that when the statistical f (N) distributions are measured for galaxies of different 

types, they will show enhanced clustering of the more massive types, as predicted by these 
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two-component models. The amount of enhancement will depend on the mass spectrum, 

the initial conditions, and the influence of non-galactic dark matter if it is present in large 

amounts with a non-uniform distribution. 

   Gravitational clustering is probably the simplest explanation of the observed main fea-

tures of the galaxy distribution. Other explanations, such as biased galaxy formation, are 

quite strongly constrained by the observed  f(N) distribution (Saslaw, Antia, and Chitre 

1987). In such other explanations, the observed distribution is merely a passing scene, rather 

than a state to which matter relaxes.
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                         APPENDIX A. 

                   DETERMINATION OF  n 

   Determination of n is important when we look for the best-fit thermodynamic distri-

bution. Though we should define n as the average number density averaged over the entire 

system, fluctuations will cause this to differ slightly from n in the region actually sampled. 

Therefore to determine n we first give a number j to each spatial point that is generated. If 

the number of the particles inside the sphere of radius r with the center on the j-th point is 

NJ, we define 

        = Ni(Al) E
V' 

for the fitting of fv(N), where V = 4irr3/3. 

   For the fitting of fN(V), equation (Al) does not give an accurate value of n because of 

the different average densities of the regions which are sampled. Therefore we adopted 

          =N(R < 0.6)(A2) 

V for fitting fN(V), where N(R < 0.6) is the number of the particles inside the sphere of radius 

0.6 from the center of the system and V = 4ir0.63/3. 

                         APPENDIX B. 

 DETERMINATION OF THE PRESENT EPOCH IN THE SIMULATIONS 

   To determine the present epoch in the single-component models, we use the amplitude 

of the two-particle correlation function (r). We first assume that 

                  r0(—r               (r) _withy= 1.8 or 2.0(B1) 

                     / and find r0 by a least square fit to the two-particle correlation function obtained from the 

simulations. The radius of the system is 40h-1Mpc according to Aarseth, Gott, and Turner 

(1979), where h is the present Hubble constant in the unit of 100hkms-1Mpc-1 

   Values of r0 obtained from observations are not known very accurately: r0 = 4.23 + 

0.26h-1Mpc according to Peebles (1980) and r0 = 5.4 + 0.3h-1Mpc according to Davis and 

Peebles (1983). Moreover the values of r0 determined from the simulations depend on the 

range of the fitting, since the correlation functions are only approximately power laws. Thus 
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there are some ambiguities in the determination of the present epoch from the simulations. 

The range of values of a compatible with the present epoch are 

              a/ao = 5.6 7.9(B2) 

for  C2o = 1, 

              a/ao = 16 ti 31(B3) 

for S2o = 0.1. We could not determine the values of a/ao at the present epoch for C2o = 0.01 

because the two-particle correlation functions obtained in the simulations are quite different 

from the observed one. 

   Two-dimensional fitted values of b for these epochs are 

                  bfit = 0.58 + 0.04 (C2o = 1, a/ao = 5.6) 

                  bfit = 0.67 ± 0.04 (1) = 1, a/ao = 7.9) 

                  bfit = 0.60 ± 0.03 (C2o = 0.1, a/ao = 16) 

                  bfit = 0.62 ± 0.03 (C2o = 0.1, a/ao = 22) 

                  bfit = 0.66 ± 0.02 (S2o = 0.1, a/ao = 31). 

The values of bfit at a/ao = 7.9 for SZo = 1 and at a/ao = 22 and 31 for Qo = 0.1 are consistent 

with the observed value bfit = 0.70 ± 0.05 (Crane and Saslaw 1986).
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   Table 1. The ratio of the number of massive and less massive galaxies which are contained 

in the identified  clusters(Nlin and N2i„) to the total number of them(Ni and N2).

ml :  m2 1:1 1:2 1:3 1:4 1:5

a/ao N1 in N2in 
N1 N2

Nth, N2in 
N1 N2

N1 in N2in 
N1 N2

Nlin N2in 
N1 N2

Nlin N2in 
N1 N2

5.57 3.6% 4.4% 4.0% 7.6% 3.9% 8.2% 5.3% 11.6% 5.6% 

7.86 12.4% 13.8% 11.1% 18.2% 12.3% 21.2% 10.5% 22.8% 12.5% 

11.08 19.5% 20.6% 20.0% 30.6% 18.5% 32.4% 18.7% 41.2% - 

15.62 30.2% 31.8% 25.9% 40.2% 26.1% 47.8% 23.0% 52.2% -

11.2% 

28.4%

 -  31  -



                     FIGURE CAPTIONS 

Figure 1. Six projected distributions from an  S20 = 1 cold run. The first is the initial state, 

   the next three are at values of a/ao = 2.80, 7.86 and 15.62. These are all projected 

   views of approximately 2000 galaxies in the same hemisphere, as seen by an observer 

   at the center. The last two distributions, at a/ao = 7.86, are projections of this same 

  hemisphere but confined first to the nearby galaxies with distances 0 < R < 0.5 and in if 

   to distant galaxies with 0.9 < R < 1.0. The maximum comoving radius of the simulation 

   is always scaled to R = 1. 

Figure 2(a). Projected positions for all the galaxies with ml : m2 = 1 : 5, a/ao = 7.86. (b) 

   Projected positions for the less massive galaxies. (c) Projected positions for the massive 

   galaxies. 

Figure 3. Two-point correlation functions of cold S20 = 1, S2o = 0.1, and Slo = 0.01 simulations 

   at three different expansion epochs a/ao. For comparison we show a dotted power law of 

   the form r-2, which is the asymptotic thermodynamic prediction. 

Figure 4. Two-point correlation functions for warm and hot initial velocities with S20 = 1 

and C20=0.1. 

Figure 5(a). Two-point correlation functions for all the galaxies with m1 : m2 = 1 : 5, 

   a/ao = 1.41 N 7.86. (b) Two-point correlation functions for the less massive and massive 

   galaxies. 

Figure 6. f(N) obtained by simulations for S20 = 1 and cold initial condition at the epoch 

   of a/ao = 2.8, 7.86, and 15.6. The full curves are from the simulation and the dashed 

   curves are the best-fit theoretical thermodynamic distribution with the resulting value of 

   b given in the diagrams. 

Figure 7. The projected distributions fN(8) and fe(N) for cold C20 = 1.0 simulations at 

a/ao = 7.86. The angle 0 is measured in radians. Dashed lines show the best fit to the 

  thermodynamic distribution with the resulting value of b given in the diagrams. 

Figure 8(a). fN(V) for all the galaxies with ml : m2 = 1 : 5, a/ao = 7.86. (b) fv(N) for all 

   the galaxies with m1 : m2 = 1 : 5, a/ao = 7.86. 

Figure 9(a). fN(V) for the less massive galaxies with m1 : m2 = 1 : 5, a/a0 = 7.86. (b) 

  fv(N) for the less massive galaxies with m1 : m2 = 1 : 5, a/ao = 7.86. 
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Figure 10(a). fN(V) for the massive galaxies with  ml : m2 = 1 : 5, a/ao = 7.86. (b) fv(N) 

   for the massive galaxies with m1 : m2 = 1 : 5, a/ao = 7.86. 

Figure 11. The time evolution of b. The crosses show bab initio, which is calculated from 

   equation (3). The circles show the best-fit values for three-dimensional fitting and the 

   filled squares show the best-fit values for two-dimensional fitting. These are for the 

   initially cold 520 = 1, 520 = 0.1, and C20 = 0.01 experiments. The error bars show the 

   dispersion of b. 

Figure 12. The time evolution of the gravitational correlation energy W, and the peculiar 

   kinetic energy K for the initially cold cases of S2o = 1, 0.1 and 0.01. 

Figure 13(a). The distribution of three-dimensional peculiar velocity for the initially cold 

   cases with 520 = 1 at the epoch of a/ao = 2.8, 520 = 1 at the epoch of a/a0 = 7.86, 520 = 0.1 

   at the epoch of a/a0 = 31.06 and S2o = 0.01 at the epoch of a/ao = 31.06. Dashed 

   curves are the Maxwell-Boltzmann distributions with the same velocity dispersions as 

   the simulations. (b) The distribution of radial peculiar velocity for the initially cold cases 

   with 520 = 1 at the epoch of a/a0 = 7.86, 520 = 0.1 at a/ao = 31.06 and 5-2o = 0.01 

   at a/a0 = 31.06. Dashed curves are the Gaussian distributions with the same velocity 

   dispersions. 

Figure 14. The time evolution of b for systems with the hot initial condition for the cases 

520=1 and 520=0.1. 

Figure 15(a). Time evolution of b for mi : in = 1 : 1. (b) The same for mi : 7-112 = 1 : 2. 

   (c) The same for m1 : m2 = 1 : 3. (d) The same for m1 : m2 = 1 : 4. (e) The same for 

ml: m2 = 1 : 5. 

Figure 16(a). Time evolution of bi — b' for the massive galaxies, where i - m2/mi. (b) The 

   same for the less massive galaxies. 

Figure 17. Time evolution of T2/771. 

Figure 18. The distribution for galaxies and identified clusters indicated by small circles with 

   m1 : m2 = 1 : 1, a/ao = 7.86. 

Figure 19. The distribution for galaxies of one cluster with m1 : m2 = 1 : 1, a/a0 = 7.86. 

Figure 20(a). Projected positions for all the galaxies with m1 : m2 = 1 : 100, a/ao = 7.86. (b) 

   Projected positions for the less massive galaxies. (c) Projected positions for the massive 
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   galaxies. 

Figure 21(a). Two-point correlation functions for all the galaxies with  m1 : m2 = 1 : 100, 

   a/ao = 1.41 r 7.86. (b) Two-point correlation functions for the less massive and massive 

   galaxies. 

Figure 22(a). fN(V) for all the galaxies with m1 : m2 = 1 : 100, a/ao = 7.86. (b) fv(N) for 

   all the galaxies with m1 : m2 = 1 : 100, a/ao = 7.86. 

Figure 23(a). fN(V) for the less massive galaxies with m1 : m2 = 1 : 100, a/ao = 7.86. (b) 

   fv(N) for the less massive galaxies with m1 : m2 = 1 : 100, a/ao = 7.86. 

Figure 24(a). fN(V) for the massive galaxies with m1 : m2 = 1 : 100, a/ao = 7.86. (b) 

   fv(N) for the massive galaxies with m1 : m2 = 1 : 100, a/ao = 7.86. 

Figure 25. Values of bfit for fN(V) and fv(N) for projected distributions in cold, warm, and 

   hot 52o = 1 simulations. 

Figure 26(a). The scale dependence of ba(r) - b'(r) for the massive galaxies at a/ao = 7.86. 

   (b) The same at a/ao = 15.62.
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