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Synopsis 

     Surface structure of polyethylene crystals is examined by 

small-angle X-ray scattering (SAXS) Folded chain crystals 

crystallized isothermally and extended chain crystals annealed 

isothermally showed SAXS obeying the Porod's law in a range of 

scattering vector from  10-  1 2  to  10-°  5  A-1; the surfaces of 

these crystals are smooth above a scale of length  of 20 A. This 

result suggests that the thickening process  of polymer crystals 

is controlled by nucleation and growth. Fractal surfaces 

reported previously are related with the fluctuation  of driving 

force for the thickening; the fluctuation has power-law 

correlation in space or time
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 §1. Introduction 

     Polymers crystallize from the melt or solution in the form 

of thin lamellae, folded chain crystals (FCC), of a few tens of 

nanometers thick and several microns wide at ordinary conditions 

Some polymers like polyethylene (PE) crystallize from the melt at 

high pressure in the form of thick lamellae, extended chain 

crystals (ECC), of few microns thick and several tens of microns 

wide. In these crystals, the polymer chains are almost normal to 

the lamellae and fold back at the surface. These crystals 

thicken along the chain direction by annealing at a temperature 

higher than the crystallization temperature. The mechanisms of 

crystallization and thickening of these lamellae have attracted 

much attention in polymer science. Lateral growth of FCC 

crystallization was basically controlled by the secondary 

nucleation of the chain stems at the growth  faces.1 ECC was 

firstly observed for polyethylene annealed at high  pressure.2) 

The formation of ECC was related with the hexagonal form at high 

 pressure  3) In this hexagonal form, binding energy between the 

stems is smaller than in the ordinary orthorombic form since the 

conformation of a PE chain is in disorder  4'5) Hence the 

thickening along the chain direction is easier to give rise to 

ECC. Recently, these crystallization mechanisms have been 

reconsidered in detail theoretically or experimentally 

 Hikosaka6) proposed a unified growth mechanism of the formation 

of FCC and ECC, assuming a two-dimensional nuleus which grows 

not only along the direction normal to the chain axis  'but also 

along the chain direction by sliding diffusion.
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      In connection with the thickening mechanism, it is important 

to examine the surface structure of the lamellar crystals of 

polymers, especially of ECC which crystallizes in the disordered 

hexagonal phase. 

      Small-angle X-ray scattering (SAXS) has been widely used for 

the investigation of submicroscopic structure (from several to 

several tens of nanometers) In particular, the scattering in 

the so-called Porod's region (the region of scattering vector 

much larger than the inverse of  scatterer's size) gives the 

information on the surface structure of scatterers. The 

well-known Porod's  law." is that the scattering intensity,  I(q), 

from materials with smooth surfaces is proportional to  q-4, where 

q=  4-asin0/A. is the magnitude of the scattering vector, 20 the 

scattering angle, and A the X-ray wave length. Since the fold 

surfaces of these lamellar crystals are much wider than the 

lateral surfaces, the SAXS intensity in the Porod's region is 

predominantly attributed to the scattering from the fold 

surfaces; the structural information on the fold surface can be 

obtained. 

    In a previous  paper." it has been shown that the 

scattering intensity from the ECC of polyethylene or 

polytetrafluoroethylene (PTFE) obeyed a power-law with a 

fractional exponent (a) smaller than 4 in Porod's region:  I'•,q-c, 

This exponent is expected for surface  fractal." 

    In this paper, new  SAXS results for FCC and ECC of 

polyethylene are reported and discussed together with  ' the 

previous  results" in terms of the theories of crystal growth
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and fractal concept. 

 §2. Experimental 

     Samples used were high density polyethylenes (NBS 

unfractionated whole polymer,  Mw=  53,070  Mw/Mn=  2.9 and 

fractionated polymer,  Mw= 32,100  Mw/Mn= 1.1) The polyethylene 

films 0.5 mm thick were melted in a Mettler hot stage at 155  C 

for 10  min, cooled to a crystallization temperature and 

crystallized isothermally to obtain FCC samples: crystallization 

temperature  To= 126.0  C, crystallization time  to= 30  min (Sample 

A) and  To= 125.0  -C,  to= 1 h (Sample B) for the fractionated PE; 

 To= 123.0  -C•to= 40  min (Sample  C), 10 h (Sample D) or 50 h 

(Sample E) and  To= 125.0  -C,  to= 11 h (Sample F) for the whole 

polymer Some samples were annealed at a temperature higher 

than the crystallization temperature. FCC samples were annealed 

at a pressure of 6.0 kbar by use of a high-pressure DTA 

(differential thermal analysis)  cell") to obtain ECC samples. 

The specimen was heated up to 245.0  C at a rate of 10  -C/min and 

was annealed for 5  min (Sample H), 2 h (Sample I) or 10 h (Sample 

J) It was confirmed by DTA that the samples were in the 

hexagonal phase. After annealing, the specimen were quenched to 

room temperature and pressure was released. It was confirmed 

that these samples were ECC by the fact that no peaks were found 

within the accessible q-range in the SAXS profiles; the long 

periods are larger than 1000 A. Some FCC samples were annealed 

in the orthorombic phase (6.0 kbar and 223.0 C: Sample G)  just° 

below the phase transition temperature to the hexagonal phase. 
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     SAXS experiment was carried out by a  6-m SAXS camera at 

HIXLAB of Kyoto University 11) The X-ray is CuKa from a 

fine-focus X-ray generator (RU-1000C3 of Rigaku Corporation, 

Japan) operated at 3.5 kW. Isotropic two-dimensional 

intensity collected by a two-dimensional position-sensitive 

proportional counter was subtracted by the intensity of 

background and corrected for the non-uniformity of detector 

sensitivity and then circularly averaged to give the 

one-dimensional (1D) data. The sample-to-detector distance 

employed was either 0.65 or 1.65 m. The two  1D data (higher 

and lower angle regions) were superposed to get the best fit at 

the overlapped region of scattering angle The angular region 

obtained corresponded to Bragg spacing from 10 to 1000 A.

§3. Results 

     Figure 1 shows the typical 1D SAXS data,  Ia(q), from FCC 

of the fractionated polyethylene after the correction of 

background and detector sensitivity There is an increase in 

intensity at high angles due to the scattering from the amorphous 

part in the polymer sample and/or by the thermal density 

fluctuation with long wave length. These contributions, Ib(q), 

were subtracted by the Ruland's  method,121 in which we assume 

that 

 Ib(q)—  Aexp(Bq2), (1) 

where A and B are constants. Figure 2 is the plot of  In  Ia  vs 

q2 of the data of Fig. 1. The solid line was obtained by the 

least square fit of the data in the high angles;  eq (1) holds.
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The subtracted  intensity,  I(q), thus obtained is shown in Fig. 

3. The same procedures were performed for all the data from the 

FCC and ECC. 

     Figure 3 shows the SAXS intensity,  I(q), in log-log plot 

for the FCC of PE (Samples A  N. F). There are peaks corresponding 

to the periods of stacking lamella. In a range from 10-1 2  to 

 10-°  5 of q, the data points lie on straight lines with a slope 

(-a) of -4.0. which shows the Porod's law; the lamellar surfaces 

are flat and sharp Since we have obtained the Porod's law for 

the samples of the unfractionated whole polymer (Sample C  ti F), a 

broad distribution of chain length does not prevent the FCC 

crystallized isothermally from having flat and sharp surfaces. 

It is to be noted that the peak position itself shifted to lower 

angles for higher crystallization temperature or longer 

crystallization time; the lamellae thicken with increasing 

temperature and time. 

     For the annealed FCC, we have obtained the similar SAXS to 

that of the FCC crystallized  isothermally Figure 4 shows the 

SAXS intensity,  I(q), in log-log plot for the whole polymer 

crystallized at 123.0  C for 40  min and successively annealed at 

223.0  -C, 6.0 kbar (in the orthorombic phase) for 5  min (Sample 

G) This figure is similar to Fig. 3. In the Porod's region 

the exponent a is 4.0 for a range from 10-1  e to 10-0 5 of q. 

     Figure 5 shows the SAXS intensity from the whole polymer ECC 

crystallized at 123.0  -C for 40  min and successively annealed in 

the hexagonal phase (Samples H  ti J) No peaks in SAXS are 

observed for the ECC in the q-range studied; thickness of lamella 
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is thicker than 1000 A. In a range from  10-1  0 to  10-0  5 of q, 

the Porod's law again holds even for the crystals annealed in the 

disordered hexagonal phase. 

 §4. Discussion 

      In the previous  paper.8> the possibility of fractal surface 

of polymer crystals was proposed on the basis of the fact that 

the SAXS intensity  I(q) for PE and PTFE obeyed the power-law 

with the fractional exponents of -3.2 and -3.3 respectively, in 

a range from  10-2  0 to  10-0  5 of q. 

     Since  Mandelbrot19) has proposed the fractal concept, 

fractal nature of the aggregates of colloidal particles have 

widely been studied in real systems and computer  simulations.14> 

In particular, for surface fractals, the fractal dimensions have 

been determined by scattering  experiment.9)  :SAXS,1  5  ,  1  6  ) 

small-angle  neutron17,19) or light  scattering19) (SANS, SALS) 

     Fractal is the self-similar structure, which has the 

invariability on the change of observing scale There are two 

kinds of  fractals.2°> One is self-similar fractal which is 

invariant for an isotropic change of scale; the other is 

self-affine fractal which is invariant for an anisotropic change 

of scale. For example, if the surface is  self-affine, the mean 

square of the difference of height h(r) between two points at a 

distance of r is given by the following equation: 

 <[h(r)-h(0)]2>.•,  r  2  H  , (2a) 

 H=  d-D,  (2b) 

where d is the space dimension and D is the fractal dimension.
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Bale and  Schmidt21> derived the scattering intensity from 

fractal surfaces in the Porod's region modifying a procedure 

developed for analysis of the small-angle scattering from 

materials with smooth boundary  surfaces.22) They calculated the 

probability Z(r) that if a point lies in a region occupied by 

material, a second point at a distance of r from the first point 

also will be in an occupied region. The density correlation 

function, P(r), is given by 

     P(r)=  [Z(r)-c]/[1-c] 

 ',,  1-Kra-D , (r40), (3) 

where c is a fraction of the occupied region and K is a constant. 

The exponent 3-D is caused by an assumption that the volume of 

boundary region is proportional to the number of boxes with edge 

r needed to cover over the boundary surface of the occupied 

region; the number is proportional to r-D due to fractal 

property The scattering intensity is given by the Fourier 

transform of  P(r): 

 I(q),N,  q-u, a= 6-D, (4) 

in the Porod's region of q. 

     In this section, firstly the theories on the surface 

structure of crystals is reviewed, and secondly the previous and 

present SAXS results are discussed on the basis of the theories. 

     Relating to surface roughness, roughening transition is to 

be considered. Roughening transition was first proposed by 

Burton, Cabrera and Frank  (BCF)23) for the system of two-state 

Solid-on-Solid (SOS) model. Only two levels of height were 

allowed for each surface site on a square lattice; the
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interaction between the nearest neighbors with different height 

was taken account of This system was the same class as the 

two-dimensional Ising model which was rigorously treated by 

Onsager 24) The order parameter, excess surface energy, 

increases gradually from zero with increasing temperature, and at 

the vicinity of the phase transition temperature increases 

rapidly and then approaches to the maximum value after the 

transition; the surface is flat below the transition temperature 

and is rough above it. Several models with many-level state 

have been studied, taken account of other interactions, with 

approximate methods or Monte Carlo  simulations.25' It has been 

clarified that the discreteness of a lattice is important for the 

existence of roughening transition. Chui and  Weeks26' studied a 

discrete Gaussian model and proved the existence of roughening 

transition for the model rigorously In low temperatures, a flat 

surface (facet) is present on crystal surfaces due to the 

anisotropy of surface tension; the anisotropy is caused by the 

discreteness of lattice. As temperature increases, the roughness 

of the surface is increased; the anisotropy of surface tension 

decreases to make the surface rough. 

     The above theory is constructed for equilibrium state. For 

growing crystals in non-equilibrium, the surface profile is more 

difficult to be determined. When crystallization temperature is 

above the roughening transition temperature, the surface is rough 

even at equilibrium. The growth of a crystal may be the 

adhesive growth controlled by the diffusion of latent heat for 

crystallization or of crystallizable units or of impurities to 
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be excluded. The crystallizable units attach to the growing 

surface randomly; the growth face is rough wether the driving 

force for crystallization, such as free energy of melting is 

strong or weak. When the temperature is below the roughening 

transition temperature, the surface is flat at equilibrium 

state. If the driving force for the crystallization is still 

weak, the crystal can grow through the mechanism of nucleation 

and growth; the surface can be flat. If the driving force is 

strong, the surface of the growing crystal may become rough 

 kinetically_ In a limit of the strong driving force, the 

crystallizable units rain down onto a substrate along 

straight-line trajectories until they reach the surface and 

become part of a crystal: random deposition model. In that 

model, the surface height distribution obeys a Poisson process; 

 D=  3. 

     The results that  x= 4 for the FCC and ECC in the present 

study show that the fold surfaces of these lamellar crystals 

are flat. This is consistent with the theory of nucleation 

theory and growth developed by Lauritzen and  Hoffmanl)  ; in the 

theory, the fold length is assumed to be the same as that of the 

initial stem (secondary nucleus) Recently, Keller et al 27) 

have observed that the lamellar crystal of polyethylene thickens 

during crystallization.  Hikosaka63 proposed sliding diffusion 

for the thickening mechanism during crystallization. It may be 

reasonable that there occurs thickening of lamellar crystals by 

the annealing during crystallization from the melt, particularly 

in the hexagonal phase. On the other hand, it is well known that
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when polymer crystals are annealed above the crystallization 

temperature, the thickness of lamellae increases linearly with 

the logarithm of annealing time except for an initial period of 

rapid thickening.  Hirai and  Yamashita28> proposed the mechanism 

of nucleation and growth on the fold surface for this 

logarithmic increase. Sanchez et  al.28) explained this increase 

in terms of thermodynamics. The driving force for thickening 

comes from the difference between the surface free energy of the 

fold surface and that of the lateral surface; the surface free 

energy of the fold surface is much larger than that of the 

lateral surface. A thin and wide  lamella becomes a thick and 

narrow  lamella, namely more stable one. The segment of a chain 

is transported to the fold surface by the diffusion of chain 

 slats or solitons of twisted kinks which are initiated at chain 

ends by thermal motion, or by sliding diffusion of the stems 

The result that a= 4 for FCC crystallized isothermally and ECC 

annealed in hexagonal phase can be explained by the model of 

nucleation and growth described above and these samples were 

crystallized or annealed below the roughening transition 

temperature. 

     The previous SAXS experiment showed that a= 3.2 and 3.3 for 

ECC of PE and PTFE  respectively.8) It is to be noted that a 

smaller than 4 cannot be deduced from the boundary with a 

continuous decrease in electron density from crystal region to 

amorphous  region.30) In that case, the SAXS intensity decreases 

rather more rapidly with q than  q-4: a > 4. Accordingly these 

surfaces may be sharp and rough in spite of the lower
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tempetature than the roughening transition. Therefore the 

driving force for thickening must be very strong and the surface 

tension stabilizing the fold surface to be flat has to be 

neglected. The surface tension comes from the free energy of 

excess lateral surfaces appearing due to rough fold surface. In 

the hexagonal phase the free energy of lateral surface  is small. 

In the initial period of the high-pressure crystallization, the 

driving force for the thickening is so strong that thin 

lamellae crystallized thicken rapidly The above condition for 

roughening may be hold. The previous ECC samples of  PE had 

crystallization time too short for the thickening process to be 

the steady state controlled by the nucleation theory; the 

thickening stopped during the initial period. The driving force 

for thickening is strong; the surface tension stabilizing 

force the surface to be flat is weak. Therefore the surfaces 

become rough. We proposed these as fractally rough  surface-" 

Since overhang is to be prohibited  in polymer crytals, the rough 

surface must be  self-affine fractal. What is the surface of D 

of non-integer? 

     Mandelbrot and Van Ness proposed the fractional Brownian 

motion,  BH(t), as a model for noise pattern in  solid:31) 

               1 
  B" (t)= (t-s)"-1'2dB(s), (5) 

             r(H+1/2) J-m 

where dB(s) is a Gaussian probability variable with the average 

of 0 and the variance of 1 defined at point s The function 

 BH(t) has the property that  <[BH(t)-BH(0  )  12  >4,-t2  H  -  , the graph of 

 B"  (t) vs t exhibits  self-affine fractal of  D=  d-H (d= 2 in this 
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case). Mandelbrot took the two-parameter version for the model 

of earth's surface: fractional Brownian  surface."' Concrete 

way of making this surface is as follows Let prepare flat 

surface of the altitude of 0 (h(r)= 0. where r= (x,y)) Take 

lines  L; on x-y plane at an arbitrary position and arbitrary 

direction, independently For each point r on x-y plane at a 

distance of  xi from  L;, define the height increment  Ahi(r) as 

 Ah,(r)=  2-  1  Q,  xi  H  -  1  z2sgn, (6) 

where  Qi is a probability variable with the average  <Q,> of 0 and 

 <Q,C/j>=  Sij and sgn= ±1 corresponding to whether the point r is 

on the left or right hand side of  Li We sum up  Ahi(r) and 

divide by  v1/2, where v is the average number of lines  L, between 

two points on x-y plane at a unit distance. The resulting 

surface  h(r)=  v-1/2ZAh,(r) is the fractional Brownian  surface. 

The vertical section is expressed by  BH(t) in  eq (5) and 

 62  (r)=  <[h(r)-h(0)]2> 

  ti  r2  H (7) 

     The above mechanism is based on the superposition of the 

cliffs with the shape of  v-1'2Ahi(r) For the thickening of 

polymer crystals, it is difficult to generate such process that 

the uniform increment  ph; of lamellar thickness along the line 

 L, In place of eq (6), we accordingly adopt the following form 

for  Ah,  Cr): 

 (r) ",(4i  'f(r-r;),  f(r)=  r"  1'2, (8) 

where  Q;' is the probability variable of 

 <Q,  Qi  >=  (9) 

defined at arbitrary position  r, Summimg up  Ah,  (r), the 
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resulting surface is given by the following equation: 

     h(r)=  Z  ohs  (r) 

 

i  =  1 

     =  E I r-ri  I  H  -  1  /  2  Qi ' (10) 

                     

i=1 

The variance  a2(pr) is 

 a2(0r)=  <[h(r+Ar)-h(r)]2> 

             =  z  <[f(r+Ar-r;)-f(r-r;)] 
                       i.J 

 x[f(r+Ar-r;)-f(r-rj)]><Qi  'Q;  '> 

              =  Z<[f(r+Ar-r,)-f(r-r,)]2> 

      =  ni[f(r+Ar)-f(r)rdr, (11) 
where n is the number density of point  ri and we have used  eq 

(9) Substituting eq. (8) into eq (11), we obtain 

 a2 (A0= n[Ir+Ar                   iI H  1  /  2  -rH  1  /  2  ]2  dr 
             =  n(Ar  )2  H  f  [  1r  '  +Ar/Ar  I  "  -  1  '2  -  r,H-1/2j2dr,, 

where  r'=  r/Ar is used. Since  Ar/Ar is a unit vector, the 

integral does not depend on  it Therefore, 

 o2(Ar)  ,,,  (Ar)2H (12) 

     This procedure constructing fractal surface is based on the 

superposition of the independent mountain (or "hollow") described 

by eq. (8); the mountain is located at an arbitrary position on 

the  surface. 

     On the other hand, the self-affine fractal surface is 

interested in the studies of aggregation or vapor deposition on 

substrate. Several authors have examined the scaling
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properties of the surface height and width in a simple model like 

the Eden model or a ballistic-deposition model by computer 

simulation or  theoretically  33'34) Edwards and Wilkinson studied 

another model for rough surface; in the model, granular particles 

rain down onto the surface and diffuse on the surface to the 

position of lower height with a short diffusion  length.35) They 

wrote down the following Langevin equation for the development of 

the surface profile: 

 ah(r,t)    =  MV2h(r ,t)+E(r,t), (13) 
 at 

where r is (x,y), the first term of the right hand side 

represents the surface relaxation due to the surface diffusion, 

and the second term E(r,t) is a random-noise term  (<E(r,t)E(0.0)> 

 r,,O(r)(5(t)) They showed  a2  (r)=  <[h(r ,t)-h(0.0)]2>.•.  In  r;  D=  3 

for d= 3 In the system of d= 3. if random-noise term E is 

made by the following superposition of the Gaussian fluctuation, 

 E(r,t)=  IK(r-r',t-t')R(r.,t')dr'dt', (14) 
where  K(r,t)^-1r1P-2  !tie I  and  R(r,t) is Gaussian random-noise,  E 

has correlation in space and time;  <E(r,t)E(0,0  )>,,,r2p-2t213-1 If 

the scaling form of  r2Xg(t/rz) is assumed for  <[h(r,t)-h(0.0)]2>, 

the scaling exponent a(=  3+x) is expected to be a fractional 

value of  3+p+219  (D=  3-p-20) in order to make eq (13) scale 

 invariant.36) 

      In both fractional Brownian surface and Langevin equation, 

the essential nature lies in the fluctuation force; the force is 

made by the superposition of the random-noise dB (in eq. (5)) or 
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R (in eq 

fractional 

accordingly 

fluctuation 

or defect in

 (14)) with the weight of a power-law with an 

 exponent and has no characteristic length 

  The origin of the power law in the correlation of 

is not clear The extra field caused by the impurity 

 crystals may relate to the power law correlation.
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Figure captions 

Figure 1. 

     SAXS intensity,  Ia(q), for FCC of  PE crystallized 

 isothermally- Sample-to-detector distance of 1.65 m was 

     employed for a range from  10-2 2  A-1 to  10-@  82  A-1 of q and 

      0.65 m for a range from  10-1  15  A-1 to  10-0 2  A-1 

Figure 2. 

     Log Ia vs. q2 plot of the SAXS intensity for FCC of  PE. The 

     solid line represents  Ib(q) subtracted to get  I(q) 

Figure 3. 

     Log-Log plot of the SAXS intensity for FCC of  PE. The slope 

      of the solid line is -4.0. A: fractionated  PE,  To=126.0  -C, 

 to=30  min. B:  TO  =125.0  -C,  t0=1 h. C: unfractionated PE, 

 To=123.0 C,  to=40  min. D:  to  =l0 h. E:  to  =50 h. F:  To= 

     125 0  C,  to  =1l h. 

Figure 4 

     Log-Log plot of the SAXS intensity for FCC of PE annealed in 

     the orthorombic phase at high pressure (Sample G) 

Figure 5 

     Log-Log plot of the SAXS intensity for ECC of PE annealed in 

     the hexagonal phase at high pressure. H:  Ta=245 0  -C, 

 to  =5  min,  Pa  =6.0  kbar I:  ta=2 h. J:  to  =10 h.
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