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l. Introduction

In [5), Nagumo defined the Hs-stability in singular

perturbations. Here H® = HS(RQTl} is the glecbal Sobolev space

with the norm

laied [g = [ 2™ ey 2ase 2 ® e |2

-

We shall generalize the notion of Hs-stability in some sense.

Let us consider the following linear partial differential
operator with constant coefficients containing small positive
parameter £ (0£eg<1):

LE(D) = E‘PI(D] + PZ{D]
Denote by m the order of Pl(DJ with respect to D1 and by m' that
of PZ(D). Put m"=m-m' and assume that m>m'>0 Then the order

of L, is less than that of L, for e=0. Such an operator as L.

0
is called a singularly perturbed operator.

We shall study the folowing so-called singulary perturbed

Cauchy prcblem for LE(Dl:

n-1_

LE(Dlu[x} = fE{x), in [D,T]xRx. ;

(CP}

p. 3 lu(a,x'y = ¢

l rj{X‘]F j=1r fml

E

and the following so-called reduced Cauchy problem for (CP):

L, (Dulx) = £,(x), in [0,T] Ry, s

{RCP)

j-1 oy = ' s '
Dl LI{U,X ) ¢D'j{x }l ] 1! PRIL

The following assumption on F; and P, will be required.



Assumption 1.

{al): The symbols of PI(D] and PE{D} are represented as

m . -1
B ig) = Ioug Py 5E0E™ T,

L]

m 1
Lico Pz 51698,

m' -]

P, (£)
where P g and P, p @re non-zero constants.
(a2):  (m"=2 and p, ,/P; , is negative real number) or

[m“=1 and the imaginary part of P, o/P1 g 1S non-positive)

The following assumption on the Cauchy data and on the

solvability of (CP} and {(RCP) will be required.

Assumption 2.

There exisi real numbers s and s8' such that (CP) is uniguely
solvable in C[[D,T]:Hs) and (RCP) is uniguely solvakle in

C[[D,T];HS] for the Cauchy data ¢ j(x') and ¢0 j(x') belong to

[

H® and f_(x) and f,{x) belong to C[[O,T]:HSI]

Nagumo defined the B®-stability of (CP) with respect to a

particular soliution Uy of (RCP) in [5] as follows:

Definition 1. Let Assumption 2 be satisfied for s'=s.

The Cauchy problem (CP) is said to be H -stable in O;xléT for

£40 with respect to a particular solution uU(x} of the reduced

Cauchy problem (RCP) in C™((0.T1;H®) if



(D1) sup la, (x,,") - u {x,,°)] = 0
U;xl;?,T g 1! 0*"1 "s

whenever u_(x) are solutions of (CP) in Cm[[U,T]:HS) satisfying

the following three conditions:

{D2) g“:i < "fstxlr') - futxlr')ls = 0;
="]1=

{D3) "1)8;3 - ¢D,j"5 + 0, 'j'—'l,. S 1

“34) I|¢E,](‘] = DinluD(U,']ls > 0; ‘j=m'+1,.. M.

ol '
If £,(x) belongs to c™ ™ ((0,71:8% ) then the initial values

D%_luo(ﬂ,x'), J=m'+1, ,m are uniquely determined and

represented as a sum of derivatives of fﬂtx) and ¢0 i(x'),

j=1, .,m'. When (D4) is required, then the Cauchy data
¢E'j(x'], j=m'+1, ;M are very restricted. For example, when
= = = ' i i
fD 0 and ¢0rj 0, j=1, ,m', (B4) implies that ¢€,j -+ D,
i=1, ym. Hence ancother definition of the stability whose
convergence on the Cauchy data ¢E j{x‘}, J=m'+1, MM are
r

different from Nagumo's is needed.

Definition 2. Let Assumption 2 be satisfied.

The Cauchy problem (CP} is said to be {s,s')-stable in 0<%, T

for e+0 with respect to a particular solution uo(x} of the

1
reduced Cauchy problem (RCP) in Cm{[D,T];Hme"X{s"5 }] if
{D1) sup Ju.(xy,*) - u (x,,*) . ~ 0,

05X, <T e 1 01 s



whenever uE(x) are solutions of (CP} in cm[{D,T];HmaX{S:S'}]

satisfying the following three conditions:

(D5) sup | £ {x,,} = £.{x,,=) + 0;
DéxléT g 17 0'"1 Hs'
(D6) log, 5 - 45, 50g0 = 00 =L, ,m*;
(D7) There exists a positive number M, which may depend on the
choice of the initial data ¢E g ¢0 3 and fD such that
le. () = pd 1y (o 1.y £ M, G=m'+1
E,j 1 O ’ 5' = ¢ ]=m - s

The Cauchy problem (CP} is said to be (s,s'+0}-stable in

nglgT for e+0 with respect to a particular solution uotx] of

(RCP) in C™{(0,7):E™*15.8')) i ¢ (1) whenever u_(x) are

solutions of (CP) in cm[[o,T];Hmax[S;S'}]

satisfying (D5), (D6},
and
(D8} : There exist positive numbers § and M, which may depend on

the choice of the initial data ¢E and f0 such that

7 %0,5

log 500 =~ D hugt0, ) I i g £ M Fome 41, m.

Remark. For every positive number §, the {s,s5')-stability
implies the (s,s8'+0)-stability, the (s,s'+0)=stability implies
the (s,s5'+8)-stability, and the {(s,s'}-stability implies the

(5=-4,s")-stability

It will be shown that requiring (A2} is natural when we deal
with the (s,s'")-stability with respect to solutions cf (RCP} for

variouns Cauchy data. Following to the definition of the



C-admissibility of (CP) with respect to (RCP) in [4], we shall

define the C([0,T};H%)-admissibility of (CP) with respect to

(RCP)

Definition 3. Let Assumption 2 be satisfied. The Cauchy

problem (CP} is said to be C[[0,T];H°)~admissible in [lZ!,'I']an_l

1
with the Cauchy data space (H° )™ with respect to {RCP) if for
every Cauchy datum (wl, ...wm) (HS }m, the sclutions u, of {CP)
with ¢E,j=wj' j=1,...,m and £, =0 converge in c(10,T];H%) to the
solution ug of {(RCP) with ¢D,j=¢j' j=1, ' and f0=0.

By looking into the procf of Theorem in {2] and §2 and §3 in

[3], we can prove that (A2) remains a necessary condition for the

c([0.7];H%)-admissibility with the Cauchy data space (H )™ when

P1 and P2 satisfy (Al) We do not give the proof in this paper.

In [5], Nagumo gave & necessary and sufficient condition for

the Hs—stability for more general system in the form of
inequalities which must be satisfied by the solutions of (CP}

with the initial conditions:

j_l L] = - L 1 2 =
D1 u{0,x") Gi,j 6{x"), 1i,3=1, LI,

where Gi 4 is Kronecker's delta and §(x'}) is the Dirac measure.

r

We have succeeded in seeking a necessary and sufficient condition
for the (s,s'+0)-stability but a necessary and sufficient

condition for the (s,s')-stability is open. Our condition for



the {(s,s'+0}-stability which will be found in §2 is Nagumo type.

As a corollary, we can show that Nagumo's Hs—stability implies
the (s,st0)-stability In [6], Kumanc-go applied Nagumo's

result to the following operator:
e+D,% + q-D, + Q(D')
1 K| f

where g is a complex number and Q(D') is a polynomial of D!

Kumano-go deduced conditions for the Hs-stability on the complex

constant g and on the structure ¢f the polynomial Q(£') In §3,

we shall give another example for the HS—Stability.

Ackowledgement. The author expresses his deep gratitude tao

Professor Shigetake Matsuura for his encouragement and helpful

comments.



2. The (s,s'+0)~stability

We shall use the notation and the result in Appendix.

Denote the roots of LE(E] = 0 with respect to £, by Tj(E,E'),
=1, sm and those of LylE} = PZ[EF = 0 with respect to £, by
cjtﬁ'), j=l,.. ,m', respectively. It is well known that
rj(E,E'), j=1, .,m are continuous in (g,£') for e#0 and cj[E'],
j=1,. ,m' are continuous in £' Put

b(t) = [Tj-l; j¥1, .,m) and ey = [5j,k' k¢l, .,m},
where aj,k is Kronecker's delta. Cthexr notation can be found in

Appendix. Denote by Yj[s,xl,g'), j=1, (M the fundamental

solutions of the following ordinary differential eguation with
parameter (e,E'):

] 1 —_—
with initial conditions:

Dk-l

1 Y{,0,E") =9

5,k j.k=1, « I,
Then Cramer's formula implies that if Ti=Tj, 1<i<jgm then

ij-efxlfgi}

det{b(t)), . blr,_j).ciblr ), b))

= Esz exp ithl‘

det{b(t), .blr))}

_det®(taroy,ta(1),...,%(5-2), %, Fa(9), ..., Fatm-1})
= A(0,1,.. 1)

-n3-tepo.1,  Li-2,3, LGty Lt.xp), 31, m

But the last representations remain valid without any restriction



on Ty, j=1, g Denote by £ the maximum of the polynomial
orders of the coefficients Py j[E'l, 9=0, ;M in the symbol

Pl(E] and put
<g'> = (1+]g'|%L/2
Then we have the following theorem whose proof will be found at

the end of this section.

Theorem 1. Let Assumption 1 and 2 be satisfied. Then the

following four conditions are equivalent:
(C1}) The Cauchy problem (CP) is (s,s"+0}-stable in [(0,T] for
e+0 with respect to a particular sclution uo{x] of (RCP}
]
belonging to Cm[[D,T]:Hmax{S'S }+£]
(C2) The Cauchy preoblem (CP) is (s,s'+0)-stable in [0,T] for

e+0 with respect to every solution uD{x] of (RCP} beleonging to

cm[[U'leﬂmax{s,s'}+£]

(C3) There exist positive numbers €5 and CD such that
T —e!
(El1) sup n-1 J ;al-*|‘.im(g,xl,g']<g'>5 s | d}':]_ h C(]
O<ege,, E'ER ¢ ’
' r s-s'
(E?..:. sup -1 |Yj(€:xlr'§ )<E > | ; CO,

1<jzm’, 0<e§80, nglgT, E'ERn

and for every positive number é there exist positive numbers €

and C6 such that

[l S-S'-'S
(E3) sup n-1 |¥jlerx,80<E"> ]
m'+1£jsm, 0<e§ea, 02x,£T, E'ER
< Cq
{C4) There exist positive numbers eb, RD‘ and Ca such that



T

1 — |
(E4) sup I =Y {e,x,,EM)<E'»578 d < C!
(B5) sup ¥ te, %y, 80<5 5575 | ¢ ey

lgigm, O<egeg, Ogx) T, Ry[E’ |

and for every positive number § there exist positive numbers e!

r

RG' and Cé such that

(E6) sup [Y.[g,xl,g']<g'>s"s"aj
m'+1<j<m, O<ege}l, 0gx ST, Resli!| L
r
£ Cs,
Remark. Nagumo studied the Hs—stability in the following

general situation:

m—j

L=E-m 1 F

c j=p Lyle.D"ID

where the symbols tha,g‘) are matrices of polynomials in £' with

constant coefficients which depend continuously on the parameter

ex0. He proved the equivalence between the following two

conditions:

(C5) The Cauchy problem {CP) is H”-stable in [0,T] for c+0 with

respect to a particular scolution uO(x) of (RCP) belonging to

+L
c™{[o,T1;8°7 7).
(C&) There exist positive numbers €q and CU such that
Tg
. 1 .
{E7) sup -1 J - Ym[E,Xl,ﬁ } dx1 < CU'

O<ese,, E'€R 0

(E8)  sup 1 I¥steaxg 8] £ ¢

. repl!
lgjgm, 0<ege,, 02x,<T, £'€R



Corcllary 1. Let Assumption 1 and 2 be satisfied and uotx)

5+2.]

be a soluticn of (RCP}) belonging to cm([O,T];H I1f the

Cauchy problem (CP) is H°-stable in [0,T] for e+0 with respect to

a particular solution Uy then the Cauchy problem (CP} is

{(g,s+0)-stable in {0,T] for £+0 with respect to a particular

solution ug-

Proof. Since Nagumc's theorem can be applied to our problem
and obviously (E8) implies (E2Z) for s=s' and (E3) for s=s'

[Q.E.D.]

To prove Thecorem 1 we need several steps. For the scolution

U, of the reduced Cauchy problem (RCP), we shall consider the

following singulary perturbed Cauchy problem:

L_(D)ulx} = £_(x), in [0,T}xR""};

(cp1) .3 u(0,x) = ¢ .(x'), 3=1, . .m°
1 ’ Epj r r r
D J_lu(ﬁ,x') - p, 7t (0,x°), j=m'+1, , M.
. 1 1 0
Here the initial values Dl]_lutﬂ,x'), J=m-+1, ,m are fixed.
The reduced Cauchy problem for (CPl) is (RCP) Denote by
u, l(x) the solution of (CEl)
r
Lemma 1. (due to Nagumo) Let {Al) and Assumption 2 be

satisfied. Then the following two conditions are egquivalent:

- 10 -



(C7) The Cauchy problem {CPl) is (s,s'}-stable in [0,T] for 40
with respect to a particular sclution uU(x} of (RCP) belconging to

Cm{[an];Hmax{s,s'}+E]

(C8) There eXxist positive numbers £y and CG such that

T

(E1)  sup 2o0¥ (e,2x,£7)<E7>578"| ax

O<ege ., £ er™ IG

| g

C

1 Q.

(E2) sup

Y.le,x,,£')<E'>5787 | < ¢
l<jzm', O<ege -1 | ] 1 3 |

n
0¢ 02X T, E'€R 0.

Proof. First we shall show (CB) implies (C7) Put
vE(x} = uﬂrl{xl - uO(XJ,
gE(xl = LG{D)uD[x} - LE(D)un(xl + fE(x} - fo[x)

”

Denote by u(xl,E'} the Fourier transform of u(x) with respect to

X' and by FE}+x' the inverse Fourier transformation. Then VE(X}
is given by

VE(XJ = FE}+X1[ jZi Yj(E'xI'E'}[¢E,j{g'} - ¢0,j[§.)] ]

+ pol "1 _ 1 .y (eoxo-t £')g_{t,E') at ]
E'l_,_xl 0 pl O,E m ¥ 1 ’ £ r

Eince

v, (xq,8%) |<g">"
m' ] ] S_Sl " ' _ -~ . . sl
s 50 1¥5tenxy g1 <8 2R o, SHET) - o jlETI]<E">
+ le .I. .E.Iym[E'xl'trEI)<gl>5—S‘||;€[t,£!]|{gl}s'dt’
o 'P1,0

it implies that

- 11 -



HVé(xlf-lﬂs

o

€ Colymp l0e,5 7 40, 4ls P; o

*1
[D uge {t"}"51 dtc

m

By (D6), we have Zj=

1 |¢g,j - ¢U,j|s' - 0. Since u, belongs to

<™ (0,71 ;H™* S 3Ty it implies that

sup [Lo(DIuglxy,-} - L (Dyuy(x,.-}{_. + O.
0¢x <T ¢ 0' ™1 E 071 5
Hence (D5) implies that sup "gE{xl,-)IS, +~ 0. Thus we have
D;xlgT
sup Iv (xy.-3). = O.
0<x,<T € 1 8
="1=
Next we shall show (C7) implies {C8) Assume that (E2) is

not satisfied. Then, for a certain Jj with l<j<m’, there exist
sequences {eg,} with ¢ +0 and {tn} with 0¢t <T and a sequence of

open balls {S_}, 5 = {{g'-£}|<x, } such that

_c ! .
{2.1) |yj(gn,tn,g')<g->5 * |1 > n for £' in S,
-1 A ;
{2.2) 2 < [<g'>/<gn>] < 2 for £' in S,
Put
-1 ] ]
u(x} = cn-F£,+x,(Yj(€n,xl.E )+ x (£ :Sn]],
-1 ~1/2__,_-s' .
where ¢ = n [s,| <g > Then u_(x) satisfies

L {Du(x) = 0. Since
En

. ' -
fu (e &'} [<E>

-1/2 ~g' 1 1., 1.8
ol / <gl> |Yj{En‘tn’£ ) [x(g s )<E'>

- - ! 1 1 s-s' P,
= n 1»|5n| lf2[<El>/<g£>}5 |yj(en,tn,£ Y<E'> |K{E 'Sn}‘
(2.1) ang (2.2) imply that

- 12 -



sup n (x,,+) > .t
0gx 2T R N I .

Since

~

- , ‘
D177 g (0,6 <5557 = o wxte s ) <g*>®

_ _1- -1/2. T, ' ' !
=n -5 | X(E7is y(<g'>/<E>) %,

. . i-1
(2.2) implies that }Dlj un{O,*]ls. £ 2/n + 0. For k#j, we have

k=

IDl £

1
un{D,°]|s. = 0. Put u n{x) = u (x) + ug(x) Then we

have a contradiction to (D1), (D5), (D6), and (D7)

Assume that (El) is not satisfied. Then there exist a

1
4o

sequence {En} with & +0 and a sequence of open balls {Sn

S, = {ger™ L, |£7-£] l<r_} such that

T '
(2.3) JU -IﬁIT-IYm(EH,T-XlrE']{gI:.S 5 I dxl > n,
B Il

r ] - j_l - "
for £' in Sn. We choose ¢E'j{x') Dl uD(D,x'), j=1, I

Then the solutions of (CP1) for {e )} are given by

- -1 *1 1, , :
un{x] = U.GIX:' + FE"“X' IU Per,En Ymtsnixl_t!'s.]gen{txg ) dt
Put

(X1,E'} = —2 2% (e, T-x,,£")
¥n'¥yr - Pl g°8p M ©n’ 1’

As we shall show later by (2.5) in the proof of Lemma 2 that

Ym[E,xl,g'] is continucus in (xl,g') for fixed e, it implies that
yn(xl,g'} is continuous in {xl,g'] for every positive integer n.
For E = {[xl,E'); yn(xl,ﬁ')#D}, denote by x[(xl,i'):E] the
characteristic function of the set E. Put

H (x;.£') = x{{xl.ﬁ'l:E]°§;T§IT€TTf|yn{x1,€')|

- i3 -



Then iHnlxlrE'}l < 1 and (2.3} implies

T 5-5'
[ st en™ = o e axy | o

for €' in S Approximate E_(x;,£') in the sense of Ll ([0,T])
valued in bounded functions in &' by the mollifier pG(xl)* with

respect to x4 Put
1 = —_
hatn(xlfﬁ } JR pgix —tIH (t,£") dt.
Then h6 n[xl,E') are continuous functions with respect to X, in

[0,T] satisfying |h6 n{xl,E'}[ < 1. Since

T 1
S-s
| Jg yn{x1'£')<€l> th{l“‘zllI dxl

s-5'

T
= JO Ynfxlf£'1'<£'> h-ﬁ,n(xl'gl} dxl

£ sup |Yn(x1'g,]i.<g.>5—s 'JT Ihéln(x1r5|}'Hn(xlrgl}delr
DgxlgT 0

it implies that for £' in Sn there exist positive numbers Gn[E']

such that

T —_ 1
j JO yn{xlrﬁ']<£'>s s hﬁntg'),n{xl‘gl} dxl > n,

for &' in & Put
hn{xl,ﬁ'} = hén(E'l.n{xl‘gl)'

I WEN B L T SN E

-1 -1
g, (x} = F€'+x'(“ EN

n

where |S | denotes the measure of S, and x{£';S ) is the

characteristic functicn of the ball Sn We set fE = f0 + 9.
n n

Then
_14_



1
Iggn(xlf-}ﬂs. -

Since

s

(an(T.E') - ug(T,£7))<g "

T . .
= J y, (X6 <g!>578 -gEn(xl,g'}<g->5 ax

0 1

T
= ' 1,8-8", — -1/2 '
[D ynix1,£ J<E > hn(x1,£'1 dx,-n ISnF x (g :sn),

it implies that ﬂun(T,'}-uU(T,']NS > 1. This contradicts (D1},

{D5), (D6), and (D7)

[0.E.D.]

Put

BR = {lg'léR}: p = pz,ﬂfpl,ﬂ' 8B = arg -p, €& = exXp i8/m",

j-m'-1

£ = exp 2t1i/m", and 13 =7 ; Jj=m'+1, ,m.

By the same argument as in Lemma 2.2 in [3], it implies the

following lemma whose proof is omitted.

Lemma 2. Let {Al) in Assumption 1 be satisfied. Then, for

every positive number R, there exist a positive number £n with

; : ' -
€<l and continuous functions Tj,l(Erg ), 3=l m oon [0,e ]xBp
satisfying

lim sup ITj 1(6,&')] = 0, for j=1, ,m
€+0 £'E By ’

such that for m'+lgi<jzim and for lgigm', m*+1gjsm
T;(e, ") * leE,E ) on {0,ep]xBy,

and

- 15 -



Tj{e,E'l GjIE'l + T-,lie,a'l. for =1, LM

]

l/m"

£ 'Tj(ErE'l 1/m"

913-Jp] * 1y 1(e.8"), for jEm'+l,  m.

Lemma 3. Let Assumption 1 be satisfied and En ke the same

as in Lemma 2. For every positive number R, there exists a
positive number Cy R such that
r

(2.4) sup e~ max{{j-mf),ﬁ}fm"le{E'xl’g-}|

O<egep, 0x,<T, |§'|<R

< C

= l,R' for j=1I (M.

Procf. Fix an arbitrary positive number R and asuume that

O<e<e

R For arbitrary roots Tj = Tj{E,E'], j=1l, .,m, which do

not need to be distinct,

(2.5) Tile,x),8")
= ('llj—l'DIUrlr ---j_zrjr rm‘lllTlx :Tmel): j=1! M.

As we have already shown in Thecorem in {2], (A2) in Assumption 1

implies that the imaginary parts cf @1%, i=m'+1, ,M are

. _ 1/m" _ 1/m" - '
non-negative. Put n = ¢ P Mg = &5 ' 2y Tj(E,E ).
[ 1{!m" 1 LR -
j=1, ,m, and wj = g 'Tj(E,E Y, J=1, L. Then Assumption

1 implies that for every positive number R, there exist positive
numbers Mp, Mé, and ¢p such that (A.8) in Lemma A.3 in Appendix
is satisfied for M=Mp, M'=Mﬁ, C=Cp., and Ng=Ng- Hence Lemma A.3
can be applied to {(Z.5) Since D{p(l),pi2), .p(m'—l]](z',xl),
p in S, are entire in z' and continuous in X1 for DéxléT’ it
implies that there exists a positive number C,  such that

r

- 16 -



max |D(p(1]rp(211 'rD(m.-l)){Tlr . :Tm.lxl}| g C

pE552 2,R’

on [D;ER]x[U.T]xBR. Since E(w) is holomorphic for LY l1<igm'
and m'+1l<j<m, Lemma 2 implies that there exists a Positive number

C such that for j=1,., .,m’

3,R

(0,1, . .i-2.3,. m-D (. LT L)

r

/m*" 1/m"

1 1] [}
(el l/m ‘E(el "Tys = € 1 |

Tyl ot e ‘Tm)]m

£ C3 g

on [D,ER]x[U,T]xB Then

R"
|D{G;1: f3=2,17, em—-1} (Tlr . rTmrx]_)I

1/mu

S Cy o+ (€ +CyC, )ee .

3,R 2"%2,R

for j=1, .,m' and

|D‘0r1r “!j-z!jr - rm_I)(Tlr- 'Tm'xlll

S ey + Cyecy, p)eelITmIN/mY

2 T2,R

= C + C, + C then we have

3,R 1 27C

for j=m'+1l,. ,m. Put Cler

2,R’
(2.4)

(Q.E.D.]

PBenote by yj(xl,ﬁ'}, j=1, ,m' the fundamental solutions of

the following orxrdinary differential eguation with parameter £':
LD(Dl.E )Y(31:£ ) =0
with initial conditions:

DY Ty (0,5) = & . 3.k=l,  m,

ik
where Gj X is Kronecker's delta. As we have already shown

- 17 -



(2.6) yj{xl,s')

- j_l- ; 3 1
= {-1} D(O.rlr CJJ_EJJf r0 _1] {Ulr.. 'om"xl)’ 'j=1’ ,m',

where o = ojiﬁ'); i=1, (" are rocts appearing in Lemma 2.

Lemma 4. Let Assumption 1 be satisfied and e€_ be the same

R
as in Lemma 2. Then
(2.7) Yj{Erxl:E') - Yj(xlrg'): i=1, sm';
{2.8) Tile,x),8%) > 0, J=m’4l, m,

uniformly on [D.T]xBR when ¢+40.
Moreover, Yj[e,xl,ﬁ'], j=1, .M satisfy

(E8) sup

o |Yate,xy,E")] 2 C
1gjgm, O<egey, nglgT, E'eRp 1 17 =0

then yj{xl,ﬁ'), j=1,. ,m' satisfy

(E9)} sup y lystxg,8| s c
lgjzm', 02x,<T, £'erR™ 1 1L =0
Proof. By Lemma 3, (2.8} is obvious and it suffices to show

that for j=1, ,m’
03 tpo,r,  L3e23, m-L (T X))

i/m” y -

v (e Tl l,’m".Tm}]m ‘E{El,"m' 1/m" )

* {e "Tqr rE T
+ Yj(xl,E']
Since Tj(E,E') - cj(E'), j=1, ,m' uniformly on BR when e+0 by
Lemma 2, it implies that for j=1, ,m"

-1)3"1ep(0,1,  ,9-2,3,  mi-DATy. TgeeXp) P ¥ (XgLEY)

On the other hand,
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1 " [
l " L}
» (@t Iel My et p| BTy
and

Eislfm"-Tl, . ,elfm"-f }

It

> B0, .,0,(0-1',, - |p| 2™ @-1te[p| /M
r r ’ ml+1 r F Tm-lpl }}

Ilfm" 1/m"]]m'

= 1/{e 1. lp oo sl |p

Thus we have (2.7)
Since R is arbitrary, (2 7) and (EB) imply (E9)

[R.E.D.]

Let us consider the following singulary perturbed Cauchy

probklem:
L_(D)ufx) = 0, in [0,T)«RDT;

{CP2) Dlj'lulu,x'J =0, j=1, ym’
Dljnlu(O,x') = ¢E,j{x')' J=m'+1l,. ,m,

and its reduced Cauchy problem:

. -1
Ly(Dju(x) = 0. in [O,T]sz. ;

(RCP2}
Dlj-lu(G;xIJ = Ur J=1r l'm'

Denote by u 2[x) the solution cf (CP2} and by Uq 5 () the
! Fl

solution of (RCP2) Then ug 2{x] = 0.
Lemma 5. Let Assumption 1 be satisfied and £n be the same
as in Lemma 2 Assume that every support of the datum ¢€ j(E'l.

- 19 -



j=m'+l, .,m in (CP2) is contained in the clcsed ball Bp- Then,
for arbitrary real numbers s and s' there exists a positive
number KR which is independent of ¢ such that for 0O<ege

Rl’
m {(-m') /m"
(2.9) sup fu. S (x,,od ). € B+, 2. .. ¢ fe. (..
O;xléT £,2 1 = R £=m"+1 Efﬂ s
Remark. Here we do not use any conditions on the

fundamental solutions Yj but use (A2) in Assumption 1 Lemma 4
shows that (A2} ensures the boundedness of Y. on [D,T]xBR when
e+ 0

Proof of Lemma 5.

It is well known that the solution

u_ Z(x) of (CP2) satisfies

o= m o
uE'z[xllg ) - Zj=ml+1 Y_](EJ’X}.J'E.] ¢E—r_'{g'].
Lemma 3 implies

Lad Rp— a []] ~
lug oy B 2 €1,r" Lpmmrst (o) “log ol
on [G,T]xBR- Thus
(2my "0+ Jl g |u, 2(x1,£')<£'>5i2 ag'
£l Y
S C1,R2'm"

m -n+1 {(L-m'}/m~  ° ' 15812 g
dgmm4y (2T) J|g.|<R - b, g (87 <8">7]" 68

Put K_ = C Then we have (2.9}
£']2R

[Q.E.D.]
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The following corllary shows us that the stability is very

strong when the Cauchy problem is admissible.

Corollary 2. Let Assumption 1 be satisfied and Ep be the

same as in Lemma 2. Then, for every positive number £ with

ELEp. there exist Cauchy data ¢E 5 j=m'+1, (m belonging to H
4

such that for arkitrary real numbers s and s',

||¢€'jisl > @, J=m'+1l, ..m;
sup fu_. (x|, ~ 0,
O0<x. <T €,2771 8
="]1=
where u. , are the solutions of (CP2) for these data ¢ 5
’ [
j=ml+l* ,ma

Proof., Choe¢se non-trivial CE[BR}—functions wj(g'],

j=m'+l,.. ,m and a positive number a with a<l/m" Put
-a_ -1 . '
b 5=} =T FoL L (95080 ), el e,
which are rapidly decreasing functions. If 5"<0, then
-0 s g1
lo lgr 2 &% <R (ws) Iy ¢ =
when e+0. If s'>0, then
-a -s' -1
i¢e,jus' > "¢E,j“-5' > £ Fecre 13 [¢j]ﬂu + ®,
when £+40. By (2.9},
su Ju (2,,°}], & El/m"_a’K gL |F-1[¢-]H e ¥ 0,
0<E «p  €.2717 Tls = R “j=m'+1 1’ s
="]1=
when £+0.
{Q.E.D.]
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Lemma 6. Let the same assumption as in Theorem 1 be
satisfied. Consider the singulary perturbed Cauchy problem
{CP2) and the reduced Cauchy problem (RCPE2) for (CP2)

Assume that for the Cauchy data ¢E s J=1, M there exist

]

positive numbers § and M such that sup

< M. Then
1£3zm

H¢E,j"sl+6

the following two conditions are eguivalent:

{C9} The Cauchy problem (CP2) is (s,s8'+0)-stable in [0,7T] for

€40 with respect to a particular scluticn Ug o = 0 of (RCPE2)
L
{C10} For every positive number § there exist positive numbers
£ and CG such that
(E3} sSup IY'[EIX 'E|}<E1>S-$'_5|
, . 1-aiiml ] 1
m'+l<i<m, 0<E§EG, U;xlgT, E'ER
£ Cs
Proof. First we shall show (C10}) implies (C9) We have
oniy to show that if sup l¢ I < M then
i<igm e,j"'s'+48
sup ﬂus 2[xl,-)lS + 0. As we have already shown in the proof

G;xl;T
of Lemma 1, the solution v, zix) of {(CP2) satisfies
r
B 0 ET) = T ™ Y (e, x.,E' 0, (81}
e, 21" i=m'+1 717 £,7

Denote by x{E';BRl the characteristic function of the ball Ep.

Fut
Ve pUXp/E') = Ul (8 x5 iBg)
wo (6L 8') = a5 (L8 (1 - x(EsB))
Then v ,(x) = F;ﬂ, [:’s,z(“l*‘g") is the solution of (CP2) with
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the initial conditions:

Dl_]-lu((]’xr] = 0' j=1' * !m.;

j=-1 v - ol A C
Dy a0, x'y = P, (8, () x(8%BY)), Jem'+l, .
Since the supports of the Fourier transforms of these Cauchy data
are contained in the kall BR' we can apply Lemma 5 to Ve 2(x)
r

Obviously
Er N CO O R TCEFE I DN TRES EONY P

(2.9) and Dce;ER<1 imply that

(2.10) sup v, S(xy.0)]

0<x. <T £,2 71" 5

= 1=

1/m" m -1 - ‘.
S Xg'e " 'E£=m'+1 "FE'+X'[¢Epi{£.]'X{E 'BR]]IS'
1/m" m

Choose a positive number &' satisfying §'<§ and put 6" = 6-¢'
Since

|WE 2{311"5.]'(5')5'
s—s'-d'l

m 11 . '
é Ej=m|+l |Yj(erx1rg } 45 >

~ . . -5
T R e R F A R T S

the estimate (E3) for 6=6' implies that

Fay

lw, ,xg &' -<E">"

m . "~ . ' SI+G . ~ ';B ‘R_ﬁll
R TR L e N L
Hence
SN TR TURS St NN LI
{2.11) sup “ws,ztxl' Mg £ Gy g=m'+1 "Pg, jls +8

nglgT

Thus _ 23 -



(2.12} sup g Stxgel, g (Bre'/™ + Car'R_éu)-M-m"

nglgT R

First take the upper limit of € in (2.12) and next let Rte, then

lim sup Ju. (x,,)]_ = 0,
e+0  0gx gT €.2771 s
Next we must show (C9) implies (C1l0) Assume that (€10} is

net satisfied. Then there exists a positive number & such that
{E3) is not satisfied. Replacing s' by s'+§ in (2.2) and (2.3)
in the proof of Lemma 1, we have a2 sequence of solutions un{x] of
{CP2) such that

Sup lu (x,00 ] 2 172,

DgxlgT

-1 .
D177 u 10,0 ) gy + 0, =1, ,m.

This ceontradicts (Di), (D5}, (D&), and (D7}

[Q.E.D']
Proof of Theorem 1. First we shall show the equivalence
between {(Cl) and (C3) Denote by u l(x) the solution of (CPl)
¥

and by u_ 2{x) the solution of (CP2) with the initial conditions:

1

p, 7 ut0,x") = 0, =1, ,m';

Dlj_lu(urx-] = ¢'E’j{xlj - Dljﬂlug(or'ﬁ‘}r j‘—‘]’ﬂ'+l, M-

Then the soluticn uE[xl of {CP) is given by u l(x) + uE'Z[x]
Apply Lemma 1 and Lemma 6. The conditien (C3) is eguivalent to

the (s,s'}-stability of (CPl) with respect to a particular

scluticon u, of (RCP) and the (s,s'+0)-stability of (CP2) with
respect to a particular soluticn Ug 5 = 0 of (RCP2) By the

definition, the (s,s')-stability implies the (s,s'+0)-stability

- 24 -



Hence we can easily show that (C3) is equivalent to the

{s,8"+0)-stability of (CP) with respect to a particular solution

u, of (RCP)

Since (C3} is independent of the choice of a particular

solution u, of (RCP), it implies that (C2) is equivalent to (Cl)

Finally we shall show the equivalence between (C3) and (C4})
We have only to show that (C4) implies (C3) Apply Lemma 3 for

R=R,. Then we have (El) and (E2) for ¢, = min{ab,ﬂRD] and

c = maX{l;T}'max{C' Z)max{ (shsl] rD}fz}

0 or ©

R, (1*R4

1, o

Apply Lemma 3 for R=R, Then we have (E6} for e, = minlej,ep }
8

and

2 max{{s—s'—ﬁ},ﬁ}/2}

'{1+R6 }

Cg = max{C}, Cl'RG

[0.E.D.]

By the same argument as Thegrem 1 we have the following

theorem whose proof is omitted.

Theorem 2. Let Assumpticn 1 and 2 be satisfied for s'=s.

Then the following three conditions are equivalent:

{C5) The Cauchy preblem (CP) is H®-stable in [0,T] for €40 with
respect to a particular solution uD{x} of (RCP} belonging to

Cm([U,T] ;HS+2.]

(Cli) The Cauchy problem (CP) is A%-stable in [(0,T] for e€i0

with respect to every sclution uD(xJ of (RCP) belonging to
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c™([0.T];H

(C12)

(E10)

{E11)

S+£}

There exist positive numbers !, RU' and C6 such that

T
1
sup l =Y _{e,x,,£'}| ax, g ¢C
0{5250. Rgélg'l g € m 1 1 0

sup ‘ |Y1(E,xl.£')| <y
12jgm, D<ege,, 0£x,<T, R0§|§ |
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3. An example for Nagumo's Hs—stability

Let PIIE} and Pz(E) satisfy Assumption 1 and
ord pl,jtg'} £ i, 3=0, . ,m; oxgd pz’j[i'] £ 3., 3=0. (I
Then PI{D) and PztD) are kowalewskian operators. Put
mll
L(E,A) = PilE) + A “P,{E),

r . n=-1 _ . o
N'=(1,0) in Rglxﬁg. ., and N=(N',0) in Rng}( Denote by L(E,})

the principal symbol of L(E,A) with respect to (£,X) and by
o
Pitgl, i=1,2 those of Pitﬁ}, i=1,2, respectively. Then
[~} -] m'h [+]
L(E,A) = Py(E} + AT -P,(£)
It must be remarked that L{N} = Py g * 0 and EZ(N') =

Kevorkian and Ceole's suggestive example in §4.1 2 in [7] is as

follows.

Example 1 (Kevorkian and Cole).

Let Pl(EI,EZ} = 512 - 522, which is the simple wave operator,

and P,(gy,£,) = f—l-[a-gl + h-gzj, where a and b are real
numbers. Let us consider the solutions uE(xl,le through a

fixed point P(xlo,xzo] of the following equation:

E'(P D]_:Dz) + PZ(DIJDE}]u(XI!xEJ = 0.

1!
If there exists a convergent seguence of uE(xl,xz}, then the
limit un(xl,le must satisfy the reduced eguation

PZ(Dl,Dzju{xl,xz} = 0.

Since the general sclution of the reduced eqguation has the form:

- 27 =~



uo(xl,le = f{b*xl—a-le and the subcharacteristic of the reduced
equation has the form: bex,-a-x, = constant, if {a/b| > 1 then

the subcharacteristic to P lies outside the usual domain of

dependence of P for the simple wave operator Hence uﬂ[xl,xzj

can not be approximated by u {x%;,%,} when la/b| > 1.

-] 1]
Thus even when Py and P, are strictly hyperbolic, we need

some additional assumption on the propagation speeds. Therefore

we require the following assumption.

Assumption 3.

L]
(a3): The polynomial L{£1+T,£'.l] has only simple real zero for

every (£,A) in R"'xR-{ (0,0)} That is, L{£,Ax) is a strictly

hyperbolic polymonial in (£,A} with respect to N.

(Ad): There exXists a positive number T, such that if Im 1 < -T,
then P, (£ +7.£') # 0 for all £ in g That is, P,(£) is a
hyperbolic polymonial in £ with respect to N' in the sense of

L]
Garding

Remark. Since

o m" m
L(0+1,0,)%) = pl‘G-Tm + AT epy ot T

m m”

=1 {pl,o'rm + A 'Pz,a’f
(A.2) implies that m'gl
Theorem 3. Let Assumption 1 and 3 be satisfied and s be an
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arbitrary real number Then the Cauchy problem {CP) is
5
H -stable (and therefore (s,s+0)-stable) in U;xlgT for €+0 with

respect to every sclution u, of {RCP} belonging to

cm[ [U,T] ;HS'HH]

Procf. By Theorem 2, it suffices to show that Assumption 2,

which is the assumption on the unique solvability, and (Cl2) are

satisfied. First we shall show (Cl2) Denote by tj{E',l),

J=1, .,m the roots of L(f,A) = 0 with respect to 1 When
-] m" .

£ = )" , we may write

{3'1} tj[E'J}L) = TJ‘Er‘E'); J=1' ,'."E'I
for e#0 by choosing the suffixes {j} of tjtﬁ',l} properly.  The

strict hyperbolicity of L{£,X}) implies that there exist positive

numbers Rl' Cqr and Ml such that

(3.2) inf [t (€72 = £ (8,0 [/ & |
3=k, 1g3,Xkgm, [487, M) 2R, 7
Z Gy

(3.3) sup legEr 0 l7le 0] ¢ My

lgigm, |{£',2) [2R;

(For example, if we lock carefully into the proof of Theorem 4.10
in [8], we can find this fact easily.) Hence the roots

Tj(E,E'}, ji=1, s of LE{E} = 0 with respect to El are distinct
for e=0 and R1§|£'| The hyperbolicity of L(§,A) implies that
there exists a positive number Cy such that

(3-4) sup o, Imtggran] g c
léjim: (glf;’\}ERn lxR ] 3

Put p = | (&', )] Then (A.4) in Appendix implies that for €=0,
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R 2[g'], 0<x,¢T, and j=1, (M,

|Yj{€rxlr£r]|

_ _1vJ-1. . .
= 1[ 1) Di{o,1,. c1J-2,], -rm"]-)':tla 'tm"x].]l

S M0,1, . L3235, meD)eldeg, o Lt 0™

‘EE=T eXp(-Im tex,) /1 -t

|t

k=% ,l<k<m 4 kl

Lo o .
$eTTIeM(0,1, L3020, . amele | ey /0. ot _sp) ™)

m
x[£=1 exp (-Im tﬁxl)xnk=£,1§k§m ltgfp - tkfpl

<ol

where

C, = M(0,1,.. ,§-2,3, ,m-1)em™ I}/ 2.y M3

e I
1 m* {exp CBT) <y

Since Ry.2 |£'| 2 p and X g p. it implies that pl™3 < Rllhj,

j=1, ,moang ¢”lpl @ o T IR LI e

sup ¥ (e, , ') ] £ €,y §=1, m;
, Ozx 2T, Ryg|g'| ! -t '

1
sup . E'le[Erxlrg':‘l h C4
D;EésRl, G;xliT, R1§|£ |

Next we shall show that the unigue sclvability Since {C1l2)

and Lemma 3 imply (C6}), Lemma 4 can be applied. It is well

knoewn that (EB) and (E9} imply the unigue solvability.

[R.E.D.]

Remark. if ¢£ i ji=1, ,m and ¢U ! j=1, ,m' helong to
Hm[Rn_lj and fE and fO belcng to Hm(Rn) then u. belong to

c™(10.71;8%) and u, belongs to C™{[0.T];E"™)
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Appendix

Let z = (zl.zz,. ,zn] be complex variables. For a
non-negative integer %, denote

a{2) (z) = {[zjigs j»1,  ,n)

and for non-negative integers EI,EE,. '1n satisfying
u§£1<22< .<% _ denote
Ally 0y, (2 )(2) = det(a(t;)(z); i+l, ,n).

In particular, A(0,1, n-1) (2} is the Vandermonde determinant

and represented as the difference product 1 (z. = 2,)

l<i<jsn "7j i

Let i = /~1 and X, be a real parameter. Denote

1

e{z,x;) = {exp izjxl; j+1,  ,n}
and for non-negative integers El’iz"' 'En—l satisfying

0L, <L <...<Rn_l, dencte

1 72

B{L L

17820 Apad (2
= det t[te(z,xll,tatkl)(z), ,taiﬂn_l)(z)]
Expand the determinant B(Ll,ﬂz, ,in_l}[z,xl} with respect to

the first row. Then

I NS LD ) ewn ig
= ijl (-1) AR, %,, ,ﬂn_liiztj)) exp iz.x),
where z{j) = (zl,zz, 'zj—l’zj+l’ ,zn) Denote

Clhy,ty, 42 )(2)

-Q'zr rﬂ-n)(Z}ZA{Oflr ,I'l-l]"[Z]
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and
D[Rl,iz,. Pdo ) lzsxg)
= Bllyekyee SR ) (2,x0/8(0,1, ,0-1} (2}
Then C(kl,iz, ,Ln)(z] is a homogeneous symmetric polynemial in
Z[z] of order £1+£2+. .+En-{n—1]nf2, which is called a Schur

function. Since B(Rl,iz, .,ln_l](z,xlj is an entire functicn

of 2z and vanishes on the zeros of irreducible polynomials

zj -z 1<i<j<n, Nullstellensatz implies that

B(El,ﬂz, .,En_l){z,xl) is divided by A(0.1l, (n-11(z) in the

ring of entire functions. Hence D[Ll,ﬂz, .,in_l]{z,xlj is an
entire function. If Z4 = zj, 1<i<jsn, then (A.1) implies that
(A.2) D(ﬂlrlz,-- ;in_liiz;xll
= n —_ l+jo 3 ¥ 7 -
= Ij=1 (-1) ClLq,ts,, L 1) (2(3)) rexp izy%, Ej{z],
- 1 -3, -
where Ej(z) = 1/7{{-1) Meas,10ksn (23 z,
Put
M(%y 08y, . ok} = maT=l|C(£1,£2. 2) (2) ]
Then
L
(A.3) L2 S A N EI N B T S PR W A K

where I, = £1+£2+- .+En—[n—1]nf2 and

(A.4) [D(ry 2, o2 3) (2,%)) ]
L' n

where L' = £,+2.+. -+t _1(n-2) (n-1]/2.
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Let m, m', and m" be positive integers such that m = m'+m”

Denote z' = (zy,2,,...,2_ "), 2" = (Z 1417 Zmians 2}, and
z = [(z2',2") Let £;,%,,- 'im-l be non-negative integers
satisfying 0g8,<f,< ..<%_ 4 Let 5, be the set of all

bijections p from {1,2, (-1} onte {£,,8,,.. ,& ;) satisfying

p(l)<p(2)<. -<plm');

plm'+1)<p(m ' +2)<. .<p(m-1)
and §, be the set of all bijections p from (1,2, ,m=1} onto

{2.,2 } satisfying

1hgr flp
p{l)<p(2}<. -<p(m'-1});
p{m*)<p(m*'+l)< .<p(m-1).

There are one-to-one correspondence between the bijections in =N

and the selections of m-1 objects taken m' at a time and between

the bijections in S, and the selections of m-1 objects taken m*'-1

at a time, respectively. Define the bijection w frem

(2.8 o1} ento (2,3, ,m} as

277

Tr(ﬂ'j) = -]+lr =1, . sm=1.

Denote

I{p) = Ejﬂi mlp (3t} + m (m+1)/2

and

Tp) =1+ 157 e + mimen) /2,

For z; = 2z, l<igm', m'+1l<j<m, denote

E(z) 1/0

1<igm', m"+1<jzm i i
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Lemma A.l. For 2, # z_jlr l<i<m™, m'+l<j<m,

(a.5) D{El,ﬂz, P21 (24%9)

- IF}ESI {_IJIID}.C{F'(]-}JF)(-Z): ¢.,ﬂ[m']]{z|]
xDl{p{m-+1) ,p(m"+2}, ’ptm—l))(z"rxll'E[Z]
¥ Epe&sz (-l}J(p}'D(plll;912)....,p(m'—1]}(z|'x1)

xClp{m'}).p{m*+1), . ,pim=1)) (2"} -E(z}

Praof. Apply the Laplace expansion theorem to

B(il,iz,.. ,Em_lltz,xll The miners of order m' of the original

matrix “(%e(z,x),%a(e)(z),  ,Falr _ ) (2)) of order m are
A{p(l),p(2),. +pp(m’'}} (2"}, for p in S,
B{p(l],p{Z},...,p(m'—l}){z“,xll, for p in 52'
and those cofactors of order m" are

-1 T® Bo(m'+1) ,ptm'+2),  ,ptm-1))(z',x;), for p in Sy,

-7 aipmt) ,pnT+1), .,p(m~1)) (2"), for p in S,
respectively Hence

{(A.6} Btil.iz. ,Rm_1)(2,xll

=7 -0IP A 0(2),  Lpm))(z')

pe;Sl

xB{p{m'+1},p(m'+2), 0 (m-1)) (2",x,)

Jip), . ‘
* Epe,.s2 {=1) B{p(1),pt2}, yp(m*=1)) (2", %)

xA(p(m'),p(m"+1}, yp(m=1}) (2"}

Divide (A.6) by

- 34 -



(A-?} A(Urlr rm_l}{z)
= A(0,1,. ,m'-1){z')-2(0,1,. ;,m"=1) {2") /E(=z),
we have (A.5).

[Q.E.D.]

Denote
p{l)+p(2)+. _+p{m')-(m'-1)m’'/2, for p in §
L'(p) = 1
p(l)+p{2}+. .+p(m'-1)-(m'-1}m'/2, for p in S5,
and
o) [ p(m'+1)+p(m'+2)+. _+p(m-1)-{m"-1)m"/2, for p in §,
L"(p} =
plm' )+p{m"+1)+.. +p(m~1}-(m"-1)m"/2, for p in S,
Put
M(glﬂf‘zﬂ F'q‘m_l]
= max {max M(p(l),p(2), ,pim')),
ﬂ'n’-.-':S1
max M{p(m'+l),p(m*+2),.. ,pim=~1}},
DESJ_
max M(p(m'),p{m'+1), ,p({m-1))}
(ol = 52
For a positive parameter n, put wj = n-zj, j=1, ,m.
Lemma A.2. Assume that z, = 240 for 1<izm', m'+lgjsm and
for m'+1l<i<jsm. Then

[Clp (1) ,p(2), sof{m'))(z")

xD(p{m'+l),p(m*'+2}, ;D(m—l}}(z"rxll‘E(Z}|

2y, L . L" "-1
T e L2l A U N LT
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mrmll-Llr {p] . m
kM [E_J=m.+l exXp (=Im wjxlfn]f]-[k:j,m""l;kgm |WJ

for p in Sl and
IDtp(1).p(2), ,o(m'-1))(z',x;)
xClp(m*),pim’+1), .,p(m-1)}(z")-E(z) |
g IDtetl),0(2), ,pim'-1)}(z',x,)]

m'm"wL"(p)

- " L“
TETC S YOS SRS B L R 2N P-TIO A

for p in 52

Proof. Since

L

C{%y.8,, L8 )(z) =n "-Cl{2 .8 2.} n-z),

1r~2r

where L = £1+£2+. .+£n—(n—1)n12,

_Lll

D(%. .4 ’£n—1)(z’x1} =n 'Dtglrgzr- rin_l){n'zﬁx /),

rr7ar

where L" = £ +8,+. -+% _ -(n-1)n/2, and E(z) = 0" " ‘E(w), it

implies that
Clp(l),pl2), p(m*)) (2"}
xDip(m*'+1},p(m'+2), (o lr-1)) (2", %) "E(2)
= Clp(1l).p(2), - ,pim'}) (2"}
Diefm +1),p{m'+2),  ,plm-1)) (w*,x /n) -E¢w)-n™ ™ O
for p in 5, and
D{p({l),p(2), pp(mt=1}) (27,%4)

xC{p(m'},p(m'+1), (pim-1)) (z"}-E(2)

= D(p{l}.p(2), p(m'=1)) (2" ,%,)
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«Clpim) o (m'+1),  ,pim-1)) (w") +E(w) - n™ ™ D" ()

for p in 52‘ By using (A.3) and (A.4), we come to the

conclusion.

[Q.E.D.]

Lemma A.3. Assume that z; = 240 for 1gi<m', m'+1l<j<m and

for m'+1gi<jgm. Let
[fdlliz; ",ﬂm"l} = {Urlf 'k_lfk+1r ,1'[1—1]‘.
Assume that there exist positive numbers M, M', ¢, and U with

noél such that for every n satisfying Dcngnn, the following

estimates are satisfied:

(A.8) |z'] £ M; |lw"{ < M;
m exp {-Im w.x./n) < M';
j=m'+1 j¥a/n) 2 B
inf |w, = w.| > ¢: inf |w, ~ w.| 2 e.
m'+lcic<ijam T 1= 1gigm’ ,m’+1<j<m J
Denote
M = max M(0,1., ,k-1,k+l, ,m-1},
0<k<m-1
(m-1)! =2 m'm"-k+m"-1_  -m'm*-m*+1 .,
C Tmim-pr N c MY,
and
_ {m_l}! .""'. mlmn. _mlmll
Cy = m-1rmrr MM ¢
Then
{A-QJ' ID(Urlr rk_l:k+1r Jm_l}(z;}[l}

- D(0,1, Jk-1,k+1, ,m‘—l){z',xl)
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x[wm'+l'wm'+2' ’wm]m E(W |

A

{Cl + Cz'max |D{p[1]rp[2]r rp{ml-l]]{zrrxlll)'nr
pes,

for k=0,.. ,m'-1 and

{a.10) |D{D, 1, . ,k-1,k+1, ym=1) (2,%,) |
g (g + cyrmax  |Dip(L),0(2), ,pim =1))(z',x)|) k™' *L,
PeES,
for k=m*',. ,m-1 Here p in 52 are bijections from

{1.,2, .,m-1} onto {0,1, .,k-1,k+l,. ,m-1} satisfying
pll)<p(2)< .<p{m'-1});

pim’}<pi{m'+1l})< <p(m-1).

Proof. First it must be remarked that
m'm"=-L" (p) 2 m'm"-m'-(m'+1}~-. .={m=1)+(m"=1}m"/2 = 0,

where the equality holds if and only if

{a.11) k=0,1, Jm'=1,
P&S,,
-1, =1, ki
plj) =

j, j=k+1, ,m—-1
Since

" m'

C{m*,m"+1, ,m-1) (2"} = [zm,+1-zm,+2~ -zm] ,

it implies that for p satisfying (A.11),
17 P () 0(2),  Lomt-1h) (2", x))
xC{p{m'),pi{m'+1), (p(m=-1)) (2"} -E(2)

= {_1]m'(m'+1]‘D(0'l' ,k—l,k+l, ,m'—l}(z',}:l]
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n

. "W '-E(w]

For p not satisfying (A.1l), Lemma A.2 implies that
iclp(1),p(2), ,pim'})(z")
1D (plm'+1) ,p(m'+2}, ..,p(m—l}}(z“,xli'E{zll

~ 1 n w_ e T W —m
gMz'ML (F”"'L (p]+m l-lE{wll.nmm L [p] Mg m+1'

for p in S1 and
iD(p{l},p{E}, ,p{m'-l]][z',xl}
xC{p(m'),p(m'+l1), ;e (m=-1)) (2"} *E(z) |

< IDle(1),p(2),. Lp(m'=1))}(z', % }|

Ml ) LB () | P RTL" (0D

for p in 82' If (A.11) is not satisfied, then m'm"-L(p) > 1.

Ifk=m"', . ,;m-1, then
m'm"=L" (p) 2 m'm"-(m'-1}-m'-. ~{m-1)+k+{m"=1)m"/2 = k-m'+1.

Since |E(w)| < ¢ ™™ and L'(p)+L"(p) = m'm"-k, for p in Sy

[Fa

Lemma A.l implies the conclusion.

[Q.E.D.]
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