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Chapter 1 

Introduction 

Polymer gels and rubbers constitute a unique class of condensed matter that is 

different from any of liquids, crystalline solids, and glasses. They are not like 

liquids as they show elastic responses to mechanical perturbations. They are 

not like crystals in that the positions of their building units have no long-range 

correlation. They are also distinct from ordinary glasses because large thermal 

fluctuations are present in gels, which are the sources of rubber elasticity. Yet, 

gels have some qualitative similarity to fluids near the glass transition; both of 

them contain structural heterogeneity on many length-scales, which are consid-

ered to produce random internal stresses [1]. One type of spatial heterogeneities 

in gels is that of the crosslink density. Experimentally, it is manifested as speck-

les in light scattering intensity, and as the "abnormal butterfly" pattern observed 

by small-angle neutron scattering [2]. Another type of heterogeneity is provided 
by random shear deformations of network meshes, which are also frozen at the 

moment of crosslinking. 

  The effect of these quenched randomnesses becomes particularly evident when 

we introduce some other soft order into gels. This is indeed possible, for example, 

by weaving liquid-crystalline polymers (LCPs) into networks. The first sample 
of nematic elastomers (dry  gels) was synthesized by Finkelmann et al. [3] in 1981. 
Today there exist nematic and smectic gels as well as many of their chiral fami-

lies, both dry and swollen [4]. It is also possible to crosslink block-copolymers to 
obtain mesoscopically ordered networks. In this thesis, we shall focus our atten-

tion on nematic gels, which have the highest and simplest symmetry among the 

mesophase networks. Theoretically, nematic gels are characterized by a coupling 

between the strain and orientational degrees of freedom, whose consequence was 
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first explored by de Gennes [5]. He showed that, upon the isotropic-nematic 
transition, homogeneous liquid-crystalline gels should undergo a spontaneous 

elongation along the director. Later,  Golubovie and Lubensky [6] showed that 
homogeneous gels in the nematic phase have soft phonon modes in their ground 

states. Their model, which is intended for a more general class of non-linear 

elastic systems, does not explicitly contain the nematic orientational order pa-

rameter as a variable. Prior to that, Warner et al. [7] and Abramochuk and 
Khokhlov [8] independently constructed the first molecular models of nematic 
networks. Their models are straightforward extensions of the classical theory 

of rubber elasticity [9], and utilize the fact that nematic polymers, if they are 

not very rigid, are well described as anisotropic Gaussian chains. The model by 

Warner et al. is especially general in that it does not assume a certain type of 
LCP (main-chain or side-chain), and in that it can describe networks crosslinked 
in the nematic phase as well as those prepared in the isotropic phase. Warner 

and coworkers [10, 11] have further shown that homogeneous nematic elastomers 

can be deformed without any change in the elastic free energy, if some special 

paths of deformation are followed. This effect is called soft elasticity. Thermal 
fluctuations of a homogeneous system have been studied by Olmsted [12] using 
the same model, in a harmonic approximation. 

  In this way, the properties of clean and homogeneous nematic gels are now 

considerably well understood. In experiments, however, a macroscopically ho-

mogeneous (or monodomain) network is obtained only when a strong magnetic 
field or a mechanical force is applied in the course of crosslinking, to align the 

polymers. Networks fabricated without such precaution always contain a large 

number of director textures. This macroscopically disordered state is called the 

polydomain state. (A domain means an orientationally correlated region, and 
is not necessarily separated from other domains by a sharp interface.) The do-
main size, or the director correlation length, is typically in the range  10° — 101 

 Am. Polydomain elastomers exhibit unusual non-linear elastic responses against 

stretching. A typical strain-stress curve starts with a low and almost constant 

plateau in the small strain region, which is followed by an approximately lin-

ear rise of stress in the large strain region [13, 14, 15]. A few recent experi-
ments [16, 17, 18] revealed that the plateau stress can be vanishingly small. The 
crossover from the soft to hard response roughly corresponds to a change in the 

state of molecular orientation. In the soft region, the nematic director is inho-
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mogeneous and is gradually aligned in the direction of stretching as the strain 

is increased. In the hard region, the director is almost completely aligned. This 

crossover in orientation is called the polydomain-monodomain (P-M) transition. 
To better characterize the state of orientation in the polydomain state, Clarke 

et  al. [19, 15] conducted a polarized light scattering experiment. They obtained 
an anisotropic scattering intensity with four peaks in the direction of crossed 

polars, which they call the "four-leaf clover" pattern. Such an anisotropy is not 

observed in usual fluid nematics with textures. 

  From theoretical side, the origin of the presumably equilibrium textures has 

been attributed to some quenched disorder, assumedly introduced by crosslinker 

molecules [19, 20, 21, 22]. Among them, Fridrikh and Terentjev [21, 22] pro-

posed a random field model which is analogous to models of random anisotropy 

magnets. They assumed that the external stress linearly couples to the nematic 

order parameter in the free energy, and tried to explain the stress-orientation 

relation. On the other hand, little theoretical attention has been paid to nei-

ther the stress-strain relation, nor the role of strain-orientation coupling in the 

polydomain structure. 

  In this thesis, we study the mechanical response and orientational correla-

tion in nematic gels, with a focus on the long-range elastic interaction between 

orientational inhomogeneities and quenched sources of randomness. In general, 

inhomogeneities in an elastic system interacts with each other through an effec-

tive long-range interaction mediated by the strain field. The non-local nature 

of this elastic interaction plays a crucial role in various systems, such as crys-

talline solids with dislocations and cracks [23], surface adatoms and steps [24], 

phase separating alloys [25, 26, 27, 28], gels [29], and membranes with inclu-
sions [30]. The present system gives just another example. We assume that the 

principal source of quenched disorder is provided by the random internal stresses 

due to heterogeneous chain conformation, and model them on the basis of the 

affine deformation theory by Warner et al. Then we analyze the long-range 

elastic interaction. For networks originally prepared in the isotropic phase, we 

should also take into account the spontaneous deformation induced by the I-

N transition. We show that the elastic interaction caused by the spontaneous 

deformation rearranges the director field in the polydomain state, resulting in 

the "four-leaf clover" anisotropy in the scattering pattern. This rearrangement 

realizes a significant reduction of the free energy, which explains the ultra-low 

                            6



mechanical resistance against stretching. The random stresses act on the order 

parameter both non-locally and locally, and renders the orientational correlation 

length finite. We numerically investigate the form of the correlation function, 

and how the correlation length depends on the strengths of disorder and strain-

orientation coupling. We also point out that, if the crosslinking has taken place 

in the polydomain nematic state, then the initial order parameter acts as a 

correlated quenched disorder which considerably raises the mechanical stress. 

  The construction of this thesis is as follows. In the next chapter, we review 

the notion of random stresses in isotropic gels and extend it to nematic gels. In 

Chapter 3, first we derive the expression for the elastic interaction, with which we 

analyze the structure of director and strain fields in the polydomain state. Then 

we numerically simulate the polydomain state and the polydomain-monodomain 

transition. We also study the effect of random stresses on soft fluctuations in 

the monodomain state. We conclude in Chapter 4. 
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Chapter 2 

 Mo  del 

2.1 Random stresses in isotropic gels 

2.1.1 Origins of random stresses 

Gels are heterogeneous in nature. One of the main experimental observation 

that characterizes the heterogeneity in gels is the "abnormal butterfly" pattern 

obtained by small-angle neutron scattering. Under stretching, the scattering in-

tensity develops bright wings in the direction parallel to stretching. This cannot 

be understood by assuming the gel to be a homogeneous elastic body. Bastide 

et  al. [31] first pointed out that the crosslink density inhomogeneity can explain 
the "abnormal" anisotropy direction. Later Onuki [32] proposed a phenomeno-
logical continuum model with a random crosslink density, by which he could 

reproduce the anisotropy tendency. Besides the crosslink density, there can be 

random anisotropy of the network mesh which is frozen by crosslinking. From 

the general theory of elasticity, it is known that the free energy of systems bound 

by central forces can contain a term linear in the metric tensor of deformation. 

The coefficient of the term may have a spatially inhomogeneous part, which we 

call the random stress. Alexander [1] pointed out the role of random stresses in 
systems with small shear rigidity, such as gels and glasses near the glass transi-

tion. Shear rigidity of rubbers and gels are typically  10-5 —  10-6 times smaller 

than that of crystalline solids, and hence they are highly susceptible to internal 

stresses. However, we cannot know the physical origin of random stresses from 

these general arguments. Below we discuss the relation between random stresses 

and the crosslinking conditions of gels. 

  We consider the classical affine-deformation model of rubber-elasticity [9], 
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which is derived as follows. A chain whose end-to-end vector is p contributes 

an amount  In D(p) to the system's entropy, where 

 D(p)  =exp3C 2Na2p2)(2.1) 
is the equilibrium probability distribution function of p. Here N is the  poly-
merization index, a is the size of a monomer, and  N- is the normalization factor 
that assures f dp D(p) = 1. Let us denote the end-to-end vector at the moment 
of crosslinking by  po. State of deformation of the network is described by the 

deformation gradient tensor, 

                              Sri 
          i3 Or°•—(2.2) 

 3 where r° and r are the positions of material points at the moment of crosslinking 

and at observation, respectively. The basic assumption of the model is that, 

when we apply a macroscopic deformation, the end-to-end vector Po changes to 

 p =  A -  po. Accordingly, the elastic free energy per chain is written as 

            fchain = — kBT dpoDo(p0) In D(A Po), (2.3) 

where  Do(p0) is the probability distribution of  pc). If chains were completely 
equilibrated at the moment of crosslinking,  Do(p0) =  D(p0) and we have 

                           IcBT                       f
chain =•Ai •          23 (2.4) 

(summation over repeated indices i, j, k and 1 is implied throughout this thesis.) 
However, crosslinking is a non-equilibrium process that can induce internal flow. 

Chains in polymer melts are easily deformed by flow and have a large relaxation 

time due to entanglements. While density fluctuation is suppressed in good 

solvents, there can remain anisotropic chain deformations at the moment of 

crosslinking. For small deformations we may assume that the distribution of  p0 

is Gaussian but have an additional weight, as 

 Do(po) =  N-1  exp 2Na2'2Poiir.ipo'3*) (2.5) 
                     3 Substituting this into Eq.(2.3), we have  fchain =  (kB7  72)(Aijgii—ln det A) where 

 gi; =  AkiAki is the metric tensor. Taking the spatial inhomogeneity of  Ai; and 

the crosslink density  vo into account, the elastic free energy is obtained as 

                 Fet= 
            ke

2g'f  dro  vo—  In det A) (2.6) 
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           Figure 2.1: Schematic illustration of disordered network structure. 

  The elastic stress tensor can be computed following a standard procedure [29], 
and reads 

                = ICBTvoAkiAikAit.  (2.7) 

In the unperturbed state  Aii =  Si; and in the absence of crosslink density inho-

mogeneity, its spatial variation is described by the quantity 

 Pi; =  Ai; — (2.8) 

which we call the (dimensionless) random stress. If we are interested in a length-
scale much larger than the the correlation length  lc of the random stress, we can 

model it as an uncorrelated Gaussian variable. From symmetry, its variance can 

be written in the form 

 2 r       (Pij(q)Pk1(-11)) = 72(Sikail'OldSil6jk — —0') +Sijakl•                                               (2.9) 

The quantitiesand7y.havedimensions of the square root of volume. For 

instance, if chains at the moment of crosslinking are under shear deformations 

of magnitude  ti e, we have  1,  la/2e. Similarly,  5, describes the magnitude of 
random chain dilatations. Even if the frozen deformations of individual chains 

are small, the dimensionless numbers  v072 and  voy2 can be of the order of unity 

if the deformations are correlated over many chains. 
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2.1.2 Scattering intensity 

To illustrate the role of random stresses, it is useful to see their effect on the 

butterfly scattering pattern in the neutron scattering intensity. This is done by 

following Onuki's prescription [32], as follows. The total free energy is written as 
F  =  Fel  F4„ where  Fri, = kBT f  dr  AO) is the mixing free energy with being 
the volume fraction of polymers. We consider the long-wavelength limit and 

neglect the gradient free energy. Let us assume  v  =  77 = const. For simplicity, 

we consider only shear random stresses and put  5' = 0. Then the elastic free 

energy takes the form 

 Fei =kBTv fdr0(0)1               gii +——(2.10)  2 / 00o) .1 
where  00 is the initial volume fraction and satisfies  00/0 = det  A. The last 
term is newly included and accounts for an additional entropy due to crosslink 

distribution over the sample [9]. The deformation can be expressed as  ri = 
 Xiiro  +ui, where  Ttij is the average deformation which is externally controllable, 

and  ui is the internal displacement and related to the density fluctuation  80 = 
 —  TA via 80/1/5 =  —V'  •  u+O(IVu12) . The density fluctuation can be written as 

a sum of two parts; the static fluctuation  80,t and the thermal one,  80th. The 
former is the solution of the mechanical equilibrium condition, V  • (gel  +a-0) = 0, 
where  u' is the contribution of  F4, to the stress tensor, given by 

           viavi= kBT(fi         -(2 .11) 

After some calculation, we obtain 

 608t(q) =  4(4)]-1J;(4).4(4)Pik(q), (2.12) 

where 

 q= 
               lql 

                                  A2 f  E =  9-2u-1 (1+930242) , 
                    ,k )1/3                 9 =(s-ul 

      0(2.13) 
and 

 Ji(4) = (2.14) 
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                                                      as  o  n  v  0 -as  as 
 ct_x  -1 

Figure 2.2: Static contribution to the scattering intensity in the presence of shear random 
stresses and uniaxial stretching. Plotted is Eq.(2.15) with  c replaced by  c  C  q2 Parameters 

 are  Aii  =  2.0,  Ai  =  1.0,  c  =  1.0,  and  C  =  1.0. 

For isotropic swelling we have  Xii =  OSij and  Ji =  4i. The mean square amplitude 

of the static fluctuation is obtained as 

       -WO= (1604012) =219 4(70)2r 4(0 12 (2.15) 
 3 Le + 4(4) .] 

and that of the thermal fluctuation is given by [32] 

                  1  1   Ith(q) =  (180th(4)12) = 02•(2.16) 
 vJi2(4)• 

As we approach the  spinodal line, which is defined by in-fq [eJ2(4)] = 0, the 
static fluctuation starts to dominate the thermal one. Under uniaxial stretching 

 =Ar=e, Ai(evey>Ai), /th(q) ezez) (Alldevelops an anisotropy whose 
direction is perpendicular to the stretching direction, while  Ist(q) has the oppo-
site ("abnormal") anisotropy. Now we compare  Ist(q) with the static amplitude 
due to crosslink density inhomogeneity, whose  4-dependence is given as [32] 

                       PO)  — 0-212         Iv(4) cc[(2.17)                    E4(4) 

The random stresses and the crosslink inhomogeneity give qualitatively similar 

 4- dependences for a large swelling ratio  B >> 1, while for  B  — 1 the results 
are different. Shown in Fig.2.2 is an example of the abnormal butterfly pattern 

created by the random stresses. 
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2.2 Model of disordered nematic gels 

2.2.1 Extended affine-deformation theory 

The state of order in nematic liquid crystals can be described in terms of the 

orientational order parameter, 

                          1    Qi;  =  S (nin••—d,•)                                             (2.18) 

where S is the scalar order parameter, n is the director, and d is the spa-

tial dimension. Polymers in the nematic phase have anisotropic conformations 

elongated along the director. To describe the elastic property of nematic net-

works, Warner,  Gelling and Vilgis [7] extended the classical affine-deformation 
model of rubber elasticity. Their basic assumption is that nematic polymers 

have anisotropic Gaussian conformations. This is a good approximation if the 

chain rigidity is not so high and the persistence length is much smaller than the 

chain contour length. The end-to-end vector distribution in thermal equilibrium 

is assumed in the form 

 D(p)  = exp  8-4                         2Na2Pi'Lii Pa) (2.19) 
where the tensor 

             Qij =  trim .; + —  nin;) (2.20) 

represents the chain anisotropy. The dimensionless quantities and  21 depend 

on the scalar order parameter S. If the crosslinks were introduced in the ne-

matic phase, the chain conformation at that moment is also anisotropic. If the 

crosslinking took place in equilibrium, the initial distribution is given by 

 d   Do(p0)  =  H-1  exp 
2Na2poi(topoi ,                                              (2.21) 

where is related to the director n° at the moment of crosslinking , as 

                    p0= /0n0n0/0 (5..n0n0)         -̀z-iIIIz• (2.22) 

The elastic free energy is obtained from Eq.(2.3) as 

  k
(2.23) 

            B711.0Idro[Tr (toATri A)det     Fel = In
2detti 
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The last term in the bracket does not depend on the state of deformation and 

can be absorbed into the  Landau-de Gennes potential for the I-N transition [33], 
say. Hereafter we neglect this term. We also assume the incompressibility, 

            det  A = 1. (2.24) 

This is a good approximation for rubbers, and for gels far from the spinodal 

line. For convenience of analysis, we reparametrize the current and initial con-

formation tensors in terms of the order parameter, as 

                                               &s, 
            = —  aQii) , (2.25) 

           =  te°(ai; (2.26) 

with 

         1  til  
    a=(2.27)                  S (1 — 1/d)til(1/d)ti 

                                O80 

                     ao 
                                                II.".±                =1  t(2.28)  S

o (11d)q -F(1 — 1/d)1(1 
          1 1-1  Le = [dell +  (1111.1 (2.29) 

and 

 teo = d_1t(1  —d_1111,(2.30)        II 

The S- or So- dependences of the above four parameters are computed from 

some microscopic models of LCPs, or obtained from comparison to experiments. 

However, as they are only weakly dependent on S in typical cases, we shall 

approximate them by constants. Then we have the basic expression for the free 

energy of clean incompressible nematic gels as 

          Fei  =  —  2fdr(.5i; — aQii)(Ski + ao(22iPtikAjc, (2.31) 
where 

     = (2.32) 

is the effective shear modulus. The chain anisotropy is usually large in main-

chain LCPs where a  N  ao  rs-, 1, while the typical values for side-chain  LCPs are 

a  ti  ao 0.1. Note that a cannot exceed  dl  (d — 1) in the anisotropic limit 
       oo. Similarly,  ao is always smaller than d. 
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                   isotropic nematic 

 fl) 
                          41^••^.11. 

 1  Xs 

Figure 2.3: If the network is crosslinked in the isotropic phase, a spontaneous elongation along 
the director is induced by the I-N transition. 

  Let us look for the homogeneous (monodomain) ground state of this model. 
Assuming n° =  es, n = const, and  Ali = const, the minimum of the free energy 

Eq.(2.31) is located at n =  no and  Ai; =  Asezez  A;1/(c1-1)  EL2  eae,,, where 

      )(d-1)12d (d-1)/2d      (til 1+  (11  d)aS  1  —  (1/d)aoSo    =—— 

      tto1 — (1 — 11 d)cxS  1  +  (1  —  1/d)aoSo  (2.33)         ± II 

is the ratio of elongation along the director. If  tij  =  £294, then  A, = 1; no 

spontaneous deformation will be induced if there is no temperature change. 

2.2.2 Random stresses 

If we take the non-equilibrium nature of the crosslinking process into account, 

the initial chain anisotropy tensor  1?.i deviates from that given by Eq.(2.26), as 

 tevii  aoQi +  j), (2.34) 

where  P,, is the non-equilibrium contribution, which we shall refer to as the 

random stress. Now we arrive at the most general form of the elastic free energy 

we shall utilize, 

 Fe:  =   2 f  dr(8i; — aQi.i)(Skt + aoVici +(2.35) 
However, full treatment of this model is too complex and not very fruitful . In 

Sections 3.1-3.3 below, we shall consider the following two essential cases . 

Case I. (crosslinking in the isotropic phase) 
The network is obtained by crosslinking a polymer melt in the isotropic phase 
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(a0  = 0) and a subsequent quench into the nematic phase. The source of 
quenched disorder is the random stress which is a Gaussian variable obey-

ing Eq.(2.9). We further assume that the chain dilatation is homogeneous, or 

 7' = 0, and there are only shear random stresses. Although it is not fully jus-
tified, we may point out that the density fluctuation is strongly suppressed in 
dense polymer melts, while an internal shear flow can easily deform chains. The 
material is characterized by two parameters, a and  7. 

Case II. (crosslinking in the nematic phase) 
Nematic polymer melts often exhibit long-lived polydomain textures, which 

coarsen very slowly  [40]. In some experiments [17], polydomain elastomers are 
obtained by crosslinking a polydomain melt in the nematic phase. Let us as-

sume that the crosslinking occurred at one moment during the phase ordering 

kinetics after a quench from the isotropic phase, and that the temperature is 

unchanged since then. In this case we have  ao =  a/[1  —  (1  —2/d)a] from  tri  ill 
and  ei We assume that the initial chains have been equilibrated, or 

  = 0. The orientational configuration of the original melt is memorized into 

the network, and acts as the source of quenched disorder. The effective disorder 

strength depends on the correlation length  o of the initial configuration  Q?j. 
The basic material parameters are thus a and  G. 
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Chapter 3 

Analysis of elastic effects 

3.1 Elastic interactions 

The quenched inhomogeneities  Pi.; and  Oj produce heterogeneous deformations 
at mechanical equilibrium. A local source of disorder creates a long-range strain 

field around it and affects the nematic order parameter  Qii in remote places. The 

order parameter field interacts also with itself, mediated by the strain field. In 

this section, we derive the explicit forms of these elastic interactions, to prepare 

for discussion of director correlation and mechanical responses in the following 

sections. Throughout the chapter, we shall regard the average strain  iii as an 

externally controlled parameter. We also assume that the external deformation 

is a uniaxial stretching in the x-direction, written as 

 -X  =  Aiiesex  +  Al  E eaea, A-1/(d-1).                                               (3.1) 
                                        a=2 

3.1.1 Harmonic approximation 

Expansion in internal strain 

First we consider the case with no average deformation  (Xi; =  8ii). The elastic 
free energy can be expanded with respect to the internal strain Vu where u 

r —  ro is the internal displacement. Substituting  Aii =  Sii +  ajui into Eq.(2.35), 
we have 

 Fel  =  AFei, 

 AFei =  2 Jdr  {(aiiii)2 -  2(aQii -  Pi;)02u; -  aQijPi; x(a,ui)2] (3.2) 
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in a harmonic approximation. The final term in the integrand is added to 

temporarily relax the incompressibility V u = 0, which will be recovered by 

taking the limit K  co at the end of calculation. 

  To discuss static properties, we can eliminate the strain field using the me-

chanical equilibrium condition, 

 SF 
 = 0,                                              (3.3)  Su 

which gives a functional of  Qij only. The harmonic approximation is valid if the 

quenched disorder is weak and if the strain-orientation coupling is small, or, 

          aS  < 1. (3.4) 

The former condition is written in terms of the lower-cutoff length b of the 

coarse-graining. The strain Vu at the coarse-grained level is small if 

            7  b-d/2  < 1. (3.5) 

The latter condition Eq.(3.4) is satisfied in the following cases; (i) S  << 1  : 

pretransitional fluctuation. (ii) a  << 1, S  ti 1 : nematic phase with weak 
coupling. 

Weak disorder limit 

In the absence of random stresses, Eq.(3.2) becomes 

 AFei =dr —+ K(ajui)21 
 2, (3.6) 

from which the mechanical equilibrium condition Eq.(3.3)  reads 

 —xa5ajuj-02u,+  aajQij =  0. (3.7) 

From its Fourier transform, 

 Kqiqiuj(q)+  q2ui(q)+  a  qpQjj(q) = 0, (3.8) 

we have 

 ui(q) =   
                   a

Vi4)                  4K gig;                      iit            42K+1q2qkl4j")(3.9)1 
In the incompressible limit K oo, it becomes 

             aaiaj  ui(vii -—2-vukyik,(3.10) 
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which is substituted back to Eq.(3.6) to yield 

                   Ace2j  AFei—ur[2(aQ.021                   —k3 
                2 

     -µ
2222                  f4i4.Q-"(q)4i4kC2ik(9)7(3.11) 

 q where  4, =  qi/jqj and fq =  f(271-)'dq. 
   Hereafter we consider the two-dimensional case. In 2D, the traceless sym-

metric tensor  Qii has only two independent components, say  Qsz and  Qsy. This 
makes the analytical treatment particularly simple. Eq.(3.11) can be rewritten 
as 

                                  Act2f  AFei--2j
q IQ i(q)i2(3.12) 

where 

 Qi(q)  24.47/2..(4) —  (4! — "4/12)(2zy(q) 
                  =  sin  2cp  Q  ..(q) —  cos  2cp  Q  xy(q). (3.13) 

We have introduced the azimuthal angle  cp of the wavevector q  1(cos  cp  , sin  c,o). 
A complementary variable can be defined by 

 Q2(q)  (4.2  4112)Q..(q)  24.4,(2.y(q)  —  
 = cos  2cp  Q  (q) + sin  2(p  Q  xv(q). (3.14) 

Note that Qi(q) and Q2(q) constitute a set of normal modes and satisfy 

 1Q1(q)12 +1Q2(012= IQxx(q)I2 +1(2.y(4)12 (3.15) 

The inverse Fourier transform of  Q  ci(q) (a = 1, 2) will be denoted by  Q  a(r), 
which are real variables. 

Effect of quenched disorder 

The effect of random stresses on the long-range interaction can be included by 

replacing  aQ,,j by  aQij—Pik in Eq.(3.11) (see Eq.(3.2)). The effective free energy 
in 2D now reads 

                                            2 

 AFei =  —  11 fq aQ  i(q) —  Pi(q)aQ ij(q)Pij(—(1)1. (3.16) 
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where  Pi(q) is defined by an equation parallel to Eq.(3.13). Note that the 

quenched disorder both locally and non-locally acts on the order parameter. If 

we incorporate the dilatational part of random stresses,  Pi; in the above formula 

should be replaced by its shear part  Pik =  Pi; —  (11d)Pkk5ii, and P1 by  Pis 
The bulk part  (11d)Pkk6ii does not affect the order parameter, at least in the 
harmonic approximation and in the unstretched case. 

Effect of stretching 

The effect of external stretching can be incorporated by expanding Eq.(2.35) 
with respect to the internal displacement, which is redefined as u = r  ro. 

In the absence of quenched disorder, the effective free energy is obtained as 

 Fei = const. —  'La  I  dr  (W  —  I): Q(r) 
 pa2122         2 JqW: 44 [ (w. 4) • Q(q) — (w • 4) • Q(q) • 1 , (3.17) 

where  Wi.7=  AikX;k• The first integral in the right hand side has a tendency to 
align the director in the direction of stretching, while the long-range interaction 

represented by the second integral acts against it. 

Nonlinear effect 

Now we briefly comment on nonlinear effects. Including the next higher (third) 
order terms into Eq.(3.6), we have 

 AFei =2fdr f(aiui)2 —  2aQiiaiu; —  aQi;(akui)(aku;) 
 +Kkajui)2 +  (ajui)3 —  (aui)(0juk)(akui)]  }. (3.18) 

The final term is derived from K(det A — 1)2, using the expansion 

     det A — 1 =  aui+(112)[(aui)2  -(aiui)(ajui)i+  0(1Vu13). (3.19) 

Following a standard procedure of perturbation expansion, we can obtain the 

third order contribution to the effective free energy, written in terms of three-

body long-range interactions. More generally, we have n-body non-local interac-

tions in the n-th order. This is different from the case of elastic systems coupled 

with a scalar order parameter, where we have a two-body interaction in the 

third order [28]. Unfortunately, we find no realistic situation whether a further 
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analysis of the three-body interactions is both useful and tractable. Although 

a next higher order calculation may serve to specify the bifurcation class of the 

director buckling instability (cf. Section 3.4), we abandon any nonlinear analysis 
in this thesis. 

3.1.2 Pretransitional behavior 

The role of elastic interactions can be illustrated by considering thermal fluc-

tuation of the order parameter above the isotropic-nematic transition. The  I-N 

transition is a weakly first order transition and the correlation length just above 

the transition is typically of the order of tens of nanometers. Pretransitional 

fluctuation in nematic fluids has been extensively studied by light scattering 

and electric or magnetic birefringences, although there is yet little study for 

nematic networks. 

  The total free energy can be written as F = Fei + FL, where FL is the 

Landau-de Gennes potential in the harmonic approximation, 

       Ll         FL,=dr [—ATr Q2 +—2(aiQik)22in+(3.20) 
                2 where A = a(T —  71.). In 2D we obtain 

    F  =  2fq[(A  —  pa2Lq2) 1Q1(012(ALq2)  1Q2(q)121, 
 L2 

  L =  L1  +2'(3.21) 

using  Eqs.(3.12) and (3.15). From this we see that the spinodal temperature 
is shifted from  7', to  T, —  µa2/a, which is the result obtained long ago by 
de Gennes [5] assuming spatial homogeneity. Let us consider the depolarized 
scattering intensity. When one of the polars lies in the x-direction and another 

in the y-direction, the scattering intensity is given by 

 -r(q) =  n(q)12) (3.22) 
except for a wave-vector independent prefactor [33]. From Eq.(3.21) we have 

      1(q) =  cos(2co)2(1Q1(q)12) +  sin(2(p)2(1Q2(q)12) 
                        kBT            = cos(2(p)2sin(2(p)2 kB T(3 .23)                 A  — pa2  +A+Lq2. 
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Figure 3.1: Depolarized scattering intensity above the I-N transition. The temperature is 
T =  T, —  0.9iza2/a. Left : without stretching. Right : with stretching in the x-direction 

 (Ail  =  1.2,  a  =  1). 

At a temperature slightly above the spinodal, there arises a strong asymmetry 

 (1C21(q)12)  >>  (1Q2(q)I2) and the scattering intensity becomes largest at  co = 
 n7r/2 (n: integer), and exhibits a "four-leaf clover"-shaped pattern as shown 

in Fig.3.1. At short wavelengths the anisotropy  is diminished by the Frank 

elasticity. The balance between rubber elasticity and Frank elasticity defines a 

characteristic length, 

                                            (3.24)                       = \/—iza2• 
A typical set of experimental values L  ti  10-11N,  —  105./17n2, and a  ti 1 gives 

 6,  101nm as a rough estimate. 
  The effect of stretching can be readily incorporated in the above calculation. 

The depolarized scattering intensity, which is obtained from Eq.(3.17), is more 
enhanced in the direction of stretching, as shown in Fig.3.1. However, there is 

a reservation in use of the harmonic approximation. The free energy density re-

sponsible for this stretching-induced anisotropy is of the order of  A(Aii-1)(aS)2, 
as seen from Eq.(3.17) (Note that the first integral in the r.h.s of Eq.(3.17) is 
not relevant for fluctuation at finite wavenumbers.) On the other hand, terms 
of the order of  gaS)3 appear in the third order expansion of the free energy. 
Therefore, the calculation based on the harmonic approximation is well justified 
only if  Ali  —  1  >  aS. 
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3.2 Polydomain State 

The harmonic approximation in the previous section is valid also in the nematic 

phase with S  N 1, if the coupling a is much smaller than unity. For simplicity's 
sake, we put S = 1 hereafter. The free energy in the nematic phase is written 

as the sum of the elastic and the Frank free energy, the latter being 

                                 KFin 
        FF =ni)2 (3.25) 

                        2 in the one-constant approximation [33]. The characteristic length  ec is now 
redefined by 

 KF           =
tia2(3.26) 

Since L and KF are of the same order, we again have  eca  ti 10 nm, and  6, 
102 nm for a weak coupling a  ti 0.1. The polydomain state is characterized 
by two lengths,  ec and the director correlation length which we denote by  6. In 
typical experiments  e  rs, 1 — 10  Am, and hence there is a sizable gap between  ec 
and  e, where the elastic interaction of the order parameter plays an important 
role. 

3.2.1 Weak disorder limit 

First we assume the quenched disorder to be sufficiently weak and neglect it. 

Real space correlation 

Eq.(3.11) can be rewritten in the form 

 AFel--22             2drfdr'[Qik(r)  30iG2(r — r')  •  Qik(r) 
 +Qij(r).  ajOjakaG4(r — r')  •  Qici(r'),, (3.27) 

where  G,,,(r)(n =  2,4) are the Green functions defined by 

 VG, .(r) = —5(r), (3.28) 
 G,i(r  oo) = 0. (3.29) 

In 2D, Eq.(3.27) can be reduced into the form 

                     1 

 AFei =16
7r 

            ya2drdri —
R2cos[2(0 —coR)2(6' — (pR)], (3.30) 
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Figure 3.2: Left : preferred director configuration in 2D. The director at the center is fixed, 

and the optimal directors at surrounding points are plotted. Right : Ellipses indicate the 

anisotropy of local strain. 

where R = r  —  r', and  0,  0',  cpR are the azimuthal angles of  n(r),  n(r'), and 
R, respectively. This free energy prefers the relative director orientation that 

satisfies 

                           1  (0 — (PR) +  (0' — (PR) =+—2) ir (n : integer), (3.31) 
which is depicted in Fig.3.2. When the local director points to the north (and 
south), the correlation is enhanced in the northeast, northwest, southeast and 
southwest directions and suppressed in the north, south, east and west directions. 

This has a following simple interpretation : the center region is elongated along 

the director and pushes the north and south neighbor regions, which will elongate 

into east and west directions to reduce the conflict. Thus the director vectors 

in the north and south tend to be perpendicular to the central one. In contrast, 

the regions in the east and west neighborhoods are pulled toward the center, 

which also leads to the perpendicular orientation. 

  In 3D, the free energy Eq.(3.27) becomes 

                         1 

 AFei =167dr  I dr'—R3g(n,n',R), (3.32) 
 g(n,n',R) --5 3+ 4(nn92(n •11)2 + (n'i1)2 

             — 18(n  •  n')(n  •  il)(n1  R) + 15(n  R)2(n'  R)2, (3.33) 

where  R =  R/IRI. Correlation in directions parallel and perpendicular to the 
director is suppressed as in the 2D case, which is known by observing that the 
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function 

 g  (n  ,  n', n)  = —   3+ 2(n  • n')2 (3.34) 

takes the minimum when n  1 n' 

Soft response 

Next we compute the elastic free energy in the 2D case. As in the pretransitional 

case, an asymmetry  1Q1(4)12 >  IQ2(q)12 arises to reduce the elastic free energy 
Eq.(3.12). Because of Eq.(3.15), we have 

 Qi(r)2 +  Q2(r)2 =  Q..(r)2 +  Qyy(r)2 = . (3.35) 

                                    4 We expect to have 

  1 
              Qi(r)2 =—4'  Q2(r)2 = 0. (3.36) 

Although it is difficult to prove Eq.(3.36) because of the local constraint  Q  x(r  )2  + 

 Q  .1,(r)2 = 1/4, we have confirmed it by numerical simulation (cf. Section 3.3). 
The elastic free energy density (averaged over the space) is given by 

                      tia2 auct2 
                                             (3.37)                     L\ f el  = ——Q l(r )2 =—        28 

Now it can be shown that, in the weak disorder limit, the P-M transition ac-

companies only a small change of  O(a3) in the elastic free energy. Indeed, the 
elastic free energy density at the monodomain state with  A =  A, is obtained 

from  Eqs.(2.31) and (2.33) as 

                           ia2                          fel ,mono = Ai- 

       I 

              4 , (3.38) 

which is equal to  f  el =  A +  A  f  el to order  a2 In order to understand the origin 
of this soft response, it is useful to look at the local stress in the polydomain 
state. The elastic stress tensor is obtained from Eq.(3.6) as 

 cri.;  =  A(ajui +  ajui —  aQij). (3.39) 

Substituting Eq.(3.9), we obtain its variance as 

 crii(r)2 =  A  2a2Q2(r)2 = 0,                                             (3.40) 

which means that each part of the system is elongated along the local director 

by 1 + a/4 =  A, +  O(a2) times. 
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 Scattering intensity 

Using the anomalous diffraction approximation, Clarke et al.  [19] showed that 
the wave-vector dependence of the depolarized scattering intensity in the  poly-

domain state is again given by  I(q)  =(iQxy(q)12),if the director lies in the 
x-y plane. Then the asymmetry 1(21(4)12 > 1(22(012 leads the "four-leaf  clover" 
type anisotropy, although the explicit form of  I(q) can not be calculated. 

3.2.2 Effect of quenched disorder 

The effects of quenched random fields on systems with a continuous symmetry 

have previously been studied in terms of many different physical systems, such 

as random anisotropy magnets [34], vortex lattices in superconductors, charge-
density-waves, and nematic fluids in porous media [35]. In an earliest study, Imry 
and Ma [36] showed that a long-range orientational order in dimensions lower 
than four is destroyed by an arbitrary weak random field. Let us recapitulate 

their argument using the free energy 

              Fr f=dr[—KF(Vn)2  —(H• n)21, (3.41) 
                       2 where H is a field with a constant magnitude  Ho and with random directions 

whose correlation decays in a distance b. It is convenient to descretize the space 

into a lattice with a grid size b and the rewrite Eq.(3.41) in the form 

                    kF            Frf= —  n.,)2 —  E(h.  •  n3)2, (3.42) 
 (..,) 

where  14-,  KFb",  Ihsi =  h0  tiHobd/2, and  h8 is randomly oriented from site 
to site. Consider a polydomain state with a correlation length much larger 

than b. Each domain contains typically N =  (Ub)d sites. By choosing an 
optimal director orientation, a domain can reduce its random field energy by 

around  ighg, while it obtains gradient free energy  r  NkFl(Ub)2 Equating 
these two contributions, we have 

                              2—d/2 

         (b)kF 
                                  KF  

 h2H2b2• (3.43) 

                                   For d < 4, is finite and has a power-law dependence on the random field 

strength, which is the original finding by Imry and Ma. Note that, in their 

estimate of the disorder free energy, the random field is assumed to be a weak 
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perturbation to a uniformly aligned director field, and the feedback due to the 

change of director is not considered. They also neglected the effect of vortices 

(disclinations), around which the director drastically changes its orientation. 
  Correlation in the random-field 2D XY model, defined by a Hamiltonian 

equivalent to Eq.(3.42), has been studied by Monte Carlo simulations [37, 38]. 
Gingras and Huse [37] performed a simulation at finite temperature (below the 
critical temperature of the non-disordered XY model), and found that the cor-
relation function G(r) =  ((n(0)  • n(r))2 —  -}) decays slightly faster than an 
exponential function. With the same model but at T = 0, Yu et.al. [38] found 
that  —  ln(e/b) is approximately proportional to the effective disorder strength 
D =  kF, and that G(r) is well fitted by a simple exponential function for 
a large value of D (that gives  elb  — 1). With a slightly different Hamilto-
nian (equivalent to Eq.(3.42) except for lacking the n  4-* —n symmetry) and at 
T = 0, Dieny and Barbara [39] also found that G(r) decays a little faster than 
an exponential function and that — ln(e/b) is proportional to D. 

3.2.3 Crosslinking in the nematic phase 

Elastic interactions in the Case II is obtained by simply replacing  Pi; in Eq.(3.16) 
by  a0i (note that  ao = a in 2D). There are two qualitatively different behaviors 
depending on the orientational correlation length  60 at the moment of crosslink-
ing. 

Case  II-A  :  60  6, 
If the crosslinking has taken place at an early stage of the phase ordering, Q9. 

                                                                                                                             2.3 

has a microscopic correlation length and so its qualitative role is same to that of 

   Domains will continue to grow to reduce the Frank free energy until finally 

pinned by the random field. 

 Case  II-B  :  6c 
If domains have already grown to macroscopic sizes when the crosslinks are 

introduced,  CA acts as a correlated disorder and strongly pins the directure 
texture. We expect to have  Q,j(r)  Oi(r) at equilibrium. 
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Figure 3.3: Director correlation function  G(R)/G(0) for the effective disorder strength D = 
 0.1,0.2,0.3,0.4,0.5. The horizontal axis is the scaled distance  Rg. Fixed parameters are 

 a  =  0.1  and  p  =  200. 

3.2.4 Effect of stretching 

Here we remark on the effect of stretching on the director correlation. As men-

tioned in the previous section, the harmonic approximation Eq.(3.11) can tell 
the correct anisotropy only if  Ali —1  >> aS(= a). Unfortunately, this condition is 
satisfied only in the monodomain state. In order to study the effect of stretching 

on the correlation function in the polydomain state, we have to resort to direct 

numerical simulation of the non-linear model Eq.(2.35). 

3.2.5 Numerical Simulation 

To study orientational correlation in the polydomain state, we have conducted 

a numerical simulation in two spatial dimensions. As the dynamics is glassy 

due to the quenched randomness, we used an annealing method to facilitate 

numerical minimization of the free energy. We solved the Langevin equation for 

the director, 

                art  

  at.,..,SF 
             = (I — nn)(-1n— bnTin), (3.44) 

whereTin is an uncorrelated Gaussian  thermal noise. Its mean square ampli-

tude was gradually reduced and finally turned off to reach the free energy mini-

mum. We assumed a weak coupling and utilized the harmonic elastic free energy 

                           28



                                           10 

          8 - 

                                       156 

       -c 4 
                                                        0-5 

    0   0 2 -                                                      0c) 

1   0    
 0.1 0.2 0.3 0.4 0.5o 1  2  3  4 

             Disorder strength D Elastic parameter M 

Figure 3.4: Left : Correlation length as a function of D, with M = 0.5  fixed. Right  : 

Correlation length as a function of M, with D = 0.3 fixed. 

Eq.(3.2), so that the internal displacement can be determined by solving linear 
equation Eq.(3.8) by Fast Fourier Transform. The periodic boundary condition 
was imposed on both u and n. The grid size b was taken to be unity. A stan-
dard set of parameters used was KF =  4, =  200,a = 0.1, and  7 = 0.06, for 

which the characteristic length  ec equals 1.4. The effective strength of disorder 

is described by the dimensionless parameter, 
                              rY 

            D=—,Ac• u. (3.45) 
                                     AF 

The strength of rubber-elastic effect in comparison with Frank elasticity is de-

scribed by 

             „2is2  M=1:  •  b2  =  (uc(3.46) 
Average over 20 independent samples were taken for each set of parameters to 

obtain the correlation function. 

  First consider the ordinary correlation function, 

 G(Ig) =  (Qii(r)Qij(r R)). (3.47) 
We defined the correlation length  e by 

 G(e) 1  (
3.48)  G(0)  e 

The numerical data are shown in Fig.3.3. The decay of G(R) is nearly expo-
nential for a strong disorder and faster for a weaker disorder. This qualitative 
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Figure 3.5: Left : Director-relative correlation function H(R). Plotted range is  R>  4". Right  
: Depolarized light scattering intensity  /(q) =  (Pxy(q)12). 

tendency agrees with previous results for the 2D random-field XY model [37, 38]. 
The correlation length  e strongly depends on the effective disorder strength D, 
as shown in Fig.3.4. The dependence is roughly exponential, also in agreement 
with previous results [38, 39] for the XY model. In the same figure we show the 

dependence of  6 on the parameter M, which is not strong; the correlation length 

is basically determined by a balance between Frank elasticity and the effect of 

quenched disorder. 
  To quantify the director-relative correlation featured in Fig.3.2, we also com-

puted the function 

            H(R) = (Q.,;(r)Qii(rU R)), 

 [cos —sine I(3.49)               U(r) = 
                          sin cos  9 

For instance,  H(es) and  H(ey) express correlation in the direction parallel and 

perpendicular to the local director, respectively. The numerical data for the 
standard parameter are shown in Fig.3.5. The plotted range is R  >  6. We see 

that the correlation tendency described in Fig.3.2 extends over several times of 

the correlation length. The depolarized scattering intensity  .1(q), is also shown 
in Fig.3.5. Although not clear from the figure, the intensity is a monotonously 

decreasing function of the wavenumber along the  qx and qy axes; there were no 

peaks at finite wave-numbers, in contrast to the experimental observation [15, 
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functions of The The stress is plotted in an arbitrary unit. Right : Free energy densities. The 
elastic free energy density is measured from p. See the text for the definition of the disorder 
contribution. 

19]. 

3.3 Polydomain-Monodomain transition 

3.3.1 Numerical Simulation 

Next we simulated the polydomain-monodomain transition using the non-linear 
elasticity model Eq.(2.35). In addition to Eq.(3.44) for the director, we solved 
the Langevin equation, 

          au SF                 . —11,,,—su+ nu,  (3.50)       at 

for the internal displacement u = r —  X  r0. After an equilibration stage at 

the polydomain state with  Ali = 1, we added an external stretching in the 

following way. An increment of strain  All  —f'111  =III +  6'All was performed 

in two steps; (i) increase  Ail at a constant rate and with thermal noise, until 
arriving at  A. (ii) turn off the thermal noise for some time to approach the free 
energy minimum at  Ail. This was iterated to obtain the free energy as a function 
of  Ali. The data shown below are for the parameters KF =  4,  A =  100 ,  a = 0.4, 
and  7  = 0.05, unless otherwise stated. For this parameter D = 0 .5, M = 4 
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Figure 3.7: Elastic free energy density  Afel divided by  ita2/8 for a =  0.2,  0.4, 0.8,and 1.2. For 
these values  As =  1.05,  1.11,  1.24, and 1.41, respectively. 

and  Wc  ti 3. The macroscopic orientation  Qom. =  cost  9/2 and the macroscopic 
stress  o =  df/dAll are shown in Fig.3.6. The orientation shows a linear rise until 
saturating at  All  As(= 1.11), while the stress is almost zero in the polydomain 
region 1 <  .\ <  A., and linearly rises in the monodomain region  All >  A.. The 

components of the free energy density are also shown in Fig.3.6. We define the 

disorder contribution  Fdi, to the elastic free energy by 

 Fdi, =  — dr (8 j— 01Qij)PklAikA j1 •(3.51) 

 2 Both  Fdio and  Fei —  Fdis are almost constant in the polydomain region, and the 

slightly negative slope of the total free energy is due to the Frank contribution. 

Next we varied the coupling constant a with keeping the values of D,M, and  K  F 

fixed. Shown in Fig.3.7 is the elastic free energy density  AFei divided by  pa2/8. 
In the weak disorder limit it should be —1 + 0(a3) from the previous analysis. 
The slope of the free energy is only slightly negative and is almost independent 

of a. We also find that the crossover to monodomain occurs at strain slightly 

larger than  A,. This can be attributed to hysteresis; when we decreased  Ali from 

the monodomain region, the crossover occurred at slightly below  A.. 

3.3.2 Scattering intensity 

In Fig.3.8 we show the depolarized scattering intensity. In contrast to Fig.3.5, 

the intensity develops peaks at finite wave-numbers. This is quite probably an 

artifact of our numerical scheme : the elastic displacement obeys a diffusive 

                           32



 1(q)  1(q) 

 30I                                             100 

            

.1
I II ji 

 20„,, 11q'1 
                                             50 

   10 i)1,Idyl, 

                      loiv. 
 0OVA011111111` 

 cLy 

 q_x  q_x 

Figure 3.8: Depolarized scattering intensity  /(q) =  (IQzy(q)12). Average is taken over 10 
samples for each parameter. Left :  Ail = 1.0. Right :  Ali = 1.06. Peaks in the direction parallel 

to the stretching axis are higher and narrower than those in the perpendicular direction. 

equation Eq.(3.50) and relaxes very slowly at long wavelengths, although we do 
not yet well understand how it affects the order parameter. Under stretching, 
the peaks on the  qz-axis become higher than those on the  qy-axis, and the latter 

are broader than the former. These are just the opposite to the experimental 

observation [15, 19]. At the moment the source of this discrepancy remains 

puzzling. For instance, it is not clear whether our 2D result can be used to 
interpret the experimental data, which are obtained from freely-suspended films. 
It is also to be noted that the peak intensity increases by stretching. This feature 
agrees with the experiment, where the unstretched state was opaque and the 
scattering pattern was not detectable. 

3.3.3 Quasi-soft elasticity 

  Let us summarize the mechanical response of an isotropically crosslinked 
network. In the previous section, we have seen that the soft response originates 
from re-configuration of the domain structure, which is illustrated in Fig.3.2 and 

gives rise to the "four-leaf clover" scattering. We have obtained a vanishingly 
small stress even for a sizable value of a. We shall call the soft response quasi-soft 

 elasticity, in order to distinguish it from the soft elasticity [10] of homogeneous 
and clean networks. Very recently, a conflicting argument was presented by 

Fridrikh and Terentjev [22], who claimed that the P-M transition costs a positive 

                           33



                                           unstretched              600
stretched + 

                                cn 
                              *44 

 0 400 

 Z  200 1 

                       0 

     0 1 2 
                                 Scaled elastic free energy 

Figure 3.9: Distribution of elastic free energy contained in a single site. The horizontal axis 
indicates the elastic free energy  ALI divided by its spatial average. Cases with and without 
stretching  (All 1.0 and  .X0 = 1.06) are shown. 

elastic free energy of 0(a2). Their basic picture is that the elastic free energy is 
localized at "domain walls" by stretching, while inside each domain the strain 

and order parameter are homogeneous. However, our analysis and numerical 

data show that this is not the case. Plotted in Fig.3.9 is the distribution of elastic 

free energy contained in a single site. It has a single sharp peak, and is only 

slightly changed by stretching. This implies that the director and local strain 

axis coincidently (and graduately) rotate toward the external force direction, 
as the strain is increased (see  Fig.3.10). This may be called a quasi-Goldstone 
mode (but is not a genuine Goldstone mode because of the quenched disorder 
and the anharmonic correction). The  quasi-Goldstone mode originates from the 
I-N transition-induced deformation. Although our results are for the 2D case, 

we believe that the theoretical picture of the quasi-soft elasticity remains valid 

in the 3D case. 

3.3.4 Crosslinking in the nematic phase 

Next we consider the case where the  crosslinking was done in a polydomain 

nematic state (Case II). The initial orientational configuration was prepared by 
simulating a simplified model of the phase ordering kinetics of nematic poly-

mer melts; starting with a spatially uncorrelated initial configuration, we solved 

Eq.(3.44) with = 0, a =  0, and  ri  = 0 until the domain grows to a size larger 
than  G (Case  II-B). Then the order parameter configuration is copied to  Wi(r), 
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Figure 3.10: Schematic illustration of the quasi-Goldstone mode (in a macroscopic view over 
many domains.) The soft response is due to simultaneous rotation of the strain axis (indicated 
by ellipses) and the director. 

and we have solved  Eqs.(3.44) and (3.50) with the designated values  of and a 
for some more time to equilibrate the system. As shown in  Fig.3.11, the macro-
scopic stress has a finite positive slope in the polydomain region. From Fig.3.12 
we see that the free energy has a uniform spatial distribution at  Ao = 1, which 
is broadened by stretching. These reflect the fact that  Qij is almost equal to 

 (27°J at  Ali = 1, and  Oi acts as a correlated random field that produces a strong 
resistance against stretching. 

3.4 Fluctuation in the  Monodomain State 

3.4.1 Soft mode 

By stretching the network after or in the course of crosslinking, we can obtain 

a nearly homogeneous monodomain state.  Golubovie and Lubensky [6] con-
sidered a general model of non-linear elasticity whose linear elastic moduli can 

be negative. When the shear modulus becomes negative, the system undergoes 

a spontaneous elongation. They showed that, in this ground state, there are 

soft thermal phonon modes with  (1u(q)12)  OC  q-4 They also considered the 
effect of random internal stresses in a harmonic approximation , and suggested 
a further softening  (1u(q)12)  oc  q' on a plane in the q- space. Their results 
can be translated in terms of nematic gels originally crosslinked in the isotropic 

phase. However, since their model does not contain the nematic order param-

eter, it has not been clear whether their results are indeed valid in nematic 
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Figure 3.11: Left : Macroscopic orientation  Q.. =  cosy  0/2 and total stress  or =  8F/8A11. 
Crosslinking was made in a  polydomain nematic state. Right : Free energy densities. The 
disorder contribution is defined by Eq.(3.51) with  Pia replaced by  ceoW• • 

gels. Fluctuations in networks crosslinked in a monodomain nematic state was 

first analyzed by Olmsted. Using the extended affine deformation theory, he 

showed that the director and strain possess soft modes of thermal fluctuation 

with  (18n(q)r)  oc  q-2 and  (1u(q)12)  oc  q-4, respectively. The existence of soft 
director fluctuation implies that the monodomain state is unstable to a buckling 

of the director for an arbitrary small compression along the director. This has 

been experimentally observed [41] and called the stripe instability. However, 
he did not treat the case of isotropic crosslinking, and the effect of crosslinking 

condition has remained unknown. 

  The purpose of this section is twofold. In this subsection, first we generalize 

the result of Olmsted by showing that clean nematic gels in the ground state 

 All  =  A, have soft modes of director fluctuation, regardless of the crosslinking 

condition. Secondly, we discuss the effect of quenched disorder on the director 

fluctuation. We study two types of quenched disorder, i.e., inhomogeneous di-

rector configuration at the moment of crosslinking, and the random stresses. We 

consider networks almost completely aligned in the x-direction; 

                         n =  ex  +  6n. 

We assume the crosslinking to be done either in the isotropic phase, or in the 
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Figure 3.12: Distribution of elastic free energy contained in a single site, in a system  crosslinked 

in the nematic phase. Cases with and without stretching  (All = 1.0 and  Ail = 1.06) are shown. 
The peak for the unstretched case counts about 5000 sites and is far out of the plotted range. 

nematic phase with an almost uniform configuration 

 no =  ex + 6n0. (3.52) 

Now we derive the long-range elastic interaction between director fluctuations. 

To this end, it is convenient to reparametrize the chain conformation tensors as 

 tioi =  jeoLioi  ponionlo.  Pik),                                              (3.53) 
 =-  ieLij  =  ie(8ij  + (3.54) 

where  p and  f3 characterize the equilibrium chain anisotropy and  Pij is the 
nonequilibrium contribution (random stress). The basic free energy Eq.(2.35) is 
rewritten as 

 Fei  =  —2fdr Li-3.1 Lk° dtikAii, (3.55) 
                     =  K  BTiet1 

Hereafter we  denote and  Pij simply  as and  P21. The spontaneous elongation 

is expressed as 

                    (1 + (d-1)/2d 

 =   

          1 +130)(3.56) 
For the computation it is also convenient to introduce the quantity 

 Cij =  ekiTtikTvi, (3.57) 
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Figure 3.13: Amplitudes of thermal fluctuation at the threshold  AD =  As. Plotted are 

 (lbny(q)12) (left) and  (16n,(q)12) (right) for  # = 0.1 and on the  q.-qy plane. 

with which the elastic free energy can be expanded as 

        Fei  I dr  2C2kL37:(0.jui) 

 jk11(01uk)(ajui) —K(8,14)2. (3.58) 

                                    2 In the third term of the integrand we have replaced and  Li-1 by their spatial 
averages as the deviations will contribute only to higher order terms in the 

effective free energy. Solving the mechanical equilibrium condition  8Feil6u = 0 

and taking the incompressible  limit K  —+ oo, we obtain 

         u(q) =  qq[L• g(q)qL•g(q)L  • ql,                 L :qq(3.59) 
where 

 gi=  mcikLi-k1). (3.60) 

The effective free energy is given by 

     Fei =  dr  C  :  2
. 

                      q L • g(q)12-  g(q)g(—q)1. (3.61)  2J1q : qqrf,1: qq 

Soft mode 

  First we assume that the initial crosslinking was done in a perfectly uniform 

state Ac.li =  Si;,  Sn? = 0. Substituting  Ci; =  023 and 

      gi(q) =  qjVik(l5L-1)=k 
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              1 [A2q •  Sn(q) + (1 + 00)4ani(q)1 (3.62)  +  0 

into Eq.(3.61), we obtain 

 Fei  =  II2 1Q1y1q                       [p  —  1  —  G(q)]18n(q)I2 + const. (3.63) 

where 

 11  + (1+ Q + p)2e 4.2 + 0262 
 L 1+ Od 1 II   G(q) =  (3.64) 

             1 +1 + (p1)41 

                     14•En(q)1   4
11= 151/(01 

and 

                  (1  +  #0)q  
 P =                                              (3.65) 

The p — 1 in the square bracket of Eq.(3.63) has its origin in the first integral 
of Eq.(3.61). This term always tends to align the director in the stretching 
direction. In the case of nematic crosslinking > 0), the aligning effect remains 
even without stretching  (All = 1). If the maximum value of  G(q) exceeds 

p — 1, the monodomain state is unstable to director buckling. It can be shown 
that 

          PO   Gmax  =1+attained at 4 II ex for P  > 1 + i3, 

     Gmax = attained at  4  II  Sn(q) for  p < 1 +  13. 

which tells us that the stability threshold is located at p =  pc = 1 +  # or 
equivalently at  All =  A., where the bend fluctuation (q  II  7--t) and the splay 
fluctuation (q II  8n) are both marginally stable. If we assume that the wave-
vector lies in the x-y plane, the amplitude of thermal fluctuation at the threshold 

is given by 

          ISni(9)12 =pp2kBT  (i =  y,  z), (3.66) 

                1 + OA lAi(4) + K q2 

 (1+  0)4!  +  s(4)4.   A
y(4)  =  1 (3.67)                     1 +  #4! 
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                 4(1  +/3)e  
 3(4)1(3.68)  1  
+  /34! 

                     1+,(3)  A
z(4) = 1(1 +04!e(3.69) 

It is noteworthy that  AiCies are independent of the crosslinking condition  fio. 
At  4r = 0,  16ny(4)12 and  16nz(4)12 both diverge in the limit  q  —> 0. Furthermore, 
for any unit vector e lying in  the  y  —  z plane,  (le  64i(q)12) (e  •  ey)218ny(4)12+ 

(e  ez)218nz(4)12 diverges at  4x = 0. Thus, all the modes on the plane q  1  77, 
except for the line q  1  8n are free from the rubber-elastic effect. The amplitudes 

for  /3 = 0.1 are plotted in Fig.3.13. 

3.4.2 Effect of quenched disorder 

Initital director inhomogeneity 

Now let us move to the effect of quenched disorder. To make things simple, we 

shall limit our calculation to the case with  /30 = and  Ali =  As = 1. First we 

consider the effect of quenched director inhomogeneity. The only alteration in 

the  derivation of the effective free energy is to replace Eq.(3.62) by 

        gi(q)  =  qink(SL-1)ik +  (SC  jk)Lal] 

           = [fi[3Sixq•Sm(q)i3qx8mi(q)i, (3.70)                     1+ 

where 

 Sm  =  8n  —  bno. (3.71) 

Putting it into Eq.(3.61), we have the effective free energy 

             Fei=1121
+fi                    fq[13Gm(4)]15m(q)12'(3.72) 

where  Gm(q) is equal to  G(q) (in Eq.(3.64)) but with p = 1 +  /3 and with  411 
redefined as 

 14  •  Sm(q)1   4
11 =  16m(q)1(3.73) 

Generally, in the presence of quenched disorder, the director fluctuation consists 

of two parts, as 

 8n =  Snst  8nth. (3.74) 

                            40



The first part  Snit is a static fluctuation determined by minimizing the free 

energy, while  Snth stands for the thermal fluctuation around the shifted optical 

 axis  Ti,  Snst. The total fluctuation amplitude is given by 

 (I8n(q)12)  =  (16nst(q)12)  (ISnth(q)12) (3.75) 
The situation is analogous to the case of density fluctuation in inhomogeneous 

isotropic gels, discussed in Section 2.1.2. In the present case, from Eq.(3.72) 
we have  Snst =  Sno except in the soft directions q  I  I  -ft or q                                            11  Ono. On the 
other hand, there is no effect of the quenched director inhomogeneity in the soft 
directions. 

Random stresses 

Next we consider the effect of random stresses. We assume the Case I; the 
network is crosslinked in the isotropic phase and  /3 = 0. Then, from symmetry, 

 Pij has a distribution of the form Eq.(2.9). After some calculation, we obtain 
the effective free energy at  Ali =  as as 

 Fe=  2  —  2Sni(q)60  2  (1 + /3)4/3 fq{kni(q) 

                1  

                                                         2 

 1 +,34rioni(q) — 4i80,..(q) 

                                                                   2 

 +(1 +  )(3)  4.8ni(q) —  4;8  ji(q) 

                          1 +1_„ 
 +Qq„!sqiSni(q) — 4i4380ii(q)21 

  +const. (3.76) 

where 

 86i; =  0-1(Cti -  Vii). (3.77) 

In the long-wavelength limit, the Frank elasticity is negligible and the static 

fluctuation  (Kt is determined by solving 

 Wet ft        =(3 .78) 
 Sn 

which yields 

 anst,i(q)  = 1 1  (1  -1-04!)6e7i.(q) 
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 —  ,7i•  •  C2(4.) [04.24i80;.(4)  —  (1 1 + 13d                       +13)(1-2 .)4.434k8aik(9)1 
        —(1 +  13)4A  j86  ji(q) 

                     2(1 -I- /3)4                  1 + pex4.1405CA(9)1},(3.79) 
— with 

 Q(4.) = 1 + 1 — 4!(3.80) 
                     1(1  +  

 4(1  +0) 

Let us restrict our attention to the soft modes. For the mode with  q =  e„ the 
overall factor 1/(1 —  4!) in Eq.(3.79) diverges while its multiplicand  f•  -I does 
not vanish.  For the second class of modes with  q  1  ex and with  q  8n 0, 
the factor  4,/e in the second line of Eq.(3.79) diverges while its  multiplicand is 
finite. This means that the random stresses act on the soft modes, in contrast 

to the initial director inhomogeneity. Incorporating the Frank elasticity, these 

modes have finite amplitudes which go as 

 bn,t,i(q) =  0(q-4) (3.81) 

in the long wavelength, where  Tick is a certain non-dimensional tensor. For these 

modes, the total square amplitude is the sum of 

                                                      „2 

              (16nst(q )12)              K2q4  (3.82) 
and 

                             kg  

                 (15nth(q)i 2i's)Kq2 (3.83) 
The static fluctuation dominates the thermal one for q  qst =  fry  I  K  kBT 
For flexible LCPs we have K kBTa2 where a  lnm is the monomer size. 

We also have  µti  kBTvo  rs, kBT g„,3 where  4,-4 102a is the mesh size of the 

network. This leads to an estimate 

 q;:t'  4,  a  •  (e,n/a)3/2/Vvo-y2  -.4  103/  Vvo-y2nm. (3.84) 
For a strongly disordered network with  vol42 1, the static contribution to the 

light scattering intensity cannot be negligible. It can be also shown that the 

strain fluctuation obtains a static part  (1u(q)12)  a  q-6 on the plane q  1  Tr" in 
the q-space due to the random stresses, as  Golubovie and Lubensky showed. 
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Chapter 4 

Summary 

Let us summarize the results and discuss future directions. We have modeled the 

quenched random stresses in nematic gels within the affine-deformation theory 

of rubber-elasticity. In a harmonic approximation, we have derived the explicit 

form of the long-range interaction of the orientational order parameter, with it-

self and with the random stresses. In the nematic phase, the random stresses act 

on the director both locally and non-locally, resulting in the polydomain state. 

We have pointed out the importance of crosslinking conditions. For networks 

originally crosslinked in the isotropic phase, the I-N transition induces a hetero-

geneous spontaneous deformation along the director. The domain structure is 

rearranged due to the long-range interaction, resulting in a significant free energy 

reduction. This leads to an anomalously soft mechanical response with a slight 

change of 0(a3) in the elastic free energy. By numerical simulation, we have 
obtained soft responses even for a sizable value of a. The domain rearrangement 

also partially explains the "four-leaf clover"-type anisotropy observed in depo-

larized scattering experiments. However, the direction of the stretching-induced 

anisotropy in the intensity is opposite to the experiment. The correlation length 

is determined mainly by the balance between the Frank elastic and random stress 

effect, and has an exponential dependence on the disorder strength. The corre-

lation function decays nearly exponentially for a strong quenched disorder and 

faster for a weaker one, in agreement with previous results for the random-field 

2D XY model. 

  We also studied the effect of random stresses on fluctuations in the mon-

odomain state, which is unstable below a critical stretching ratio . The soft 

fluctuation at the instability threshold is enhanced by random stresses. 
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  Finally we suggest some possible extensions of this work. First of all, dynam-

ical aspects have been completely neglected in the present work. Very recently, 

there appeared a few experimental indications of glass-like slow dynamics in 

nematic gels. A non-exponential slow relaxation of the plateau stress has been 

observed [18], which shows that the system cannot reach its true thermal equi-
librium in a realistic time-scale of observation. A non-exponential decay is also 

observed in the dynamic correlation function in the monodomain state, with use 

of dynamic light scattering [42]. The unusual hole in the depolarized scattering 

intensity, observed at long-wavelengths, may also be understood as the result 

of a slow relaxation, as our numerical simulation (with an artificial  dynamics) 
tentatively suggested. We should construct a dynamical model and analyze 

the effect of random quenched disorder. We may also pursue an analogy with 

other disordered systems with slow dynamics, such as liquid crystals in porous 

media [43] and random walks in a random potential [44]. 
  Secondly, we are investigating phase separation in nematic gels. The volume 

mismatch between the two phases produces a shear strain at the phase boundary, 

which orients the director parallel to the interface through the strain-orientation 

coupling. This may result in a strong resistance of the director against an ex-

ternal electric field. Dispersions of liquid crystals in gels have been extensively 

studied for application in electro-optical devices [45], and micro-phase-separated 

nematic gels have also been realized [46]. We wish that experiments from a phys-

ical point of view will be conducted in a near future. Effects of strain-orientation 

coupling, as transient phenomena, may also be observed in viscoelastic liquid-

crystalline polymer solutions. 
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