<table>
<thead>
<tr>
<th>Title</th>
<th>Generalized retarded functions and analytic function in momentum space in quantum field theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Araki, Huzihiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1961-03-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/86454</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
Generalized Retarded Functions and Analytic Function in Momentum Space in Quantum Field Theory*

Huzihiro Araki

The analytic n-point function in momentum space in quantum field theory is studied. Its different boundary values for real value of the argument are determined, and a necessary and sufficient condition for them to be obtainable from the Wightman functions is given. The conditions are relativistic covariance, support properties in coordinate space (retardedness), two-term identities for momentum below threshold (corresponding to spectrum conditions) and 4-term identities (Steinmann relations). The first three conditions are translatable into a statement about the domain of analyticity of the n-point function: it is analytic in a union of various extended tubes plus the points of contact of two neighboring tubes for real part of one momentum below threshold.
1. INTRODUCTION

The retarded functions (the vacuum expectation values of retarded products of field operators) in quantum field theory are, as is well known, boundary values of an analytic function in momentum space. In this paper, we will attempt a systematic investigation of this analytic function and its boundary values. Such an investigation has also been made independently by Ruelle, Steinmann, and Burgoyne. The present work puts emphasis on the geometrical nature of the problem in contrast with the algebraic method of Steinmann and Burgoyne. The method of Ruelle has some common features with the present work but we believe that ours is more explicit and detailed.

First we consider the analytic function in the energy component only, and we easily obtain all its boundary values which include all the conventional retarded and advanced functions. These boundary values will be called generalized retarded functions (γ-function). Their number is 6, 32, 370, and 10932 for 3, 4, 5, and 6-fold in contrast with 6, 24, 120, 720, for the Wightman functions.

Using a generalization of the θ-function, we can express generalized retarded functions in terms of Wightman functions and the latter in terms of the former
in a compact manner. Furthermore, we obtain necessary and sufficient conditions for generalized retarded functions to be obtainable from Wightman functions satisfying the usually considered conditions, namely (W1) relativistic covariance, (W2) local commutativity or anticommutativity, and (W3) certain mass spectrum conditions. The resulting conditions on the \(r \)-function are (R1) relativistic covariance, (R2) support properties in \(x \)-space (retardedness or advancedness), (R3) two-term identities in momentum space for momentum below threshold, (R4) 4-term identities. The 4-term identities have first been found by Steinmann\(^4\) for the 4-point function.

The above mentioned analytic function can be extended to a covariant analytic function in all energy momentum components. The properties (R1), (R2), and (R3) are translatable into a statement about the domain of analyticity of this analytic function. Namely it is analytic in the union of various extended tubes plus points of contact of two neighbouring tubes for real parts of one momentum below threshold. We have not succeeded to translate (R4) into a statement about the domain of analyticity.

The time ordered function can also be expressed as a boundary value of the same analytic function. The boundary values must then be approached from a direction which depends on the value of the real part of the momenta.
All the results are valid for arbitrary types of fields, Bosons and Fermions.

In section 2 we collect our main results (Theorems 1 through 3), together with definitions of notations necessary for the statement of our results. In section 3, the properties of generalized θ-functions are studied and they are applied in sections 4 through 6 for the proof of our main results.

In section 7 we make a few remarks about the class of functions for which our results hold. If the behavior of Wightman functions for large energy momentum is not sufficiently good, we have been unable to obtain our full results. As for the behavior at large coordinate separation, the truncated Wightman functions are expected to tend to zero in contrast to the Wightman functions themselves. Hence the truncated functions are used extensively in this work and their properties are studied in Appendix B.

The spectrum condition assumed in the main text is the existence of a single lowest positive mass. The case of more general mass spectrum conditions is treated in Appendix A. We obtain two term identities for momentum below threshold and the corresponding analyticity. However, the sufficiency of this condition has not been fully established for a general mass spectrum condition.
In Appendix C, we collect definitions and known results concerning convex polyhedral cones which are extensively used in the main text.

2. NOTATIONS AND MAIN RESULTS

In this paper, we consider the quantum theory of several covariant fields $A_i(x)$ satisfying (1) the invariance under the inhomogeneous Lorentz group, (2) the local commutativity or anticommutativity and (3) spectrum conditions. As spectrum conditions, we assume (3a) the existence of the vacuum (the non-degenerate invariant state), (3b) the positiveness of energy, and (3c) the existence of a lowest positive mass m. In appendix A, we treat the case where (3c) is replaced by more complicated mass spectrum conditions.

The above conditions can be used in a most compact way for the truncated vacuum expectation values as we will see in the following. The Wightman functions are denoted by

$$w_P(x) = \sigma_P(\mathcal{F}_0, A_P(1)(x_P(1)) \cdots A_P(n+1)(x_P(n+1)) \mathcal{F}_0) \quad (2.1)$$

where P denotes the permutation of $1 \ldots (n+1)$, σ_P is the signature of the permutation of anticommuting fields and

$$x = (x_1, \ldots, x_{n+1}) \quad (2.2)$$

Throughout this paper we shall take x_i as the argument of the field A_i.
The truncated Wightman functions are defined recursively by
\[
(I_0, A_{i_1}(x_{i_1}) \ldots A_{i_m}(x_{i_m}) I_0) = (A_{i_1}(x_{i_1}) \ldots A_{i_m}(x_{i_m}))^T
\]
\[+ \sum \delta(A_{i_1}(x_{i_1}) \ldots)^T (A_{i_k}(x_{i_k}) \ldots)^T \ldots (2.3)\]
\[
w_P^T(x) = \sigma_P(A_P(1)(x_P(1)) \ldots A_P(n+1)(x_P(n+1)))^T (2.4)
\]
where the summation extends over all grouping of points
x_1 \ldots x_m, the A in each ()_T of (2.3) are in the same order
as on the left hand side, \(\delta \) is the signature of the
permutation of anticommuting fields which brings \(A_{i_1} \ldots A_{i_m} \)
to the order of the A in that term and \(\sigma_P \) is as in (2.1).
The purpose of this definition is to subtract from the
Wightman functions in a symmetric manner the contributions
from the vacuum intermediate states.

Because of the translational invariance of the theory,
x can be taken modulo (1, \ldots, 1) The 4n dimensional vector
space formed by x modulo (1, \ldots, 1) is denoted by X.

The Fourier transform of a Wightman function is
denoted by
\[
(2\pi)^4 \delta\left(\sum_{i=1}^{n+1} q_i \right) \tilde{w}(q) = \int e^{i(q,x)} w(x) dx_1 \ldots dx_{n+1} (2.5)
\]
where
\[
(q,x) = \sum_{i=1}^{n+1} (q_i,x_i) (2.6)
\]
and \((q_i,x_i) \) is the conventional inner product in Minkowski
space. The 4n dimensional vector space formed by
such that $\Sigma q_i = 0$ is denoted by Q. The $\tilde{\omega}_P(q)$ are functions of q in Q.

The $\tilde{\omega}_P^T(q)$ are defined in a similar manner, namely

$$\tilde{\omega}_P^T(q) = \int e^{i(q,x)} \omega_P^T(x) \, dx, \quad q \in Q \quad (2.8)$$

$$\omega_P^T(x) = (2\pi)^{-4n} \int e^{-i(q,x)} \tilde{\omega}_P^T(q) \, dq, x \in X \quad (2.9)$$

where dx and dq are the volume elements of X and Q,

$$dx = dx_1...dx_n, \quad dq = \delta(\Sigma q_i) dq_1...dq_{n+1} \quad (2.10)$$

In order to control the combinatorical difficulties for large n, it is essential to introduce a compact though somewhat involved notation. A set of integers is generally denoted by I, in particular the set $\{1, \ldots, n+1\}$ by $I(n+1)$ and

$$\{P(1), \ldots, P(k)\} = I(P, k) \quad (2.11)$$

The set (of sets) $\{I(P,k); k = 1, \ldots, n\}$ will be called \mathcal{I}_P. We define

$$\eta(I) = \sum_{\nu \in \mathcal{I}} q_\nu \quad (2.12)$$

Note that

$$\eta(I(n+1)) = 0, \quad \eta(I(n+1) - I) = -\eta(I) \quad (2.13)$$
\(q(I), \) with \(\mathbf{I} \in J_\mathbf{P} \) are the energy momentum vectors of intermediate states in the Wightman function \(w_\mathbf{P}. \)

The properties of \(w_\mathbf{P}^T \) which follow from the assumptions (1) - (3) on the theory are (see Appendix B)

(W1) The \(w_\mathbf{P}^T(x) \) are covariant functions of \(x \in X. \)

(W2) If \(P' \) results from \(P \) by an interchange of the indices \(P(k) \) and \(P(k+1) \), and if \(x_{P(k)} - x_{P(k+1)} \) is space-like, then \(w_{P'}^T(x) = w_\mathbf{P}^T(x). \)

(W3) \(\tilde{w}_\mathbf{P}^T(q) = 0 \) unless \(q(I)^2 \geq m, \) \(q^0(I) > 0 \) for all \(\mathbf{I} \in J_\mathbf{P}. \)

We now turn to the main subject of the paper, the analytic function in momentum space. This function will be defined by Eq. (2.27) or in explicitly covariant form by (2.39). To show the equivalence of this definition with conventional usage, let us start from the customary definition of a retarded function for Bose fields:

\[
\tilde{r}(x_1;x_2 \ldots x_{n+1}) = (-i)^n \prod \theta(x_{\mathbf{P}(2)}^0 - x_{\mathbf{P}(1)}^0) \ldots \theta(x_{\mathbf{P}(n)}^0 - x_{\mathbf{P}(n+1)}^0)
\]

\[
(\tilde{\mathcal{F}}_0, \left[\ldots \left[\left[A_1(x_1), A_{\mathbf{P}(2)}(x_{\mathbf{P}(2)}) \right], A_{\mathbf{P}(3)}(x_{\mathbf{P}(3)}) \right] \ldots A_{\mathbf{P}(n+1)}(x_{\mathbf{P}(n+1)}) \right] \tilde{\mathcal{F}}_0)
\]

(2.14)
where the summation is over all permutations P of $2,\ldots,n+1$. Expanding the multiple commutators, this can be written as

$$
\sum_{j=1}^{n+1} \frac{(-1)^{j-1}(n-1)^j \sum_{P'(j)=1}^{j-1} \theta(x_0^P(\nu+1) - x_0^{P'}(\nu))}{P'(j) \nu = 1} \text{Tre}(x_0^{P'(j+1) \nu x_0^P(x)} \quad (2.15)
$$

Because the time components appear explicitly in (2.15), we consider the n-dimensional vector space T formed by the time component of $x \in X$,

$$
x^0 = (x_0^1, \ldots, x_0^{n+1}) \mod (1, \ldots, 1) \quad (2.16)
$$

and the n-dimensional vector space S formed by the energy component of $q \in Q$. We use the following inner products,

$$
\begin{align*}
q \cdot t &= \sum_{i=1}^{n+1} q_i t_i, \\
s \cdot x &= \sum_{i=1}^{n+1} s_i x_i \\
s \cdot t &= \sum_{i=1}^{n+1} s_i t_i
\end{align*} \quad (2.17)$$

where $x \in X$, $q \in Q$, $t \in T$, and $s \in S$. The inner products in (2.17) are Minkowski vectors while the inner product in (2.18) is a number. The space Q is the dual of X relative to the inner product (2.6) and S is the dual of T relative to the inner product in (2.18). The complex vector spaces corresponding to X, Q, T, and S are denoted by Z, Z', U and V, respectively. (2.6), (2.17) and (2.18) are used also for these spaces.
If we define \(t(I) \) by

\[
\begin{align*}
t(I) & = 1 \quad \text{if } \nu \in I \\
& = 0 \quad \text{if } \nu \notin I
\end{align*}
\]

(2.19)

the \(q(I) \) can be written as \(q \cdot t(I) \). In a similar manner we define

\[
\begin{align*}
s(ij) & = \delta_{ij} - \delta_{j} \nu
\end{align*}
\]

(2.20)

which will be used to express \(x_{i} - x_{j} \) as \(s(ij) \cdot x \). Using the notation of (2.19), we can write the Fourier - Laplace transform of \(\mathcal{R} \) as

\[
\tilde{r}(v,q) = \sum_{P} dq^{0} w_{P}(q)(2\pi)^{-n} \prod_{I \in \mathcal{J}(P)} \left[(v-q^{0}) \cdot t(I) \right]^{-1}
\]

(2.21)

Here \(dq^{0} \) is defined in an analogous way to \(dq \) in (2.10). The \(w_{P} \) in (2.15) and (2.21) can be replaced with the \(w^{T}_{P} \) as will be seen in Appendix B. Due to (W3), \(\tilde{r}(v,q) \) is analytic everywhere except at the cuts

\[
\text{Im } v \cdot t(I) = 0, \quad \text{Re } v \cdot t(I) \geq \left(m^{2} + (q \cdot t(I))^{2} \right)^{1/2}
\]

(2.22)

If we fix the sign of every \(\text{Im } v \cdot t(I) \), and let \(\text{Im } v \) tends to zero, then \(r(v,q) \) approaches to one boundary value.

Geometrically speaking, the family \(H_{n-1}^{R} \) of hyperplanes (in the space \(S \) of \(\text{Im } v \)) defined by

\[
H_{n-1}^{R} = \{ h(I) : I \subseteq I(n+1) \}, \quad h(I) = \{ s ; s \cdot t(I) = 0 \}
\]

(2.23)

divide the entire space \(S \) into several convex polyhedral cones which we shall call \(C_{1} \). If \(\text{Im } v \) stays in the interior
of one cone \(C_i \), then the sign of \(\text{Im} \, v \cdot t(I) \) stays constant, while if it moves from one cone to another the sign of some \(\text{Im} \, v \cdot t(I) \) changes. Thus as \(\text{Im} \, v \) tends to zero from inside each cone \(C_i \), \(\tilde{r}(v,q) \) approaches to one of its boundary values which we shall call \(r_i(q) \). The \(r_i(q) \) exhaust all boundary values of \(\tilde{r}(v,q) \). In particular we obtain the Fourier transform of the retarded function (2.15) as the boundary value corresponding to the cone \(\text{Im} \, v \cdot t(I) \leq 0 \) for \(I = \{2\}, \{3\}, \ldots, \{n + 1\} \), i.e., for \(\text{Im} \, v_i \leq 0 \) for \(i = 2, \ldots, n + 1 \).

We shall use the generalized \(\theta \)-function:

\[
\theta(t;c) = \begin{cases}
1 & \text{if } t \in C \\
0 & \text{if } t \notin C
\end{cases}
\] (2.24)

If \(C \) is a pointed convex polyhedral cone\(^{10}\) the Fourier-Laplace transform of \(\theta \),

\[
\tilde{\theta}(v;C) = \int e^{iv \cdot t} \theta(t;c) dt
\] (2.25)

is a rational function of \(v \). Its boundary value (considered as a distribution), as \(\text{Im} \, v \) tends to zero from within a cone \(C' \) of the space of \(\text{Im} \, v \), is denoted by \(\tilde{\theta}(s;C/C') \) and its inverse Fourier transform is denoted by \(\theta(t;C/C') \). If \(C' \) is the positive polar\(^{10}\) of \(C \), then \(\theta(t;C/C') \) is equal to \(\theta(t;c) \). Similar definitions hold for \(\theta(s;c) \), \(\tilde{\theta}(u;c) \), \(\tilde{\theta}(t;C/C') \) and \(\theta(s;C/C') \). The properties of these functions will be studied in section 3.
As an example, let us consider the cones C_p in T defined by

$$C_p = \{ x^0; x^0_p(1) \geq x^0_p(2) \geq \cdots \geq x^0_p(n+1) \}$$ \hspace{1cm} (2.26)

Then (2.20) with w_p replaced by w_p^T can be written as

$$\tilde{r}(v, q) = \sum_p dq^0 w_p^T(q) \tilde{\theta}(v-q^0; C_p) (2\pi)^{-n}$$ \hspace{1cm} (2.27)

We remark that though the starting Eq. (2.14) referred to the Bose case, (2.27) is the appropriate definition of the retarded function for an arbitrary collection of local Bose and Fermi fields, i.e., theorems 1 and 2 below are true always.

Our first main Theorem lists the necessary and sufficient condition for the r_i to be obtainable from the w_p^T satisfying (W1) - (W3).

Theorem 1. If $w_p^T(x)$ satisfies (W1) - (W3) then $r_i(x)$ defined by

$$r_i(x) = (-i)^n \sum_p \theta(x; C_p/C_i) w_p^T(x)$$ \hspace{1cm} (2.28)

satisfies

- (R1) $r_i(x)$ is a covariant function of $x \in X$.
- (R2) $r_i(x) = 0$, if $x^0 \notin C_i^+$, C^+ is the positive polar of C.
- (R3) $\tilde{r}_i(q) = \tilde{r}_j(q)$, if dim $(C_i \cap C_j \cap h(I)) = n-2$.
- (R4) $r_{++}(x) - r_{+-}(x) - r_{-+}(x) + r_{--}(x) = 0$, if
\[\dim(C_{++} \cap C_{+-} \cap C_{-+} \cap C_{--} \cap h(I) \cap h(I')) = n - 1^{12} \]

Conversely if \(r_i(x) \) satisfies (R1) - (R4), then \(w^T_P(x) \) defined by

\[w^T_P(q) = (i)^n \sum_{\tilde{q}} \delta(q^0; C_i/\tilde{C}_p) \tilde{r}_i(q), \]

(2.29)

satisfies (W1) - (W3) and the original \(r_i(x) \) is given by (2.28) in terms of this \(w^T_P \).

Remarks: 1) Note that the conditions (R1), (R2), and (R3) in this theorem are almost dual to the conditions (W1), (W3), and (W2). In fact, (W2) can be rewritten in our notation as (W2') \(W_i(x) = W_i(x) \) if

\[\dim(C_p \cap C_p' \cap h(ij)) = n - 1^{13} \]

and if \((s(ij) \cdot x)^2 < 0\)

where \(h(ij) \) is the hyperplane orthogonal to \(s(ij) \).

2) The support condition in \(x \)-space, (R2), expresses the retardedness in certain variables. Namely, if we denote the \(1 \)-facets\(^{10} \) of \(C_i \) by \(C(s_i, \lambda) \), then (R2) is equivalent to

\((R2') r_i(x) = 0 \) unless \(s_i, \lambda \cdot x \in \tilde{V}_+ \) (the future light cone) for all \(\lambda \). Actually, \(r_i \) has in general more retardedness than (R2'), which, however, invariably contains alternative statements. This retardedness is, of course, implied by (R1) - (R4) but not immediately apparent.\(^{14} \)

3) The condition (R4) has been first noted by Steinmann\(^4 \) for the four point function \((n=3) \). The
intersection of two (n-1) planes 10 \(h(I) \) and \(h(I') \)
\((I \neq I') \) is a (n-2)-plane. 10 This intersection is not contained in any other \(h(I'') \) if and only if \(+I \) and \(+I' \) has non-empty intersection for any combination of the signs where we have denoted \(I_{n+1} \) by \(-I\). If this is the case, the (n-2)-plane \(h(I) \cap h(I') \) is divided into several polyhedral convex cones by \(h(I'')(I'' \neq I, I') \) and corresponding to each of these cones, there are exactly 4 cones \(C_i \) which have that cone as a (n-2)-facet 10 and which are on different sides of (n-1)-planes \(h(I) \) and \(h(I') \). The condition (R4) gives a linear relation among the corresponding four \(r_i \) which are denoted by \(r_{\sigma, \sigma'} \) \((\sigma, \sigma' = + \text{ or } -) \).

Our second main task is to convert conditions (R1) - (R4) on \(r_i \) to a condition on the domain of analyticity of the analytic function in p-space. We have succeeded in this only for (R1) - (R3).

To state our result, we need further definitions. We define open convex cones \(V_i^Q \) in \(Q \) by
\[
V_i^Q = \{ q; q \cdot t(I) \in V_+, I \in J_i \}
\]
(2.30)
where \(V_+ \) is the interior of the future light cone and \(J_i \) is the set of \(I \subset I_{n+1} \) such that \(C(\tau(I)), I \in J_i \) constitute the l-facets of \(C_i^+ \). (The \(h(I), I \in J_i \) are boundary planes of \(C_i \).) If \(C_i \) and \(C_j \) are neighbouring cones across the (n-1)-plane \(h(I_0) \), (namely \(\dim(C_i \cap C_j \cap h(I_0)) = n-1 \)), the interior of the set
\((\bar{V}^O_i \cap \bar{V}^O_j) \) is denoted by \(S^O(ij) \).

\[S^O(ij) = \{ q; q \cdot t(I_0) = 0, q \cdot t(I)eV_+ \text{ for } I \in \mathcal{I}_i \text{ or } \mathcal{I}_j \text{ and } I \neq I_0 \} \quad (2.31) \]

The tube \(T(V^O_i) \) is the subset of \(Z' \) defined by

\[T(V^O_i) = \{ \zeta \in Z'; \text{ Im } \zeta \in V^O_i \} \quad (2.32) \]

The extended tube \(T'(V^O_i) \) is the union of images of \(T(V^O_i) \) under all complex proper Lorentz transformations. The corresponding definitions in \(X \) are

\[V^X_F = \{ x \in X; s(P(k),P(k+1)) \cdot x \in V_-, k=1, \ldots, n \} \quad (2.33) \]

\[S(P,k) = \{ x \in X; s(P(k),P(k+1)) \cdot x = 0, s(P(m),P(m+1)) \cdot x \in V_- \text{ for } m \neq k \} \quad (2.34) \]

\[T(V^X_F) = \{ z \in Z; \text{ Im } z \in V^X_F \} \quad (2.35) \]

If the two cones \(C_P \) and \(C_{P'} \) are neighbouring, namely if \(P(i) = P'(i) \) for \(i \neq k, k+1 \) and \(P(k) = P'(k+1), P(k+1) = P'(k) \), then

\[S(P,k) = S(P',k) = \text{ the interior of } \bar{V}^X_F \cap \bar{V}^X_{P'} \quad (2.36) \]

We are now ready to state our second main Theorem.

Theorem 2. The \(\widetilde{\mathcal{F}}_i(q) \) satisfying (R1) - (R3) are boundary values of one analytic function \(\widetilde{\mathcal{F}}(\zeta) \) as \(\zeta \) tends to \(q \) from inside the tube \(T(V^O_i) \). \(\widetilde{\mathcal{F}}(\zeta) \) is analytic in the union of \(T'(V^O_i) \) for all possible \(i \) and in the sets

\[\Sigma(ij,m) = \{ \zeta \in Z'; \text{ Im } \zeta \in S^O(ij), (\text{Re } \zeta \cdot t(I))^2 < m^2 \} \quad (2.37) \]
for all i, j, I such that C_i and C_j is neighbouring across h(I). \(\hat{r}(\zeta) \) is analytic at a real point \(\zeta = q \), if all \(q(I)^2 \) are smaller than \(m^2 \). Conversely if \(r(\zeta) \) is analytic in the above region and has a certain boundedness property, then its boundary values \(\hat{r}(q) \) satisfy (R2) and (R3).

This will be proved in section 6. For the sake of comparison we mention the corresponding Theorem for \(w_P^T \).

Theorem 3. The \(w_P^T(x) \) satisfying (W1) - (W3) are boundary values of one analytic function \(w^T(z) \) as \(z \) tends to \(x \) from inside the tube \(T(V_P^X) \). \(w^T(z) \) is analytic in the union of \(T'(V_P^X) \) for all possible \(P \) and in the sets

\[
\Sigma(P,k) = \left\{ z \in \mathbb{Z}; \text{Im } z \in S(P,k), (\text{Re } s(P(k),P(k+1))) \cdot x < 0 \right\}
\]

\(w^T(z) \) is analytic at a real point \(z = x \) if all \(s(ij) \cdot x \) are space-like. Conversely if \(w^T(z) \) is analytic in the above region and satisfies a certain boundedness condition, then its boundary values \(w_P^T(x) \) satisfy (W2) and (W3).

Covariant formulas which express \(\hat{r}(\zeta) \) and \(w(z) \) in terms of boundary values of the other are given by

\[
\hat{r}(\zeta) = (-1)^{\sum} \sum_{\alpha \nu} \int dx \, e^{i(\zeta,x)} \theta(x^0;C^X_{\alpha \nu} / \text{Im } \zeta^0) \theta(x;\Delta^X_{\alpha \nu}) w^T_{\alpha \nu}(x)
\]

\(w^T(z) = (i)^{\sum} \sum_{\beta \nu} \int dq \, e^{-i(q,z)} \theta(q^0;C^Q_{\beta \nu} / \text{Im } z^0) \theta(q;\Delta^Q_{\beta \nu}) \hat{r}_{\beta \nu}(q) \)

(2.39)

(2.40)
Here Δ^X_α and $\Delta^Q_\beta(m)$ designate various regions in X or Q where $w(z)$ or $\tilde{z}(\xi)$ have different number of boundary values. Namely we divide the space X into several Δ^X_α according to whether each $s(ij) \cdot x$ is space-like or time-like and the different regions are distinguished by subscript α. A similar definition holds for $\Delta^Q_\beta(m)$.

$$\Delta^X_\alpha = \{ x \in X; \sigma^X_\alpha(s(ij) \cdot x)^2 > 0 \} \tag{2.41}$$

$$\Delta^Q_\beta(m) = \{ q \in Q; \sigma^Q_\beta(I) \left[(q^t t(I))^2 - m^2 \right] > 0 \} \tag{2.42}$$

where σ^X_α and σ^Q_β are + or −. For each region Δ^X_α vectors $(s(k \ell) \cdot x)$ with $\sigma^X_\alpha(s(k \ell) > 0$ can be either positive or negative time-like. To distinguish such possibilities we use the cones $C^X_{\alpha \nu}$ in T which are defined by

$$C^X_{\alpha \nu} = \{ t \in T; (s(k \ell) \cdot t) \sigma^X_\alpha(k \ell) > 0 \} \tag{2.43}$$

where as ν varies $\sigma^X_\alpha(k \ell)$ exhaust all possibilities for consistent assignment of signs to $s(k \ell) \cdot t$. For example, if all $\sigma^X_\alpha(k \ell) > 0$, then $\{ C^X_{\alpha \nu} \}$ coincide with $\{ C^Q_\beta \}$. In general, $C^X_{\alpha \nu}$ is a union of several C^X_β. C^Q_β are similarly defined and coincide with $\{ C^Q_\beta \}$ if $\sigma^Q_\beta(I) > 0$ for all I.

The summation over α in (2.39) extends over α such that the C^X_α are pointed. (In other words, if the $s(k \ell)$ for which $\sigma^X_\alpha(k \ell) > 0$ span S.) For each α, the summation over ν
extends over all possibilities. Similar prescription applies for the summations in (2.40). \(\theta(x^0;C^X_{\alpha\nu}/\text{Im }\zeta^0) \) is the \(\theta(x^0;C^X_{\alpha}/C') \) where \(C' \) is determined by \(\text{Im }\zeta^0\epsilon C' \). It is invariant if \(x\in \Delta^X_{\alpha} \) and all \(\text{Im }\zeta\cdot t(I) \) are time- or light-like.

\(\theta(q^0;C^0_{\beta\nu}/\text{Im }z^0) \) is similarly defined.

\(w_T^{\alpha} \) is the \(w_T^{\alpha} \) with \(P \) such that \(C_P \subseteq C^X_{\alpha\nu} \). Due to (W2), if \(x\in \Delta^X_{\alpha} \), then the \(w_T^{\alpha}(x) \) are all equal for different \(P \) as long as \(C_P \) stays in one \(C^X_{\alpha\nu} \). \(r_{\beta\nu} \) is the \(r_i \) with \(i \) such that \(C_i \subseteq C^\beta_{\beta\nu} \).

Finally we note that the vacuum expectation value of time ordered product, \(\tau(x) \), and its Fourier transform \(\tilde{\tau}(q) \) can be expressed as

\[
\tau(x) = \lim_{z\to x, \text{Im }z\in V_T(x)} w(z) \quad (2.44)
\]

\[
(\tau(q) = \lim_{\zeta\to q, \text{Im }\zeta\in \tilde{V}_T(q)} i^n r(\zeta) \quad (2.45)
\]

where \(V_T \) and \(\tilde{V}_T \) are defined by

\[
V_T(x) = T(C_P), \text{ if } x^0\epsilon C_P; \quad \tilde{V}_T(q) = T(C_i), \text{ if } q^0\epsilon C_i \quad (2.46)
\]

3. PROPERTIES OF GENERALIZED \(\theta \)-FUNCTION

First let us consider the generalized \(\theta \)-function defined by (2.24) for the special case of a simplex cone \(C \).

Suppose 1-facets of \(C \) and \(C^+ \) are \(t_1\ldots t_n \) and \(s_1\ldots s_n \) where \(s_i \cdot t_j = \delta_{ij} \). (\(\text{det}(t_i)\neq 0 \).) Then we have
\[\theta(t; C) = \prod_{i=1}^{n} \theta(s_i \cdot t) \quad (3.1) \]
\[\tilde{\theta}(v; C) = i^n \left| \det(t_i) \right| \prod_{i=1}^{n} (v \cdot t_i)^{-1} \quad (3.2) \]

If we define associated simplex cones \(\sigma C \) by
\[\sigma C = C(\sigma_1 t_1 \ldots \sigma_n t_n) \quad (3.3) \]
where the \(\sigma_i \) are \(\pm 1 \), then, we have the formulas,
\[\tilde{\theta}(v; \sigma C) = \left(\prod_{i=1}^{n} \sigma_i \right) \tilde{\theta}(v; C) \quad (3.4) \]
\[\theta(t; C/\sigma C^+) = \left(\prod_{i=1}^{n} \sigma_i \right) \theta(t; C)^{16} \quad (3.5) \]

We note that the poles of \(\tilde{\theta}(v; C) \) appears at \(v \cdot t_i = 0, i = 1 \ldots n \) and discontinuity of \(\theta(t; C/\sigma C^+) \) appears at \(s_i \cdot t = 0, i = 1 \ldots n \).

We now turn to the case of general convex polyhedral cones \(C \).

Lemma 1. Let \(C \) be a pointed polyhedral convex cone. The integral in (2.25) defines an analytic function of \(v \) in the tube \(T(C^+) = \{ v; \text{Im } v \in \text{interior of } C^+ \} \) (which is non-empty). This analytic function is a rational function with simple poles at \(v \cdot t_i = 0, \) for \(t \in F_1(C) \) (the set of all 1-facets of \(C \)).

Lemma 2. (Addition theorem.) Let \(C \) and \(C_\alpha \) be convex polyhedral cones such that \(C \) is the union of \(C_\alpha \) and the \(C_\alpha \) are mutually almost disjoint \((C = \bigcup_{\alpha} C_\alpha, \dim(C_\alpha \cap C_\beta) < n \) for \(\alpha \neq \beta \)). Then
\[\Sigma \tilde{\theta}(v;C_{\alpha}) = \Sigma \tilde{\theta}(v;C) \quad \text{if } \dim C = 0 \quad (3.6) \]

\[= 0 \quad \text{if } \dim C \neq 0 \quad \text{and } \dim C_{\alpha} = 0 \quad (3.7) \]

\[\Sigma \tilde{\theta}(u;C_{\alpha}^+) = \tilde{\theta}(u;C^+) \quad \text{if } \dim C^+ = n \quad (3.8) \]

\[= 0 \quad \text{if } \dim C_{\alpha}^+ = n \quad \text{and } \dim C^+ \neq n \quad (3.9) \]

For the proof, we first note that if \(v \in T(C^+) \), then \(\text{Im } v \cdot t > 0 \) for \(t \in C \) and as \(t \to \infty \) within \(C \), the integrand of (2.25) tends to zero exponentially. Hence it defines an analytic function of \(v \). Next, we obviously have

\[\theta(t;C) = \Sigma \tilde{\theta}(t;C_{\alpha}) \quad \text{almost everywhere} \quad (3.10) \]

Because \(C_{\alpha}^+ \supset C^+ \) and \(C^+ \) is non-empty, the integral representation (2.25) can be applied to all \(\tilde{\theta}(v;C_{\alpha}) \) and \(\tilde{\theta}(v;C) \) if \(v \in T(C^+) \). Hence we get (3.6) from (3.10) as a relation between analytic functions. To prove that \(\tilde{\theta}(v;C) \) is rational, we invoke the simplexial decomposition of \(C \): \(C = \bigcup_{\alpha} C_{\alpha} \). We already know that, for simplex cones \(C_{\alpha} \), \(\tilde{\theta}(v;C_{\alpha}) \) is rational. Hence \(\tilde{\theta}(v;C) \) is also rational by (3.6). Moreover, because \(F_1(C_{\alpha}) \subseteq F_1(C) \) for standard simplexial decomposition and the latter is possible if \(\dim C = 0 \), we see that the singularities of \(\tilde{\theta}(v;C) \) occur only at \(v \cdot t = 0, \quad t \in F_1(C) \).

To prove (3.7), we first consider a special case where \(C = \bigcup C_{\sigma}, \quad C_{\sigma} = C(\sigma_1 t_1, \ldots, \sigma_m t_m, t_{m+1}, \ldots, t_n), \quad \dim C_{\sigma} = n, \quad \text{and } \sigma_1 = \pm 1. \) Since \(C_{\sigma} \) is simplex, we easily get (3.7) from (3.4). Using this result, we make generalizations in two steps.
First consider the case where \(C = \bigcup C_\sigma \), \(C_\sigma = C(T_0 \cup T_\sigma) \),
\[\dim C(T_0) = n-m, \quad \text{lin} \ C(T_0) = 0, \quad T_\sigma = \{ \sigma_1 t_1 \ldots \sigma_m t_m \} \]
\(\sigma_i = \pm 1 \) and \(\dim C_\sigma = n \). We make a simplexial decomposition
of \(C(T_0) \) in \(h(T_0) \): \(C(T_0) = \bigcup_{\beta} C(T_\beta) \). Setting \(C_\beta = C(T_\beta \cup T_\sigma) \)
and \(C_\sigma = \bigcup_{\beta} C_\beta \sigma \), and using \((3.6) \) for \(C_\sigma = \bigcup_{\beta} C_\beta \sigma \) and \((3.7) \)
for \(C_\beta = \bigcup_{\sigma} C_\sigma \beta \), we have \(\sum \theta(v; C_\sigma) = 0 \).

Finally for the most general case, let \(C = \bigcup C_\alpha \), \(\text{lin} \ C = m \),
\(L(C) = h(\Sigma) \), and \(\Sigma = \{ s_1 \ldots s_m \} \). Let \(\Sigma_\sigma = \{ \sigma_1 s_1 \ldots \sigma_m s_m \} \),
\(C_\sigma = C(\Sigma_\sigma) \cap C \), and \(C_\alpha \sigma = C_\alpha \cap C_\sigma \). Since \(\text{lin} \ C_\sigma = 0 \) by
construction, we have \(\tilde{\theta}(v; C_\sigma) = \sum \alpha \tilde{\theta}(v; C_\alpha \sigma) \) due to \((3.6) \).
Since \(\text{lin} \ C_\alpha = 0 \) by assumption, we have \(\tilde{\theta}(v; C_\alpha) = \sum \alpha \tilde{\theta}(v; C_\alpha \sigma) \).
By the \((3.7) \) for the previously proved case, we have \(\sum \tilde{\theta}(v; C_\sigma) = 0 \). Combining these, we get the \((3.7) \) for the
most general case.

\((3.8) \) and \((3.9) \) can be proved at the same time. (If
\(\dim C \neq n, \tilde{\theta}(u; C) = 0 \)). First consider a special case where
\(C = C_1 \cup C_2 \). \(C_1 = C \cap C(-s)^+, \quad C_2 = C \cap C(s)^+ \), and \(s, -s \notin C^+ \). The
\((n-1)\)-planes in \(H_{n-1}(C^+) \) divides \(C_1^+ \) and \(C_2^+ \) into several
convex cones. Let this decomposition be \(C_1^+ = C^+ \cup (\bigcup C_\alpha^+) \) and
\(C_2^+ = C^+ \cup (\bigcup C_\beta^+) \). Since \(C_1^+ \) and \(C_2^+ \) are pointed, we have from
\((3.6) \) \(\tilde{\theta}(u; C_1^+) = \tilde{\theta}(u; C^+) + \sum \tilde{\theta}(u; C_\alpha^+) \) and \(\tilde{\theta}(u; C_2^+) = \tilde{\theta}(u; C^+) + \sum \tilde{\theta}(u; C_\beta^+) \)
Since \(C_1^+ \) \(C_2^+ \) is not pointed, we have from \((3.7) \)
\(\tilde{\theta}(u; C^+) + \sum \tilde{\theta}(u; C_\alpha^+) + \sum \tilde{\theta}(u; C_\beta^+) = 0 \). Hence we get \((3.8) \) and
\((3.9) \), for this case. Next consider the case where \(C \) is
cut into several \(C_\alpha \) by a family of planes \(h(s)_{\perp}, \ s \in S_0 \).
By applying the previous result, every time one cuts \(C \) by a \(h(s)\perp \), one gets the \((3.8)\) or \((3.9)\) for \(C = \bigcup C_\alpha \). Finally, consider the most general case \(C = \bigcup C_\alpha \). The \((n-1)\)–planes in \(\bigcup_{\alpha} H_{n-1}(C_\alpha) \) cut \(C \) and \(C_\alpha \) into several convex cones. Let this decomposition be \(C_\alpha = \bigcup C_{\alpha i} \) and \(C = \bigcup C_{\alpha i} \). Then by applying the previous result for \(C_\alpha \) and \(C \), we get \((3.8)\) and \((3.9)\). This completes the proof of Lemmas 1 and 2.

Next we investigate the residue of \(\tilde{\vartheta} \) at its pole.

We define

\[
R(v; C/t) = \lim_{v \to v'} v' \cdot t \tilde{\vartheta}(v'; C) \quad v \cdot t = 0
\]

\[
R(v; C/t_1 \ldots t_m) = \lim_{v \to v'} v' \cdot t_m R(v'; C/t_1 \ldots t_{m-1}), \quad v \cdot t_i = 0, \quad i = 1 \ldots m
\]

Lemma 3. \(R(v; C/t_1) = \iota C \in \epsilon(C; f_1) \tilde{\vartheta}_1 (v; C_{1'}) \)

\[
R(v; C/t_1 \ldots t_n) = \iota^n \det(t_1) \prod_{m=1}^{n \epsilon(C_{m-1}; f_m)}
\]

where \(C_m = C + h(t_1 \ldots t_m), \quad C_0 = C, \quad f_m = C(t_m) + h(t_1 \ldots t_{m-1}), \)

\[
\epsilon(C; f) = \begin{cases}
1 & \text{if } f \in F_m(C) \text{ for some } m \\
-1 & \text{if } -f \in F_m(C) \text{ for some } m, \\
0 & \text{otherwise},
\end{cases}
\]

\(\tilde{\vartheta}_1 \) is the \(\tilde{\vartheta} \) where the space \(T \) mod \(h(t_1) \) is used instead of \(T \) and \(h(t_1)\perp \) instead of \(V \). The volume element of \(T \) mod \(h(t_1) \) in the definition of \(\tilde{\vartheta}_1 \) is so chosen that, if \(t_1, t_2' \ldots t_n' \) span a parallelepiped of unit volume, \(t_2' \ldots t_n' \) span the same in \(T \) mod \(h(t_1) \).
23.

To prove (3.13), we note that $R(v;C/t_1)$ is a rational function of v in $h(t_1)^\perp$ in V. We can calculate R by

$$-2\pi i \delta(v \cdot t_1) R(v;C/t_1) = \lim_{\epsilon \to 0} \left[\tilde{\theta}(v+i\epsilon;C) - \tilde{\theta}(v-i\epsilon;C) \right]$$

(3.16)

where $\text{Im } v \cdot t_1 = 0$ and $\epsilon \cdot t_1 > 0$. From Lemma 1, we have

$$R(v;C/t_1) = 0 \text{ unless } t_1 \text{ or } -t_1 \in F_1(C)$$

(3.17)

Suppose $C(\sigma t_1) \in F_1(C) (\sigma = \pm)$. Due to (3.17) and the addition theorem (3.6), we can adjoin to C or cut off from C any convex cones whose 1-facets do not contain $\pm t_1$ without changing $R(v;C/t_1)$. By this process, we can shift all $(n-1)$-facets of C not containing $\pm t_1$, to one facet f. Suppose f is and $s \cdot t_1 > 0$. Denoting $C_1 = C + h(t_1)$, $C' = C_1 \cap C(s)^+$, $C'' = C_1 \cap C(-s)^+$, we have

$$R(v;C/t_1) = R(v;C'/t_1)$$

On the other hand we know from (3.7) that $\tilde{\theta}(v-i\sigma \epsilon;C') = -\tilde{\theta}(v-i\sigma \epsilon;C'')$. From these we obtain

$$-2\pi i \delta(v \cdot t_1) R(v;C/t_1) = \lim_{\epsilon \to 0} [\tilde{\theta}(v+i\sigma \epsilon;C') + \tilde{\theta}(v-i\sigma \epsilon;C'')]$$

(3.18)

Since R is rational function, we can easily find an open set 0 (relative to $h(t_1)^\perp$) in domain of analyticity of R and ϵ satisfying $\epsilon \cdot t_1 > 0$, such that $\sigma \epsilon + \text{Im } v \in C'$ and $-\sigma \epsilon + \text{Im } v \in C''$ when $v \in 0$. We can use the integral representation for both $\tilde{\theta}$ in (3.18) for such v and ϵ, and we obtain
Thus (3.13) is true for \(v \in \mathbb{O} \). Since both sides of (3.13) are rational, it holds everywhere.

By repeated application of (3.13), we obtain

\[
(\prod_{m=1}^{n} 2\pi \delta(s \cdot t_m)) R(v; C/t_1 \ldots t_n) = i^n \prod_{m=1}^{n} \epsilon(C_{m-1}/v_m) \int e^{is \cdot t} \, dt.
\]

which implies (3.14). This completes the proof of Lemma 3.

We now discuss the boundary values of \(\widetilde{\theta} \).

Lemma 4. The boundary value of \(\widetilde{\theta} \)

\[
\widetilde{\theta}(s; C/s^0) = \lim_{k \to +0} \widetilde{\theta}(s + iks'; C)
\]

is the same for all \(s' \) in the interior of any one cone \(C' \) of \(\mathbb{H}_{n-1}(C^+) \).

This is obvious if one recalls that \(\widetilde{\theta}(v; C) \) is rational and its poles appear only when \(\text{Im } v \) is on one of planes in \(\mathbb{H}_{n-1}(C^+) = \mathbb{H}_{2}(C) \).

This justifies the notation \(\widetilde{\theta}(s; C/C') \) instead of \(\widetilde{\theta}(s; C/s') \) as long as \(C' \) is a cone of \(\Gamma(H_{n-1}(C^+)) \) or contained in such a cone.

Lemma 5. The Fourier transform of \(\widetilde{\theta}(s; C/C') \),

\[
\theta(t; C/C') = \int e^{-is \cdot t} \, \theta(s; C/C') \, ds \quad (2\pi)^{-n}
\]

is a function taking integral values (almost everywhere) and with discontinuities only at planes belonging to \(\mathbb{H}_{n-1}(C) \). Furthermore
\[\theta(t; C/C') = 0 \quad \text{if } t \notin C' \tag{3.21} \]
\[\theta(t; C/s') = 0 \quad \text{if } t \in \text{interior of } C \text{ and } s' \notin C' \tag{3.22} \]

To prove the first part of the Lemma, we note that this is true for simplex C (cf. (3.5)). For arbitrary C, we see by a simplexial decomposition \(C = \sum \alpha C_\alpha \) that discontinuities occur on \((n-1) \)-planes. Furthermore, if a \((n-1) \)-plane \(h \notin H_{n-1}(C) \), then by Lemma C2, we can make this decomposition in such a way that \(h \notin H_{n-1}(C_\alpha) \) for any \(\alpha \). Hence discontinuities occur only on planes of \(H_{n-1}(C) \).

To prove (3.21), \(20 \) we note that if \(t \notin C' \), then there is a \(s_1 \in C' \) such that \(s_1 \cdot t < 0 \). Using a basis \(s_1 \ldots s_n \) in \(S \),
\[\theta(t; C/C') = \int e^{-i \sum j \cdot t} |\det(s_j)| \bar{\theta}(\Sigma_j s_j; C/C') \prod d\rho_j \]
Since \(\bar{\theta} \) is analytic for \(\text{Im} \rho_1 > 0 \) with fixed real \(\rho_j \), \(j \geq 2 \), we have (3.21) by contour deformation in the \(\rho_1 \)-integration.

To prove (3.22), we make a simplexial decomposition of \(C' : C' = \cup C_\alpha' \). Obviously \(s' \notin C_\alpha' \). Since \(\bar{\theta}(v; C) = \Sigma \bar{\theta}(v; C_\alpha) \) due to (3.8), we have \(\theta(t; C/s') = \Sigma \bar{\theta}(t; C_\alpha/s') \). If \(s' \) happens to be on some plane of \(H_{n-1}(C') \) there is always another \(s'' \) near \(s' \) which is not on any plane of \(H_{n-1}(C_\alpha) \) nor in \(C' \) and satisfies \(\theta(t; C/s') = \theta(t; C/s'') \cdot (s' \notin H_{n-1}(C_\alpha)) \).

For simplex \(C_\alpha \), we see from (3.5) that \(\theta(t; C/s') = 0 \) if \(t \in C \subseteq C_\alpha \) and \(s'' \notin C_\alpha' \). Hence we have (3.22).

Finally we prove the following inversion formula,

Lemma 6. If \(\dim C = n \), \(\text{lin } C = 0 \) and \(H \supset H_{n-1}(C) \), then
\[\Sigma_{C' \in \Gamma(H)} \bar{\theta}(v; C') \theta(t; C/C') = \bar{\theta}(v; C') \tag{3.23} \]
To prove this, we first consider the case where C is simplex. Since $H \subset H_{n-1}(C^+)$, each $C' \in \Gamma(H)$ is contained in some C_{σ^+}. By Lemma 4, (3.6), (3.4) and (3.5), we obtain

$$
\sum_{C'} \tilde{\theta}(v;C') \theta(t;C/C') = \sum_{C' \subset C_{\sigma^+}} \sum_{C' \subset C_{\sigma^+}} \tilde{\theta}(v;C') \theta(t;C/C_{\sigma^+}) \\
= \sum_{C} \tilde{\theta}(v;C_{\sigma^+}) \theta(t;C/C_{\sigma^+}) \\
= \sum_{C} \tilde{\theta}(v;C^+) \theta(t;C) = \tilde{\theta}(v;C^+)
$$

For general C, we make a standard simplexial decomposition $C = \bigcup_{\alpha} C_{\alpha}$. Since $H_{n-1}(C_{\alpha}^+) \subset H_{n-1}(C^+)$, we can use (3.23) for every C_{α}. Hence by using (3.6) and (3.8), we obtain (3.23) for the general case.

4. THE NECESSITY PROOF OF THEOREM 1

To prove (R1), we rewrite definition (2.28) in a form similar to (2.39). Namely, using the notation (2.41) - (2.43), we see that $C_{\alpha\nu}$ is sum of several C_{ν}. Moreover, due to (W2), if $x \notin \Delta_{\alpha}$ then the $w_{\nu}(x)$ are equal for various ν as far as C_{ν} stays in one $C_{\alpha\nu}$. Hence using (3.6), we get

$$
r_i(x) = (-i)^n \frac{\delta(x;C_{\alpha\nu}^X)}{\delta(x;C_{\alpha\nu}^X)} \sum_{\alpha} \theta(x^0;C_{\alpha\nu}/C_i) w_{\alpha\nu}^T(x).
$$

$\theta(x^0;C_{\alpha\nu}/C_i)$ is invariant as long as $x \in \Delta_{\alpha}^X$ because its discontinuity occurs only at $s(k\ell) \cdot x^0 = 0$ with k, ℓ such that $(s(k\ell) \cdot x)^2 > 0$ and otherwise it stays constant. Since $w_{\alpha\nu}^T(x)$ is covariant due to (W1) for $w_{\alpha\nu}^T$, we have (R1).

(R2) is an obvious consequence of (3.21).
To prove (R3), we note that the difference
\[\theta(s; C_p/C_i) - \theta(s; C_p/C_j) \]
for neighbouring \(C_i \) and \(C_j \) is the boundary value of \(R(v; C_p/t(I)) \) multiplied by \(\pm 2\pi i \delta(s \cdot t(I)) \) (cf. (3.16)). Hence, due to (3.13), only terms with those \(P \) for which \(\pm C(t(I)) \in \mathcal{F}_1(C_p) \) survive and, due to the presence of the above \(\delta \)-function and (W3), \(w_p^T \) vanishes if \(\pm q \cdot t(I) \) is one of its intermediate momentum. (Note that \((q(I))^2 < m^2 \).) Since \(\pm C(t(I)) \in \mathcal{F}_1(C_p) \) implies that \(\pm q(I) \) is an intermediate momentum of \(w_p^T \), we have (R3).

To prove (R4), we first note that, since \(I(P,k), k=1...n \) is totally ordered by set inclusion, if \(\sigma \cap \sigma' \neq \emptyset \) then \(\pm q(I) \) and \(\pm q(I') \) can not be intermediate state for one \(w_p^T \) simultaneously. Thus by Lemma 4
\[
\begin{align*}
\theta(x; C_p/C_+\sigma) &= \theta(x; C_p/C_-\sigma) \quad \text{if } \pm C(t(I)) \notin \mathcal{F}_1(C_p) \\
\theta(x; C_p/C_{\sigma+}) &= \theta(x; C_p/C_{\sigma-}) \quad \text{if } \pm C(t(I')) \notin \mathcal{F}_1(C_p)
\end{align*}
\]

Since one of these equalities is true for each \(C_p \), we have (R4).

5. THE SUFFICIENCY PROOF OF THEOREM 1

First let us show that if \(r_i \) is obtained from \(w_p^T \) as in (2.28), then we get the \(w_p^T \) by (2.29). Namely we define
\[
\tilde{w}_p^T(q/t) = (i)^N \sum \theta(q^0; C_i/t) \tilde{w}_i(q)
\]
(5.1)

Then by substituting (2.28) into (5.1) we have
\[
\tilde{w}_p^T(q/t) = \sum \int \limits_{C} e^{i q \cdot x} w_p^T(x) (\Sigma \theta(q^0; C_i/t) \theta(x^0; C_p/C_i) dx
\]
By (3.23) the summation in the parenthesis is equal to
\[\theta(q^0;C_p^+/t). \]
(Note that \(\{ C_i \} = \Gamma(R_{n-1}^R) \) and \(H_{n-1}^R = \bigcup_{p} H_{n-1}(C_p^+) \supseteq H_{n-1}(C_p^+) \).)

We now have
\[\tilde{w}^T(q/t) = \sum_{p} \theta(q^0;C_p^+/t) \tilde{w}^T_p(q). \]
By (W2) \(\tilde{w}^T_p(q) = 0 \) if \(q^0 \) is not in the interior of \(C_p^+ \). If \(q^0 \) belongs to the interior of \(C_p^+ \) and \(t \notin C_p \), then by (3.22)
\[\theta(q^0;C_p^+/t) = 0. \]
If \(q^0 \) is in the interior of \(C_p^+ \) and \(t \in C_p \), then
\[\theta(q^0;C_p^+/t) = \theta(q^0;C_p^+) = 1. \] Thus we have
\[\tilde{w}^T(q/t) = \tilde{w}^T_p(q) \quad \text{if } t \in C_p \]

We now assume (R1) - (R4) for \(r_1(x) \) and define
\[w^T(u;x) = (-2\pi i)^{-n} \int dx^0 \sum_{i} \theta(u-x^0;C_i) r_i(x) \]
\[w^T(x/t) = \lim_{\lambda \to +0} w^T(x^0 + i\lambda t; x) \]

We denote \(\bigcup_{i} H_{n-1}(C_i) \) by \(H_{n-1}^{RW} \) and \(H_{n-1}(C_p) \) by \(H_{n-1}^W \). We easily see that \(H_{n-1}^W \subseteq H_{n-1}^{RW} \) and in fact \(H_{n-1}^{RW} \) is much larger set than \(H_{n-1}^W \) in general.

If we denote the cones in \(\Gamma(R_{n-1}^W) \) by \(C_p \) where \(C_p = \bigcup_{\gamma} C_p^\gamma \) and the \(w^T(x/t) \) with \(t \) in the interior of \(C_p \) by \(w^T_{p,\gamma}(x) \), then by Lemma 4, \(w^T_{p,\gamma}(x) \) is independent of the choice of \(t \) in \(C_p^\gamma \). However, it depends on \(\gamma \) in general.

By Lemma 1, \(w^T(u;x) \) has singularities for \(\text{Im } u \in \chi \) in general. Hence in order to be able to define \(w^T_p \) from \(w^T(u;x) \), we have to show that the jump across the cut on
Im u(x) for $w'(u, x)$ vanishes if $h \in H_{n-1}^W$ and $h \notin H_{n-1}^W$. (The $w'(u, x)$ constructed from r_i of the form (2.28) is regular there.) This follows from (R4) in the following way.

By (3.13), what we have to show is

$$
\sum_{i=1}^{n} R(u-x_0; C_i/s) \delta(s \cdot (u-x_0)) r_i(x) dx_0 = 0 \quad (5.5)
$$

for $\text{Im } s \cdot u = 0$, $h(s) \notin H_n^W$ and $h(s) \notin H_{n-1}^W$. This is equivalent to

$$
\sum_{i=1}^{n} \epsilon((C_i)_{m-1}; f_m) r_i(x) = 0 \quad (5.6)
$$

for all $s_2 \ldots s_n$, where $(C_i)_m = C_i + h_m, f_m = C(s_m) + h_{m-1}$, and $h_m = h(s, s_2 \ldots s_m)$. The necessity follows from (3.14). For the sufficiency proof, we expand the rational function

$R(u; C_i/s)$ into partial fractions first with respect to u_L (the first component of u). Each expansion coefficient is the residue of R at the pole of that partial fraction and is a rational function of u given by some $R(u; C/s, s_2)$. Repeating this process, we arrive at a formula of the type

$$
R(u; C_i/s) = \text{const.} \sum_{m=1}^{n} \epsilon((C_i)_{m-1}; f_m) R(u) \quad (5.5)
$$

where f_m and $(C_i)_{m-1}$ are defined as in Lemma 3, the summation is over $s_2 \ldots s_n$ and $R(u)$ is a rational function of u depending on $s, s_2 \ldots s_n$. By substituting this into (5.5) and using (5.6), we see the sufficiency of (5.5).
Next we prove (5.6) from (R4). In (5.6), if

\[h_m \in H_m(C_i), \text{ for all } i \text{ and for one fixed } m, \text{ then all } \epsilon \text{ vanishes and the equation is satisfied. Hence we now assume that } h_m \in H_m(C_i) \text{ for some } i, \text{ namely that } h_m \text{ is a } m\text{-dimensional intersection of planes } h(I_1)\ldots h(I_{n-m}). \]

We first show that there is one and only one \(C_i \) for a given \(\sigma_m, m = 1\ldots n \) such that

\[\epsilon((C_i)_{m-1}; f_m) = \sigma_m \]

(5.7)

where \(\sigma_m = \pm 1 \). If this is true then denoting the corresponding \(r_i \) by \(r_\sigma \), we can rewrite (5.6) as

\[\sigma_1 \ldots \sigma_n \sigma_1 \ldots \sigma_n \Sigma \sigma = 0 \]

(5.8)

To prove the above statement, we note that each \(h_m \) is divided by planes \(h(I) \) not containing \(h_m \) into several (closed) convex polyhedral cones, say \(C_\alpha^{(m)} \). For each \(C_\alpha^{(m)} \), there is at least one cone \(C_i \) for which \(C_i \cap h_m = C_\alpha^{(m)} \). Furthermore, each \(h_m \) is divided by \(h_{m-1} \) into two sides: \(h_m = h_m^+ \cup h_{m-1} \cup h_m^- \), where \(\pm h_m \in h_m^\pm \). For each \(C_\alpha^{(m-1)} \) there are just two \(C_\beta^{(m)} \) containing \(C_\alpha^{(m-1)} \) (in its boundary), one on each side of \(h_{m-1} \). Hence by induction we obtain the above statement. (Note that \(C_\alpha^{(n)} \) coincides with \(C_i \).) We also see that \(C_\alpha^{(m)} \) can be characterized by the value \(\sigma_k, k \leq m \). Hence we use the notation \(C^{(m)}(\sigma_1 \ldots \sigma_m) \).

Next let us investigate \(h_m \) more closely. If \(I_a \) and \(I_b \) are proper non-empty subsets of \(I(n+1) \), and if
31.

\[\sigma_a I_a \neq \sigma_b I_b \] for \(\sigma_a, \sigma_b = \pm \), then there are 5 mutually exclusive possibilities:

(a1) \(I_a \cap I_b = \) empty,
(a2) \(I_a \subseteq I_b \)
(a3) \(I_a \supseteq I_b \),
(a4) \(I_a \cup I_b = I(n+1) \) or
(b) \(\sigma_a I_a \cap \sigma_b I_b = \) non-empty for \(\sigma_a, \sigma_b = \pm \).

We now prove that there exists integers \(k \) and \(l \) \((l < k < n)\) and the set \(\{ I(m); \nu \leq m \leq k \} \) satisfying the conditions:

(A1) \(h_n = \bigcap_{\nu=1}^{m} h(I(\nu)(m)) \),
(A2) \(I(\nu)(m) \) is a partial sum of \(I(\mu)(m', \mu = \nu \ldots m' \) \) where \(m < m' \),
(A3) \(I_a = I_\mu(m) \) and \(I_b = I_\nu(m) \) satisfy (a1) for \(\nu = k \) and (a1) or (b) for \(m = \nu = k \). In the latter case, (b) holds for \(\mu = l \).

Suppose \(I(\nu)(m) \) has been defined for \(m < M \) satisfying (A1), (A2) and the condition (A3'): \(I(\mu)(m) \) and \(I(\nu)(m) \) fulfill (b). Then we will construct \(I(\nu)(M) \) which satisfy (A1), (A2) and either (A3) or (A3'). If this can be done, then by induction there is some \(M = k \) for which (A3) is true for the first time or else we find mutually disjoint \(I(\nu)(n-1) \) such that \(h_n = \bigcup_{\nu} h(I(\nu)(n-1)) \). This latter possibility contradicts \(h_n \neq h_{n-1} \). To construct \(I(\nu)(M) \), let \(h_n = h_{M=n+1} \cup h(I) \).

If \(I \supseteq I(\mu)(M-1) \), we replace \(I \) by \(I' = I - I(\mu)(M-1) \). After doing this replacement for each \(\mu, I' \) and \(I(\mu)(M-1) \) never satisfy (a3) nor (a4). (If \(M = 2 \), (a4) may happen, but then we replace \(I \) by \(-I \) without harming other conditions.) Now if \(I(\mu)(M-1) \) (which happens only for one \(\mu \)), we define \(I(\nu)(M) = I(\nu)(M-1) \) for \(\nu \neq \mu \), \(I(\mu)(M) = I(\mu)(M-1) - I' \), and \(I(\mu)(M) = I' \) and they will satisfy (A1), (A2) and (A3'). Otherwise we define \(I(\mu)(M) = I(\mu)(M-1) \) and \(I(\mu)(M) = I' \), and they will satisfy (A1), (A2) and (A3) or (A3').
We now claim that
\[\sigma_{n-k+1} \sum_{i \neq \ell} \sigma_{n-k+1} \sigma_{n-\ell+1}^r \sigma = 0 \]
(5.9)

To prove this, we consider an inner point \(P \) of \(C^{(n-k)}_{\sigma_1 \ldots \sigma_{n-k}} \)
in \(h_{n-k} \). In the neighbourhood of \(P \), there are no planes \(h(I) \) except those containing \(h_{n-k} \). We define the point

\[P(\epsilon_{n-k+1} \ldots \epsilon_m) = P(\epsilon_{n-k+1} \ldots \epsilon_{m-1} + \epsilon_m \cdot s') \]
(5.10)

where \(s'_{m} = s_{m} \) except \(s'_{n-\ell+1} \) is chosen to satisfy

\[s'_{n-\ell+1} \cdot t(I^{(k)}_{\mu}) = 0 \]
for \(\mu \neq \ell \) and \(s'_{n-\ell+1} e h_{n-\ell+1} \).

Obviously \(P(\epsilon_{n-k+1} \ldots \epsilon_m) e h_m \). If we choose \(\epsilon_m \) successively
smaller enough, and if \(\text{sign} \, \epsilon_m = \sigma_m \), then \(P(... \epsilon_m) \) will be
in the relative interior of \(C \sigma_1 \ldots \sigma_n \). We now fix \(\epsilon_m \) so
that the point

\[P(\rho, \rho') = P(\epsilon_{n-k+1} \ldots \epsilon_{n-\ell+1} \ldots \epsilon_n) \]
(5.11)

is in the interior of \(C \sigma_1 \ldots \sigma_n \) for \(\rho = \sigma_{n-k+1} \), and
\(\rho' = \sigma_{n-\ell+1} \). We also define \(C(\rho, \rho') = \mathcal{C}_1, r(\rho, \rho') = r_1 \) if \(P(\rho, \rho') \) is
in the interior of \(C_1 \). We now prove that \(r_+ - r_- \)is constant in \(\rho \). This will prove (5.9).

For this purpose, we consider the segment

\[L_+ = \{ P(\rho, 1); |\rho| \leq 1 \} \quad \text{and} \quad L_- = \{ P(\rho, -1); |\rho| \leq 1 \} \]
and consider the question: where \(L_+ \) and \(L_- \) meet the boundaries
of \(C_1 \)? Since \(L_+ \) and \(L_- \) are parallel to \(s_{n-k+1} e h_{n-k+1} \), they
will never meet planes containing \(h_{n-k+1} \), namely planes
\(h(I) \) where \(I \) is any partial sum of \(I_{(k-1)}^{(k)} \). On the other
hand, if the ε are sufficiently small, L_\pm are near P and will never meet with planes not containing h_{n-k}. Thus, the only planes $h(I)$ which L_\pm meets are for $I=I_k^{(k)}+\sum I_\mu^{(k)}$ where the summation is any partial sum of $I_\mu^{(k)}$ such that $I_k^{(k)}$ and $I_\mu^{(k)}$ have the property (al). L_+ and L_- may meet more than one planes $h(I)$ at one time. In such a case we change the choice of ϵ slightly and then $I_\mu^{(k)}$ will meet only one plane at a time. Since $s_{n-\ell+1}t(I_\mu^{(k)})=0$ for $\mu\neq \ell$, and $\mu=\ell$ does not appear in the summation in the definition of I, L_+ and L_- meet $h(I)$ at the same time.

For each fixed I, we fix ρ^+ and ρ^- such that $P(\rho^\sigma, \sigma')$ is on the same side of $h(I)$ as $P(\sigma, \sigma')$ and sufficiently near to $h(I)$. We now prove

$$r(P^+, P^-) - r(P^+, -P^-) = r(P^-, P^-) - r(P^-, -P^-)$$

by proving that $r(P^+, \rho^') - r(P^-, \rho^-)$ is constant in $P'(\rho' \leq 1)$.

Let the segment $\{P(\rho^\sigma, \rho'); \rho' \leq 1\}$ be L'_σ. We investigate planes $h(I')$ which L'_σ meets. Since L'_σ are near P, $h(I')$ should contain h_{n-k}. Since L'_σ are parallel to $s_{n-\ell+1}$ and since $s_{n-\ell+1}t(I_\mu^{(k)})=0$ for $\mu\neq \ell$, I cannot be a partial sum of $I_\mu^{(k)}$, $\mu\neq \ell$.

Hence $I'=I^{(k)}+\sum I_\mu^{(k)}$ where summation is any partial sum of $I_\mu^{(k)}$ with $\mu\neq \ell, k$. Suppose $P(\rho^\sigma, \rho', \sigma')$ is sufficiently near to $h(I')$ and on the same side of $h(I')$ as $P(\rho^\sigma, \sigma')$. Then what we would like to prove is
Because I and I' satisfies (p), this is nothing but (R4).
Thus we have succeeded in proving that \(w^T(u; x) \) has no cut across the plane \(\text{Im} \, s \cdot u = 0 \) unless \(h(s) \perp \mathcal{H}_{n-1} \).

We now prove the properties (W1) - (W3) for \(w^T \).
First (W1) becomes obvious if we write \(\tilde{w}^T_P(q) \) as

\[
\tilde{w}^T_P(q) = i^n \sum_{\beta} \left(\frac{\Delta^0_P(m)}{q \cdot c^0_P(t)} \right) \tilde{w}^T_{\beta \nu}(q),
\]
to that of (4.1).

To prove (W2) or equivalently (W2'), we calculate by Lemma 3 the jump of \(w^T(u; x) \) across the cut \(\text{Im} \, s \cdot u = 0 \),

\[
i^n \sum_{\beta} \int R(u-x; s(s(u \cdot \nu) \cdot u \cdot x^0), x^0, \text{Im} \, s(u \cdot \nu) \cdot u = 0)
\]

If \(s(\mu \cdot \nu) \) is not a 1-facet of \(C_i \), then \(R \) vanishes. If \(s(\mu \cdot \nu) \) is a 1-facet of \(C_i \) and if \((\text{Re} \, s(\mu \cdot \nu) \cdot u)^2 < 0 \), \(r_i(x) \) vanishes because of (R2'). Thus (5.13) vanishes if \((\text{Re} \, s(\mu \cdot \nu) \cdot u)^2 < 0 \), which proves (W2).

To prove (W3), we first note that if \(q^0 \neq C^+_P \), then \(q^0 \neq c^+_P \) for at least one \(\gamma \), and therefore \(\tilde{w}^T_P(q) = \tilde{w}^T_{p \gamma}(q) \) vanishes because each \(\theta(q^0; c^0_P / C^+_P \gamma) \) vanishes due to (3.21). Suppose \(q^0 \in c^+_P \) and \((q \cdot t(\nu))^2 < m^2 \) for at least one \(I \in \mathcal{I}_P \). We will prove \(\tilde{w}^T_P(q) = 0 \) for this case by using the following Lemma,
Lemma 7. If \((q \cdot t(I))^2 < m^2\) for one \(I \in J_P\) and \(\Delta^O_P(m)\) contains \(q\), then each cone \(C^+_P\) contains points outside of \(C^+_P\).

If this Lemma is true, then for any point \(q^0 \in C^+_P\) there is a point \(q^0'\) outside the cone \(C^+_P\) which can be connected with \(q^0\) by a continuous line without crossing boundary planes of any \(C^+_P\). For such a \(q^0', \theta(q^0; C^+_P, \gamma) = \theta(q^0'; C^+_P, \gamma)\) by Lemma 4. Since \(\theta(q^0'; C^+_P, \gamma)\) is a sum of \(\theta(q^0'; C^+_P, \gamma)\) by (3.6) and the latter vanishes, we have \(\omega^T_P(q) = 0\).

To prove Lemma 7, it suffices to prove that if \(q^0 \in C^+_P\) and a polyhedral convex cone \(C = \bigcap_{I' \in J} C(t(I'))^+\) is contained in \(C^+_P\), then there is at least one \(I' \in J\) for which \(q^0(I')^2 < m^2\). To prove this, we note that \(C \subset C^+_P\) implies (Lemma C1) that

\[
\lambda(I) t(I) = \sum_{I' \in J} \lambda(I, I') t(I') \quad \text{for } I \in J_P
\]

(5.14)

where \(\lambda(I)\) and \(\lambda(I, I')\) are positive integers. By comparing any fixed component on both sides of (5.15), we easily see

\[
\lambda(I) \leq \sum_{I'} \lambda(I, I') \quad \text{for } I
\]

(5.15)

If \(q^0(I')^2 \geq m^2\) for all \(I' \in J\), and if \(q^0 \in C\), then each \(q(I')\) is positive time-like and we have

\[
(q(I)^2)^{1/2} \leq \sum_{I'} \lambda(I) \lambda(I, I') (q(I')^2)^{1/2} \geq m^2
\]

which contradicts with the assumption. This completes the proof of Lemma 7.
Finally we show that \(w_P^T(x) \) satisfies (2.28). Since

\[w_P^T(x) = w_{P \gamma}(x) \]

for any \(\gamma \), we obtain, due to (3.6),

\[\sum_{P} \theta(x^0; C_P + C_i) w_p^T(x) = \sum_{\gamma} \theta(x^0; C_{P \gamma} + C_i) w_{P \gamma}(x) \]

Substituting the definition of \(w_p^T(x) \) into this equation and using (3.23) we obtain

\[\sum_{P} \theta(x^0; C_P + C_i) w_p^T(x) = \sum_{i'} \theta(x^0; C_{i'} + C_i) r_{i'}(x) \]

By using (R2) and (3.22), the terms with \(i' \neq i \) vanishes. By \(\theta(x^0; C_{i'} + C_i) = \theta(x^0; C_i + C_i) \), the remaining term is identical with \(r_i(x) \).

6. PROOF OF THEOREM 2

The Fourier transform of \(r_i(x) \),

\[\tilde{r}_i(\zeta) = \int e^{i(\zeta, x)} r_i(x) dx \]

(6.1)

is analytic for \(\zeta \in T(V_i^0) \) due to (R2). Conversely, if \(\tilde{r}_i(\zeta) \) is analytic in \(T(V_i^0) \) and satisfy certain boundedness condition, then its boundary value \(\tilde{r}_i(q) \) has the property (R2). Since \(\tilde{r}_i(\zeta) \) is covariant, due to (R1), it is analytic in the extended tube \(T'(V_i^0) \) by the theorem of Hall and Wightman.

We will now prove from the property (R3), that

\[\lim_{\varepsilon \to +0} \tilde{r}_i(\zeta + i \varepsilon q) = \lim_{\varepsilon \to +0} \tilde{r}_i(\zeta - i \varepsilon q) \]

(6.2)

where \(C_i \) and \(C_j \) are neighbouring across the plane \(h(I) \),

\[\zeta \in \Sigma(ij, m) \]

(6.3)
\(q \in Q, \ (q \cdot t(I))^2 > 0 \) and \(q^0 \cdot t(I) > 0 \). If this is proved, then by the edge of wedge theorem, \(\tilde{r}_i \) and \(\tilde{r}_j \) are analytic at \(\Sigma(ij,m) \) and identical with each other, and therefore the theorem 2 is proved.

To prove (6.2), we denote the boundary values in Eq. (6.2) by \(\tilde{r}_i(\zeta) \) and \(\tilde{r}_j(\zeta) \). By taking the Fourier transform of (3.16) and (3.13), we obtain

\[
\theta(x^0;C/C_i) - \theta(x^0;C/C_j) = \sigma \in (C;C(t(I))) \theta_1((x^0)_I;C_I/C_{ij}) \quad (6.4)
\]

where \(C_I = C + h(t(I)) \) (as a set in \(T \mod h(t(I)) \)), \(C_{ij} = C_i \cap C_j \ (eh(I) = h(t(I)) \), \((x^0)_I \) is \(x^0 \) taken \(\mod h(t(I)) \), \(\theta_1 \) is as described in Lemma 3, and \(\sigma \) is defined by \(C(t(I)) \subseteq C_I \). Using the addition theorem (3.6) for the left hand side of (6.4) we easily see

\[
\epsilon(U_C;C(t(I))) \theta_1((x^0)_I;(U_C)_I/C_{ij})
\]

\[
= \Sigma C(C;C(t(I))) \theta_1((x^0)_I;(C_p)_I/C_{ij}) \quad (6.5)
\]

where \(U_C \) is any partial sum of \(C \) and is assumed to be a polyhedral convex cone.

Using the integral representation (6.1) for \(\tilde{r}_i(\zeta) \) and \(\tilde{r}_j(\zeta) \) with \(\zeta \in \Sigma(ij,m) \), we obtain by (6.4)

\[
\tilde{r}_i(\zeta) - \tilde{r}_j(\zeta) = \int e^{i(\zeta,x)} dx \left(\sum_{\alpha \nu} C_{\alpha \nu}(C;C(t(I))) \theta_1((x^0)_I;(C_{\alpha \nu})_I/C_{ij}) \right)
\]

\[
\theta(x;\Delta^\nu_{\alpha \nu}) \omega^T_{\alpha \nu}(x) \quad (6.6)
\]
Since $C_{\alpha \nu}$ is a partial sum of C_P, we can rewrite (6.6) using (6.5) as

\[\tilde{r}_i(\zeta) - \tilde{r}_j(\zeta) = \int_{\mathcal{P}} e^{i(\zeta, x)} \sum_{P_1} \left((x^0)_i / (C_P)_i / (C_P)_j \right) \delta(C_P; C(t(I))) w_P^T(x) \]

(6.7)

We now introduce a basis $t(I), t_2 \ldots t_n$ in T and make the transformation of variables $x \rightarrow y$, through

\[x = t(I) \otimes y + \sum_{i=2}^{n} t_i \otimes y_i. \]

(y and y_i are Minkowski vectors.)

Then θ_1 in (6.7) is independent of y and if $t(I) \in F_1(C_P)$, the Fourier transform of $w_P^T(x)$ in y_i with fixed y_i, $i \geq 2$,

\[w_P^T(p; y_2 \ldots y_n) = \int e^{i(p, y_i)} w_P^T(y_i; y_2 \ldots y_n) dy_1 \]

\[= (2\pi)^{n-1} \int \exp \left(\sum_{i=2}^{n} (q, y_i) \cdot t_i \right) \delta(p - q \cdot t(I)) \tilde{w}_P^T(q) dq \]

vanishes for $p^2 < m^2$ due to (W3). On the other hand if $t(I) \notin F_1(C_P)$, then $\epsilon(C_P; C(t(I)))$ vanishes by definition (3.15) and hence we have $\tilde{r}_i(\zeta) = \tilde{r}_j(\zeta)$ for $\zeta \in \Sigma(i, j, m)$.

We note that (2.39) is obtained from (6.1) because if $\zeta \in T(V^0_i)$ then $\text{Im} \zeta^0 \in C_i$. Unlike (6.1), (2.39) holds in all $T(V^0_i)$.

Finally we add the proof of (2.45). By definition

\[\mathcal{Z}(x) = \Sigma \theta(x^0; C_P) w_P(x) \]

Using $\theta(x^0; C_P) = \theta(x^0; C_P / C_P^+)$, we obtain

\[\mathcal{Z}(q) = (2\pi)^{-n} \sum_{P} \theta(v - q^0; C_P / C_P^+) \tilde{w}_P(q) dq^0 \]
We now assume that $s = \text{Re } \nu \in C_i$. If $C_p^+ \ni C_i$, the replacement of C_p^+ by C_i can be done trivially. On the other hand if $C_p^+ \not\ni C_i$, then $s \cdot t(I) < 0$ for at least one $I \in \mathcal{I}_p$ and due to (W3) $\int \tilde{\theta}(v-q^0; C_p) \tilde{\nu}_P(q) dq^0$ will be analytic. Hence we can again replace C_p^+ by C_i. Thus we have the formula (2.45)

7. ADDITIONAL REMARKS

To make the Theorem 1 in section 2 precise, one has to state the class of distributions to which ν_T and ν_i belong. We do not attempt to make a precise statement as to the class of distributions for which our proof holds, but we would like to make some remarks pertinent to this point.

The behavior for large value of space time coordinate can be estimated by physical arguments and it is expected that ν_T decreases exponentially in space-like directions and according to a power law in time-like directions. This behavior will be inherited by ν_i. Hence the assumption that the multiplication of $\tilde{\nu}_i(q)$ by $\tilde{\theta}(q^0; C_i/t)$ is well-defined is a reasonable one.

We have shown that ν_T and ν yield the same ν_i. We have also shown that ν_T can be obtained from ν_i by an inversion formula. The reason why ν cannot be obtained by the same inversion formula is the following. ν will (in general) approach to non-zero values for large
separation of its coordinates due to the vacuum intermediate state. Because of this, expressions like $\theta(q^0;C_1/t)\tilde{w}(q)$ have ambiguity and especially the formula (3.23) cannot be used when multiplied by $\tilde{w}(q)$. Thus, if we substitute (2.28) with w^T_P replaced by w_P into (5.1), we cannot change the order of summation over P and multiplication by $\theta(q^0;C_1/t)$ and hence we do not get $w_P(x)$. On the other hand if w^T_P behaves as we conjectured, then we will get w^T_P by (2.29). This is one of the reasons for using w^T_P instead of w_P.

We do not know much about the behavior of $\tilde{w}_P(q)$ for large energy momentum. If $w_P(q)$ does not decrease for large q, we have to use the subtraction method. It seems to be a non-trivial problem to extend our results to this case.

APPENDIX A. CASE OF MORE COMPLEX SPECTRUM CONDITIONS

We define $m(P,k)$ by the lowest upper bound of m such that

\[(\mp_0, A_P(1)x_P(1)\cdots A_P(k)x_P(k)(P(m)-P_0) \]

\[A_P(k+1)x_P(k+1)\cdots A_P(n+1)x_P(n+1)\mp_0 \] \hspace{1cm} (A.1)

vanishes identically where $P(m)$ is the projection into states with mass below m and P_0 is the projection into the vacuum \mp_0. We first prove

\[m(p,k)=m(p',k) \text{ if } I(p,k)=I(p',k) \] \hspace{1cm} (A.2)
Suppose \((A.1)\) vanishes identically for \(P\) and \(m < m(P,k)\).
Then \((A.1)\) vanishes for \(P'\) and \(m < m(P,k)\) if the points
\[X_P(1) \ldots X_P(k)\] and
\[X_P(k+1) \ldots X_P(n+1)\] are space-like to each other within each group. We now note that \((A.1)\) for \(P'\) as a distribution in the difference variables
\[\xi'_j = X_{P'}(j) - X_{P'}(j+1)\] is a boundary value of a function which is analytic for
\(\text{Im } \xi'_j \in \mathbb{V}_-\). Hence \((A.1)\) for \(P'\) also vanishes identically for \(m < m(P,k)\).

Because of \((A.2)\) we can define
\[m(I) = m(P,k) \text{ if } I = I(P,k)\]
(A.3)
We now assume the following:

Assumption A. \(m(I)\) with fixed \(I\) is the same for all
\(n\) such that \(w_P(x) \neq 0\). In addition
\[m(I(n+1) - I) = m(I)\]
(A.4)
\[\sum_j m(I_j) \geq m(I) \text{ if } t(I) = \sum_j t(I_j)\]
(A.5)

\((A.4)\) is obviously true for Hermitian fields. The idea behind \((A.5)\) is the following. The state
\[\Xi = \prod_j \prod_{\nu=1}^{A_j} A_i(x_j \nu) * \Xi_0\]
will have the same quantum numbers (which is associated with fields, additive, and zero for vacuum state)\(^28\) as the states
\[\Xi' = \prod_{i \in I} A_i(x_i) * \Xi_0\] and
\[\Xi'' = \prod_{i \notin I} A_i(x_i) \Xi_0\].

By definition of \(m(I_j)\) there is a state \(\Xi_j\) with mass
around \(m(I_j)\) such that \((\Xi_j, \prod_{i \in I_j} A_i(x_i) * \Xi_0) \neq 0\). Assuming
assymptotic conditions, we write \(\Xi_j\) in the form
\[I_j = F_j (\Lambda_1^n) \Xi_0. \] Then the state \[I'' = \prod_j (F_j (\Lambda_1^n))^{\lambda_j} \Xi_0 \]
will have the same quantum number as \(\Xi \) and the mass
around \(\sum_j m(I_j) \). Then, assuming no accidental cancellation,
\((\Xi, \Xi') \) and \((\Xi, \Xi'') \) will not vanish identically, and we
see that (A.5) is a reasonable assumption.

We note that for \(n=2 \) (A.5) takes the form
\[m_i + m_j \geq m_k \geq |m_i - m_j| \] (A.6)
where \((ijk) \) is any permutation of 123).29

As will be proved in Appendix B, \(w^T_p \) will satisfy
(under the assumption B)
\[(W3') \quad w^T_p(q) = 0 \text{ unless } q \cdot t(I) \in V_+ \text{ and } (q \cdot t(I))^2 \geq m(I)^2 \]
for all \(I \in \mathcal{G}_p \).

By the same proof as for (R3), we obtain
\[(R3') \quad \tilde{r}^i_j(q) = \tilde{r}^j_i(q) \text{ if } C_i \text{ and } C_j \text{ are neighbouring}\]
across \(h(I) \) and if \((q \cdot t(I))^2 < m(I)^2 \).

We also get the analyticity of \(\tilde{r}(s) \) at
\[\Sigma(ij; \{m(I)\}) = \{s \in \mathbb{C}^\prime; \text{ Im } s \in S(ij), \text{ (Re } q \cdot t(I))^2 < m(I)^2 \} \] (A.7)

The sufficiency of (R3') for (W3') will be established in
the same way as in section 5 if the following is true
(cf. Lemma 7),
\[(M1) \quad \text{If } (q \cdot t(I))^2 < m(I)^2 \text{ for at least one } I \in \mathcal{P} \text{ and } \]
\[\Delta^O_B(\{m(I)\}) \text{ contains } q, \text{ then each cone } C^O_B \text{ contains points} \]
outside of \(C^+_B \), where
This Lemma follows from (A.5) in the same way as the proof of Lemma 7, if the following statement is true,

(M2) The $\lambda(I)$ in (5.13) can be taken as 1. Namely if $C= \bigcap_{I' \in \mathcal{J}} C(t(I'))^+$ and $C \subset C_P$, then

$$t(I) = \sum_{I' \in \mathcal{J}} \lambda(I,I') t(I') \quad \text{for } I \in \mathcal{J}_P$$

(A.9)

where $\lambda(I,I')$ is an integer.

We have been unable to prove this for general n, but for $n \leq 4$ ($n=4$ corresponds to the 5 point function) (M2) can be verified easily.

Summing up we have the following theorem.

Theorem A. If w_p^T satisfies (W1), (W2), and (W3'), then r_1 satisfies (R1), (R2), (R3') and (R4). The converse is true if (M1) holds (which is the case for $n \leq 4$). $\tilde{r}(\zeta)$ is analytic in the union of extended tubes $T'(V_i^Q)$ and at the points of $\Sigma(ij; \{m(I)\})$.

APPENDIX B. TRUNCATED VACUUM EXPECTATION VALUES

First we prove a Lemma which will be used in later discussion. Let $B(x_1 \ldots x_n)$ and $C(y_1 \ldots y_m)$ be products of fields $B_i(x_i)$ and $C_i(y_i)$ respectively. If the theory satisfies (2) in section 2, $B(x_1 \ldots x_n)$ and $C(y_1 \ldots y_n)$ either commute or anticommute if all the $x_i - y_j$ are space-like.

Lemma B. If $B(x_1 \ldots x_n)$ and $C(y_1 \ldots y_n)$ anticommute for space-like $x_i - y_j$, then the vacuum expectation value of
either $B(x_1 \ldots x_n)$ or $C(y_1 \ldots y_m)$ vanishes identically.\(^{30}\)

For the proof, by the theorem 3 of our previous paper\(^ {31}\) which has been proved there under the assumption of (1), (3a) and (3b) (but not (2)) we have

$$\lim_{\lambda \to \infty} (\mathcal{F}_0, B U(\lambda a, l) C E_0) = (\mathcal{F}_0, B E_0) (\mathcal{F}_0, C E_0)$$

$$\lim_{\lambda \to \infty} (\mathcal{F}_0, C U(-\lambda a, l) B E_0) = (\mathcal{F}_0, B E_0) (\mathcal{F}_0, C E_0)$$

where $U(\lambda a, l)$ is the unitary operator for the translation by λa, and a is any space-like vector. If B and C anticommute for space-like $x_i - y_j$, then for sufficiently large λ

$$(\mathcal{F}_0, B U(\lambda a) C E_0) = -(\mathcal{F}_0, C U(-\lambda a) B E_0)$$

Hence we have

$$(\mathcal{F}_0, B E_0) \cdot (\mathcal{F}_0, C E_0) = 0 \quad \text{(B.1)}$$

We now consider the truncated vacuum expectation values defined recursively by (2.3). We note that, although the definition of sign σ of each term in (2.3) refers to the order of the factors in that term, σ is actually independent of their order or else that term vanishes identically due to the above Lemma.

We define

$$w(i_1 \ldots i_k) = (\mathcal{F}_0, A_{i_1}(x_{i_1}) \ldots A_{i_k}(x_{i_k}) E_0) \sigma(i_1 \ldots i_k) \quad \text{(B.2)}$$

$$\begin{bmatrix} i_1 \ldots i_k \end{bmatrix}_T = (A_{i_1}(x_{i_1}) \ldots A_{i_k}(x_{i_k}))_T \sigma(i_1 \ldots i_k) \quad \text{(B.3)}$$

$\sigma(i_1 \ldots i_k)$ is the sign which one obtains if one commutes fields from the natural order to the order $i_1, \ldots i_k$.
for totally space-like configuration of x_i. σ_P of (2.1) is $\sigma_P(1)...P(n+1))$.

The definition (2.3) now becomes

$$w(i_1...i_m) = (i_1...i_m)_T + \sum \sigma_G(i_1...i_m)_T(i_k...i_m)_T... (B.4)$$

where the order of the i in $()_T$ is as in w, and the summation is over all groupings G of $i_1...i_m$. σ_G is

$$\sigma_G = \sigma \cdot \sigma(i_1...i_m) \sigma(i_1...) \sigma(i_k...)...$$

$$= \sigma(i_1...,i_k,...,..) \sigma(i_1...) \sigma(i_k...)$$ \hspace{1cm} (B.5)

In this form we see that σ_G depends only on the grouping and not on the order of $i_1...i_m$ in w. Note that, by Lemma B, $\sigma(i_1...,i_k,...,..)$ is independent of the order of the groups $(i_1...), (i_k...),...$ unless that term vanishes identically.

The spectrum condition of Appendix A can be written as

$$(W^{3^n}) \tilde{w}(i_1...i_m) = 0$$ unless $q(i_1...i_k) \in \mathbb{P}_1, q(i_1...i_k)^2 \geq m(i_1...i_k)^2$

for all $k \leq m$ or $q(i_1...i_k) = 0$ for some $k \leq m$.

$$\tilde{w}(i_1...i_m) = \sigma(i_1...i_m) \sigma(i_1...i_k) \sigma(i_k+1...i_m) \tilde{w}(i_1...i_k) \tilde{w}(i_k+1...i_m)$$

if $q(i_1...i_k) = 0$.

The notations are:

$$\tilde{w}(i_1...i_m) = \int \exp i(\Sigma(q_i, x_i)) w(i_1...i_m) dx_{i_1}...dx_{i_m}$$ \hspace{1cm} (B.6)

$q(i_1...i_m) = q_{i_1} + ... + q_{i_m}$ \hspace{1cm} (B.7)
Note that \(\tilde{w} \) contains \(\delta \)-function, in contrast to our former definition of \(\tilde{w}_p \).

We now strengthen the Assumption A a little.

Assumption B. If \(t(I) = \sum_j t(I_j) \),

\[
m(I) \leq \sum_j m'(I_j) \quad \text{unless} \quad m'(I_j) = 0 \quad \text{for all} \quad j,
\]

\[
\leq \min_j m(I_j) \quad \text{if} \quad m'(I_j) = 0 \quad \text{for all} \quad j.
\]

(B.8)

where

\[
m'(\{i_1 \ldots i_m\}) = m(\{i_1 \ldots i_m\}) \quad \text{if} \quad w(i_1 \ldots i_m) = 0
\]

\[= 0 \quad \text{otherwise.} \quad \text{(B.9)}
\]

The idea behind this assumption is the same as for Assumption A.

We now prove the following theorem.

Theorem B. If \(w(i_1 \ldots i_m) \) satisfies conditions (W1), (W2), and (W3°), then \((i_1 \ldots i_m)_T\) satisfies (W1), (W2), and (W3'). The converse is also true. (We make the Assumption B.)

For the proof, the equivalence of (W1) for \(w(i_1 \ldots i_m) \) and \((i_1 \ldots i_m)_T\) is obvious, because the defining equation has a unique solution in both directions. In addition, because (W2) is the requirement of symmetry in \(i \) and \(j \) when \(x_i - x_j \) is space-like, and because (B.4) is a completely symmetric definition, the equivalence of (W2) for \(w(i_1 \ldots i_m) \) and \((i_1 \ldots i_m)_T\) is also obvious. (It is important here that \(\sigma_6 \) is independent of the order of \(i_1 \ldots i_m \).)
We now prove the equivalence of \((W3^\prime)\) and \((W3')\).

First suppose \(q(i_1 \ldots i_\ell)^2 < m(i_1 \ldots i_\ell)^2\). Then by Assumption B, for any grouping of \(i_1 \ldots i_\ell\), either there is a group for which \(q(i_k \ldots)^2 < m(i_k \ldots)^2\) or else \(q(i_k \ldots)^2 < m(i_k \ldots)^2\) for all groups. From this we easily see that \((W3^\prime)\) implies \((W3")\). To prove the converse, we define

\[
(i_1 \ldots i_m)_0 = 6(i_1 \ldots i_m)(\mathbb{I}_0, A_i (x_i)(1-P_0) \ldots (1-P_0) A_i (x_i) \mathbb{I}_0)
\]

(B.10)

In the same way as in our previous paper,\(^3\)\(^2\) we can derive

\[
(i_1 \ldots i_n) = (i_1 \ldots i_n)_0 - \Sigma_{\text{con}} (i_1 \ldots)_T \ldots
\]

(B.11)

where the summation is over all connected groupings.\(^3\)\(^3\)

We can now apply the same argument as above to (B.11) and easily see that \((W3^\prime)\) implies \((W3')\).

Finally we prove that \(r_i\) defined from \(w_P^T\) and \(w_P\) are the same. We show that the term from the summation over \(G\) in (2.3) cancels out in (2.28). Consider one fixed grouping \((i_1 \ldots i_\ell), (j_1 \ldots j_\ell), \ldots\). We note that there are several \(w_P\) which contribute to the same term of the form \((x_{i_1} \ldots x_{i_\ell})_T (x_{j_1} \ldots x_{j_\ell})_T \ldots\). The union of the \(C_P\) for such \(P\) is the cone

\[
C_G = \{ t \in T; \ t_{i_1} > \ldots > t_{i_\ell}, \ t_{j_1} > \ldots > t_{j_\ell}, \ldots \}
\]
This cone is obviously not pointed. Since σ_2 is independent of P, we see from (3.7) that the contributions from various P cancels out.

APPENDIX C. CONVEX POLYHEDRAL CONES

Consider a real n dimensional vector space T and its dual S. A k dimensional linear subspace is called a k-plane. The linear subspace generated by a subset T_1 is denoted by $h(T_1)$. For example, $h\{t_1, \ldots, t_m\} = \sum_{i=1}^{m} \rho_i t_i; \rho_i \text{real}$. The orthogonal compliment of h is denoted by h^\perp. (If $h \in T$, then $h^\perp \in S$. If H is a family of planes h, then H^\perp means the family of planes h^\perp. The convex polyhedral cone generated by t_1, \ldots, t_m is denoted by

$$C(t_1, \ldots, t_m) = \left\{ \sum_{i=1}^{m} \lambda_i t_i; \lambda_i \geq 0 \right\}$$

(C.1)

The positive polar C^+ and the negative polar C^- of a convex cone C is defined by

$$C^+ = \left\{ s \in S; s \cdot t \geq 0, t \in C \right\}, \quad C^- = \left\{ s \in S; s \cdot t \leq 0, t \in C \right\}$$

(C.2)

The polars of a polyhedral convex cone in T are again polyhedral convex cones in S. The positive polar of the positive polar is the original cone. Note that

$$C(t_1 \ldots t_m)^+ = \left\{ s \in S; s \cdot t_i \geq 0, i=1, \ldots, m \right\}$$

(C.3)

$$h(t_1 \ldots t_m) = C(\pm t_1 \ldots \pm t_m), \quad h^+=h^-=h^\perp$$

(C.4)
We call $h(C)$ the dimensionality space of the cone C and its dimension the simension of the Cone C. A polyhedral convex cone C has non-empty interior if and only if $\dim C=n$. The maximum linear subspace contained in C is called the linearity space of C and its dimension is called the linearity of C. (Notation: $L(C)$ and $\text{lin } C$.)

If $\text{lin } C=0$, C is called pointed. C is pointed if and only if there is a $(n-1)$-plane intersecting with the cone C only at the origin. We have the following relations,

$$h(C^+)=h(C^-)=L(C)^\perp, \quad L(C^+)=L(C^-)=h(C)^\perp$$

$$(C.5)$$

$$\dim C + \dim \text{lin } C^+=\dim C^+ + \dim \text{lin } C=n$$

$$(C.6)$$

By (C.6) C is pointed if and only if C^+ has non-empty interior.

An extremum subset X of C is the set such that $t_1, t_2 \in C$ and $\alpha t_1 + \beta t_2 \in X$ for some positive α and β with $\alpha + \beta = 1$ necessarily imply $t_1, t_2 \in X$. Any convex extremum subset of C is again a polyhedral convex cone and is called k-facet where k is its dimension. If $\dim C=n$, the $(n-1)$-facets of C form the boundary of C. If $\text{lin } C=0$, the 1-facets of C generate C. If $k+1 < \dim C$, a k-facet F is a k-facet of some $(k+1)$-facet G and the intersection of such G is F. If f^+ is a k-facet of C^+, f is called k-corner of C. 1-facet is sometimes called extreme half-line and 1-corner is sometimes called supporting half-space.
We denote the set of all \(k \)-facets of \(C \) by \(F_k(C) \), the set of all \(h(f) \) with \(f \) in \(F_k(C) \) by \(H_k(C) \) and the set of all \(k \)-corners by \(P_k^+(C) \).

The sum \(C+C' \) is the set of all \(\sum t+t' \) for \(t \in C \) and \(t' \in C' \). It is again a polyhedral convex cone. Note that \(C(T_1 \cup T_2) = C(T_1) + C(T_2) \) where \(T_i \) are subsets of \(T \).

The intersection \(C \cap C' \) is also a polyhedral convex cone. The \(C \)'s form a lattice with the operations \(+ \) and \(\cap \). \(C^+ \)'s form its dual. Namely,

\[
(C_1 \cap C_2) + C_3 = (C_1 + C_3) \cap (C_2 + C_3), \quad (C_1 + C_2) \cap C_3 = (C_1 \cap C_3) + (C_2 \cap C_3)
\]

\[(C + C')^+ = C^+ \cap C'^+, \quad (C \cap C')^+ = C^+ + C'^+ \]
(Note that \(C \) can be replaced by \(h \) because of \((C.4) \)).

The set of \(-t\) for all \(t \in C \) is denoted by \(-C\).

If every element \(s \) of a set \(\Sigma \) is expressible as a positive linear combination \(s = \sum \lambda(\nu)s(\nu) \) \((\lambda(\nu) \geq 0) \) of elements \(s(\nu) \) of a subset \(\Sigma' \), then \(\Sigma' \) is called a positive basis of \(\Sigma \). If every \(s \) in \(\Sigma \) is expressible as \(s = \sum \lambda(\nu)s(\nu) \) \((\lambda(\nu) \geq 0) \), then \(\Sigma' \) is called a c-basis of \(\Sigma \). A c-basis of \(\Sigma \) which does not contain any sub-c-basis is called c-minimal. If \(C(\Sigma) \) for a finite set \(\Sigma \) is pointed, \(\Sigma \) has a unique c-minimal positive basis. If a finite set \(\Sigma \) is c-minimal, \(C(\Sigma) \) is pointed and \(F_1(C(\Sigma)) \) consists of \(C(s), s \in \Sigma \).
We now state a Lemma which is equivalent to the statement \((C^+)^+ = C\).

Lemma C1. If \(s \cdot t_1 \geq 0, \ldots, s \cdot t_m \geq 0\) imply \(s \cdot t \geq 0\), then \(t = \sum \lambda_i t_i\) with some non-negative \(\lambda_i\).

Given a family of \((n-1)\)-planes \(H = \{h(s); s \in \Sigma\}\). If \(h(\Sigma)\) is the total space \(S\), then the planes in \(H\) will divide the entire space \(T\) into several pointed polyhedral convex cones with non-empty interior. We denote the set of all these convex cones by \(\Gamma(H)\). Let \(\Sigma_0 = \{\pm s; s \in \Sigma\}\) and \(\Sigma_\alpha\) be distinct \(c\)-minimal \(c\)-basis of \(\Sigma_0\). Then \(\Gamma(H) = \{C(\Sigma_\alpha)^+\}\).

If we denote the set of \(k\)-planes generated by a subset of \(\Sigma\) by \(\Pi_k(\Sigma)\), then \(H_k(C(\Sigma_\alpha)) \subseteq \Pi_k(\Sigma)\) and \(H_k(C) \subseteq \Pi_{n-k}(\Sigma)^\perp\) for any \(C \in \Gamma(H)\).

A cone \(C(t_1 \ldots t_n)\) with dimension \(n\) and linearity 0 is called a simplex cone. Its polar is also a simplex cone. If \(s_i \cdot t_j = \delta_{ij}\), then \(C(t_1 \ldots t_n)^+ = C(s_1 \ldots s_n)\). Any polyhedral convex cone with dimension \(n\) can be decomposed into a union of almost disjoint simplex cones \(C\alpha\)

\[
C = \bigcup \alpha C_\alpha, \ C_\alpha : \text{simplex, dim } C_\alpha \cap C_\beta < n \text{ for } \alpha \neq \beta \quad (C.9)
\]

If \(F_1(C_\alpha) \subseteq F_1(C)\) for all \(\alpha\), this decomposition is called a standard simplexial decomposition. We now prove the following Lemma.

Lemma C2. If \(\dim C = n\) and \(\lin C = 0\), \(C\) has a standard simplexial decomposition. Furthermore, for any given
plane h not belonging to $H_{n-1}(C)$, there is a standard simplexial decomposition (C.9) for which $h \not\in H_{n-1}(C_\alpha)$ for any α.

For the proof of the first half, take any 1-facet f_1 and consider all polyhedral convex cones C_α generated by f_1 and any $(n-1)$-facet f_{n-1}^α not containing f_1. We easily see that $C = \bigcup C_\alpha$, $\dim (C_\alpha \cap C_\beta) < n$ for $\alpha \neq \beta$, and $F_1(C_\alpha) \subset F_1(C)$. Hence by induction on the number of 1-facets, we get the first half. Moreover, we get the second half by always taking a 1-facet f_1 not containing the given plane h. Note that if $f_1 \not\parallel h$ and if there is only one facet not containing f_1, then any standard simplexial decomposition after that stage will have the property that $h \not\in H_{n-1}(C_\alpha)$. Note also that if there is only one $(n-1)$-facet not containing f_1 for every 1-facet f_1, then the cone is simplex.

ACKNOWLEDGEMENT

The author would like to thank Professor A. S. Wightman and Dr. N. Burgoyne for discussions and Drs. D. Ruelle and O. Steinmann for correspondence. The author would also like to thank Professor R. Haag for critical reading of the manuscript.
3. N. Burgoyne, private communication. Also see H. Araki and N. Burgoyne, to be published.
5. The mass spectrum condition for Wightman function is stated in (W2") of Appendix B. It is more complicated because of the presence of the vacuum intermediate state. Also see discussion of section 7.
6. It is meant that $\sigma_\mathcal{P}$ is the sign change which one obtains if one changes the order of the fields from the natural order 1, 2, ...n+1 to (the order) P(1), P(2), ...P(n+1) for totally space-like configuration of x_i. See Appendix B.
8. The signature of the metric is $(1,-1,-1,-1)$.

9. To prove (2.15), we note that the vacuum expectation value of the multiple commutator for each P in (2.14) contains a fixed $w_P(x)$ in (2.15) if and only if

$$P^{-1}P'(1) > P^{-1}P'(2) > \ldots > P^{-1}P'(j-1),$$
$$P^{-1}P'(j+1) < \ldots < P^{-1}P'(n+1).$$

Since $(j-1)$ A's always come to the left of $A_1(x_1)$, the $w_P(x)$ in all these terms have a common sign $(-1)^{j-1}$. Summing up θ-functions over all P satisfying the above equation, we get (2.15).

10. For the definition, see Appendix C.

11. To be precise, we have to specify the class of distributions to which $w_P(x)$ and $r_i(x)$ belong. The point is that a product like $\theta(x;C_i/C_j)w_P(x)$ or $\theta(q;C_i/C_P)r_i(q)$ has to be well-defined and the integral over dq^0 or dx^0 has to be convergent. In this paper we do not attempt any thorough discussion of this point, though we shall make a few remarks in section 7. See also footnote (16).

12. This means C_i and C_j are neighbouring cones with their common $(n-1)$-facet lying on $h(I)$. The cones in (R4) will be explained below.

13. C_P and $C_{P'}$, are neighbouring cones with their common $(n-1)$-facet lying on $h(ij)$.
14. For example, take $r_{12}(x_1 \ldots x_4)$ for the 4-fold case. (See H. Araki and N. Burgoyne, loc. cit.) This vanishes unless x_1 is advanced over x_3 and x_4 and x_2 is advanced over either x_3 or x_4. (R2) says that it vanishes unless (x_1-x_3), (x_1-x_4), and $(x_1+x_2-x_3-x_4) \in \mathbb{V}^+$. Of course the latter and (R4) imply the former.

16. Note that $\theta(t;C/\delta C')$ is defined only almost everywhere. The equation (3.5) should be taken in this sense. The product like $\theta(t)w(t)$ is meaningful only when $w(t)$ belongs to a certain class of distribution. See L. Schwartz, Seminaire Schwartz-Levy, 1956-57, No. 3, Faculté des Sciences de Paris.

17. cf. Lemma C2 in Appendix C.

18. $F_m(C)$ is the set of all m-facet(s) of C and $H_m(C)$ is the set of dimensionality spaces of all m-facets of C:

$$H_m(C) = \{ h(f); f \in F_m(C) \}.$$

19. $\mathcal{G}(H)$ is the set of all convex polyhedral cones obtained by division of the whole space by $(n-1)$-planes belonging to H. See Appendix C.

20. Another proof can be obtained by using a standard simplexial decomposition of C: $C=\bigcup C_\alpha$. Then

$$\theta(t;C/C') = \sum_{\alpha} \theta(t;C_\alpha/C')$$
Since $F_1(C\alpha) \subseteq F_1(C)$ and $C' \in \Gamma(H_1(C) \uparrow)$, C' is contained in one of σC^+_α (defined by (3.3)). By (3.5), if $t \notin C^+_\alpha \subseteq C^+\alpha$, then $\theta(t; C\alpha/C') = \theta(t; C\alpha/\sigma C^+_\alpha) = 0$.

21. We are only interested in the coefficients.

22. Since $h(I)$ should contain h_{n-k}, $q(I) = 0$ should be derived from $q(I^{(k)}_{\mu}) = 0$, $\mu = 1 \ldots k$. (cf. Lemma C1)

One can easily find that I should contain the whole or no part of $I^{(k)}_{\mu}$ for each $\mu \neq k$, and I cannot contain $I^{(k)}_{\mu}$ and $I^{(k)}_{\mu}$ at the same time if they fulfill (\beta). Furthermore, since $h(I) \neq h_{n-k+1}$ and since $I^{(k)}_{\mu} = I^{(k-1)}_{\mu}$ for this case, I should contain $I^{(k)}_{\mu}$. Thus we have this result.

23. If a_i is positive time-like, $\left[\sum a_i^2\right]^{1/2} \geq \Sigma (a_i^2)^{1/2}$.

This is easily seen in the rest system of Σa_i.

27. By the theorem of Hall and Wightman, the analytic function in question is analytic in a Jost point.
(R. Jost, Helv. Phys. Acta 30, 409 (1957)), where we have proved that (A.1) vanishes. Hence it vanishes identically. We could use also edge of wedge theorem (instead of Jost points) taking 0 as the analytic function approaching to the same boundary value from the other side.

28. For multiplicative quantum numbers of the form \((-1)^n\), one can take \(n \mod 2\).

29. We thank Professor A. S. Wightman for an illuminating explanation of the relevance of (A.6) for the sufficiency of the condition of the type (R.3).

30. We assume (1), (2), (3a), (3b) and (3c) for the theory. However, we do not make assumptions about the connection between commutation relation among different fields and the type of fields.

 cf. H. Araki, "On the Connection of Spin and Commutation Relations between Different Fields".

31. H. Araki, Annals of Physics, in press. Theorem 3 in that paper is expressed in terms of \(w^T\). However, the properties used for \(w^T\) in the proof are the
covariance and the existence of lowest positive mass
in that intermediate state where \(U(\lambda a, l) \) is inserted.
\((\mathcal{I}_0, BU(\lambda a, l) C\mathcal{I}_0) - (\mathcal{I}_0, B\mathcal{I}_0)(\mathcal{I}_0, C\mathcal{I}_0)\) clearly has these
properties.

32. H. Araki, loc. cit. Eqs. (2.11) through (2.16).

33. If each group of a grouping \(G \) occupies consecutive
positions in \((i_1 \ldots i_n)\), then \(G \) is called a division of
\((i_1 \ldots i_n)\). If a grouping is a subgrouping of a proper
division, then it is called a disconnected grouping.
Otherwise, a grouping is called a connected grouping.
Thus for a connected grouping, numbers in one group
are interlocked in \((i_1 \ldots i_n)\), with those in another
group.

34. cf. M. Gerstenhaber, Activity Analysis of Production and
Allocation, (John Wiley and Sons, Inc. New York 1951)
Chapter 18.