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0. Introduction

Let R be a Dedekind domain with the quotient field i'. Let A be an R-order. In
this general setting, it is proved in [3] that Roiter-Jacobinski type Divisibility Theorem
holds for A-lattices. As a consequence, for a A-lattice L, the following two cancellation
properties are equivalent.

(¢) If L' is a local direct summand of nL = L& -- & L for some n > 0, then
L& L ~M&@& L implies L ~ M.

("YU LFnL~MeEnL for some n> 0, then L ~ M.

As was pointed out in [3], putting I' := Endy L and B := KT\ there is an intimate
connection between cancellation property and the approximation property of the group of
Vaserstein E(E ) in the idele topology of B*. of which precise definitions will be recalled
in §1.

Here we only indicate, R := [I R, the direct product of p-adic completions over all



maximal ideals of R, M:=M ®r R for any R-alegbra M, and E(C) =< (14 zy)(1 +
yr)™'|z,y € C, 1 + 2y € C* > for any ring C'> 1. Our first remark is

Proposition 1  (proof in 1.5)  The property (c') for L 1s equivalent with the fol-
lowing property (c'") of T
(c") E(B) C TXB* as subsets of B*

0.1

We shall consider, for any finite dimensional I\-algebra B, the following three approz-
imation properties over R, in the idele topology of BX
(a) Strong approximation property:
E(B) is dense in E(B)
(a') B*-approximation property:
E(E) 1s contained in the closure of B*
(a'") ﬁxBx—approximation property:
E(B) is contained in the closure of RXB*
There are the obvious implications (a) = (a') = (a"). Our second (rather obvious)
remark is
Proposition 2  (proof in 1.2)  The property (a') for B 1s equivalent with the
(validity of ) property (c'') for any A-lattice L such that KEndy L ~ B.

In the following cases, the property (a) always holds.

(1) B is commutative (since E(B) = E(B) = 1, by definitions).
(2) R is semi-local (by the Chinese Remainder Theorem).

(3) B = M,(C) by some K-algebra C' (n > 2) (cf [3]).

0.2

We shall give the following reduction to division algebras.
Theorem 1  (proof in 2.3) Writing as B/.J(B) = :?ng M, (D;), with the Jacobson
= i=1

radical J(B) and the division algebras D;, in such an ordering thatn; =1(1 <i <) and

n; > 2(r <i<m), we have
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(1) (a') for B & (a') for D; (1 < i <r).

(11) (a) (resp. (a")) for B = (a) (resp. (a")) for D; (1 <¢ <7).

Thus the approximation properties of general B can be reduced, more or less, to that
of non-commutative division algebras over non-semi-local R, and then under a reasonable
restriction, to that of central division ones, by 1.6.

Since PF-fields are the most familiar and important source of non semi-local Dedekind
domains, now we restrict our attention to central division algebras over PF-fields and recall

some basic facts and known results.

0.3

Assume that I is a PF-field in the sense of Artin [1], Chap.12, and let D be a finite
dimensional non-commutative central division algebra over A
In particular, there is given a set of valuations U of K, satisfying the product formula

H |z|, = 1 for any x € K'* In fact K is either a number field or a function field (of one
pis

variable) over the constant field Ky := {o € K||z], < 1 for any v € U}. K is called a
global field if either it is a number field or a function field with # K, < oo.

(i) Let P be a proper non-empty subset of U consisting of non-archimedean valu-
ations. Then R(P) := {z € K||z|, <1 for any p € P} is a Dedekind domain (with an
additional requirement R(P) D Ry, if K is a function field) having K as its quotient field.
Conversely, any such Dedekind domain R in A is obtained as R = R(P) by some P

Consider the following condition (EC) for D over R = R(P), which is known as
Eichler’s condition when K is a global field.

(EC) There is at least one v € U\ P, such that the completion D, = D @ K, is
not a division algebra.

(ii) If K is a global field, by Wang-Platonov Theorem (cf. [6]), [D*,D*] = E(D) =
the kernel of the reduced norm. Hence the well known Eichler-IKKneser Strong Approxima-
tion Theorem [2],[4] (and its analog due independently to Morita [8] and Swan [9], when
I is a function field with #y < co) implies

(SAT) (a) for D over R(P) & (EC) for D over R(P).
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0.4

Apart from global fields, we shall prove;

Theorem 2 (proof in 3.4)  For any PF-field I\,

(a") for D over R(P) = (EC) for D over R(P).

All in all, the most optimistic speculation would be “(a) & (a') & (a”) < (EC)”
for any central division algebras over any PF-fields. In this direction we can extend our
previous result [11] as,

Theorem 3 (proof in 4.4) When K 1s an algebraic function field of one variable
over the reals,

(EC) for D over R(P) = (a) for D over R(P).

1. Idele Topology

Let R be a Dedekind domain with the quotient field A'. A finitely generated R-module
L 1s called an R-lattice, if it is torsion free (or equivalently projective) over R, then K g L
is a finite dimensional A’-vector space and by the natural embedding L — I & L, one can
identify as ' @ L = K L. An R-algebra A is called an R-order if it is an R-lattice, then
KA = I\ ®A is a finite dimensional I-algebra. When a finite dimensional A -algebra B is
given, we call that T' is an R-order of B, if " 1s an R-order and B = IT.

For a maximal ideal p of R, let R, always denote the p-adic completion of R. Let
R:= [ Rp, the product over all maximal ideals of R. By the diagonal embedding R — R ,
R is an R-algebra which is faithfully flat as an R-module. For any R-module M, put

M,:=MGgR,  M:=M®ogR.

We shall be concerned with only the following two special cases.

1) I' is an R-order:  Then, since I' is finitely generated projective R-module.

f =1 Og HRP o H(F@R R,) = HFP'



~

2) B is a finite dimensional IV-algebra:  Then B:=B@orR~Boyx Kog

=)

B ®y K , and since R is faithfully flat over R, one may canonically view as BoOT ,B
and BNT =T Moreover, there is a natural identification B ~ h_l})lf/? (r € R\ {0}) ~
H' B, (w.r.t I')), where the last term denote the restricted direct product i.e. H/ B, (w.r.t.
Ip) = {r = (rp) € [ Bplz, € T, for almost all p}. The adele topology on B is defined as
the unique topology which induces on T the direct prduct of p-adic topology [[T';, for one
(hence any) R-order I of B. The name comes from the fact that I with this topology 1s
called the (restricted) adele ring of I\

The dele topology in B* is defined as the unique topology which induces on L% the
direct product of p-adic topology [] ')\, for one (hence any) R-order I of B. The following

explicit description of the idele topology will be useful for us.
1.1

For any R-order I of B and non-zero r € R, put
ry if reRy
Up(Dyr) =Ty N(1+rl)) =
1+rI if r€pR,.

(0) U, r) = [JUp(T,r) =T n(1+T).
P

I'(r) := R+ rI', which is an R-order of B again.

By definitions,we have

(1)  {U(T,r)|r € R\ {0}} is a fundamental system of neighbourhoods of 1 in B in
the idele topology (for any one fixed T').

(1) {rTjr € R\ {0}} is a fundamental system of neighbourhoods of 0 in B in the
adele topology.

Let H be a subgroup of B* and H will denote the closure of H in B*

(2) IHTHN((1+ »T) € T* for some I and 1 € R\ {0}, (in particular if HNT ¢ fx)

3

then the idele topology of B* and the adele topology of B induce the same topology on

~

H. Indeed, HNU(T,17') = HN(1+1'T) for any »' € R\ {0}.
Since I'(r), = RyU,(L.r). we have

—— X

(3) R*U(T,r)=T(r)
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—~ . o~ _ —— — X
(4) I R* C H, then HU(T',r) > R* so that H = [ HI(r) = (T(r) H.
r#0 r#0

1.2 Proof of Proposition 2 0.

For any R-order T' of B, put A = T'°?, the opposite ring of I' and L := I'. then
EndyL =T Hence the condition ( (c¢") for any L such that NEndyL ~ B) is equivalnet
with the condition E(é) c TXB* for any I' But we have ﬂf‘xBX — RXB*._ since

r
o~ ~ — ~ X
I'*B* is closed and contains R*B*, so RXB* C ﬂ I'*B* C ﬂ ['(r) B* while we have
r r#0
-~ — X
R*B* =(T(r) B*, by (4).

1.3 Results of Vaserstein.

Let A be aring with 1, and E,(A) be the elementary subgroup of GL,(A) := M,(A)*
x 0

0 ]-n——l
2). Let E(A) be the group of Vaserstein, i.e. the subgroup of A* given by the generators

By the usual embedding 7 — ( ), we consider as A* = GL1(A) C GL,(A)(n >

as

E(4A) == (1 +ay)(l+yx) " r,y € A, 1+ 2y € 4%)

The commutator subgroup [A*, A*] is always contained in E(A) Further, if A is local,
E(A) = [4%, A%

If A is semi-local, the well known Lemma of Bass and the fundamental results of
Vaserstein ([10], Th.3.6) state:

(5) GLn(A)=A"En(4)(n = 2).

(6) AXNE,(A)=E(4)(n>2).

1.4

Lemma Let B be a finite dimensional Iv-algebra and T be an R-order of B. Then
the equality (5) of Bass (resp. (6) of Vaserstein) holds for A = BorT. (where B or T is
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not semi-local if R is not semi-local.)

Proof 1In the proof of [10] Th.3.6 (a), where semi-locality of A is assumed, it is in
fact proved that

(1) If the ring A satisfies the following condition (5'), then (5) holds.

(5')  For any finitely generated left ideal L and 2 € A,

Ar+L=A= (a2 +L)NA" # ¢.

(1) If A satisfies (5') and moreover the following (6'), then (6) holds.

(6') Ary + Ay = A = Yy € A,%v,q,u € A such that oy + vay € A*,1 —yquv €
Ay Hu(ay +yay) € A, g +ulrg +ygap) € A

Now, let A =[] A, (w.r.t C,) be the restricted direct product of A, with respect to
its subring C),, over some index p’s. If each A4,,C, satisfies (5') and (6'), it is easy to see

that A itself satisfies (5') and (6'). This applies for Bor T, since B, and I, are semi-local.
1.5 Proof of Proposition 1 §0.

As is well known (cf {3] §2 and §3), the property (c') is equivalent with the following

(¢")  B*NGLn(B)GL,(T)= B*T* for any n > 2.

By 1.4, we have

1) GLu(B)=B"E.(B) 2) GL,([)=E,T)>

Since E,(B) is dense in En(ﬁ) in the idele topology of B (cf (3] 1.2.1)

3)  Ea(B)GL.(T)= En(B)GL,(T).

Using 1), 3), 2) in this order, we have: GL,(B)GL,(T) = BXE,(B)GL.(T) =
B*En(B)GL,(T') = B*E,(B)E,(T)T* = B*E,(B)T'

Hence, the left hand side of (¢"')= BX N BXE,(B)T* = B*(B* n E,(B))['* =

~ s A

BXE(B)T'*, the last equality by 1.4 again. This implies that (¢'’) is equivalent with (c¢'’).
1.6 Change of the base field.

Let I\’ be a finite extension field of I\’ contained in the center of B. and let R’ be the

integral closure of R in k' Then R'is a Dedekind domain with the quotient i’ and B

T



1s a finite dimensional i'-algebra. Assume the following condition

(f) R’ is a finitely generated R-module.

Then there are canonical isomorphism R ~ R &g Rand K' g R ~ K'og R (cf.
[7] Th.1 and Prop.4 Chap. 1I §3), so that B Gip R' ~ B % R including the topology.
Hence the approximation property (a) (resp. (a')) of B over R is equivalent with that of
B over R' and (a'") over R implies that over R’

(1) For a residually separable algebra B (i.e. B/J(B) is separable) the B*- approx-
imation problem is reduced, by Theorem 1, to that of a central division algebra.

(i) If I is a PF-field, the condition (f) always holds (cf. [5] Th.72), so that we get

the reduction to a central division algebra even for residually inseparable case.

2. Reduction to a Division Algebra.

Let B be a finite dimensional K -algebra with the Jacobson radical J = J(B),
@ : B — B' := B/.J be the canonical I-morphism and IV := ¢(T'). Then I' is an R-
order in B’, and ¢ induces the following surjective morphisms: ¢y : I' = TV, o= @ 1:
B=BoR—- B ©R=DB" and N ::990@1:f:FQﬁﬁeF’@E:f'

Since R is faithfully flat over R,

1) Kergo=TNJCJI),Kerg=J@wR=1JCJB),Kergy=TnJc JT).

2) Viewing as BoT,BandTNnB =T, ©0, @0, is the restriction of 3 to I',[', B
respectively.

By 1), 1+ J C B* so that © induces the exact sequence of groups:

3) 1—>1—|—f—>§x~—>§'X—>1,and$_1(§'x):§x
Consequently, we have

4) @(E(B))=E(B")
By the same reasoning, we have

5) G(E(B)) = E(B').

Also we have



6) L* = L,?()_l(f’x ), which in turn implies

7)) U, r)) =U(I",r), in the notation of 1.1.

2.1

Lemma Let H be a subgroup of B* and H be its closure in B*
(i) E(B)CH= E(B')C3(H)
(i) If1+ J C H, then the converse implication (<) also holds.

(i) 1+4.JC BX

Proof (i)and (i) (E(B) c H) €X' (E(B) ¢ HU(T,r) for any r € R\ {0})
VED (BB € G(H)U(T 7)) for any r € R\ {0}) 257 (E(B) ¢ (1 + N)HU(T,r)
(= HU(T,»)if H > 1+ J)forany r € R\ {0}).

(11)  Since any element of J is nilpotent, (1 + .?) N1+ ?f) =1+ (Tﬁ 1'f) c T,
hence by (2) 1.1, the idele topology on 1 + J is induced from the adele topology. Since J
is dense in J in the adele topology, 1 + J 1s dense in 1 + J in the idele topology so that

1+ Jc 1+ YU, r)C BXU(T,r) for any r € R\ {0}.

2.2

Lemma Let B = & B; be the ring direct sum. of finite dimensional K -algebras.
Then we have the followz'nzg_;mplications.

(i) (a) (resp. (a") for B < (a) (resp. (a')) for any By (1 <i < m).

(1) (a") for B = (a") for any B; (1 <1 < m).

Proof Let I'; be an R-order of B;, then I' := &I'; is an R-order of B. By the
canonical isomorphism B=BoOR~ E(B; © }%) = ©B;, BX ~ H}?,;‘, [* ~ Hfl’(,
U, r)y ~[JUT, ), E(B) ~ HE(B,-) and E(ﬁ) ~ HE(@,}, the claims are completely

obvious.

2.3 Proof of Theorem 1 §0.

Put B; = M,,(D;). n; = 1{1 <1 <), n, 2 2(r <1 <m). Recall that (a) holds for
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B;(r <i<m)((3)of 0.1) and apply 2.1 and 2.2, then we get the following implications
which obviously prove Theorem 1.

(a) for B = (a) for B' & (a) for D; (1 <i <)

(a') for B & (a') for B' & (a') for D; (1 <1 <r)

(a'") for B & (a'") for B' = (a") for D, (1 < <7).

3. (a") = (EC) for a PF-field.

Let IV be a PF-field in the sense of [1], D be a central division A-algebra of dimension
n% [D: K] =n? Let D, := D®,K, be the completion at v € Y. Let N: D — I\ be the
reduced norm and N, : D, — I\, be its extension.

If D, is a division algebra, D, 3 x — \‘ﬂvrli/n defines a norm of D, as a I,-vector
space. While for any basis {e;]1 < i < n%} of D over I, writing 2 = ) €ie; € D,,
2= Mlax |€;], 1s also a norm of D,. Hence there is a constant ¢, > 0 such that

(1) Maxléily < cofMal/" (v =) &)

For almost all v, we have: v is non-archimedean; {>_ &;e;||é;], < 1} is a maximal
order of D,; |det Tr(e;e;)|, = 1. Hence for almost all v such that D, is a division algebra,
D, /I, is unramified and [N, z|}/" = Mlax |€;|w. Thus we can choose ¢, as

(1'y ¢, =1 for almost all v such that D, is a division algebra.

Let R be a Dedekind domain with the quotient field I\, so that it has the form
R = R(P):={¢ e I¥

€], < 1 for any p € P} by some non-empty proper subset P
consisting of non-archimedean valuation of U. For a fixed R, we can obviously choose a

basis {e;]1 < i < n?} satisfying

I72

(2) I':= Z Re; 1s an R-order of D. and ¢; = 1.
=1

Then I'(r) := R+ 1T is also an R-order for any »(# 0) € R.

3.1
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Lemma  Assume that D does not satisfy the Eichler's condition (EC) over R =
R(P), i.e. the following ~(EC) 1s satisfied.

—~(EC): D, is a division algebra for any v € U\ P

(i) Let {e;} be a basis of D satisfying (2), then there 1s a positive constant c de-
pending only on {e;} but not on r(# 0) € R such that

H |, <c=T(r)* =R"
P

(v1) R*D* is closed in D*

Proof (i) It suffices to take ¢ := H ¢! (which is well defined by (1')). Indeed, if
T\ P
[(r)* # R*, there is some v = Y e, € I'(r)* with £ := §; # 0 for some 1 > 2. At p€ P,

since 2 € I'(r)* so that [N,|, = 1, we have
(3)  [€ly < Irly = IrlpIMaly’”
Using the product formula, (1) at v € U\ P and (3) at p € P, the product formula

again, in this order, we get

) . H €l < T oot/ = H| o9t/
pis

T\ P T\ P
H Cy X H |7’P =c H |T|P
T\ P
(ii) Put R(c):={r e R\{O}lH[? |, < c}. Ifr € R(c), by (i), we have [(r)*ND* =

I'(r)* = R* This obv1ously nnphes

(4) () (DT ) =D"( [} I
reR(c) rER(
Then together with (4) 1.1, we have

3.2
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As usual, we consider DX as the subgroup of D~ consisting of the elements 2 = (2,) €
D* such that rq =11or ¢ € P\ {p}, Under this convention, the following is obvious.

(5) #P>2= R*D*NDXcC K}

If #P < oo, then R 1s semi-local and D* = ﬁx, hence 3.1 implies

(6) 2<#P < oo= (EC).

Indeed: ~(EC) implies R*D* = RXD* so that D* C R*D* hence Dy C Dy n

R*D* C K} a contradiction to the assumption that D is non-commutative.

Lemma  Let D be a central division algebra over a PF-field IN. Then D, s not a
diviston algebra for infinitely many v € .

Proof If U contains at least one archimedean valuation (i.e. if A is a number
field), as is well known, much stronger results are known. Assume that U consists of non-
archimedean valuations. If #{v € U|D, is not a division algebra} < oo, then obviously
we can choose a subset P of U such that 2 < #P < oo and —~(EC), a contradiction with
(6) 3.2.

3.4 Proof of Theorem 2

We shall prove:
~(EC) = [D*,D*] ¢ R*Dx
Suppose not, then [D*,D*] € R*D* by 3.1, so that DDy} =Dy n [BX,}SX] C

D; N R*D* C KPX for any p € P It 1s a contradiction, since if x,y do not commute in

D, then one of [2,y] and [z, 1 + y] does not belong to L)

4. (EC) = (a) for a Real Coefficient Case.

We shall derive our Theorem 3 from our previous result [11], where it is proved only
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for a special case of ' = R(X). For this purpose, we prepare a few lemmas, which are
of quite general nature, but regretfully, effectively applicable only for a very restricted

situation like in Theorem 3, so that we state them only for PF-fields.
4.1

Let D be a central division algebra over a PF-field ' and R = R(P) as in 0.3. For a
fixed py € P, as usual, we identify D as the (closed normal) subgroup of D*, consisting
of elements + = (1,) € D* C [[ D) with @, = 1 for p # py. Then {E(Dp)lp € P}
generates a dense subgroup of E(ﬁ) in D* (cf. [2] §51). Hence a closed subgroup H of
D* contains E(D) if and only if it contains E(D ) = [D),Dy] for all p € P By the

Chinese Remainder Theorem, “all’ can be replaced by “almost all’ In particular we have:

(1) (a)for D over R < [D,,D)] C E(D) for almost all p,
and the corresponding (1') (resp. (1")) for (a') (resp. (a")).

Let ' be a finite extension field of ', and let P’ be the set of all (non-equivalent)
valuations of i’ lying overP, P' = {p'|p’ D p, p € P}. The integral closure R' of R in L
is given by R' = {0} U {a € K'*||z|, < 1 for any p’ € P'}.

Put D' := D& K' By 1.6, D =D O R R ~ D @rR D> D®rR =D as topological
rings, and

—~ X oy —~ X

(2) D' >D*, D" D H D;X ~ D D D as topological groups.

p'op

In the following ( ) denotes the closure in D

Let consider the following condition ().

(¥) Foralmostallpe P p' Dp= [D DS DY = [D'X ]

Lemma  Assume that the condition () holds. Then

(a") for D over R = (a) for D' over R’

Proof By the Chinese Remainder Theorem, D'* is dense in H D;J)f Hence, by
p'op
(2), [DI’),X, Dy, D]} C [D'™, (D, D;]], so that the assumption (*) implies

(3) [D,.Dy]C[D™ [D;. D] for almost all p € P

On the other hand we have
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(a") for D over R <“=;[D;,D;<] C R*D* for almost all p€EP = [D'X,[D;,D;” -
[DIX,]/:EXDX] C [D'*,D¥] ¢ [D'X, D'¥] = E(D’).

Hence by (3), we have [D;;(,D;f] C E(D’ ) for almost all p, which is equivalent with ((a)
for D' over R') by (1).

4.2

Now assume that the constant field iy = R, i.e. I is an algebraic function field of
one variable over the reals.

Recall from [11] that Br(LK) ~ K* /ML (v-1)*) = KX /(K? + K*)N K™, so that
any central division algebra D over I is a quaternion algebra of the form D ~ {-1, f}
with f € K* D is trivial if and only if f € K? + K?

We call a valuation v € U real (resp. imaginary) if the residue field is 1somorphic
to R (resp. C). K(\/—1) is an algebraic function field of one variable over C, so the
corresponding U’ is identified with the Riemann surface R, and K (1/—1) with the field
of all meromorphic functions on fR. Since a real valuation v of ' does not decompose on
K(y/—1), the set RP(K) of all real valuations can be embedded in R as a finite disjoint

union of closed curves. Then we have
K ={¢ € K(V-1)|p(z) € R for z € RP(I)}.

Furthermore, as shown in [11],

H

K*+ K*={f € K|f(z) >0 for = € RP(L)},

so {—1, f} is trivial for such f
Let P be a non-empty proper subset of 0.
Lemma If D satisfies (EC) over R(P). then D can be written as D = D, OR(g) IV
where g € R(P)\ R and Dy is a central division R(g)-algebra satisfying (a) over R[g].
Proof (EC) for D means that D, 1s trivial for some vy € B\ P From Riemann-

Roch Theorem, for any f € I'* we can find h € I'* such that ¢ := h*f has the unique
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pole at vy. Therefore D can be written as D = {—1,¢}, where ¢ € R(P) and has the
unique pole at vg.

Since D,, is trivial, we have either (i) vy is imaginary or (ii) vy is real and g is positive
around vg. In any case, ¢ is bounded from below on RP(L), since ¢ has no pole other than
vg. So, g+c € K2+ K? for some ¢ € R, hence D = {—1,¢} = {-1,9(¢9+¢)} =~ Dy DRy &
where Dy = {—1,¢(g+c)} over R(g) which satisfies (EC) over R[g] since X(X +c¢) is monic

and quadratic. From our previous result [11], Dy satisfies (a) over R[g].
4.3

Lemma If I is an algebraic function field of one variable over R, then the condition
(%) in 4.1 1s satisfied for any D.

Proof Note that D, is unramified for almost all p € P If D, is trivial, then
Dy = GL(2, ;) and [D), D] = SL(2, k). In this case [D;f,[D;,D;]] = [GL(2, k),
SL(2,K,)] is a normal subgroup of SL(2,K, ) not contained in its center, so it must
coincide with SL(2, i, ).

If D, is an unramified quaternion algebra, then p is real so that —1 ¢ Kg and K;f +
Kg = Klf. Thus the reduced norm M,: D, — K maps D, onto K;‘Z with the kernel
[D),Dy]. This implies D) = K [D),Dy], so that [D)S,[D),Dy]] = (D, D] D
[D),D)], hence the left hand side is a normal subgroup of [D;T,D;f] containing ¢ €
[D};< , D;], and as such it coincides with [D;f \ D;;(] (Proof for D]'7, ~ {—1,—1} is as follows:
Let N be a normal subgroup of [D;,X,D;:,(] containing 4, then {z € D},[v? + 1 =0} C N
since such x is conjugate with ¢ by Skolem-Noether Theorem. So for any a € A7, such that
l1—a® € KI% we have —ai+bj € N (with a®?4+b* = 1), hence y := i(—ai+bj) = a+bij € N

which satisfies y* — 2ay + 1 = 0. Thus, again from Skolem-Noether Theorem, every

y € [D‘;),(,D;;(] belongs to ).
4.4 Proof of Theorem 3 §0

Assume that D satisfies (EC) over R(P). Applying Lemmas 4.1 and 4.3 to the result

of Lemma 4.2 (regarding R(¢) as I\ and I as I\''), we see that D satisfies (a) over R[g]y .
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the integral closure of R[g] in K. Since ¢ € R(P), we have R(P) D R[g]x so that (a) over
Rlg]x implies (a) over R(P).
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