

Cancellation of Lattices and Approximation Properties of Division Algebras.

By Aiichi YAMASAKI

Cancellation of Lattices and Approximation Properties of Division Algebras.

By Aiichi YAMASAKI

0. Introduction

Let R be a Dedekind domain with the quotient field K. Let Λ be an R-order. In this general setting, it is proved in [3] that Roiter-Jacobinski type Divisibility Theorem holds for Λ -lattices. As a consequence, for a Λ -lattice L, the following two cancellation properties are equivalent.

(c) If L' is a local direct summand of $nL = L \oplus \cdots \oplus L$ for some $n \ge 0$, then $L \oplus L' \simeq M \oplus L'$ implies $L \simeq M$.

(c') If $L \oplus nL \simeq M \oplus nL$ for some $n \ge 0$, then $L \simeq M$.

As was pointed out in [3], putting $\Gamma := \operatorname{End}_{\Lambda} L$ and $B := K\Gamma$, there is an intimate connection between cancellation property and the approximation property of the group of Vaserstein $\widetilde{E}(\widehat{B})$ in the idele topology of \widehat{B}^{\times} , of which precise definitions will be recalled in §1.

Here we only indicate, $\widehat{R} := \prod R_p$, the direct product of p-adic completions over all

maximal ideals of R, $\widehat{M} := M \otimes_R \widehat{R}$ for any R-alegbra M, and $\widetilde{E}(C) := \langle (1 + xy)(1 + yx)^{-1} | x, y \in C, 1 + xy \in C^{\times} \rangle$ for any ring $C \ni 1$. Our first remark is

<u>Proposition 1</u> (proof in 1.5) The property (c') for L is equivalent with the following property (c'') of Γ

(c") $\widetilde{E}(\widehat{B}) \subset \widehat{\Gamma}^{\times}B^{\times}$ as subsets of \widehat{B}^{\times}

0.1

We shall consider, for any finite dimensional K-algebra B, the following three approximation properties over R, in the idele topology of \widehat{B}^{\times}

(a) Strong approximation property:

 $\widetilde{E}(B)$ is dense in $\widetilde{E}(\widehat{B})$

(a') B^{\times} -approximation property:

 $\widetilde{E}(\widehat{B})$ is contained in the closure of B^{\times}

(a'') $\hat{R}^{\times}B^{\times}$ -approximation property:

 $\widetilde{E}(\widehat{B})$ is contained in the closure of $\widehat{R}^{\times}B^{\times}$

There are the obvious implications (a) \Rightarrow (a') \Rightarrow (a"). Our second (rather obvious) remark is

Proposition 2 (proof in 1.2) The property (a'') for B is equivalent with the (validity of) property (c'') for any Λ -lattice L such that $K \operatorname{End}_{\Lambda} L \simeq B$.

In the following cases, the property (a) always holds.

- (1) B is commutative (since $\tilde{E}(B) = \tilde{E}(\hat{B}) = 1$, by definitions).
- (2) R is semi-local (by the Chinese Remainder Theorem).
- (3) $B = M_n(C)$ by some K-algebra C $(n \ge 2)$ (cf [3]).

$\mathbf{0.2}$

We shall give the following reduction to division algebras.

<u>Theorem 1</u> (proof in 2.3) Writing as $B/J(B) = \bigoplus_{i=1}^{m} M_{n_i}(D_i)$, with the Jacobson radical J(B) and the division algebras D_i , in such an ordering that $n_i = 1$ $(1 \le i \le r)$ and $n_i \ge 2$ $(r < i \le m)$, we have

(i) (a') for $B \Leftrightarrow (a')$ for $D_i (1 \le i \le r)$.

(ii) (a) (resp. (a'')) for $B \Rightarrow$ (a) (resp. (a'')) for $D_i (1 \le i \le r)$.

Thus the approximation properties of general B can be reduced, more or less, to that of non-commutative division algebras over non-semi-local R, and then under a reasonable restriction, to that of central division ones, by 1.6.

Since PF-fields are the most familiar and important source of non semi-local Dedekind domains, now we restrict our attention to central division algebras over PF-fields and recall some basic facts and known results.

0.3

Assume that K is a PF-field in the sense of Artin [1], Chap.12, and let D be a finite dimensional non-commutative central division algebra over K.

In particular, there is given a set of valuations \mathfrak{V} of K, satisfying the product formula $\prod_{\mathfrak{V}} |x|_v = 1 \text{ for any } x \in K^{\times} \text{ In fact } K \text{ is either a number field or a function field (of one variable) over the constant field <math>K_0 := \{x \in K | |x|_v \leq 1 \text{ for any } v \in \mathfrak{V}\}.$ K is called a global field if either it is a number field or a function field with $\#K_0 < \infty$.

(i) Let P be a proper non-empty subset of \mathfrak{V} consisting of non-archimedean valuations. Then $R(P) := \{x \in K | |x|_p \leq 1 \text{ for any } p \in P\}$ is a Dedekind domain (with an additional requirement $R(P) \supset K_0$, if K is a function field) having K as its quotient field. Conversely, any such Dedekind domain R in K is obtained as R = R(P) by some P

Consider the following condition (EC) for D over R = R(P), which is known as Eichler's condition when K is a global field.

(EC) There is at least one $v \in \mathfrak{V} \setminus P$, such that the completion $D_v = D \otimes_K K_v$ is not a division algebra.

(ii) If K is a global field, by Wang-Platonov Theorem (cf. [6]), $[D^{\times}, D^{\times}] = \widetilde{E}(D) =$ the kernel of the reduced norm. Hence the well known Eichler-Kneser Strong Approximation Theorem [2],[4] (and its analog due independently to Morita [8] and Swan [9], when K is a function field with $\#K_0 < \infty$) implies

(SAT) (a) for D over $R(P) \Leftrightarrow (EC)$ for D over R(P).

0.4

Apart from global fields, we shall prove;

<u>Theorem 2</u> (proof in 3.4) For any PF-field K, (a") for D over $R(P) \Rightarrow$ (EC) for D over R(P).

All in all, the most optimistic speculation would be "(a) \Leftrightarrow (a') \Leftrightarrow (a") \Leftrightarrow (EC)" for any central division algebras over any PF-fields. In this direction we can extend our previous result [11] as,

Theorem 3 (proof in 4.4) When K is an algebraic function field of one variable over the reals,

(EC) for D over $R(P) \Rightarrow$ (a) for D over R(P).

1. Idele Topology

Let R be a Dedekind domain with the quotient field K. A finitely generated R-module L is called an R-lattice, if it is torsion free (or equivalently projective) over R, then $K \odot_R L$ is a finite dimensional K-vector space and by the natural embedding $L \to K \odot L$, one can identify as $K \odot L = KL$. An R-algebra Λ is called an R-order if it is an R-lattice, then $K\Lambda = K \otimes \Lambda$ is a finite dimensional K-algebra. When a finite dimensional K-algebra B is given, we call that Γ is an R-order of B, if Γ is an R-order and $B = K\Gamma$.

For a maximal ideal p of R, let R_p always denote the p-adic completion of R. Let $\widehat{R} := \prod R_p$, the product over all maximal ideals of R. By the diagonal embedding $R \to \widehat{R}$, \widehat{R} is an R-algebra which is faithfully flat as an R-module. For any R-module M, put

$$M_p := M \odot_R R_p, \qquad \widehat{M} := M \odot_R \widehat{R}$$

We shall be concerned with only the following two special cases.

1) Γ is an *R*-order: Then, since Γ is finitely generated projective *R*-module. $\widehat{\Gamma} := \Gamma \odot_R \prod R_p \simeq \prod (\Gamma \odot_R R_p) = \prod \Gamma_p.$ 2) B is a finite dimensional K-algebra: Then $\widehat{B} := B \odot_R \widehat{R} \simeq B \odot_K K \otimes_R \widehat{R} \simeq B \odot_K \widehat{K}$, and since \widehat{R} is faithfully flat over R, one may canonically view as $\widehat{B} \supset \widehat{\Gamma}, B$ and $B \cap \widehat{\Gamma} = \Gamma$ Moreover, there is a natural identification $\widehat{B} \simeq \varinjlim \widehat{\Gamma}/r \ (r \in R \setminus \{0\}) \simeq \prod' B_p (\text{w.r.t } \Gamma_p)$, where the last term denote the restricted direct product i.e. $\prod' B_p (\text{w.r.t.}, \Gamma_p) := \{x = (x_p) \in \prod B_p | x_p \in \Gamma_p \text{ for almost all } p\}$. The *adele topology* on \widehat{B} is defined as the unique topology which induces on $\widehat{\Gamma}$ the direct product of p-adic topology $\prod \Gamma_p$, for one (hence any) R-order Γ of B. The name comes from the fact that \widehat{K} with this topology is called the (restricted) adele ring of K.

The *idele topology* in \widehat{B}^{\times} is defined as the unique topology which induces on $\widehat{\Gamma}^{\times}$ the direct product of *p*-adic topology $\prod \Gamma_p^{\times}$, for one (hence any) *R*-order Γ of *B*. The following explicit description of the idele topology will be useful for us.

1.1

For any *R*-order Γ of *B* and non-zero $r \in R$, put

$$(0) \begin{cases} U_p(\Gamma, r) := \Gamma_p^{\times} \cap (1 + r\Gamma_p) = \begin{cases} \Gamma_p^{\times} & \text{if } r \in R_p^{\times} \\ 1 + r\Gamma_p & \text{if } r \in pR_p \end{cases} \\ U(\Gamma, r) := \prod_p U_p(\Gamma, r) = \widehat{\Gamma}^{\times} \cap (1 + r\widehat{\Gamma}), \\ \Gamma(r) := R + r\Gamma, \text{ which is an } R \text{-order of } B \text{ again.} \end{cases}$$

By definitions, we have

(1) $\{U(\Gamma, r)|r \in R \setminus \{0\}\}$ is a fundamental system of neighbourhoods of 1 in \widehat{B}^{\times} in the idele topology (for any one fixed Γ).

(1') $\{r\widehat{\Gamma}|r \in R \setminus \{0\}\}$ is a fundamental system of neighbourhoods of 0 in \widehat{B} in the adele topology.

Let H be a subgroup of \widehat{B}^{\times} and \overline{H} will denote the closure of H in \widehat{B}^{\times}

(2) If $H \cap (1 + r\widehat{\Gamma}) \subset \widehat{\Gamma}^{\times}$ for some Γ and $r \in R \setminus \{0\}$, (in particular if $H \cap \widehat{\Gamma} \subset \widehat{\Gamma}^{\times}$), then the idele topology of \widehat{B}^{\times} and the adele topology of \widehat{B} induce the same topology on H. Indeed, $H \cap U(\Gamma, rr') = H \cap (1 + rr'\widehat{\Gamma})$ for any $r' \in R \setminus \{0\}$.

Since $\Gamma(r)_p^{\times} = R_p^{\times} U_p(\Gamma, r)$, we have

(3) $\widehat{R}^{\times}U(\Gamma, r) = \widehat{\Gamma(r)}^{\times}$

(4) If
$$\widehat{R}^{\times} \subset \overline{H}$$
, then $HU(\Gamma, r) \supset \widehat{R}^{\times}$ so that $\overline{H} = \bigcap_{r \neq 0} H\widehat{\Gamma(r)}^{\times} = \bigcap_{r \neq 0} \widehat{\Gamma(r)}^{\times} H$.

1.2 Proof of Proposition 2 §0.

For any *R*-order Γ of *B*, put $\Lambda = \Gamma^{op}$, the opposite ring of Γ and $L := \Gamma$, then $\operatorname{End}_{\Lambda}L = \Gamma$ Hence the condition ((c'') for any *L* such that $K\operatorname{End}_{\Lambda}L \simeq B$) is equivalent with the condition $\widetilde{E}(\widehat{B}) \subset \widehat{\Gamma}^{\times}B^{\times}$ for any Γ But we have $\bigcap_{\Gamma}\widehat{\Gamma}^{\times}B^{\times} = \overline{\widehat{R}^{\times}B^{\times}}$. since $\widehat{\Gamma}^{\times}B^{\times}$ is closed and contains $\widehat{R}^{\times}B^{\times}$, so $\overline{\widehat{R}^{\times}B^{\times}} \subset \bigcap_{\Gamma}\widehat{\Gamma}^{\times}B^{\times} \subset \bigcap_{r\neq 0}\widehat{\Gamma(r)}^{\times}B^{\times}$ while we have $\overline{\widehat{R}^{\times}B^{\times}} = \bigcap_{\Gamma}\widehat{\Gamma(r)}^{\times}B^{\times}$, by (4).

1.3 Results of Vaserstein.

Let A be a ring with 1, and $E_n(A)$ be the elementary subgroup of $GL_n(A) := M_n(A)^{\times}$ By the usual embedding $x \mapsto \begin{pmatrix} x & 0 \\ 0 & 1_{n-1} \end{pmatrix}$, we consider as $A^{\times} = GL_1(A) \subset GL_n(A)$ $(n \geq 2)$. Let $\widetilde{E}(A)$ be the group of Vaserstein, i.e. the subgroup of A^{\times} given by the generators as

$$\widetilde{E}(A) := \left\langle (1+xy)(1+yx)^{-1} | x, y \in A, 1+xy \in A^{\times} \right\rangle$$

The commutator subgroup $[A^{\times}, A^{\times}]$ is always contained in $\widetilde{E}(A)$. Further, if A is local, $\widetilde{E}(A) = [A^{\times}, A^{\times}].$

If A is semi-local, the well known Lemma of Bass and the fundamental results of Vaserstein ([10], Th.3.6) state:

- (5) $GL_n(A) = A^{\times}E_n(A) \, (n \ge 2).$
- (6) $A^{\times} \cap E_n(A) = \widetilde{E}(A) \ (n \ge 2).$

1.4

Lemma Let B be a finite dimensional K-algebra and Γ be an R-order of B. Then the equality (5) of Bass (resp. (6) of Vaserstein) holds for $A = \widehat{B}$ or $\widehat{\Gamma}$. (where \widehat{B} or $\widehat{\Gamma}$ is not semi-local if R is not semi-local.)

<u>**Proof**</u> In the proof of [10] Th.3.6 (a), where semi-locality of A is assumed, it is in fact proved that

(i) If the ring A satisfies the following condition (5'), then (5) holds.

(5') For any finitely generated left ideal L and $x \in A$,

$$Ax + L = A \Rightarrow (x + L) \cap A^{\times} \neq \phi.$$

(ii) If A satisfies (5') and moreover the following (6'), then (6) holds.

(6') $Ax_1 + Ax_2 = A \Rightarrow \forall y \in A, \exists v, q, u \in A \text{ such that } x_1 + vx_2 \in A^{\times}, 1 - yqv \in A^{\times}, x_1 + u(x_2 + yx_1) \in A^{\times}, x_1 + u(x_2 + yqx_1) \in A^{\times}$

Now, let $A = \prod' A_p$ (w.r.t C_p) be the restricted direct product of A_p with respect to its subring C_p , over some index p's. If each A_p, C_p satisfies (5') and (6'), it is easy to see that A itself satisfies (5') and (6'). This applies for \widehat{B} or $\widehat{\Gamma}$, since B_p and Γ_p are semi-local.

1.5 Proof of Proposition 1 §0.

As is well known (cf [3] §2 and §3), the property (c') is equivalent with the following (c''') $\widehat{B}^{\times} \cap GL_n(B)GL_n(\widehat{\Gamma}) = B^{\times}\widehat{\Gamma}^{\times}$ for any $n \ge 2$.

By 1.4, we have

1) $GL_n(B) = B^{\times}E_n(B)$ 2) $GL_n(\widehat{\Gamma}) = E_n(\widehat{\Gamma})\widehat{\Gamma}^{\times}$

Since $E_n(B)$ is dense in $E_n(\widehat{B})$ in the idele topology of \widehat{B}^{\times} (cf [3] 1.2.1)

3) $E_n(B)GL_n(\widehat{\Gamma}) = E_n(\widehat{B})GL_n(\widehat{\Gamma}).$

Using 1), 3), 2) in this order, we have: $GL_n(B)GL_n(\widehat{\Gamma}) = B^{\times}E_n(B)GL_n(\widehat{\Gamma}) = B^{\times}E_n(\widehat{B})GL_n(\widehat{\Gamma}) = B^{\times}E_n(\widehat{B})E_n(\widehat{\Gamma})\widehat{\Gamma}^{\times} = B^{\times}E_n(\widehat{B})\widehat{\Gamma}^{\times}$

Hence, the left hand side of $(c''') = \widehat{B}^{\times} \cap B^{\times} E_n(\widehat{B})\widehat{\Gamma}^{\times} = B^{\times}(\widehat{B}^{\times} \cap E_n(\widehat{B}))\widehat{\Gamma}^{\times} = B^{\times}\widetilde{E}(\widehat{B})\widehat{\Gamma}^{\times}$, the last equality by 1.4 again. This implies that (c''') is equivalent with (c'').

1.6 Change of the base field.

Let K' be a finite extension field of K contained in the center of B, and let R' be the integral closure of R in K'. Then R' is a Dedekind domain with the quotient K' and B.

is a finite dimensional K'-algebra. Assume the following condition

(f) R' is a finitely generated R-module.

Then there are canonical isomorphism $\widehat{R}' \simeq R' \odot_R \widehat{R}$ and $K' \odot_{R'} \widehat{R}' \simeq K' \odot_R \widehat{R}$ (cf. [7] Th.1 and Prop.4 Chap. II §3), so that $B \odot_{R'} \widehat{R}' \simeq B \odot_R \widehat{R}$ including the topology. Hence the approximation property (a) (resp. (a')) of B over R is equivalent with that of B over R' and (a'') over R implies that over R'

(i) For a residually separable algebra B (i.e. B/J(B) is separable) the B^{\times} - approximation problem is reduced, by Theorem 1, to that of a central division algebra.

(ii) If K is a PF-field, the condition (f) always holds (cf. [5] Th.72), so that we get the reduction to a central division algebra even for residually inseparable case.

2. Reduction to a Division Algebra.

Let *B* be a finite dimensional *K*-algebra with the Jacobson radical J = J(B), $\varphi : B \to B' := B/J$ be the canonical *K*-morphism and $\Gamma' := \varphi(\Gamma)$. Then Γ' is an *R*order in *B'*, and φ induces the following surjective morphisms: $\varphi_0 : \Gamma \to \Gamma'$, $\widehat{\varphi} := \varphi \otimes 1$: $\widehat{B} = B \otimes \widehat{R} \to B' \otimes \widehat{R} = \widehat{B'}$ and $\widehat{\varphi}_0 := \varphi_0 \otimes 1 : \widehat{\Gamma} = \Gamma \otimes \widehat{R} \to \Gamma' \otimes \widehat{R} = \widehat{\Gamma'}$

Since \widehat{R} is faithfully flat over R,

1) $\operatorname{Ker}\varphi_0 = \Gamma \cap J \subset J(\Gamma), \operatorname{Ker}\widehat{\varphi} = J \otimes \widehat{R} = \widehat{J} \subset J(\widehat{B}), \operatorname{Ker}\widehat{\varphi}_0 = \widehat{\Gamma \cap J} \subset J(\widehat{\Gamma}).$

2) Viewing as $\widehat{B} \supset \widehat{\Gamma}, B$ and $\widehat{\Gamma} \cap B = \Gamma, \varphi_0, \widehat{\varphi}_0, \varphi$ is the restriction of $\widehat{\varphi}$ to $\Gamma, \widehat{\Gamma}, B$ respectively.

By 1), $1 + \widehat{J} \subset \widehat{B}^{\times}$ so that $\widehat{\varphi}$ induces the exact sequence of groups:

 $3) \quad 1 \to 1 + \widehat{J} \to \widehat{B}^{\times} \to \widehat{B}'^{\times} \to 1, \, \text{and} \, \widehat{\varphi}^{-1}(\widehat{B}'^{\times}) = \widehat{B}^{\times}$

Consequently, we have

4) $\widehat{\varphi}(\widetilde{E}(\widehat{B})) = \widetilde{E}(\widehat{B}').$

By the same reasoning, we have

5) $\widehat{\varphi}(\widetilde{E}(B)) = \widetilde{E}(B').$

Also we have

6) $\widehat{\Gamma}^{\times} = \widehat{\varphi}_0^{-1}(\widehat{\Gamma}'^{\times})$, which in turn implies

7) $\widehat{\varphi}(U(\Gamma, r)) = U(\Gamma', r)$, in the notation of 1.1.

$\mathbf{2.1}$

- **Lemma** Let H be a subgroup of \widehat{B}^{\times} and \overline{H} be its closure in \widehat{B}^{\times}
- $(i) \quad \widetilde{E}(\widehat{B}) \subset \overline{H} \Rightarrow \widetilde{E}(\widehat{B}') \subset \overline{\widehat{\varphi}(H)}$
- (ii) If $1 + \widehat{J} \subset \overline{H}$, then the converse implication (\Leftarrow) also holds.
- $(iii) \quad 1 + \widehat{J} \subset \overline{B^{\times}}$

 $\underbrace{\mathbf{Proof}}_{4) \& \ 7} \quad (i) \text{ and } (ii): \qquad (\widetilde{E}(\widehat{B}) \subset \overline{H}) \stackrel{(1)}{\longleftrightarrow} \stackrel{(1)}{\longleftrightarrow} (\widetilde{E}(\widehat{B}) \subset HU(\Gamma, r) \text{ for any } r \in R \setminus \{0\})$ $\overset{(4) \& \ 7)}{\Longrightarrow} (\widetilde{E}(\widehat{B}') \subset \widehat{\varphi}(H)U(\Gamma', r)) \text{ for any } r \in R \setminus \{0\}) \stackrel{(3), \ 4)}{\Longrightarrow} \stackrel{(4) \& \ 7)}{\longrightarrow} (\widetilde{E}(\widehat{B}) \subset (1 + \widehat{J})HU(\Gamma, r))$ $(= HU(\Gamma, r) \text{ if } \overline{H} \supset 1 + \widehat{J}) \text{ for any } r \in R \setminus \{0\}).$

(iii) Since any element of \widehat{J} is nilpotent, $(1 + \widehat{J}) \cap (1 + r\widehat{\Gamma}) = 1 + (\widehat{J} \cap r\widehat{\Gamma}) \subset \widehat{\Gamma}^{\times}$, hence by (2) 1.1, the idele topology on $1 + \widehat{J}$ is induced from the adele topology. Since J is dense in \widehat{J} in the adele topology, 1 + J is dense in $1 + \widehat{J}$ in the idele topology so that $1 + \widehat{J} \subset (1 + J)U(\Gamma, r) \subset B^{\times}U(\Gamma, r)$ for any $r \in R \setminus \{0\}$.

 $\mathbf{2.2}$

Lemma Let $B = \bigoplus_{i=1}^{m} B_i$ be the ring direct sum of finite dimensional K-algebras. Then we have the following implications.

- (i) (a) (resp. (a')) for $B \Leftrightarrow$ (a) (resp. (a')) for any $B_i (1 \le i \le m)$.
- (ii) (a'') for $B \Rightarrow (a'')$ for any $B_i (1 \le i \le m)$.

Proof Let Γ_i be an *R*-order of B_i , then $\Gamma := \oplus \Gamma_i$ is an *R*-order of *B*. By the canonical isomorphism $\widehat{B} = B \odot \widehat{R} \simeq \oplus (B_i \odot \widehat{R}) = \oplus \widehat{B}_i, \ \widehat{B}^{\times} \simeq \prod \widehat{B}_i^{\times}, \ \widehat{\Gamma}^{\times} \simeq \prod \widehat{\Gamma}_i^{\times}, U(\Gamma, r) \simeq \prod U(\Gamma_i, r), \ \widetilde{E}(B) \simeq \prod \widetilde{E}(B_i) \text{ and } \widetilde{E}(\widehat{B}) \simeq \prod \widetilde{E}(\widehat{B}_i), \text{ the claims are completely obvious.}$

2.3 Proof of Theorem 1 \S **0**.

Put $B_i = M_{n_i}(D_i), n_i = 1 (1 \le i \le r), n_i \ge 2 (r < i \le m)$. Recall that (a) holds for

 B_i $(r < i \le m)$ ((3) of 0.1) and apply 2.1 and 2.2, then we get the following implications which obviously prove Theorem 1.

(a) for
$$B \Rightarrow$$
 (a) for $B' \Leftrightarrow$ (a) for $D_i (1 \le i \le r)$
(a') for $B \Leftrightarrow$ (a') for $B' \Leftrightarrow$ (a') for $D_i (1 \le i \le r)$
(a'') for $B \Leftrightarrow$ (a'') for $B' \Rightarrow$ (a'') for $D_i (1 \le i \le r)$.

3. $(a'') \Rightarrow (EC)$ for a PF-field.

Let K be a PF-field in the sense of [1], D be a central division K-algebra of dimension n^2 , $[D:K] = n^2$ Let $D_v := D \otimes_v K_v$ be the completion at $v \in \mathfrak{V}$. Let $\mathfrak{N}: D \to K$ be the reduced norm and $\mathfrak{N}_v: D_v \to K_v$ be its extension.

If D_v is a division algebra, $D_v \ni x \mapsto |\mathfrak{N}_v x|_v^{1/n}$ defines a norm of D_v as a K_v -vector space. While for any basis $\{e_i|1 \leq i \leq n^2\}$ of D over K, writing $x = \sum \xi_i e_i \in D_v$, $x \mapsto \max_i |\xi_i|_v$ is also a norm of D_v . Hence there is a constant $c_v > 0$ such that

(1) $\underset{i}{\operatorname{Max}} |\xi_i|_v \leq c_v |\mathfrak{N}_v x|_v^{1/n} \quad (x = \sum \xi_i e_i).$

For almost all v, we have: v is non-archimedean; $\{\sum \xi_i e_i | |\xi_i|_v \leq 1\}$ is a maximal order of D_v ; $|\det \operatorname{Tr}(e_i e_j)|_v = 1$. Hence for almost all v such that D_v is a division algebra, D_v/K_v is unramified and $|\mathfrak{N}_v x|^{1/n} = \underset{i}{\operatorname{Max}} |\xi_i|_v$. Thus we can choose c_v as

(1') $c_v = 1$ for almost all v such that D_v is a division algebra.

Let R be a Dedekind domain with the quotient field K, so that it has the form $R = R(P) := \{\xi \in K | |\xi|_p \leq 1 \text{ for any } p \in P\}$ by some non-empty proper subset Pconsisting of non-archimedean valuation of \mathfrak{V} . For a fixed R, we can obviously choose a basis $\{e_i | 1 \leq i \leq n^2\}$ satisfying

(2)
$$\Gamma := \sum_{i=1}^{n^-} Re_i$$
 is an *R*-order of *D*, and $e_1 = 1$.
Then $\Gamma(r) := R + r\Gamma$ is also an *R*-order for any $r(\neq 0) \in R$

3.1

Lemma Assume that D does not satisfy the Eichler's condition (EC) over R = R(P), i.e. the following $\neg(EC)$ is satisfied.

 $\neg(\mathrm{EC})$: D_v is a division algebra for any $v \in \mathfrak{V} \setminus P$

(i) Let $\{e_i\}$ be a basis of D satisfying (2), then there is a positive constant c depending only on $\{e_i\}$ but not on $r(\neq 0) \in R$ such that

$$\prod_{P} |r|_{p} < c \Rightarrow \Gamma(r)^{\times} = R^{\times}$$

(ii) $\widehat{R}^{\times}D^{\times}$ is closed in \widehat{D}^{\times}

Proof (i) It suffices to take $c := \prod_{\mathfrak{V} \setminus P} c_v^{-1}$ (which is well defined by (1')). Indeed, if $\Gamma(r)^{\times} \neq R^{\times}$, there is some $x = \sum \xi_i e_i \in \Gamma(r)^{\times}$ with $\xi := \xi_i \neq 0$ for some $i \ge 2$. At $p \in P_i$ since $x \in \Gamma(r)^{\times}$ so that $|\mathfrak{N}_p x|_p = 1$, we have

(3) $|\xi|_p \le |r|_p = |r|_p |\Re x|_p^{1/n}$

Using the product formula, (1) at $v \in \mathfrak{V} \setminus P$ and (3) at $p \in P$, the product formula again, in this order, we get

$$1 = \prod_{\mathfrak{V}} |\xi|_{v} = \prod_{\mathfrak{V} \setminus P} |\xi|_{v} \times \prod_{P} |\xi|_{p} \leq \prod_{\mathfrak{V} \setminus P} c_{v} |\mathfrak{N}x|_{v}^{1/n} \times \prod_{P} |r|_{p} |\mathfrak{N}x|_{p}^{1/n}$$
$$= \prod_{\mathfrak{V} \setminus P} c_{v} \times \prod_{P} |r|_{p} = c^{-1} \prod_{P} |r|_{p}.$$

(ii) Put $R(c) := \{r \in R \setminus \{0\} | \prod_{P} |r|_{p} < c\}$. If $r \in R(c)$, by (i), we have $\widehat{\Gamma}(r)^{\times} \cap D^{\times} =$

 $\Gamma(r)^{\times} = R^{\times}$ This obviously implies

(4)
$$\bigcap_{r \in R(c)} (D^{\times} \widehat{\Gamma(r)}^{\times}) = D^{\times} (\bigcap_{r \in R(c)} \widehat{\Gamma(r)}^{\times}).$$

Then together with (4) 1.1, we have

Then together with (4) 1.1, we have

$$\overline{D^{\times}\widehat{R^{\times}}} = \bigcap_{r \neq 0} (D^{\times}\widehat{\Gamma(r)}^{\times}) \subset \bigcap_{r \in R(c)} (D^{\times}\widehat{\Gamma(r)}^{\times}) = D^{\times} (\bigcap_{r \in R(c)} \widehat{\Gamma(r)}^{\times}) = D^{\times}\widehat{R^{\times}} \subset \overline{D^{\times}\widehat{R^{\times}}}$$

 $\mathbf{3.2}$

As usual, we consider D_p^{\times} as the subgroup of \widehat{D}^{\times} consisting of the elements $x = (x_p) \in \widehat{D}^{\times}$ such that $x_q = 1$ for $q \in P \setminus \{p\}$, Under this convention, the following is obvious.

(5) $\#P \ge 2 \Rightarrow \widehat{R}^{\times} D^{\times} \cap D_p^{\times} \subset K_p^{\times}$

If $\#P < \infty$, then R is semi-local and $\overline{D^{\times}} = \widehat{D}^{\times}$, hence 3.1 implies

(6)
$$2 \le \#P < \infty \Rightarrow (\text{EC}).$$

Indeed: $\neg(\text{EC})$ implies $\overline{\widehat{R}^{\times}D^{\times}} = \widehat{R}^{\times}D^{\times}$ so that $\widehat{D}^{\times} \subset \widehat{R}^{\times}D^{\times}$ hence $D_{p}^{\times} \subset D_{p}^{\times} \cap \widehat{R}^{\times}D^{\times} \subset K_{p}^{\times}$ a contradiction to the assumption that D is non-commutative.

3.3

<u>Lemma</u> Let D be a central division algebra over a PF-field K. Then D_v is not a division algebra for infinitely many $v \in \mathfrak{V}$.

Proof If \mathfrak{V} contains at least one archimedean valuation (i.e. if K is a number field), as is well known, much stronger results are known. Assume that \mathfrak{V} consists of non-archimedean valuations. If $\#\{v \in \mathfrak{V} | D_v \text{ is not a division algebra}\} < \infty$, then obviously we can choose a subset P of \mathfrak{V} such that $2 \leq \#P < \infty$ and $\neg(\text{EC})$, a contradiction with (6) 3.2.

3.4 Proof of Theorem 2

We shall prove:

 $\neg(\mathrm{EC}) \Rightarrow [\widehat{D}^{\times}, \widehat{D}^{\times}] \not\subset \overline{\widehat{R}^{\times}D^{\times}}$

Suppose not, then $[\widehat{D}^{\times}, \widehat{D}^{\times}] \subset \widehat{R}^{\times}D^{\times}$ by 3.1, so that $[D_{p}^{\times}, D_{p}^{\times}] = D_{p}^{\times} \cap [\widehat{D}^{\times}, \widehat{D}^{\times}] \subset D_{p}^{\times} \cap \widehat{R}^{\times}D^{\times} \subset K_{p}^{\times}$ for any $p \in P$. It is a contradiction, since if x, y do not commute in D_{p}^{\times} , then one of [x, y] and [x, 1 + y] does not belong to K_{p}^{\times}

4. (EC) \Rightarrow (a) for a Real Coefficient Case.

We shall derive our Theorem 3 from our previous result [11], where it is proved only

for a special case of $K = \mathbb{R}(X)$. For this purpose, we prepare a few lemmas, which are of quite general nature, but regretfully, effectively applicable only for a very restricted situation like in Theorem 3, so that we state them only for PF-fields.

4.1

Let D be a central division algebra over a PF-field K and R = R(P) as in 0.3. For a fixed $p_0 \in P$, as usual, we identify $D_{p_0}^{\times}$ as the (closed normal) subgroup of \widehat{D}^{\times} , consisting of elements $x = (x_p) \in \widehat{D}^{\times} \subset \prod D_p^{\times}$ with $x_p = 1$ for $p \neq p_0$. Then $\{\widetilde{E}(D_p) | p \in P\}$ generates a dense subgroup of $\widetilde{E}(\widehat{D})$ in \widehat{D}^{\times} (cf. [2] §51). Hence a closed subgroup H of \widehat{D}^{\times} contains $\widetilde{E}(\widehat{D})$ if and only if it contains $\widetilde{E}(D_p) = [D_p^{\times}, D_p^{\times}]$ for all $p \in P$ By the Chinese Remainder Theorem, 'all' can be replaced by 'almost all'. In particular we have:

(1) (a) for D over $R \Leftrightarrow [D_p^{\times}, D_p^{\times}] \subset \widetilde{E}(D)$ for almost all p, and the corresponding (1') (resp. (1'')) for (a') (resp. (a'')).

Let K' be a finite extension field of K, and let P' be the set of all (non-equivalent) valuations of K' lying over P, $P' = \{p'|p' \supset p, p \in P\}$. The integral closure R' of R in K'is given by $R' = \{0\} \cup \{x \in K'^{\times} | |x|_{p'} \leq 1 \text{ for any } p' \in P'\}$.

Put $D' := D \odot_K K'$ By 1.6, $\widehat{D'} := D' \odot_{R'} \widehat{R'} \simeq D' \odot_R \widehat{R} \supset D \otimes_R \widehat{R} = \widehat{D}$ as topological rings, and

(2)
$$\widehat{D'}^{\times} \supset \widehat{D}^{\times}, \ \widehat{D'}^{\times} \supset \prod_{p' \supset p} D'^{\times}_{p'} \simeq D'^{\times}_p \supset D^{\times}_p$$
 as topological groups.

In the following () denotes the closure in $\widehat{D'}^{\times}$

Let consider the following condition (*).

 $(*) \quad \text{ For almost all } p \in P \quad p' \supset p \Rightarrow [D_{p'}^{\prime \times}, [D_p^{\times}, D_p^{\times}]] = [D_{p'}^{\prime \times}, D_{p'}^{\prime \times}].$

Lemma Assume that the condition (*) holds. Then

(a'') for D over $R \Rightarrow$ (a) for D' over R'

Proof By the Chinese Remainder Theorem, D'^{\times} is dense in $\prod_{p' \supset p} D'^{\times}_{p'}$ Hence, by (2), $[D'^{\times}_{p'}, [D^{\times}_p, D^{\times}_p]] \subset \overline{[D'^{\times}, [D^{\times}_p, D^{\times}_p]]}$, so that the assumption (*) implies

(3)
$$[D_{p'}^{\prime \times}, D_{p'}^{\prime \times}] \subset [D^{\prime \times} \ [D_p^{\times}, D_p^{\times}]]$$
 for almost all $p \in P$

On the other hand we have

 $(\mathbf{a}^{\prime\prime}) \text{ for } D \text{ over } R \stackrel{(\mathbf{1}^{\prime\prime})}{\Longrightarrow} [D_p^{\times}, D_p^{\times}] \subset \overline{\widehat{R}^{\times}D^{\times}} \text{ for almost all } p \in P \Rightarrow [D^{\prime\times}, [D_p^{\times}, D_p^{\times}]] \subset [D^{\prime\times}, \overline{\widehat{R}^{\times}D^{\times}}] \subset \overline{[D^{\prime\times}, D^{\times}]} \subset \overline{[D^{\prime\times}, D^{\prime\times}]} = \overline{\widetilde{E}(D^{\prime})}.$

Hence by (3), we have $[D_{p'}^{\prime \times}, D_{p'}^{\prime \times}] \subset \widetilde{\widetilde{E}(D')}$ for almost all p, which is equivalent with ((a) for D' over R') by (1).

4.2

Now assume that the constant field $K_0 = \mathbb{R}$, i.e. K is an algebraic function field of one variable over the reals.

Recall from [11] that $Br(K) \simeq K^{\times}/\mathfrak{N}(K(\sqrt{-1})^{\times}) = K^{\times}/(K^2 + K^2) \cap K^{\times}$, so that any central division algebra D over K is a quaternion algebra of the form $D \simeq \{-1, f\}$ with $f \in K^{\times}$ D is trivial if and only if $f \in K^2 + K^2$

We call a valuation $v \in \mathfrak{V}$ real (resp. imaginary) if the residue field is isomorphic to \mathbb{R} (resp. \mathbb{C}). $K(\sqrt{-1})$ is an algebraic function field of one variable over \mathbb{C} , so the corresponding \mathfrak{V}' is identified with the Riemann surface \mathfrak{R} , and $K(\sqrt{-1})$ with the field of all meromorphic functions on \mathfrak{R} . Since a real valuation v of K does not decompose on $K(\sqrt{-1})$, the set RP(K) of all real valuations can be embedded in \mathfrak{R} as a finite disjoint union of closed curves. Then we have

$$K = \{ \varphi \in K(\sqrt{-1}) | \varphi(z) \in \mathbb{R} \text{ for } z \in RP(K) \}.$$

Furthermore, as shown in [11],

$$K^{2} + K^{2} = \{ f \in K | f(z) \ge 0 \text{ for } z \in RP(K) \},\$$

so $\{-1, f\}$ is trivial for such f

Let P be a non-empty proper subset of \mathfrak{V} .

Lemma If D satisfies (EC) over R(P), then D can be written as $D = D_0 \odot_{\mathbb{R}(g)} K$, where $g \in R(P) \setminus \mathbb{R}$ and D_0 is a central division $\mathbb{R}(g)$ -algebra satisfying (a) over $\mathbb{R}[g]$.

<u>**Proof**</u> (EC) for D means that D_{v_0} is trivial for some $v_0 \in \mathfrak{V} \setminus P$ From Riemann-Roch Theorem, for any $f \in K^{\times}$ we can find $h \in K^{\times}$ such that $g := h^2 f$ has the unique pole at v_0 . Therefore D can be written as $D = \{-1, g\}$, where $g \in R(P)$ and has the unique pole at v_0 .

Since D_{v_0} is trivial, we have either (i) v_0 is imaginary or (ii) v_0 is real and g is positive around v_0 . In any case, g is bounded from below on RP(K), since g has no pole other than v_0 . So, $g + c \in K^2 + K^2$ for some $c \in \mathbb{R}$, hence $D = \{-1, g\} = \{-1, g(g + c)\} \simeq D_0 \oslash_{\mathbb{R}(g)} K$ where $D_0 = \{-1, g(g + c)\}$ over $\mathbb{R}(g)$ which satisfies (EC) over $\mathbb{R}[g]$ since X(X + c) is monic and quadratic. From our previous result [11], D_0 satisfies (a) over $\mathbb{R}[g]$.

4.3

Lemma If K is an algebraic function field of one variable over \mathbb{R} , then the condition (*) in 4.1 is satisfied for any D.

Proof Note that D_p is unramified for almost all $p \in P$ If D_p is trivial, then $D_p^{\times} = GL(2, K_p)$ and $[D_p^{\times}, D_p^{\times}] = SL(2, K_p)$. In this case $[D_{p'}^{\times}, [D_p^{\times}, D_p^{\times}]] = [GL(2, K_{p'}), SL(2, K_p)]$ is a normal subgroup of $SL(2, K_{p'})$ not contained in its center, so it must coincide with $SL(2, K_{p'})$.

If D_p is an unramified quaternion algebra, then p is real so that $-1 \notin K_p^2$ and $K_p^2 + K_p^2 = K_p^2$. Thus the reduced norm $\mathfrak{N}_p: D_p^{\times} \to K_p^{\times}$ maps D_p^{\times} onto $K_p^{\times 2}$ with the kernel $[D_p^{\times}, D_p^{\times}]$. This implies $D_p^{\times} = K_p^{\times}[D_p^{\times}, D_p^{\times}]$, so that $[D_{p'}^{\times}, [D_p^{\times}, D_p^{\times}]] = [D_{p'}^{\times}, D_p^{\times}] \supset [D_p^{\times}, D_p^{\times}]$, hence the left hand side is a normal subgroup of $[D_{p'}^{\times}, D_{p'}^{\times}]$ containing $i \in [D_p^{\times}, D_p^{\times}]$, and as such it coincides with $[D_{p'}^{\times}, D_{p'}^{\times}]$. (Proof for $D_{p'}^{\prime} \simeq \{-1, -1\}$ is as follows: Let N be a normal subgroup of $[D_{p'}^{\times}, D_{p'}^{\times}]$ containing i, then $\{x \in D_{p'}^{\prime} | x^2 + 1 = 0\} \subset N$ since such x is conjugate with i by Skolem-Noether Theorem. So for any $a \in K_{p'}^{\prime}$ such that $1 - a^2 \in K_{p'}^{\prime 2}$, we have $-ai + bj \in N$ (with $a^2 + b^2 = 1$), hence $y := i(-ai + bj) = a + bij \in N$ which satisfies $y^2 - 2ay + 1 = 0$. Thus, again from Skolem-Noether Theorem, every $y \in [D_{p'}^{\prime \times}, D_{p'}^{\prime \times}]$ belongs to N).

4.4 Proof of Theorem 3 §0

Assume that D satisfies (EC) over R(P). Applying Lemmas 4.1 and 4.3 to the result of Lemma 4.2 (regarding $\mathbb{R}(g)$ as K and K as K'), we see that D satisfies (a) over $\mathbb{R}[g]_K$, the integral closure of $\mathbb{R}[g]$ in K. Since $g \in R(P)$, we have $R(P) \supset \mathbb{R}[g]_K$ so that (a) over $\mathbb{R}[g]_K$ implies (a) over R(P).

References

 E.Artin: Algebraic numbers and algebraic functions I. Princeton Univ., Lecture Notes (1951)

[2] C.W.Curtis and I.Reiner: Methods of representation theory. vol.2. Interscience (1987)
Especially §51 Jacobinski's cancellation theorem

[3] H.Hijikata: On the decomposition of lattices over orders. To appear in J. Math. Soc. Japan

[4] M.Kneser: Strong approximation. Proc. Symp. Pure Math. AMS <u>9</u> (1966) 187-196

[5] H.Matsumura: Commutative Algebra. Benjamin (1970)

[6] V.P.Platonov: The Tannaka-Artin problem and reduced K-theory. Math. USSR
Izvestija <u>10</u> (1976) 211–243

[7] J.P.Serre: Corps Locaux. Hermann (1968)

[8] H.Shimizu: Approximation theorem, Hecke ring and Zeta function. (in Japanese)
Department of Mathematics, Tokyo Univ., Lecture Notes <u>21</u>(1968)

 [9] R.G.Swan: Strong approximation and locally free modules. Ring Theory and Algebra III (B. McDonald, ed.), Marcel Dekker, New York, (1980)153-223

[10] L.N.Vaserstein: On the stabilization of the general linear group over a ring. Math. USSR Sbornik <u>8</u> (1969) 383-400

[11] A.Yamasaki: Strong approximation theorem for division algebras over $\mathbb{R}(X)$. To appear in J. Math. Soc. Japan vol.49 no.3