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By Aiichi  YAMASAKI

   0. Introduction 

   Let R  be a Dedekind domain with the quotient field K. Let A  be an R-order. In 

this general setting, it is proved in [3] that  Roiter-Jacobinski type Divisibility Theorem 

holds for A-lattices. As a consequence, for a A-lattice L, the following two cancellation 

properties are equivalent. 

   (c) If L' is a local direct summand of  nL L  qi  •  • L for some  n > 0, then 

L L' M  (I) L' implies L  M. 

   (c') If L  riL M  e  riL for some  77->  0, then L M. 

   As was pointed out in [3], putting F  End1L and B  := KF, there is an intimate 

connection between cancellation property and the approximation property of the group of 

Vaserstein  E(B) in the idele topology of  B", of which precise definitions will be recalled 

in §1. 

   Here we only indicate,  R  Rp, the direct product of p-adic completions over all



maximal ideals of R, M := M  OR  .fi for any  R-alegbra M, and  E(C)  :=< 

 yx)-1  x, y E C,  1+ xy E  Cx > for any ring C 1. Our first remark is 

   Proposition 1 (proof in L5) The property (c') for L is equivalent 

lowing property (c")  of  F 

   (c")  E(B)  cfxBx as subsets of  nx 

   0.1

(1 +  xy)(1

with the fol-

   We shall consider, for any finite dimensional K-algebra B, the following three approx-

imation properties over R, in the idele topology of  13x 

(a) Strong approximation property: 

 E(B) is dense in  E(B) 

(a')  Bx  -approximation property: 

 E(B) is contained in the closure of  B  X 

(a")  R  x  B  x -approximation property: 

 E(B) is contained in the closure of  .f?'  B 

   There are the obvious implications (a) (a') (a"). Our second (rather obvious) 

remark is 

   Proposition 2 (proof in 1.2) The property (a") for B is equivalent with the 

(validity of) property (c") for any A-lattice L such that KEndAL B. 

   In the following cases, the property (a) always holds. 

   (1) B is commutative (since  E(B) =  E(B) = 1, by definitions). 

   (2) R is semi-local (by the Chinese Remainder Theorem). 

   (3) B =  .711,i(C) by some K-algebra C (n > 2) (cf [3]). 

   0.2

   We shall give the following reduction to division algebras. 

   Theorem 1 (proof in 2.3) Writing as  B  .I(B)  =  Mn,(Di), 

radical J(B) and the division algebras  Di, in such an ordering that  ni 

 ni >  2  (r < i <  rn), we have 

 9

with 

 =  1  (1

the 

 <

Jacobson 

 < r) and



   (i) (a') for B  <=> (a') for  Di (1  <  i  <  r). 

   (ii) (a) (resp. (a")) for B (a)  (resp. (a")) for  Di (1 i r). 

   Thus the approximation properties of general B can  be reduced, more or less, to that 

of non-commutative division algebras over non-semi-local R, and then under a reasonable 

restriction, to that of central division ones, by 1.6. 

   Since  PF-fields are the most familiar and important source of non semi-local Dedekind 

domains, now we restrict our attention to central division algebras over PF-fields and recall 

some basic facts and known results. 

   0.3 

   Assume that K is a PF-field in the sense of Artin [1], Chap.12, and let D be a finite 

dimensional non-commutative central division algebra over K. 

   In particular, there is given a set of valuations  93 of K, satisfying the product formula 

 11xz, = 1 for any x  E  Kx In fact K is either a number field or a function field (of one 
variable) over the constant field  K0 :=  {x E  KI1x1, < 1 for any v E  931. K is called a 

global field if either it is a number field or a function field with  #Ko <  oo. 

    (i) Let P be a proper non-empty subset of 93 consisting of non-archimedean valu-

ations. Then R(P)  {x E < 1 for any p E  P} is a Dedekind domain (with an 

additional requirement R(P) D Ko, if K is a function field) having K as its quotient field. 

Conversely, any such Dedekind domain R in K is obtained as  R= R(P) by some P 

   Consider the following condition (EC) for D over R  = R(P), which is known as 

Eichler's condition when K is a global field. 

   (EC) There is at least one v E 93 \ P, such that the completion  Dv = D (5-0K  K, is 

not a division algebra. 

   (ii) If K is a global field, by Wang-Platonov Theorem (cf. [6]),  [Dx  ,DX]  =  E(D) = 

the kernel of the reduced norm. Hence the well known  Eichler-Kneser Strong  Approxima-

tion Theorem [2],[4] (and its analog due independently to Morita [8] and Swan [9], when 

K is a function field with  #Ko <  oo) implies 

   (SAT) (a) for D over  R(P) (EC) for D over  R(P). 
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   0.4 

   Apart from global fields, we shall prove; 

   Theorem 2 (proof in 3.4) For any  PF-field K, 

   (a") for D over R(P)  =. (EC) for D over R(P). 

   All in all, the most optimistic speculation would  be  "(a)  <=> (a') 

for any central division algebras over any PF-fields. In this direction 

previous result [11] as, 

   Theorem 3 (proof in 4.4) When K is  an algebraic  function fi 

over the  Teals, 

   (EC) for D over R(P) (a) for D over R(P).

<=> 

we 

 eld

(a") (EC)" 

can extend our 

of one variable

   1. Idele Topology 

   Let R be a Dedekind domain with the quotient field K. A finitely generated R-module 

L is called an R-lattice, if it is torsion free (or equivalently projective) over R, then K  C:)RL 

is a finite dimensional K-vector space and by the natural embedding L K  (7) L, one can 

identify as K  (7) L  K  L. An R-algebra A is called an R-order if it is an R-lattice, then 

KA  =  K  (>7) A is a finite dimensional K-algebra. When a finite dimensional K-algebra B is 

given, we call that  F is an R-order of B, if  F is an R-order and B =  Kr. 

   For a maximal ideal p of R, let  Rp always denote the  p-adic completion of R. Let 

 R  :=  11  Rp, the product over all maximal ideals of R. By the diagonal embedding R R, 

 R is an R-algebra which is faithfully flat as an R-module. For any R-module  M, put  

:  Rp,  M  :=  117  (c)R  R. 

   We shall be concerned with only the following two special cases. 

   1) F is an R-order: Then, since  F is finitely generated projective R-module. 

 r  F  (7)R  Rp  —  (DR  Rp)  —  rp. 
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   2) B is a finite  dimensional  Ii-algebra: Then  B  := B  (.7)Te  K  OR R 

B  (DK  R, and since R. is faithfully  flat over R, one may canonically view as  B  9  f,B 
and  Bnf  =F Moreover, there is a natural identification  B  lim177.  (7. E  R\  01) 

 fl'  Bp (w.r.t  Pr), where the last term denote the restricted direct product i.e.  fl'  Bp  (w.r.t. 
 Fp) :=  {ar. =  (..rp) E  f  Bp E  Pp for almost all p}. The adele topology on  L. is defined as 

the unique topology which induces on  f the direct prduct of  p-aclic topology  11Fp, for one 

(hence any) R-order F of B. The  name comes from the fact that  k with this topology is 

called the (restricted) adele ring of  K. 

   The idele topology in  bx is defined as the  unique topology which induces on  rx the 

direct product of  p-odic topology  if  F;, for one (hence any) R-order F of B. The following 

explicit description of the idele topology will be useful for us. 

   1.1

    For any R-order F of B and non-zero  7.  E R, put 

 P;',` if  7'  E  Rx 
 up(r,r):,r.  n  (1  +  rFp) = 

 1  +  rFp if  r  E  pRP  • 

       (0)  r,  7.)  'pip(  F,  7.)  =  fx  n  (1+  rf), 

 F(r) :=  R+  7F, which is an R-order of B again. 

By definitions,we have 

   (1)  {LI(P;  7.)Ir E  R\ {0}} is a fundamental system of neighbourhoods of 1 in  Bx in 

the idele topology (for any one fixed  r). 

   (1')  {7-.FIr E  R\  {0}} is a fundamental system of  neighbourhoods of 0 in  B in the 

adele topology. 

   Let H be a subgroup of  Bx and H will denote the closure of H in  nx 

   (2)  If H  n  (1  +  )  C  fx for some F and  7. E R \ {0}, (in particular  ifiinfcf.), 

then the idele topology of  bx and the  a.dele topology of  B induce the same topology on 

H. Indeed, H  n  ET(F,  7.7.1  )  = H  n  (1  +  ITT-) for any  I.' E  R\ {0}. 

    Since F(7"PP= RxUp'( F.7'). we have 

 x 

   (3)  Rxu(r,r)  =F(r) 
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  (4) IfC  H, then HLT(F,r) DR.'  so that H  =  nfirmx=  n F(r)xH. 
 r00  r00 

   1.2 Proof of Proposition 2 §0. 

   For any R-order  F of B, put A =  17", the opposite ring of F and L := F. then 

EndAL  = F Hence the condition ( (c") for any L such that KEndALB) is equivalnet 

with the condition E(B)  c  fxBx for any  F But we have                                        nfxBxBx since 

                                                                                   x 

 r.Bx is closed and contains  RxBx  , so  RxB  x  C c nBx while we have 
 r�0 

 RXBXnr(r)xBx, by (4). 

   1.3 Results of Vaserstein. 

   Let A be a ring with 1, and E,(A)  be the elementary subgroup of  GL,(A) :=  Mr,  (A) 
               10 

By the usual embeddingx1—>                      (1we consider as Ax =  GLi(A)  C GL,(A)(71>   0' 

2). Let E(A)  be the group of Vaserstein, i.e. the subgroup of  AX given by the generators 

as 

            E(A)  :=  ((1  xy)(1  yx)-11x,y E  A,1+  xy E  AX) 

The commutator subgroup  [Ax,  Ax] is always contained in  E(A). Further, if A is local, 

E(A)  =  [Ax,Ax]. 

   If A is semi-local, the well known Lemma of Bass and the fundamental results of 

Vaserstein ([10], Th.3.6) state: 

   (5)  CL7(A)  =  AxEn(A)(77.> 2). 

   (6)  Ax  n  En(A)  =  E(-4)  (n 2). 

   1.4 

   Lemma Let B be a finite  dimensional  K-algebra and F be an  R-order of B. Then 

the equality (5) of  Bass  (resp. (6) of  Vaserstein)  holds for A  = B or F. (where B or F 
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not semi-local if R is not semi-local.) 

   Proof In the proof of [10] Th.3.6 (a), where semi-locality of A is assumed, it is in 

fact proved that 

   (i) If the ring A satisfies the following condition  (5'), then (5) holds. 

   (5') For any finitely generated left ideal L and x E A, 

 .Ax  +  L  =  A  +  L)  n  A  x 

   (ii) If A satisfies (5') and moreover the following  (6'), then (6) holds. 

   (6')  Axi  +  Ax2 = A  vy E  q,  ti E A such that x1  +  vx2 E  A",  1 —  y  qv E 

 Ax  1,1  +110:2  yxo EAX,  x1 +  u(x2 E 

   Now, let A =  fl'  Ap (w.r.t  Cp) be the restricted direct product of  Ap with respect to 

its subring  Cp, over some index p's. If each  Ap,  Cp satisfies (5') and  (6'), it is easy to see 

- 

• 

that A itself satisfies (5') and (6'). This applies fororF,since  Bp and  Fp are semi-local. 

   1.5 Proof of Proposition 1 §0. 

   As is well known (cf [3] §2 and §3), the property (c') is equivalent with the following 

 (c'")  n  GL,(B)GL,(F)  B"F" for any n > 2. 

    By 1.4, we have 

   1)  GLii(B)  =  B" En(B) 2)  GL,,,(i"  )  =  En(f)Fx 

   Since  En(B) is dense in  En(B) in the idele topology of  Bx (cf [3] 1.2.1) 

   3)  En(B)GL,(r)=  En(B)GL,(1). 

   Using 1), 3), 2) in this order, we have:  GL,(B)GL,(f)  =  13'  En(B)GL,(f)  = 

 13'  En(B)GL,(F)  =  13'  En(B)En(F)Fx  =  Bx  En(B)Fx 

   Hence, the left hand side of  (c"'),  B  f1  _  Bx(Bx  n  En(B))rx 

 Bx  E(B)rx  , the last  equality by 1.4 again. This implies that  (c'") is equivalent with  (c"). 

   1.6 Change of the base field. 

   Let  K'  be a finite extension field of  K contained in the center of B. and let R'  be the 

integral closure of R in  K' Then R' is a  Declekincl domain with the quotient  K' and B



is a finite dimensional K'-algebra. Assume the following condition 

   (f) R' is a finitely generated R-module. 

   Then there  are canonical isomorphism  R'  CSR R  and  K'  RI  R'  K  R R (cf. 

[7] Th.1 and Prop.4 Chap. II  9), so that B  R/  BnFtR including the topology. 

Hence the approximation property (a) (resp.  (a.')) of B over R is  equivalent with that of 

B over  R' and (a") over R implies  that over R' 

   (i) For a residually separable algebra B (i.e.  B  J(B) is separable) the  13'  - approx-

imation problem is reduced, by Theorem  1, to that of a central division algebra. 

   (ii) If K is a PF-field, the condition  (f) always holds (cf. [5] Th.72), so that we get 

the reduction to a central division algebra even for residually inseparable case.

   2. Reduction to a Division Algebra. 

   Let B  be a finite dimensional K-algebra with the Jacobson radical J = J(B), 

 : B B' :=  B  J  be the canonical K-morphism and  y(F). Then  r is an  B-

order in  B', and  p induces the following surjective morphisms:  yo : F  F',  p :=  p  0  1 : 

  = B (7) B = ' and  C30  :=  y20  (2)  1  :  =I' F'  (7)  R  = 

   Since  R is faithfully  flat over R, 

   1)  Keryo  =rnicJ(r),  KerC3  = R  =  J  C  J(B),  Kert;30  = F  fl  J  C  J(f). 

   2) Viewing as  B D  f,B and F  n B  = F,  y is the restriction of to  F,f  ,B 

respectively. 

   By 1),  1-FICBx so that C, induces the exact sequence of groups: 

   3) 1  -->  1  +  1, and  ;-1(B' x)  =  13x 

Consequently, we have 

  4)  C(E(B))  = E(B'). 

By the same reasoning, we have 

   5) .-;',(E(B)) = E(B'). 

Also we have



 6)  fx _c;.,:c71(fvx‘, 

                  

) which in turn implies 

   7)  ;,--,(ETT,0)=u(r,,r), in the notation of 1.1. 

   2.1 

   Lemma Let H be a subgroup of  nx and H be its closure in  fix 

  (i)  E(13)  C  H  E(.13")  c  (H) 

   (ii) If 1 + H, then the converse implication also holds. 

   (iii)  1+.iCBx 

   Proof (i) and (ii):  (E(B) C H)  (E(B) C  Hu(F, r) for any  r E  R\ 
4)  Sz 7) -^3), 4) Sz 7)- 

  >(E(H) Ccq-num,r))for anyrE R\ {01) >(E(B)C1+J)Hu(r)                                                                                                              ,r 

 Hu(r,r)  if  H  D +  Y)  for  any  r  E  R\  {0}). 

   (iii) Since any element of  J is nilpotent, (1 +  fl +  rf)  =  (J  fl  IT) C  fx, 

hence by (2) 1.1, the idele topology on 1 +  J  is induced from the adele topology. Since J 

is dense in  J in the  adele topology, 1 + J is dense in 1 +  J in the idele topology so that 

1 +  J  C (1  +.nu(r,r) C  Bxu(r,r) for any r E  R\ 

   2.2 

   Lemma Let B  =  a-3  Bi be the ring direct sum of finite dimensional  K  -algebras. 
 i=1 

Then we have the following implications. 

   (i) (a) (resp. (a')) for B  <=> (a) (resp. (a')) for any  Bi (1  <  i  <  m). 

   (ii) (a") for B (a") for any  Bi (1 <  i <  in). 

   Proof Let  ri be an R-order of  Bi, then  r  +ri is an R-order of B. By the 

canonical isomorphism  B  = B  (,7)  R  0(Bi  0 =  f3r  ,  fx 

 mr,r)  E(B)  n  E(Bi) and  E(B)fl  E(Bi), the claims are completely 

obvious. 

   2.3 Proof of Theorem 1 §0. 

   Put  B,  =  111„i(Di),ni  =  1(1  <  i  < r), n, >  2(r <  i <  ro. Recall that  (a.) holds for 
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 Bi  (r <  i <  777.) ((3) of 0.1) and apply 2.1 and 2.2, then we get 

which obviously prove Theorem 1. 

 (a.)  for  B  (a)  for  B'  <=>  (a)  for  Di  (1  <  i  <  r) 

 (a')  for  B  <=>  (a')  for  B'  (a')  for  Di  (1  <  i  <  7.) 

 (a.")  for  B  <=>  (a")  for  B'  (a.")  for  D1  (1<i<v).

the fo llowing  implications

  3. (a") (EC) for a PF-field. 

   Let  K be a  PF-field in the sense of  [1], D  be a central division  K-algebra of dimension 

 712,  [D  :  K]=  n2 Let  D„  := D  (7), K,  be the completion at v  E  91 Let  9/  : D  K  be the 

reduced norm and  sJIZ, :  Dv  —›  Kv be its extension. 

   If  Dv is a division  algebra.,  Dv  x  H PivX1/rz                                          Iv defines a norm of  D„ as a  Kv-vector 

space. While for any basis  { <  i. <  n2} of D over  K, writing x  =  E  Dv, 

   Max  lei  I  v is also a norm of  Dv. Hence there is a constant  cv > 0 such that 

   (1) Max  1,F.ilv  cril022,41,/n  = 
   For almost all v, we have: v is  non-archimedean;  E  I  I  v <  1} is a maximal 

order of  Dv;  det  Tr(e                        = 1. Hence for almost all v such that  Dv is a division algebra, 

 Dv/K„ is unramified and  101v2I1/n =  Max  Iv. Thus we can choose  ct, as 

           = 1 for almost all v such that  Dv is a division algebra. 

   Let R be a Dedekind domain with the quotient field  K, so that it has the form 

R R(P) := { E  KIKIp  < 1 for  any p E  PI by some non-empty proper subset P 

consisting of non-archimedean valuation of  93. For a fixed R, we can obviously choose a 

basis <  i. <  n21 satisfying 

                       2 

   (2)  F  :=  Rei is  an  R-order of D.  and  el  =  1. 
                  i=1 

   Then  no  R+  7.F is also an R-order for any  7•( 0)  E R. 

   3.1 
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   Lemma Assume that D does not satisfy the  Eichler's condition (EC) over R = 

R(P), i.e. the following  -i(EC) is  satisfied. 

 -i(EC):  D 7, is a  division algebra for  anyvEQ3\ P 

   (i) Let  {ci} be a basis of D satisfying (2), then there is a positive constant c de-

pending only on  {ei} but not on 0) E R such that 

 <c  F(7.)x  =  Rx 

   (ii)  R.xDx is closed in  Dx 

   Proof (i) It suffices to take c  :=  H  c;1 (which is well defined by (1')). Indeed, if 
 'U\P 

 F(r)x  Rx  , there is some x =  E E  r(ox with := 0 for some i  >  2. At p  E  P, 

since x E  F(i)x so that 1511„,pxlp = 1, we have 

   (3)  Hp  Hp = 

   Using the product formula, (1) at v  E  93 \ P and (3) at p  E P, the product formula 

again, in this order, we get 

 1=  II  112,=  12 x  1-1  C  v  vi  n  x  II  Hplo-txVn 
 21  23\P  P  23\P 

                  =  JJ  Cy  X  Irlp  =  H  Irl  P  • 
 23\P  P  P 

   (ii) Put  R(c)  :=  {r E  R\  01111  17.1p  < If r  E R(c), by (i), we have  r(7')  X  nDx  = 

 Rx This obviously implies 

  (4)  fl (Dxr(r)xDx(  nr(r)x 
     rER(c) rER(c) 

   Then together with (4) 1.1, we have 

 DxRx = n(Dxr(7.)x fl (Dxr(r)x ) Dx(  nr(r)x) = DxRx  DxRx 
 r�0 rER(c)  rER(c) 

   3.2



   As usual, we consider  D1 as the subgroup of  Dx consisting of the elements x  =  (xv) E 

 Dx such that  ,rq = 1 for q  E  P\ {p}, Under this convention, the following is obvious. 

  (5)  #P  >  2  Dx  n  D;  C  K  px 
   If #P <  co, then R is semi-local and  .,Dx =  D  x  , hence 3.1 implies 

   (6)  2  <  #P  <  co  (EC). 
   Indeed:  -,(EC) implies  RxDx  =  _fixDx so that  Dx C  _fix  Dx hence  IX C  Dx  n 

 RxDxC  J; a  contradiction to the assumption that D is non-commutative. 

   3.3 

   Lemma Let D be a central division algebra over a PF-field  K.  Then  Dv is not a 

division algebra for infinitely many v E  T. 

   Proof If  93 contains at least one archimedean valuation (i.e. if  K is a number 

field), as is well known, much stronger results are known. Assume that  93 consists of non-

archimedean valuations. If  #{v  E  TID,, is not a division algebra} <  co, then obviously 

we can choose a subset P of  93 such that 2 < #P <  co and  -,(EC), a contradiction with 

(6) 3.2. 

   3.4 Proof of Theorem 2 

   We shall prove: 
 -,(EC)  [Dx  ,  Dx]  Rx  Dx 

   Suppose not, then  [Dx,Dx] C  Rx  D  x by 3.1, so that [DxP.DxP] nx,LrDx ,Dx] c 

                                                              " 

 Dx  n RTxDx C  Kx for any  p E P It is a contradiction, since if  , y do not commute in 

DxPthen one of [x,y] and [,r, 1y] does not belong to  K

4. 

 We

(EC) (a) 

shall derive our

for a Real Coefficient 

 Theorem 3 from our previous 

 12

Case. 

result  [11], where  it is proved only



for a special case of  K  =  R(X). For this purpose, we prepare a few lemmas, which are 

of quite general nature, but regretfully, effectively applicable only for a very restricted 

situation like in Theorem 3, so that we state them only for PF-fields. 

   4.1 

   Let D  be a central division  algebra over a PF-field  K and R  = R(P)  as in 0.3. For a 

fixed  po E  P, as usual, we identify  Dpxo as the (closed normal) subgroup of  Dx  , consisting 
of elements x  =  (1,p)  ebx  CH  D; with  x  p = 1 for p  p0. Then  {E(Dp)lp E  P} 

generates a dense subgroup of E(D) in DX (cf. [2] §51). Hence a closed subgroup H of 
DX contains  E(D) if and only if it contains  k(np) = [Di ; , Di;] for all p E P By the 

Chinese Remainder Theorem,  'all' can  be replaced by  'almost all' In particular we have: 

   (1) (a) for D over R  <=>  D;;] C E(D) for almost all p, 
and the corresponding (1') (resp. (1")) for (a') (resp.  (a")). 

   Let K' be a finite extension field of  h, and let P' be the set of all (non-equivalent) 

valuations of K' lying overP, P' p, p E  P}. The  integral closure R' of R in  K' 

is given by  R'  =  {0}  U  eKIxIIxlp,  <  1  for  any  p'  E  P'}. 

   Put D' :=  D  ()  K  K' By 1.6, D' :=  D'  OR,  Ri  D'  (7)  R  R  3  D  C-)RR =  D as topological 

rings, and 

   (2)  Dix  D  nx,  Dix  3  11  x nixDx as topological groups.                                                                     1-/P 

 n' DP 

   In the following  (  ) denotes the closure in  D' 

   Let consider the following condition (*). 

    (*) For almost all p E P  p' p  [D  [D  pX  D  ]1  [D  D  pi  X,  ] 

   Lemma Assume that the  condition (*) holds. Then 

 (a") for D over R (a) for D' over R' 

   Proof By the Chinese Remainder Theorem,  D'x is dense in  H  D;`  Hence, by 
 n'DP 

 ( 2),  [Dv,  [Dpx  Dp  ]]  C  [D,  x  ,  [Dr  ,  Dp  ]j so that the assumption (*) implies 

   (3) [DP,x'DPix,'  C [D'x [DI;, Dpx]] for almost all p E P 
On the other hand we have 
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   (a") for D over  R rpxP' Dx1"-7p RxDx for almost all p E P [Dlx[DP7pDx]] C 

L 

 [DIX  ,RX  DX] c  [Drx,Dx] c  [ax,Drx] =  E(D'). 

Hence by (3), we have [DPx" D'x] C  E(D') for almost all p, which is equivalent with ((a) 
 for  Di over R') by (1). 

   4.2 

   Now assume that the constant field  Ko =  IfB, i.e.  K is an algebraic function field of 

one variable over the reals. 

   Recall from [11] that Br(K)  Kx  01(K(  V-1)  x) =  Kx/(K2 + K2)  n  Kx, so that 

any central division algebra D over  K is a quaternion algebra of the form D {-1, 

with  fEKx D is trivial if and only if  f E  K2 +  K2 

   We call a valuation v E real (resp. imaginary) if the residue field is isomorphic 

to (resp. C).  KW-1) is an algebraic function field of one variable over  C. so the 

corresponding  TJ' is identified with the  Riemann surface  9i, and  Ii(/-1) with the field 

of all meromorphic functions on  9i. Since a real valuation v of K does not decompose on 

 KW-1), the set RP(K) of all real valuations can be embedded in  9i as a finite disjoint 

union of closed curves. Then we have 

 K=  -{yo E  K(V-1)ko(z)  E  01 for z E RP(K)}. 

Furthermore, as shown in  [11], 

                K2+ K2 _  {f  E  Klf(z)  >  0  for  z  E  RP(K)}, 

so {-1,  fl is trivial for such f 

   Let P  be a non-empty proper subset of  T. 

   Lemma If D satisfies (EC) over R(P). then D can be  written as D =  D0  no;R(g)  K, 

where g E  R(P)  \ and  Do is a central  division R(g)-algebra satisfying (a) over  H[g]. 

   Proof (EC) for D  means that  Dr, is  trivial for some  vo  E P From Riemann- 

Roch Theorem, forany f E Kx we can find hE Kx such that gh2 f has the unique 
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pole at  v0. Therefore D can be written as D  =  {-1,0, where g  E R(P) and has the 

 unique pole at  v0. 

   Since  Di3O is trivial, we have either (i)  vo is imaginary or (ii)  v0 is real and g is positive 

 around  vo. In any case, g is bounded from below on  RP(K), since g has no pole other than 

 v0. So,  g  +  c E  Ii2  +  K2 for some c E hence D =  {-1,g} =  {-1,g(g  +  c)}  f.`2  Do  Opi(oK 

where  D0 =  {-1,g(g+c)} over  R(g) which satisfies (EC) over  R[g] since  X(X  +c) is monic 

and quadratic. From our previous result [11],  D0 satisfies (a) over  R[g]. 

   4.3 

   Lemma If  K is an algebraic  function, field of one variable over  F8, then the condition 

(*) in  4.1 is satisfied for any D. 

   Proof Note that  Dp is unramified for almost all p E P If  Dp is trivial, then 

 Dn =  GL(2,  K  p) and [DxPPDx] = SL(2,Kp). In this case [Dix, ,rDxP'P_ [G L(2, Kp',),                                                                        il 

 SL(2,  Kr)] is a normal subgroup of  SL(2,  Kip,) not contained in its center, so it must 

coincide with  SL(2,Kpl 

    If  Dp is an unramified quaternion algebra, then p is real so that —1  V  K  p2 and  K  p2 

"P 
  2

pK2.Thusthe reducednormatDp/ixmaps Dp onto Kx2 with the kernel 
                                                  •

'p 

 [Dpx         This implies  D;  =  KP[Dpx  ,Dpx],                                     so that  [Dpx[Dpx,Dpx]]  _  [DicxDpx] 

 [Dpx  ,Dpx],          hence the left hand side is  a normal subgroup of [Dpx„Dp<,] containing  i  E 

[DxP'P'     Dx].and as such it coincides with [DP';`.D';`]. (Proof for Dp,  {-1,  —1} is as follows: 
Let N be a normal subgroup of [D x„ D px,] containing i, then {x  E  D',  r2  + 1 = C N 

since such x is conjugate with i by Skolem-Noether Theorem. So for any a E  K1, such that 

 1—a2  E  Kph, we  have  —ai+bj E N (with  a.2  +b2 = 1), hence y :=  i(—ai+bj)=  a+bi  j  E N 

which satisfies y2 —  2ay + 1 = 0. Thus, again from Skolem-Noether Theorem, every 

y  E [Dpx„Dpx,] belongs to  N). 

   4.4 Proof of Theorem 3 §0 

   Assume that D satisfies (EC) over R(P). Applying Lemmas 4.1 and 4.3 to the result 

of Lemma 4.2 (regarding  11(y) as K and K as  K'  ), we see that D satisfies  (a.) over  H[g]K, 
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the integral closure of  18[g] in K. Since g  E R(P), we have R(P) D  li[g]K so that (a) over 

R[g]K implies (a) over R(P).

                          References 

[1] E.Artin: Algebraic numbers and algebraic functions I. Princeton Univ., Lecture Notes 

(1951) 

[2] C.W.Curtis and I.Reiner: Methods of representation theory. vol.2. Interscience (1987) 
   Especially §51 Jacobinski's cancellation theorem 

[3] H.Hijikata: On the decomposition of lattices over orders. To appear in J. Math. Soc. 

Japan 

[4] M.Kneser: Strong approximation. Proc. Symp. Pure Math. AMS  9 (1966) 187-196 

[5] H.Matsumura: Commutative Algebra. Benjamin (1970) 

[6] V.P.Platonov: The Tannaka-Artin problem and reduced K-theory. Math. USSR 

Izvestija 10 (1976) 211-243 

[7] J.P.Serre: Corps Locaux. Hermann (1968) 

[8] H.Shimizu: Approximation theorem, Hecke ring and Zeta function. (in Japanese) 

Department of Mathematics , Tokyo Univ., Lecture Notes 21(1968) 

[9] R.G.Swan: Strong approximation and locally free modules. Ring Theory and Algebra 

   III (B. McDonald, ed.), Marcel Dekker, New York, (1980)153-223 

[10] L.N.Vaserstein: On the stabilization of the general linear group over a ring. Math. 

USSR Sbornik 8 (1969) 383-400 

[11] A.Yamasaki: Strong approximation theorem for division algebras over  11(X). To 

appear in J. Math. Soc. Japan vol.49 no.3

16


	R380_0
	R380a

