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                        I. INTRODUCTION 

   The component of the universe is often assumed to be the dust, namely the ideal fluid with 

zero pressure, when we consider the structure formation such as that of galaxies , cluster of 

galaxies or large-scale structures. A difficulty of the dust fluid model is that the shell crossing 

singularities develop from rather generic initial boundary conditions. In other words , the 

neighboring fluid lines of dust will cross each other, where the energy density diverges. The 

strong gravitational field of shell crossing may trigger the subsequent structure formation, 

however, there is no systematic method to compute the evolution of space-time after such 

shell crossing singularities. Hence it might be important to understand the dynamics at 

the shell crossing and the subsequent time development of the system in cosmological or 

astrophysical problems. 

  The shell crossing leads to the infinite mass density, so that the treatment of the matter 

field as a dust fluid becomes inappropriate. In order to continue the solution, we have to 

determine the nature of the shell crossing by imposing some physical assumptions on the 

dust fluid. One natural assumption might be that the dust fluid consists of a cold baryonic 

gas or collisionless particles with zero velocity dispersion. Since the analytic treatment of 

such a system is quite difficult, the N-body simulation is often adopted to deal with the 

complicated dynamics of particles. 

  The subject here is the analytic treatment of the dust universe even after the shell 

crossing singularities. We consider the spherically symmetric case as a first step, since, 

unlike the vacuum case, there is sufficient physical degrees of freedom even in this  case. 

The Tolman-Bondi space-time is an exact solution of the Einstein equation, which describes 

the dynamics of the dust fluid with spherical symmetry, however this also has the above-

mentioned difficulty of the shell crossing singularity. Our main idea is to discritize the dust 

distribution into many spherically symmetric thin dust shells. We expect that this many-

shell model well approximates the Tolman-Bondi model if the number of shells are taken 

sufficiently large. 
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   The dynamics of each dust shell in isolation can be treated as a singular hypersurface in 

the Schwarzschild background, which was formulated by Israel [10] more than thirty years 

ago. Let us consider a time-like hypersurface at which the metric is continuous and the 

first derivative of the metric is not continuous. Since the metric is roughly regarded as 

the gravitational potential, its first derivative is just the gravitational force. Hence this 

situation can be interpretated as that some matter field is confined within the surface; in 

fact, the integrated version of the Einstein equation implies that the stress-energy tensor has 

8-function-like singularity at the hypersurface. More precisely, the property of the matter 

confined within the hypersurface is completely determined by the first fundamental form (the 

induced metric) and the difference of the second fundamental form (or extrinsic  curvatu--\ 

of the hypersurface measured on both sides. The motion of a spherically symmetric thin 

shell is described in a simple way. In particular, the equation of motion of a thin dust shell 

in vacuum space-time can be solved analytically. This is an advantage of the spherical thin 

shell model. 

  Another advantage of the many-shell model is that it may possibly describe more generic 

physical situation than the Tolman-Bondi space-time, since each shell can have arbitrary 

energy and momentum, while those of the Tolman-Bondi space-time should be continuous. 

This means that the many-shell model may treat the shell crossing singularities. The ele-

mentary process of the shell crossing might be the collision of two thin shells. We therefore 

have to specify the motion of shells after the collision, which is equivalent to  determi 

the interaction between particles constructing thin shells. One possibility is that two shells 

marges into a shell. However, what we consider here is the situation in which the shell 

is composed of collisionless particles. In this case, two shells will freely pass through each 

other; we shall call such shells transparent shells. Hence our first task is to realize such a 

situation. Then, the shell crossing may be described as successive collisions of thin shells . 

  The collision of massless shells in spherically symmetric space-time was studied by Dray 

and 't Hooft [8] and Redmount [20]. They constructed this model by cut and past of four 

distinct Schwarzschild space-times and derived the junction condition known as the Dray-'t 
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Hooft-Redmount (DTR) relation [8,20,19]. Since the world-surface of a massless shell is the 

null hypersurface, there is little freedom of the dynamics, while in the case of massive shells 

the problem is more complicated. The collision of massive shells have been considered by 

 NIInez, de Oliveira and Salim [17], though this problem has not yet been solved. 

  Once the junction condition for colliding pair of shells is obtained, the time evolution of 

the many-shell system can be completely calculated in principle. This method enables to 

compute the nonlinear stage of the dust universe even after the shell crossing. Each shell 

however refers to a distinct coordinate system from others, which is not suitable for putting 

the initial condition and for interpretation of the result. Our next task therefore is to find 

the coordinate system in which we can easily see the correspondence between the many-shell 

system and the dust-filled universe. 

  In Sec. II, the treatment of a self-gravitating thin shell is reviewed. In Sec. III, the 

collision of two spherically symmetric shells is investigated, where the junction condition is 

obtained. In Sec. IV, the correspondence between the many-shell system and the Tolman-

Bondi space-time is considered, and  prescriptions for putting initial conditions are shown. 

Conclusions are given in Sec. V. Newton's constant of gravitation and the speed of light are 

taken to be unity in what follows.
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                  II. DYNAMICS OF A THIN SHELL 

   We here briefly review Israel's formulation for singular hypersurfaces and rederive the 

equation of motion of a thin shell in the spherically symmetric space-time. 

                       A. Self—Gravitating Thin Shell 

   Let a timelike hypersurface  92 divide a space-time  (^1,  gii) into two subsets,  1/1 and 

 1/j, and let be the common boundary of  171 and  'Yj. The metric  gig is required to be 

continuous, but the components of its first derivative may possess a finite difference across 

 99 with respect to a suitable coordinate system, so the energy-momentum tensor will  ha4- 

a 8-function-like singularity there. 

 I 
   Let  hii be the first fundamental form of the hypersurface  ,5°, and let K be the second 

fundamental form with respect to the imbedding of  92 into  1/1: 

 hij  gij —  nine, (1) 

   = (2) 

 I Here  ni is the unit normal form to  5° directed from  1//- to  1/j, is the Lie derivative with 

respect to  ni The first fundamental form  hii is the induced metric on  , so this should be 

determined uniquely, while  KEi and  Kjij may differ. 

  When the hypersurface  S..' is singular in the above sense, may represent a thin  she :5 

i.e., there is additional matter on  <5.° Here we introduce the surface stress-energy tensor  Sid 

on  <5° which represents the matter on  <5°: 

 Sia  - (3) 

where  {(2}1.  Qj —  Q1 is defined for any tensor field  QI(J) on  'rip). 

  The Gauss and the Codazzi-Mainardi equations lead to 

                    —  K12  =  —2Gijanin3 (4) 
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and 

                    =  hi-  Giiknk  , (5) 

where  a and g denote the scalar curvature and the Riemannian connection of  (9' ,  hii), re-

spectively, and  Gzij(=  RIii  —112  RI  gii) the Einstein tensor evaluated in  1//. By substructing 

Eq. (4) (Eq. (5)) for  1// from that for  1/j, we find the relationships 

                   (K/i.;+  KJij)Sii  = -47r1{Gi3}/ nine (6) 

and 

               =1hij{Gik}Ink (7) 
                                    87r 

The formulas (6) and (7) are used later to derive the law of conservation of the proper mass 

of the shell and the equation of motion of the shell. 

  As a background space-time, we consider the  Reissner-NordstrOm—de Sitter (RNdS) 

space-time, which is the static solution of the Einstein-Maxwell equations possibly with 

a cosmological term. The metric is 

                              dr  

                    ) 

                ds2 =  —f  (r)dt2fr2  Hijdxi  dxj  , (8)                            (
r 

where 

 2M  Q2  A 2  f  (
r)  =  1  —3 

 r2 —— ——r (9) 

and  Hij denotes the standard metric of the two-sphere: 

 H  =  c/192  sine  ?9c/co2 (10) 

The vector potential of the Maxwell field is 

          =Xt. (11) 

The metric (8) describes the black hole with the mass  M, the electric charge Q and the 

cosmological constant A. 

                           7



  The stress-energy tensor becomes 

                                 2 

            Q67:+ 8,WsisY) (12)                    T.7! = 8774 - 3-r3-(P3 

  There is a curvature singularity at {r =  0} unless M = Q = 0, and a null hypersurface 

 > 0;  f(r) 0} is a Killing horizon.

        B. Equation of Motion of a Thin Shell With Spherical Symmetry 

   The equation of motion of a spherically symmetric thin shell becomes extremely simple. 

Let  'Yi(J) be an open set of  (1111-(j),Qi(j),A)-RNdS space-time. The shell is constructed 

by gluing  1// and  1/j at the symmetric timelike hypersurface  <7 Here we introduce 

coordinate system  {tip), r,  (p} for  'rip), which is the static coordinate system of the RNdS 

space-time, where r,  0 and  co each assumes the same value on both sides of  5°, so omission 

of the subscripts I, J does not lead to confusion. 

   Due to the symmetry of the  {19,  (p}.-plane, the surface stress-energy tensor takes the form 

of the ideal fluid: 

 Si, =  PHii, (13) 

where  ui is the future-directed unit vector tangent to the fluid lines , namely the four-velocity. 

In what follows, the energy condition 

 >  0 (14) 

is imposed. In each coordinate system, the four-velocity is expressed as 

    d dr  ui  =) =(d1I(J)))Si 
           drdr'IP) dr (15) 

 where- is the proper time along the fluid line. Let ni be the unit spacelike one-form normal 

to  <9, which is directed from  1/1 to  1/J: 

                     ni = dr)(dr)sti, +(dtidr)(5.7i,                                            (16) 
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All the non-vanishing components of  K1 are 

                    Krijuiuj                         fi(r)_+dtild2rMr)] 

                       = 

                 drj[dr2+2 (17) 

and 

                              fr(r)dti              KI:99=Kifp = r d(18)                                                  r' 

where fi =  1  —2Milr+QI-Ir2—  Ar2/3. By evaluating the components of Eq. (3), we obtain 
         -J .2,.,-12         fJdtj(dr+LT)fidt.r)(dr4740. + 2p), (19)           dr ) cir.22)dr)dr2 2 

and 

                             ,Chir dtj 
              jj-drJJ-dr =  47rar. (20) 

  For RNdS metric, The r.h.s. of Eq. (7) vanishes, since  =  —(Ql/r4  A)ni, which 

implies  hiiGijknk = 0. Then Eq. (7) leads to 

           dmdr 
                                             (21)                            —

dr = —87Pr—dr' 

where m =  47a-r2 is the proper mass of the shell. Given the equation of state of the shell 

P = P(o-), the proper mass m becomes a function of r In particular, in the case of dust 

(P = 0), Eq. (21) leads to the law of conservation of the proper mass of the shell: m  = const. 

  By substituting  Eqs.(17), (18) and the relation  Giiinini  =  —(Ql/r4  + A) into Eq. (6), 

we obtain 

    -1-1 

          (f jdal')(os+Ej.)(fidti\(d2r+fr) 
             dr)cl-r22)dr)dr2  2 

 QJ  —  2P ( dti dtj)  +
arb —dr+LI—dr(22)                                 mr2 

From  Eqs.(19), (20) and (22), we obtain 

 dtim_  m 
                                           (23)                 fr—dr = + 2r mr 

                    dtjm_ m q+q_ 
         fjd r=m 2r  mr(24) 
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and the equation of motion of a shell 

 d2r  m+  (m2  q+2  )(m2  —   
                              ^^^^^ 

 d  2  2r2  4T/12r3                  Ar271P [ (q+q_ —  2m_r)1   —(25) 
      3  r  m3 

where  m± :=  m2 +  mi and  q± :=  q2 Furthermore, by substituting Eq. (23) or (24) into 

the normalization condition:  ujui = —1, we obtain the first integral of Eq. (25), or the law 

of conservation of energy: 

               (
dr2  =  +  6,2  +  m+  -  eq+q_lm 

 (m2  —  eo(m2  —  q2  ) A                   —r2,  (26) 
 4m2r23 

where  e  .m_irn is the specific energy of the shell. 

  Equation (26) corresponds to the energy equation for the shell. In order to close the 

system of differential equations, we need one more equation, namely the equation of state 

which gives the relation between  ci and P One special interest is in the sphericall massive 

shell composed of collisionless particle. In this case,  o- and P can be given in the form 

               mo  1 
+ £2/7-.2,(27)                                     o-=                    47r2\/  

                               i2 
     P =  (28)                           2(

r2.e2) 

where  mo and  2 are constant. The constant  mo corresponds to the conserved mass of shell, 

while  i is the specific angular momentum of a particle on the shell. The detailed derivation 

of the above expressions for  ci and P is given in Appendix A. It is worthwhile to note that 

when vanishes, P also vanishes. This means that the dust—shell is composed of non-rotating 

collisionless particles. Note that Eqs. (27) and (28) satisfy the conservation law (21). 

                         C. Motion of a Dust-Shell 

  In this section, we consider the motion of a dust—shell in Schwarzschild background . 

The equation of motion (25) can be solved analytically when the shell is composed of dust. 
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 I 
In general, the shell 9 is assumed to divide the regions  'Y/1 and  1/1+1. The label I in the 

 I expression Q means that it is associated with the  Ph shell, and the label  I in  Q  1 means that 

it is defined in the region  1//. The equation (26) for a dust-shell is 

 I 

                  dr I  

  dr1/2 

        = EV(r)* (29) 

 1  1 2           I 
11—                       +m  V(r)  = —1 + 82 +..--.+,., (30) 

                               r  4r2 

11  I whereE= +1. In the dust-shell case,m and hence 8 , are constants. The solution becomes 
                    II,II —I2\,       II Irz772 .4.rm)i1/2//2   cer —  To) = V(r),(e =  1) (31) 

                       1 

                   3m+2 
 I  I  I  E(T —  ro) 

                                                       1/2    / 1 III     rV1/2(r)772+772+11 TY)  )1 
                In  +r+rIra2>1)(32)  = 

1I,lo 
 82-1  2(82  -  1)3/2  2(82  -  1) 82-1 

 I  I  I  E(T —  To) 

   r/I1m1+Im1      V1/2(r)2(1 —e2)r ++ 
l1  1 12 

  = arcsin i02  <  1)                                             (33) 

                                      1 

                              1,o        1 —82 2(1 —82)3/2 [m+2  — 2(1  — 82)m ]1/2 
  I  1 I 

according to the value of  82, where  To is the integration constant. The specific energy 8 

 I  I 
determines the motion of the dust—shell: 82 < 1 for bound motion, 82  . 1 for marginally 

 I I 
bound motion, and 82 > 1 for unbound motion. For 82  < 1, the allowed region for the 

 I 
motion of the dust—shell is not restricted. On the other hand, when 82 is smaller than unity, 

the areal radius of the dust shell assumes the maximal value given by 

 1           11  {lrrt1/2/2121/21,(e2 < 1).         m,„ =  /2+ +i[M++M(1 — 8)](34) 
 1  _  82 

                                                                          I I 
The motion of aPh dust—shell is expressed in terms of two static coordinate systems {t_,r} 

 II and ft+,r}, where t_I :=  tr and t+ :=  ti+1. From Eqs. (23), (24) and (26), we can obtain 

the motion of  Ph dust—shell in these coordinate systems. It is governed by the following 

differential equations 
        II1 

                dt±1 re +m/2                                              (35) 
                                  11II                      dri=Efri. —m+ Tme)V1/2(r) 

                            11



 I 

These can be integrated according to the value of  6'2 as follows: 

 1  1 I  e(t± —  tot)  ,T.[(111I(IIrI1  =1)dr66)(r +m+) +mi(6'2 — 1/2)+ (m+ +m6')S.m+ +m'(6°2 — 1/2)) 
 1  1                     ol                                                                  r — m+ + Mb 

          1 
x  

               1 
  [(1 —6'2)r2 +m+r +  m2/4]1/2 

  1 I11 
= gi(r) +g±(r) , (36) 

 II111 
whereto± is the integration constant. The functions<..C±(r) and g±(r) are defined by 

             I 1  

 ±(I11II       1=r[S'(2rn+r+ 6m2+— m2) + 3mm+]V1/2(r)12  <.-r),(= 1)  (37\ 

 I  

                                                                     3mi, 

 1 

     I  

 i(1 =eiv-/2(;)    gr) 

 I 

 1  _  g2 
 1 1         1 1 1 1 

    (1/2 — S2)[m+e  + (1 —6'2)m](1 —e2)1.+m+/211   +l n  +r1/1/2(,),(602  <  1) (38) 
  II 

           (1  —  02)312 (1  — g2)1/2 
        I11 

         ) 

      IS'rV1I12(r     i() = 

 I 

 1  —  g2 

 — I11I     (6°2 — 1/2)[me + (X2 — 1)742-]                              arcsin rrf+— 2(6a2 — 1)-1. ,(g2> 1)                                            (39) 
   I I 1 I            (g2  —  1)3/2 [mT +m2(g2  -  1)]1/2 

and 

        g1 I)  = II1111              (m+ ±m6a)[m+g +m(S2 — 1/2)]           ±(r 

                                I 

                    91/2 
 III              11I I2 — 2<91±1/21-1/1/2(71-.)        x  In (26'2 —  1)4+ ± 2i(S2— 1) + '9±(40) 

 I  1  I  I 
 r  —  774  +  m&) 

where 

 1 1     1II1II 
g.± = (g2  — 1)(771+ +mg )2+ 4+(rrt+  +me) +  m2/4  =  ( .r+ ± I k,21/.-,I,I,,n 

                                                                                     u 

                                      )p+=rnØ)>. 

                                            (41) 
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                 III. COLLISION OF TWO SHELLS 

                            A. Transparent Shells 

                                   I  .r+1 
  We consider here the situation in which two shells  .9 and  .9 with respective proper 

      1/-1-1 massesmandm, collide with each other at the two-sphere p with radius  ro. Then, the 

world-surfaces of two shells will divide space-time into four regions,  1/a (a =  1,1+ 1, I + 
 I  I-1-11 

2,  (I  + 1)'). Suppose that  .9 divides16-and'n+1,.9divides  1/1+1 and  1/i+2,  .9' divides  'Y/i. 
 /41  

 and1(v+11I, and .9' divides  1/(r+1), and  16-+2.
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                        FIGURES 

 V4:(m4,q4) 

 u*'  u' 

 V3:(m3,q3) 
 p 

 V2:(m2g2) 

 E:(1-1,q) 

                                      I  I+1 

          FIG. 1. The configuration  of  .9,  .5° and  1/a (a =  I —  1,  /,  I  +  1,1'). 

  We require that the charge of each shell does not change and that each proper mass 

is continuous throughout the collision. Each region  1/a, has the static coordinate system 

 {ta, r,  0,01 of the RNdS space-time with the parameters Ma, Qa and A. 

  We now consider the problem of determining  Mp,Qp and the velocity of each shell, when 

Ma,  Q. (a =  I,  I 1,  I + 2), A, m and Irti1 are given. The charge of each shell is obtained by 

simply substracting Qa of inside region from Qa of the outside region, according to Gauss's 

law. Let  1/1 be the inside region and  1/j+2 the outside region without loss of generality. Then 
        +1 

S° and.t,5° have the charges q_ =  Q1+1 —1+1                                        and q_ Q1+2 - C h+i, respectively. Since 

theymust be conserved throughout the crossing,Q=Q14111 =  Q —  0  Q  I+2- 

The mass parameter  M(i+i),  of  1/  (m), is not known until the velocity of a shell after  tt 

collision is determined. 
  I  1+1  11+1 1+1 / / -1-1 

  Let „54' (9) have velocity u  d/dT  ( u =  d/d  T ) and the outward normal n ( n ), and 
 1+1I+11-+1

,I1+1 let 5°' (.5") have velocity u'dlcir' (u= dldT), and the outward normal n' ( n'),where 

both  u and are future pointing. Applying Eqs. (23), (24) and (26), we can determine 

the velocity and normal of each shell before the collision up to two sign ambiguities. When 

III+11+1 
u,n,uandn are written in the forms
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                               1                u= (dtil &Oat, +  (dr,  I  olT)ar, (42) 

                =  (dtrf1ld4)ati+1+  (dr,  I  Aar, (43) 

                                1 

                n= —(drldr)dti + (dti I dr1            )dr (44) 

 =  —(dr  I  d'f-)dti+i +  (dti+ildf-)dr, (45) 

                         1 

        1+4141                 U= (dt 141 I d1T)ati+, + (drld1T)ar, (46) 

                  =  (dt.r+21dInat1+2 +  (dr,  I  dit-l)ar, (47) 
       111411+1                  n= —(dr IdT)dij+1 + (dt j+i I dT)dr (48) 

 =  —(drIclit-l)dti+2+  (dti+21d1P)dr, (49) 

the respective components are expressed as 

 &I/cll- =  (ft -  fr+1 +  b2)/2-1).fi, (50) 

 dti+i/cg-  .  (fr —  h+, —  b2)/2bh+1, (51) 

 dr!  di-  =ILL-4  —  2(fi. +  f7+07,2 +  (f,  -  fi+02}1/2/2b, (52) 

 dti+1ldr'il =  (fid-i —  A-2  +1t12)12iti  fI+1, (53) 

          (f 
      .r+1+121+1      dti+2IdT1="141 —1.1+2 —V)/2vfr+2, (54) 

        1411411+141+12    dr I d7-=E[V5)             — 2(fI+2 +fr+i)v,(5 

    111+1.r+i+ (fi+2 — fi+011/2/2rtii wherev:=mlr,v:=m/r and fa  := 1 — 2Ma/r +  Qa2/r2 — Ar2/3, (a  =  1,1+  1,  I + 2), 
I  r+1  I 1.+1 and e ( e ) is the sign factor with respect to the velocity of the shell 9  (.9); namely, if 

 e  = 1 then  9 is expanding, while otherwise it is contracting. 

  We now need a boundary condition to determine  Mc/41y and the velocity of each shell 

after the collision. We impose here the condition of transparent shells, by which we mean 
 1  I+1 I1+1 

that the velocities of.9and 9 are conserved throughout the collision; namely,uandu 

continuously join  itl' and  lil at p, respectively. (There is no notion indicating the continuity 

of vector fields across a singular hypersurface a priori. However, when a continuous metric 

is given as in the present situation, we may naturally introduce this notion by identifying 

the normal vectors on both sides of the singular hypersurface.) This condition is equivalent 
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 to that of  1\11iiiez et al [17]. Other conditions are, of course, possible. However this one is 

 geometrically invariant and has a simple physical meaning, and thus it would  be among the 

 most natural assumptions. Furthermore, this uniquely determines  /1//(T+1),, as we show in the 

 following. To realize this condition, we evaluate u at p with respect to the coordinate system 

 ft  j+2  ,  r} (coordinates  0 and 0 are ignored). We decompose u into the directions/-1-u1/+1andn 
 1+1  /+1  /+1  1+11+1 

2 1  Since the metric g on <5' has  the  form gi,=-u,u3+n,n3-Fr H,3,  u can be expressed in 

        1r1+11+11.r+i.r+i,1+1                                         1+1r+1 th
e formul = -uauIui+u,n3nonS° Since bothuandn can be expressed with 

respect to the coordinate system  ftI+2,  r}, we obtain the desired expression for u at p. As we 

have required, -lit1' continuously joins fi at p. Thus 1t1'  =  (dti+.2/Prl')ati+2 +  (dr  I  d14--1')ar 

becomes 

r+i,t. dti+i  dti+i dt.r+2i dr dr   dti+211+2 [dti+i(dr )2 dr dti-±i dr  U =JI+1  I  1+1  I+1fTA-1  I .1+1  I+1J-142  /1+1 /  1+1  1+1} at1+2 
 dr  dT  dT  dr  d  T  dT  dTd T dr  dT dT 

 dti+i  dt1+1 drdt  

      , 

 +-Ir+1 1  1+1 1+1 h+2 

{ 

 dr  d  T d T1-4_1 dt.1-+ 2 drd                             1  1+1  1+1                        dr d T  d  T  d                            rrddti:iddti:21,_1 dr(dr )2  / /4-1 1+1J-1+1  j1+1  drd Ta r.(56) 

Therefore, using Eqs. (50)-(55), we obtain the relationships 

        dti+21dIP --= (4Lfr+1.fr+2)-1{(1/2 - fr + f1+1)(1V2  —1Z+1  —11+2) 
          H+1141                   — c6[11— 2(fi + f141)V2 + (fr - 11+1)1112 

            14\/412  X [IL— 2(11+2 + 11+1)V +  (11+2 —  h+011/21,                                             (57) 

and 

 dr  I  dif-11  =  (111/4iifi+1) 

 x  [l11  -  fr+i  - L2) { /-11j-14  —  2(11+2 + fi+ 1 )1v+12                                                     + (11±2 ___ 11+1 )2 11/2 

                        —lt12){i/j4— 2(fr + fr+ 1yb-2+ (II — 1.1+1)2 11/2].     +  (11+2+ 11+1(58) 

Finally, applying Eqs. (24) and (57), we obtain an expression for  M(r+i), after some manupu-

lations:
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       il//0-+1), —(12 + I112)r0/4 +  (1I+1—  1.r —  fr+2)ro/4 

                   ,r2r,/1+,,/Ap 

                                                  0.2-+I),/2ro— Ar03/6 
                —V)—RAv12—J/4-2)rOiti/-F1+ r/2  ^ 

             —(e  e r0l4h+1)[v4—2(11+ 

                       -1-14— 2(11+2 /4-12               X [1vfr+i)v2 +  (fi  — 11.+1)2]1/2                    (11+2+ fr+i)v+  (11+2  —  h+1)11/2, (59) 

or equivalently, 

 Ar+i),  : = 1 —  2M(i+1),/ro +  0/41),/r02 —  Ar02/3 

                                                         2 

          = (12 + 1/t12)/2 + (11-- 11+1-1-  11+2)12  + (II— fr)(v1+12 —  11+2)1211+1 

      11+142 
           + (ee12h+i)[1, —2(11+ 1I+i)v +  &I  —  fr+011/2 

    1+/1  X [u14 -  2(fI+2 + fri-i)v2+  (1E+2 -  hi-1)11/2- (60) 

                 1 We can obtain1+u', or equivalently dtildr+Ti,and dr Idr+Tl', in a similar manner. However, 
                                         rIT1/ v/+1 we have only to substitute as  ti<-4  t1+2, ft- <- 11+2,  TH.r,<-4v in Eqs. (57) and 

(58). Both  M(i+i), and  f(i41), are of course invariant under such substitution. Equation 

(60) is a generalization of the DTR relation to the case of timelike shells, which is uniquely 

determined under the condition that two shells are transparent.

                        B. Neutral Null Shell Limit 

  We consider here the neutral null shell limit and rederive the original DTR relation. It 

has been pointed out by  1\T-tifiez et al. [17] that it is possible for  if'  +11+2 =  h+1+  1(1+1)' 

 Or  A1+1), =  fr+i to hold instead of the DTR relation  fr11+2 =  1r+11(.1+1), in this limit. We 

show in the following that the former can occur only when one of the shells violates the 

energy condition and that the latter is irrelevant. 

  The neutral null shell limit of, say  9', is formally achieved by setting P = 0 and taking 

 m,q 0. Let A be the  affine parameter of  5°, which can be constructed by the formal 

substitution A =  rim. The tangent null vector  d/dA is future pointing only when the limit 

m 0 is taken with keeping  m  > 0. 
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  By taking the limits of Eqs. (23), (24) and (26), we obtain the components 

velocity of the two neutral null shells with respect to the coordinate system  {t1,  r} 

     I I 

 .9  :  dti+ildA =  (fI —  fi+i)r12f1+1, 

                             I  

  drIdA =1Elf' -  fi-Filr/2, 
 I-1-1  1+1 

 <9  :  dti+ild  A =  (fr+i—  fr+2)r12f1+1, 
                         r+1I

6dr IdA=6fI+1 -  f14-21712,

 IV 

 X 

 IV'

 

I  I

 I'  Y

of each

(61) 

(62) 

(63) 

(64)

  FIG. 2. The Penrose diagram of the RNdS space-time with positive cosmological constant when 

three kinds of Killing horizon exist. Double lines are the curvature singularities, dashed lines the 

hypersurfaces: r = const and the directions in which t increses are represented by the arrows on 

the dashed lines. 

  Let the point of collision be located in block I or III in Fig. 2 with respect to the region 

 1/L+1, which is characterized by properties that  (Pl)ti+i strictly increases in the future null 

directions, (P2)r strictly increases (decreases) in the out-going (in-going) null directions, 

                                                1  

 and  (P3)fr+i is positive. Then, the inequalities dt/44/dA > 0 and dti+i/d1+1A > 0 hold by 

the property (P1), and thus fi > fi+i >  fr+2 is obtained from Eqs. (61) and (63) with the 

property (P3). Furthermore, the property (P2) leads to1E= 1 andIc-F = —1. Similary, we 

can show that the relations  fr < fi+i,  fr+i >  fi+2 andIc=/cA-1 = 1 hold both in II and 
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IV, the relations  J.' <  <  fi+2,  E  = —1 and  1t1  = 1 hold both in I' and and the 

relations  fI >  .h+1,  .fid-1 <  f1+2 and  e =  IE1 = —1 hold both in II' and IV' The four cases 

listed above are exhaustive, even if  l/i+i has degenerate horizons, negative or vanishing mass 

and/or A. In all cases, the following relationship holds: 

               11+1 
         66-  (h -  fr+1)(fI+2  -  fi+i)• (65) 

Then, Eq. (60) reduces to the well-known DTR relation, [8,20] 

             =  fi+2• (66) 

 I  I+1 

  Equation (65) is violated only if one of  d/dA and  d/d A is past pointing; i.e., one of shells 

does not satisfy the energy condition. Then the following relationships [instead of Eqs. (65) 

and (66)] hold: 

                  r.r+1             6 fI -  fr+1llh+2 - -  fr+1)(h+2 -  11+1), (67) 

and 

 fr+i + =  fl +  fi+2• (68) 

                          C. Collisions Near Horizons 

  When two neutral null shells collide near the Cauchy horizon in the  Reissner-NordstrOm 

(RN) space-time, it is seen from the DTR relation that the resulting mass,  M(I+1)F,                                                                    is very 

large. This is a simple model of the mass inflation. [19] 

  We treat here the collision near the horizon of two timelike shells. For example, consider 

a collision slightly outside the inner black hole horizon of  17.r+i, r r_ :=  Mr+1—  041+1  — 

Q401/2 in the RN space-time with  1111+1 >  Qi+1 (see Fig. 3). This restriction is not 

essential and the following discussion may be applied to any horizon in general.
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  FIG. 3. The Kruskal diagram of the RN  sp 

denote hypersurfaces (r = const), the double  line, 

hypersurfaces  (ti+i =  const). Mass  in does 

a falling shell and another escaping one collide. 

   Let the radius  of the collision be ro = r_ + 

The quantity  fr+i = 0(8) is negative, since the 

horizon. When S is sufficiently small, both dr h 

Assume that both shells fall into the same  ho. 

possitive (possibly  both negative). Then, from 

inequalities: 

                             - v < 

                                     1+12 
                      h+2 - v > 

The condition  fr+i < 0 leads to the result that 

                                         12 

                           h - v 

While the  1.h.s. of Eq. (70) may be negative, 
                                   1+1 

possible. To show  this, note that dtj+ild T  mu; 

is kept, then  dt  I dit-1 < 1/I47)1 holds by Eq. 

conclude that  fr+2 —147)12 > — fr+i holds in the 

                                         i+] 
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          E* \ , x,49,.. 

 ' 

 s
ss 
                                                      s

s 

the RN  space-time with  Mi+i >  Qi+1. The solid lines 

double  lines the singularities (r = 0), and the dashed lines 

 flation does not occur at p, while it may occur at  p',  where

r the collision be ro = r_ +  Mi+18, where is a small positive parameter. 

0(8) is negative, since the collision is assumed to occur outside the inner 

sufficientlysmall,bothdr!dr and dr I d1T+1I1+1are positive, soE=E = —1. 

;hells fall into the same  horizon, i.e. both citi+,1d-f- and dt.r_Fil diV are 

 )oth negative). Then, from Eqs. (51) and (53), we obtain the following

         h - < 

                   1+12 

          h+2 - v >  J  I+1- 

< 0 leads to the result that the  1.h.s. of Eq. (69) is negative: 

                       12                     — V  <  0 . 

Eq. (70) may be negative, however, in the limit  S +0, this 

 Lis, note that dti+il  must diverge in this limit. If h+2-1t12 < 
 -

7E-1 < 1/I47)1 holds by Eq. (53). This leads to a contradiction, 
 .r+12 - v > — fr+i holds in the limit +0 . In particular, 

                         12                               .T+ 

            h+2-v> u,

(69) 

 (7°-1

 (71) 

is not 

 —.h+1 

so we

(72)



is obtained. 

   On the other hand, Eq. (60) becomes 

 =  [(b2 — fi.)(/-11,-12  fr+2)ErEhIv2 .fill rii-j12  fi+211/2fi+i +  0(1), (73) 

where we have singled out the only possible singular terms . However, these singular terms 

cancel when c =./.+1= —1 under the conditions (71) and (72). Thus,  f(r+i), remains finite in 

the limit  8—> +0. We obtain a similar result in the case  S < 0. Moreover,  f(r+i), converges 

to the same value in both limits: 
                        121+12,r1+12)                           (f

rfr+2---v)(fr1'1+2 —v2 —v     lim A
r+1),  =(74) 

 (flv2)(hI+1+2—v2) 
This expression would be valid even if the horizon were an outer black hole or cosmological 

horizon, or a degenerate or non-degenerate horizon. The quantity  M(r+i), also converges to 

a finite value, which suggests that phenomena like mass inflation do not occur just in the 

presence of a massive flow falling into the horizon. From a physical viewpoint, the result is 

natural, since timelike flows of matter themselves do not suffer the infinite blue-shift, unlike 

null flows or gravitational waves. 

  Secondly, we assume that one of the shells does not fall into the inner black hole but 

instead tries to escape from it (either dt/d1.7.- or  dt/d'i is negative). This implies that this 

shell would fall into the other horizon in the limit 0. Then a similar argument leads to 

                           /2 
 f(r+i),  =  (fr —v)(h/-1-12                       +2 —v)1 fr-Fi +  0(1)  —oo.  (fi+i  -4 0), (75) 

This means that  M(i+i), can in general take arbitrarily large positive values in this case. The 

collision of neutral null shells rather corresponds to this case; it is not sufficient to take the 

limit  v,  v 0 in  Eq.  (74) to obtain the neutral null shell  limit, since the conditions 

dt/cg- > 0 and dt/dIP > 0 are no longer satisfied in the case of the collision of null shells. 

  Thus, we obtain another conclusion that mass inflation occurs when a falling shell and 

another escaping one collide near the horizon. 

  Here we examine the relative velocity of colliding shells. Define the Lorentz factor  be-

    I  1 I-1-1i 
tween.9and by  -y  := —ui u, which may be related to the relative velocity v by 
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 ,), = (1  v2)-1/2 When two falling shells collide near the horizon, we obtain 

                      /12,/-1-1,21+1/2         = v(f i+2 -v)/2v(v-  fi) +(v-  fi-)12v(f7+2- v                                          /12) +  °OM)/ (76) 

while when a falling shell and another escaping shell collide, we have 

                                                        /-1-12\,,,/+1                  -r = (V2 —  fl)(f1+2  —V)1.2VVf 1+1+ 0(1) . (77) 

The former remains finite, while the latter in general diverges with  S  -4- 0. This is another 

feature distinguishing two types of the collision near the horizon. 

                       D. Collision of Two Dust-Shells 

  So far, the treatment of colliding shells are disscussed in general cases. We shall however 

investigate a simpler case of colliding dust-shells to make physical meaning clear. 

  It is convenient to introduce the following quantities defined at the moment of the colli-

sion: 

 1  I  dr 
 p  :=  772  1  , (78) 

 dr  r=ro 
 I2 

 1  771  W  :=  2
r—, (79) 

                                          0 

                              I 

           E :=  Mr+1-  MI, (80) 

and 

 I  1  I  I  C±  :=  Mg)  ±  W. (81) 

 1I
w I          p The quantitycorresponds to the three-momentum, the self-gravity, and E the energy 

of the  Ph dust-shell. The equation (26) can be expressed in the form 

                      m2 (12M/+1 )/+2 /2                 =e-P , (82) 
 ro 

 Or 

                    m2 (1 n11) =eI-2  /2               - p 1 (83) 
                                                    7-0 
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and the Eqs. (23),(24) become

(1
 2/14-/

)
 dt1

 7'0  1 d
T

 1  I 
 = me _, (84)

 0
 2M1+1

)
 dt  j+i

To d

 II 
= me+ . (85)

The velocities of the dust—shells  <9' and
 1+1 
 91 can be written as

I 
U = —ui

L-I-1 4  1+14 
 U  U

 I 1+1/+11 
 ui n3n , (86)

I+1/1 
 = -U3

 I+1j 
 U    Ii   U

 1+1 
 u  in3n (87)

Using the coordinate system of  1/I41, we obtain

 I 
 uj

I+1,: 
u=

11+1 
 Pp

 I  /41 
 e+ e  _

 I  1+1 
 n2  T12 (1 —  2Mi+dro)'

 I I+1,;1-F1I 
 n=— u ire=

 1+1  1 
e  _p —

I  1+1 
 e+  P

I 1+1 
 m  m (1 —  2MIA-ilro)

(88)

(89)

The components o f the velocities
 I 

of the dust—shells  .9' and
 I+1 
 5°' become

 0
 2  M1+  2

)
 dt ,r+2

 ro  1+1 d
T

 1  (I  1 

=  

  I E  -  w 

 m

+ 2 ()1  /2/  /-1-1i  U )  (  9  0  )

dr

dT, (I 

P

1 

 I 
 m

- 2(  1  1+1 
 711  W  )112

 I 
 ui

 .T-Fli

) (91)

and

 (1
dr

 2M1 dt

 ro

1

 .1+1

 dt 

)= 
  a7' 

 (1+1 

 P

1 

1+1 
 m

dT'
 2(

 1+1 
E

 I  .1+1 
 W  W )1

.r-F1.r.r+11 w— 2(ww)

/2/ 
 ui  n

 /21  1.+1i  ui  U ) (92)

(93)

From the above expressions, we find that the energy transfer is expressed as

 A
 1,1+1 

 E  = —2( 1.1+1 
 W  W )1124iItli, (94)

and that the three momenta after the  coil ision is obtained from the formula

I, 
 P

 1.-1-1 
 =  p  +0

 1,1+1 
 13  , (95)

 I+1, 
 P

  I 
=p-FA

 1,1+1 
 P (96)
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where 

                            A1,1+1/1+1\1/21               p= —Lopw)uin (97) 
                                                          /7+1  /-1-1 N

ote that  ui  u  z should be negative. Hence the energy transfer A E is always positive, 
 I  1+1  I  1+1i 

which means that the  <5.° always releases energy, while  5° gains energy. In addition,  ui  u 

should be positive at p to ensure that the two dust—shells collide. Thus, the three-momenta 

of both shells always decrease: A p < 0. 

   The decrement of three-momenta due to the collision may be recognized as to be a kind 

of Ricci focusing effet. Let us consider an irrotational congruence of timelike geodesics. The 

increasing rate of volume of a spacelike section of this congruence with respect to proper 

time of a timelike geodesic in it is called expansion of this congruence. As is well  know...1 

when this congruence goes through a region filled by matter satisfying the strong energy 

condition, its expansion necessarily decreases. This is called Ricci focusing effect. 

  A dust shell is regarded as a spacelike section of a congruence of timelike geodesics. A 

collision between two dust—shells means that a congruence corresponding to the trajectory 

of one shell goes through the other shell satisfying the stron energy condition. Hence we 

expect that the congruence corresponding to one shell suffers a kind of Ricci focusing effect 

in the collision. For the congruence corresponding to the other shell, the same effect is also 

expected. 

  However, we should note that volume of a spacelike section corresponding to a shell 

vanishes identically, since we have assumed that the shell is infinietely thin . Hence, strictly 

speaking, there is no Ricci focusing effect in ordinary sense. However, since the area of the 

section does not vanish, we may consider the focusing effect with respect to the increasing 

rate of this area. The area of the spacelike section is given by  47r.r2 The increasing rate 0 

of this area is given by 

                               2 dr 
 0=

r  dr (98) 

From the above equation, we can see that the three-momentum p =  mdr  I  dr of the shell is 

essentially the same as the increasing rate 0 of the area, where  m is the proper mass of the 
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shell. Hence noting that the areal radius of a shell is unchanged through the collision, the 

decrement of the three-momentum due to the collision may be regarded as a kind of Ricci 

focusing effect. 

  Here it is worthwhile to note that there is a relationship 

                                1,1+11 ,1+12/I-1-1             AE2-Ap= 4ww (99) 

 1,1+1 
This shows that A E has a lower bound.
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                   IV. MANY DUST—SHELL SYSTEM 

   The many dust—shell system can be regarded as a discretized version of the Tolman— 

Bondi model, which describes spherically symmetric dust universes. We shall show that 

the initial condition of the many dust—shell system is fixed in terms of the Toman—Bondi 

solution. We describe a manner to set up the initial condition for the Toman—Bondi solution. 

Then, we give a prescription to identigy the initial condition for the Toman solution with 

that for the many—shell system. 

                A. Initial condition for Tolman—Bondi space-time 

   The metric of Tolman-Bondi solution is written in the form 

                  (ariaRy               ds
T2B_——dT2+ 1  —(R)d R2 + r2(T,  R)Hildxi  dxj  , (100) 

where  (R) < 1 is an arbitrary function. The Einstein equation gives 

                            2M (R)                       ar)2 =                                               (101) 

and 

                               114-1(R)  
 p(T,  R) = (102)  47rR2(ar/aR) 

where M(R) is the Misner—Sharp mass function and p(T, R) is the energy density of  ti 

dust. The differential equation (101) can be integrated. The solution is 

               113  r =9M(R))[T —  TB(R)]213  , (X-(R) = 0) (103) 

       2 

    M(R)  
  r = —(R) (cosh 77 1), T TB(R) = M —X(R(R) 3/2 (sink — 77),X (R)  <  0) (104)                   [)] 

 M(R) M(R)  
  r = (R)(1cosi?),TTB(R) = 3,2 (77— sin77), (0  <  (R)  <  1) (105)                      [(R)]1 

where TB(R) is an arbitrary function which corresponds to the moment of the big bang 

singularity. The Tolman—Bondi solution is characterized by two arbitrary functions
, namely 
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the Misner—Sharp mass function  M(R) and the specific energy 

 e(R) = (1 —  X.(R))112 (106) 

There is a scaling freedom of the comoving radial coordinate R. Assuming that the areal 

radius r is a monotonic function of R at the initial time T = T*, we fix this freedom by 

imposing  R = r at T =  T*. Then, the mass function can be written in terms of the initial 

energy density p*(R) as

R                M(R)  = f 47R2p*(R)dR. (107) 

In other words, the mass function can be fixed by the initial condition. The remaining 

degree of freedom is encoded in the function  X-(R) or TB(R). These two functions depend 

on each other through the relationship for  sX"(R) = 0 

              TB(R)  =  T* 2R3 9M(R)
)1/2,  (C(R)  =  0) (108) 

 for (R)  <  0 

 M(R)              T
B(R)  = T*  (—x  (R))3/2 (sinh  77 —  77),  (X(R)  <  0) (109) 

where 

 77 = arccosh  (1 jr(R)  R)  ,  (0  <  X(R)  <  1) (110) 
                    M(R) 

and  for  0  <  .X"(R)  <  1 

                        (R                    T
B(R) = T*                                      ..X/"(R)3                            12 (77  sin 77), (111) 

where 

                arccos (1 )r(R)R)(112) 
                       M(R) 

We give two methods to fix these arbitrary functions. 
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  In the first method, we consider the expanding universe (unperturbed Hubble flow) as a 

background. At the initial time T =  , the fluid lines of dust is assumed to conincide with 

that of the unperturbed Hubble flow: 

            —Or- =((R)2M(R))= H*r, (TT*) (113) 
             aT 

where H* = const. is the Hubble parameter of the background universe. Since r is equal to 

R initially, it turns out that the function  <Y6  (R) has the form 

                      2M (R)   (R) = H*2R2 (114) 

  The second method is just to set  TB  (R) = 0, which means that the big bang is simulta-

neous. 

     B. Motion of Dust—Shells in Synchronous Comoving Coordinate System 

  It is convenient to work in the synchromous comoving coordinate system to see the 

correspondance between the dust—shell universe and the Tolman-Bondi solution. 

  Let us consider the coordinate transformation from the static coordinate system  ft r} 

into the synchronous comoving coordinate system  {TT,  RI} of the Schwarzschild metric de-

fined by 

 dti [1  —Xi(RI)P12  dTi1                                                (115)         1 —  2M  I  I  r (1 — 2M10[1 —                                 (RI)] 1/2aT,aR, 

                  ar dr = (—Or)dTI(116) 
    aT,aR, 

with the condition 

                 ar (2/14-/-1/2 
 aT„ 

          = Ei (R/)) (117) 

where  Xi  (R) is an arbitrary function and  el = +1. 

  The metric in the synchronous comoving coordinate system becomes 

                                              2 

             ds21-= —dTr2+ (arlaRi)2 dRi+ r2(TT,  Ri)Hi3dxz  dx3 (118) 

                      1 
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The inverse transformation of Eqs. (115), (116) is 

                    61(2A/4i-1r —Xi(RI))1/2,dr  dTi = (1 — XT(R1))112dti(119) 
                          1 —  2Milr 

 dRI= (1—r)[—€1-(1 — Xi(R/))12(2Mdr — Xi(RI))112dti +1 —'171"(R/)drI(120) 
  aRI1 — 2M/r 

The equation (119) can be easily integrated  when  .Z(1:11)  =  = const.: 

 TI —  To/ =  (1  —  A'1)1/2ti  —  EI  [Y/(r)  .fi(r)] , (121) 

where  Tar is an integration constant and the functions  aYi(r) and  J1(r) are defined by 

 Ai(r) =  2(2Mir)1/2,  (Xi = 0) (122) 

 I(r) =r2  2Mir)112 
    M((—2Xi)   InMr—A/1r[X/(Xir2 — 2/Vir)]1/2 , (Xi< 0) (123)               1/2 

 .214i(r) = (—Xir2+  2Mir)112   2`Y6)  arcsin  (1 )61 ,  > 0) (124) 
 dcI 

and 

 .9r(r) =  2M1(1 —  .11)112 
                  21111(1 —..Y6) — [(1-/6)(—Arr22M/r)]1/2  

 x  ln 12-.Y6+ 
r  —  2M1(125) 

    C. Matching Condition  of Two Synchronous Comoving Coordinate Systems 

  Next, let us consider the trajectries of  (I —  1)st and  Ph dust-shells in terms of the syn-

chronous comoving coordinate system of  rth region  1/i. Substituting Eq. (36) into Eq. (121) 

we obtain 

     1_1  Tr( r ) = Tor + (1 — Xi)1/2[107+1(.1F+1(irl) +14.11_(/T1))1— ei kel(Y) +(126) 
Ti(r) =  Tar + (1  —  .Y4)112  [ta-  (4:-(1.)+  4()) —  er  ki.r(1.) +  fi(r)] (127)
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 One does not have to know the comoving radial coordinate  RI of the dust-shells to decide 

whether  (./. - 1)st and  Tth shells collide; the collision between these shells occurs when the 

solution of the following equation exists: 

             T =  T  i(r). (128) 

 r-i 
   To match the two synchronous comoving coordinate times refered by  .5° and  .5°, we have 

to give the relationship between t  0+ and  to_, which is obtained by the equation 

                                     1-11- 
              Ti(r1*) =  T (129) 

where r* denotes the areal radius of  .5° at T1 = T* Then from Eqs. (126) and (127),  v 

obtain 

                           r-1 1_1          t0+ = -E+( r1)1+(1_1r)) 
            H-(1  -  Ar/)-1/2  {T*  -  Tor +  Er  (y6(Ir1)  fi(tri))1,                                               (130) 

             .1-II  to_  =  -6(g"_(r)_(r)) 
 +(1-  X)-1/2  [T* -  Er  (.316(1')+  -91(9))1 (131) 

                                              (132) 

These gives the relationship 

    1-1 I 1-1 1-1 1-1      t 0+ - to_  - E +( r  ) +( r )) c _(r) 
 +61(1  xj)_112  (y6(I-ri)g1(1r1)gyi,(.17) j}(10)                                              (133) 

                 D. Initial Condition for Dust-Shell Universe 

  The initial data for the many dust-shell system is set up by using the initial data of the 

Tolman-Bondi solution. In terms of  .///(R) and  X'(R) of the Tolman-Bondi solution, the 
initial data for the dust-shell system is given in the manner 
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 Mi. = 0,  Mr+1 =  2M(/-*) -  MI, (I =  1,2,3,  '') (134) 

 1 

 e  = (1  -  X.(r4))1/2 (135) 

 1 Since  8 =  (mi+i- Mr)/m, we find 

    11                    M(r,,) -  MI  = 2m(1 -X-(r*))1I2(136) 

We consider the following parameter a 

            11                          2M2 2m+4M(r*)
-  a  =  =(137) 

          111 
                r*r*r* 

A smaller a guarantees higher accuracy of the N-body approximation. For given a , we 

obtain  --'` by definition. Then we obtain the proper mass of the first shell 

                                              1 

                       1 2M(r*)  
        M =/ (138) 

                          V1  -'(r*) 

We We assume that  rft =  rn for all shells. 

   Next let us consider the synchronous comoving corrdinate system associated with this 

initial data. This is give by 

 I 
 -Y6+1  = (1 -  6'2)1/2 (139) 

and 

 E/-1-1 =  E. (140) 

We may set  Tor = 0 for all I. The integration constants associated with the motion of the 

          / d
ust-shells t± are fixed by the conditions 

                      1-1I1I1 
                  TI(r*) = Ti(r*)= T* (141) 

for all I. Then we obtain 

      //--r-i-           t10+ = —E1.5+(/ri) + g1+(Ir1)) 
 +(1  —  Xj)-1/2  V* +  ei  (t/(Ii:1*) +  f/(Ir11)  I  ) (142) 

       i I (1 
 to_ =  -c gAr*) + g _(r*) 

 +(1  —  X1)-112 [T* +  Er  (7141(71-*) +  A.(711)1 (143) 
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 V- CONCLUSIONS 

   We have considered a model of the inhomogeneous universe composed of many gravitating 

thin shells of dust. This model can treat the time evolution of the dust universe even after 

the shell crossing singularities arise. The problem of the shell crossing has been resolved 

here by introducing the transparent shells, which will represent the shells of collisionless 

particles. 

   The junction condition for colliding transparent shells has a simple form [Eq. (60)], and 

it reduces to the DTR relation in the limit of the massless shells. 

   We have investigated the relativistic effect of the shell-collision. The mass parameter of 

the region after the shell-collision depend on the relative velocity of colliding shells .  Thio-

implies that mass inflation phenomena may not occur even when two massive shells collide 

near the event horizon, which shows good contranst to the case of the collision of massless 

shells. 

  The collision of two dust shells can be characterized by the energy and momentum 

transfer between shells, which are determined by the generalized DTR relation . Whenever 

two shells collide, the momentum of each shell necessarily decrieses . This can be regarded 

as a kind of the Ricci focusing effect . 

  The many dust—shell system has been described in terms of the synchronous comoving 

coordinate system. This method shows clear correspondence between the shell system and 

the analytic solution (Tolman—Bondi metric) of the Einstein equation, so that suitable for 
the set up of the initial data and for the interpretation of results . 

  This note gives the analytic approach of the many—shell system , and we can now be able 

to perform the N—shell simulation, which is currently under investigation .
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    APPENDIX A: EQUATION OF STATE FOR A SPHERICAL SHELL OF 

                   COLLISIONLESS PARTICLES 

   We shall derive the equation of state for a spherical shell composed of collisionless par-

ticles. The stress-energy tensor for collisionless particles each of which has the rest mass  y 

is given by [24] 

 =  E  I  (_  g)—i  ttuip  84(x                            —  xn(A))dA,  (Al) 
 n=1 

where  UZ should be a tangent vector of a timelike geodesic. We implicitly assume the limit 

of N  oo fixing  mo :=  Nµ, which corresponds to the collisionless-particle system. We 

consider a spherical shell composed of such collisionless particles. The line element of  &- 

spherically symmetric space-time is written in the form 

        ds2 =  —A2  (T  , R)dT2 +  B2  (T  ,  R)d  R2 +  r2  (T  ,  R)(d792  sin2  Vdc,o2). (A2) 

The shell is assumed to respect the spherical symmetry. The coordinate system is chosen 

such that UR = 0. It is convenient to introduce the following tetrad basis: 

 EP)  =  — (A3) 

 E11) =  B8 (A4) 

 EP) =  r.6? (A5) 

 EP) =  r  sin  1963 (A6) 

Then the angular components of the tangent vector  OA)  :=  E ,V)Ui of the timelike geodesic 

are given by 

 U(2) =  —  cos  0, (A7) 

 U(3)  —  sin  0, (A8) 

where  .f and  0 are constant. The other components are given by
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 00) =  —V1 +  (U(2))2  (U(3))2 = + £2/r2, (A9) 

 U(1) = 0.  (A10) 

The constant  £ corresponds to the absolute value of the specific angular momentum of the 

particle. The particles composing a spherical shell may have different values of but  I 

should be identical for all particles; if the value of  2 for each particle differes, these particles 

will not remain on a same shell. 

   The tetrad components of the stress-energy tensor is written in the form 

     T(A)(B) = f fiU(A)U(B)  S(T —  Ts(A))S(R—  R8)S(79  —19i(A))b(cp —coi(A))dA 
             i=1J r2AB sin 151 

                                              (All) 

where  Rs is constant corresponding to the location of the shell and  T, is the time coordinate 

on the shell. First we perform the summation for particles at the same point  {19,  co} = 

 {19,/,  ciad}. The number of particles at  {V,  (p} =  {79,,,,cpd} is denoted by Nd. Then we 

ontain 

          N/Nd No? ii(u(A)u(B)\   T(A)(B) E   
r2AB  sin  19 S(T  —Ts(A))S(R — R3)S(19 —19j(A))8(co — c,oi(A))dA, 

 ai=1 

                                             (Al2) 

where from the assumption of the spherical symmetry 

             1N1f27r 
        (WV                 AB)) = — EU(A)U(B)= -2iroU(A)U(B                               )thk(A13)                                 No' n.i 

and  Uk4)  :=  4A)dxinjdA. Averaging over the sphere, the non-vanishing components of the 

stress-energy tensor are 

        mo f 1+12/ ss,(A14)                      r2 S(T — T(A))5(R — R)dA        (1,(0)(0)n 
               47rr2AB 

      (T(2)(2) )11 = (T(3)(3)) = 129- 47r f2r4ABS(T  —Ts(A))S(R—  R3)dA, (A15) 

where 

                         1  (Q)a =—47r f f Q sin0d19dc,o (A16) 
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is defined. 

  The unit tangent vector of the shell and its unit normal is given by 

                             U° 
           u=  Soyi 

                             P/r2 

                          ABU° 
            ni =    

                         V1 +.0/7,2 
The surface stress-energy tensor of the shell is given by 

                                         lis+0 
                    S(A)(B)  =(T(A)(B))nnidXl  fRs--0 

Hence we find 

 S(°)(°) =  rn°  +.e2/r2, 
                                   477-2 

 S(2)(2) =  s(3)(3) =   m°t2/7,2  477-2  211  +  £2/r2

(A17) 

(A18) 

(A19) 

(A20) 

(A21)
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