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ENTROPY OF SUBSHIFTS AND THE MACAEV NORM

RUI OKAYASU

ABSTRACT. We obtain the exact value of Voiculescu's invariant k, (T), which is an 
obstruction of the existence of quasicentral approximate units relative to the Macaev 
ideal in perturbation theory, for a tuple T of operators in the following two classes: 
(1) creation operators associated with a subshift, which are used to define Matsumoto 
algebras, (2) unitaries in the left regular representation of a finitely generated group.

1. INTRODUCTION

  In the remarkable serial works [Voil], [Voi2], [Voi3] and [DV] on perturbation of Hilbert 
space operators, Voiculescu investigated a numerical invariant k4, (T) for a family T of 
bounded linear operators on a separable Hilbert space, where ki, (r) is the obstruction of 
the existence of quasicentral approximate units relative to the normed ideal eV corre-
sponding to a symmetric norming function 4), (see definitions in Section 2). The invariant 
k4,(7-) is considered to be a kind of dimension of T with respect to the normed ideal eV 
(see [Voil] and [DV]). 

  In the present paper, we study the invariant k4, (T) for the Macaev ideal, which is 
denoted by k~(T). It is known that k~(T) possesses several remarkable properties: for 
instance, k. (r) is always finite and k4, (r) = 0 if eV is strictly larger than the Macaev 
ideal. In [Voi3], Voiculescu investigated the invariant k~ (r) for several examples. He 
proved that k~ (r) = log N for an N-tuple T of isometries in extensions of the Cuntz 
algebra ON. Here, log N can be interpreted as the value of the topological entropy of the 

N-full shift. Inspired by this result, we show that k; (T) = htop (X) for a general subshift 
X with a certain condition, where htop (X) is the topological entropy of X and T is the 
family of creation operators on the Fock space associated with the subshift X, which is 

used to define the Matsumoto algebra associated with X (e.g. see [Mat]). In particular, 
we show that k~ (T) = hop (X) holds for every almost sofic shift X (cf. [Pet]) . 
  Let F be a countable finitely generated group and S its generating set. We also study 

k~((Aa)aES), where A is the left regular representation of F. For the related topic, see 
[Voi5], in which a relation between k;Pa)aES) and the entropy of random walks on 
groups is discussed. By using a method introduced in [Oka], we can compute the exact 
value of k~(7a)aES) for certain amalgamated free product groups. Voiculescu proved 
that logN < k,;((\a)aES) < log(2N — 1) holds for the free group ]FN with the canonical 
generating set S ([Voi3, Proposition 3.7. (a)]). As a particular case of our results, we 
show that k~((Aa)aES) = log(2N — 1) actually holds. 
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                             2. PRELIMINARY 

  Let H be a separable infinite dimensional  Hilbert space. By IL(H), K(H), IF(H) and 
F(H)i1- , we denote the bounded linear operators, the compact operators, the finite rank 
operators and the finite rank positive contractions on H, respectively. 

  We begin by recalling some facts concerning normed ideal in [GK]. Let co be the 
set of real valued sequences = (ej) jeN with limj, 0 = 0, and c0,0 the subspace of 
co consisting of the sequences with finite support. A function 4 on c°,° is said to be a 
symmetric norming function if (I) satisfies: 

 (1) I. is a norm on c° °i 
 (2) I((1,0,0,...)) = 1; 
 (3) 4)((ej)jEN) = 4)((IG(j)I)jEN) for any bijection 7r : N —+ N. 

For 6 = (ej)jEN E Co, we define 

                  ~( ) = lim (I)(e*(n)) E [0, oo], 
n— 00 

where 6* (n) = (a, ... , en, 0, 0, ...) E co ,o and 61 > > • • • is the decreasing rearrange-
ment of the absolute value (lei I)jEN. If T E K(H) and is a symmetric norming function, 
then let us denote 

IT' 14. = 4)((sj(TMEN), 
where (sj(T))3EN is the singular numbers of T. We define two symmetrically normed 
ideals 

64, = {T E K(H) I IITI < oo}, 

and 6g°) by the closure of F(H) with respect to the norm I I • 114). Note that 6(4?) does not 
coincide with 64, in general. If 6 is a symmetrically normed ideal, i .e. 6 is a ideal of 
3,(H) and a Banach space with respect to the norm II IIr satisfying: 

(1) I I XTYI I e <_ IIXII I ITI I6 111711  for T E 6 and X, Y E I^ (H), 
(2) Vile = 11T 11  if T is of rank one, 

where 11 11 is the operator norm in I: (H), then there exists a unique symmetric norming 
function (D such that IITIIe = IITII4, for T E IF(H) and 6(g)) C 6 C 64,. 
 We introduce some symmetrically normed ideals. For 1 < p < oo , the symmetrically 
normed ideal C;;-(H) is given by the symmetric norming function 

                      (tt00                     ~P(S)—1\1 
j=1                                     7 /P• 

We define Cr (H) = 6(°) . We remark that it coincides with 6
4, For 1 < p < oo, the 

symmetrically normed ideal CP (H) is given by the symmetric norming function 

                 liP (6) = sup  Ej 16.  
                                       nEN_i~P                                        j1
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We define  C+(H) = 6; . However 64°P is strictly smaller than Cp (H). For 1 < p < q < 
r < oo, we have 

Cp(H) Cc (H) 5 Cq(H) 5 Cq (H) 5 Cr(H), 
where Cp(H) is the Schatten p class. 
  For a given symmetric norming function (1,, which is not equivalent to the 11-norm, 

there is a symmetric norming function (I)* such that 64). is the dual of 6(4?), where the 
dual pairing is given by the bilinear form (T, 8) H Tr(TS). If 1/p + 1/q = 1, then 
Cp(H)* Cq(H) and C; (H)* Cq (H). In particular, C~(H) and Cif(H) are called the 
Macaev ideal and the dual Macaev ideal, respectively. 

 Let 6(°) be a symmetrically normed ideal with a symmetric norming function (D. If 
T = (T1i ... ,TN) is an N-tuple of bounded linear operators, then the number k4,(r) is 
defined by 

k4, (r) = lim inf 
lmaNI I [u, Ta] I I,,                                    uEF(H)1_ 

where the inferior limit is taken with respect to the natural order on IF(H)1 and [A, B] = 
AB — BA. Throughout this paper, we denote I I I I  by I I I IP and k , by k; A relation 
between the invariant k4, and the existence of quasicentral approximate units relative to 

the symmetrically normed ideal eV is discussed in [Voil]. A quasicentral approximate 
unit for r = (T1, ... ,TN) relative to 6(°) is a sequence fun} 1 C F(H)t such that un / I 
and limn_>0., I I [un, Ta] I I4) = 0 for 1 < a < N. Note that for an N-tuple T = (Tl, ... , TN), 
there exists a quasicentral approximate unit for T relative to 6(°) if and only if k4, (r) = 0 
(e.g. see [Voi2, Lemma 1.1]). 
 We use the following propositions to prove our theorem. 

Proposition 2.1 ([Voi1, Proposition 1.1]). Let r = (T1i ... ,TN) E 1(H)N and eV be a 
symmetrically normed ideal with a symmetric norming function (D. If we take a sequence 
{un}°°_1 C F(H)i with w-lim,„ un = I, then 

k,D (r) < lim inf max 11 [un, Ta] I I4)• 
n-+oo 1<a<N

Proposition 2.2 ([Voi3, Proposition 2.1]). Let r = (T1i . .
Cl (H) for a = 1, ... , N. If

N 

E[Xa, Ta] E C1(H) + I; (H)+ 
a=1

,TN) E It,(H)N and Xa E

then we have 
NN 

Tr [Xa,Ta] < koo(r) E IIXaIII , 
a=1 a=1 

where IIXaIIl = infyeF(H) IIXa — YII(14- 

 The following proposition was shown in the proof of [GK, Theorem 14.1]. 

Proposition 2.3. For T E Cl (H), we have 

                  IITIIi = lim supE1 Si (T). n—>ooL;=11/3
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                    3. SUBSHIFTS AND MACAEV NORM 

  Let A be a finite set with the discrete topology, which we call the alphabet, and  Az the 

two-sided infinite product space H°°_,„ A endowed with the product topology. The shift 
map a on Az is given by (a(x))i = xi+1 for i e Z. The pair (AZ, a) is called the full shift. 
In particular, if the cardinality of the alphabet A is N, then we call it the N-full shift. 

  Let X be a shift invariant closed subset of AZ. The topological dynamical system 
(X, ox) is called a subshift of AZ, where a-x is the restriction of the shift map a. We 
sometimes denote the subshift (X, ax) by X for short. A word over A is a finite sequence 
w = (ai, ... , an) with ai E A. For x E Az and a word w = (al, ... , an), we say that w 
occurs in x if there is an index i such that xi = a1, ... , xi+n_1 = an. The empty word 
occurs in every x E AZ by convention. Let be a collection of words over Az We define 
the subshift X, to be the subset of sequences in Az in which no word in F occurs. It is 
well-known that any subshift X of AZ is given by XF for some collection of forbidden 
words over AZ. Note that for .7" -- 0, the subshift X f is the full shift Az 

  Let X be a subshift of AZ We denote by Wn (X) the set of all words with length n 
that occur in X and we set 

co 

IN = U Wn(X). 
n=o 

Let co : W,n+n+i (X) -+ A be a map, which we call a block map. The extension of cp from 
X to AZ is defined by (xi)jEZ H (yi)iEZ, where 

yi = Co((xi-m, xi-m+1, . . . , xi+n))• 

We also denote this extension by cp and call it a sliding block code. Let X, Y be two 
subshifts and cp : X -+ Y a sliding block code. If cp is one-to-one, then cp is called an 
embedding of X into Y and we denote X C Y If co has an inverse , i.e. a sliding block 
code z/) : Y -+ X such that o cp = idx and cp o W = idy, then two subshifts X and Y are 
topologically conjugate. 

  The topological entropy of a subshift X is defined by 

htop (X) = lim -1 (Wn (X) , 
n-*oo n 

where I Wn (X) 1 is the cardinality of Wn (X) . The reader is referred to [LM] for an intro-
duction to symbolic dynamics. 

  For a given subshift X, we next construct the creation operators on the Fock space 

associated with X (cf. [Mat]). Let {ea}aEA be an orthonormal basis of N-dimensional 
Hilbert space CN, where N is the cardinality of A. For w = (al, • • . , an) E Wn(X), we denote ew = al ®• • • ®6an • We define the Fock space Tx for a subshift X by 

Tx = Ceo ®®span{6,, I w E Wn(X)}, 
                                    nEN 

where Co is the vacuum vector . The creation operator Ta on Fx for a E A is given by 

Leo = Ca, 

                      ICa®6w if aw EW(X) ,                   Taco1 0 
otherwise.
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 Note that Ta is a partial isometry such that 

 Po + > TaTa = 1, 
                                        aEA 

 where P0 is the rank one projection onto C4-0. We denote by Pn the projection onto the 
 subspace spanned by 6w for all w E 1/142(X). For w = (al, ... , an) E 144,(X), we set T

w = Tai • • Ta,n The following proposition is essentially proved in [Voi3]. 

 Proposition 3.1. If T = (Ta)aEA) then we have 
k,(r) < htap(X). 

 Proof. We first assume that the topological entropy of X is non-zero. Let us denote 
 h = htap (X) • By definition, for a given e > 1, there exists K E N such that for any 

 n > K, we have 

—
n IWn(X)I < Eh. 

Thus 

IWn(X)I < ent, 
for all n > K. We set 

                                           n-1 / 

                    Xn=>2(i-n Pi. 
j-o 

One can show that 

II [Xn,Ta]II < n• 
Since 

K-1 

rn = rank([Xn,Ta]) < >2 IWW(X)I < >2 Iwj(X)I + E ei h 
j=1j=1j=K 

for n > K, we obtain 

                                  1/j  k~(T) < 1imsupma
AxI I [Xn , Ta]I100-< lim sup                                              E1:11j=< eh.                                   n—roon 

  In the case of h = 0, for any s > 0, we have 

I Ain (X)I < en6 
for sufficiently large n. By the same argument, we can get 

k, (r) < urn sup max I I [Xn, Ta] I I < 6, 
n_yoo aEA 

for arbitrary e > 0.p 

  Next we obtain the lower bound of k,;, (T) by using Proposition 2.2. Before it, we 
prepare some notations. Foranym E Z and w=(a1,..., an) E Wn(X ), let us denote 

                 m[w]—{(xi)iEz E X I xm = a1, . . . , xm+n-1 = an}• 
We sometimes denote the cylinder set o[w] by [w] for short. Let µ be a shift invariant 
probability measure on X. The following holds: 

(1) EaEAP([a]) = 1; 
(2) l~([a1, ... ,an]) _ EaoeA i ([ao, a1,...,an]); 
(3)t([a1, ... , an]) _ Lan+lEAI~([a1,...anyan+1])
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, Bn) of X, we define a function on X by 

1.43) = — E log p(B)XB, 
BE,6

where XB is the characteristic function of B. Let 01, ... , /3k 

partition Vi 10i is defined by 

     {nk                          BiIBieNi,1<i<k . 
i-1 

The value 

Ha(0) = — E µ(B) log t(B) 
BE() 

is called the entropy of the partition /3. We define 
n-1 

h~(Q, ax) _~-HA(Vax—z(0)). 
i=0 

The entropy of (X, ax, p) is defined by 

Note that 11,4(ax) < htap(X) in general. A shift invariant prob 
be a maximal measure if htap(X) = hi,(0-x). The reader is 

Theorem 3.2. Let T = A be the creation operators for o

be partitions of X. The
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and 

 XaTa = E E (([aw]))TwPoT,~, 
aEAn>0 wEWn(X) aEA 

E E p([w])TwPoT . 
n>0 wEWn(X) 

Hence we have 

E[Xa, Ta] = Po. 
aEA 

We assume that Max) 0 and denote it by h for short. To apply Proposition 2.2, we 
need an estimate of 1 1Xa I i Fix e > 0 and a E A. We set 

Dn = {w E Wn(X) e-(n+1)(h+e) < µ([aw]) < e—(n+1)(h—e) } 
and 

En = E p([aw]). 
wEWW(X)\Dn 

If u satisfies the assumption, then we have 

Een < 00.(*) 
n>0 

Note that si (Xa) = Si (XaTa) for all j E N. Thus we have I I Xa i = IIXaTaIIT We put 
Xa = E E µ([aw])TwPoTv,• 

n>0 wEDn 

We remark that for each j E N, there are n E N, w E Wn (X) such that S j (XaTa) = 
µ([aw]). By (*), we obtain

[[~~ 
        IXaIIl             =lim E—1Sj(XaTa)                =XaTaIi=m sup in                                       71.-+00~9=11/~ 

          _ oo E_ < I IXal ll+ 1imup---------no1~j= I IXal 11 
Hence it suffices to give an estimate of 11Xa i Let do = E37-0 IDA, where 1D31 is the 
cardinality of Di. One can easily check that 

                                     do sX 

                     IXa111< lim sup3—d17(a)  n—r0o En 1 1/j 

Note that if sj(Xa) = 1u([aw]) for some w E Dn, then we have 

e—(n+1)(h+E) < sj(Xa) = µ([aw]) < e—(n+1)(h—E) 

Assume that there are m > n such that si(Xa) = p([aw]) for some w E Dm and j < dn. 
Then it holds that 

e—(m+1)(h—e) > e—(n+1)(h+e)(**) 
Indeed, if e-(m+1)(h-E) < e—(n+1)(h+E) , then 

sj(Xa)=µ([aw]) < e—(m+l)(h—E)< e—(n+1)(h+e) < µ([au])~
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for all u E Dk (1 < k < n). However, by our assumption, we have  µ([av]) < sj(Xa) _ 
µ([aw]) for some v E D1 and 1 < 1 < n. This is a contradiction. 

 Hence, by (**), we have 
m+1 <(n+1)h+g  

Let k E N withE 

              (n+1)h-----+~- 1 < k+ 1 <(n+ 1)h+~  
Since

[[~~(_[['~~[~((                L1 s~(Xa)<Eik0LwEDtbt([aw])  

Ecn 1 log do 

< E o l-taa])  
log do 

<n+ 1 h+Eµ([a])~ 
log do h — E 

we obtain 

                IIXaIIi limsupn+l h+Eµ([a])- 
                                 n->oo log do h - E 

Moreover, because 

µ([a]) = E µ([aw]) + E µ([aw]) 5- I DnI e-(n+1)(h-e) +. En, 
wEDnwEWn(X)\Dn 

we have 

(t([a]) — En) e(n+1)(h—e) < I Dni 
Note that En —* 0 (n oo) by (*). Therefore 

       IIXaIIi < lim supn+1 h+ Aga]) n—oo log IDnI h - E 

             < limo
olog (µ([a])- En) +1(n + 1)(h - E)•h -Eµ([a]) 

(h----------e)2µ([a])-
Since E is arbitrary, we have 

                 Vag<hµ([a])• 
By Proposition 2.2, the proof is complete.^ 

  We now give some examples of subshifts with a maximal measure satisfying the condi-
tion in Theorem 3.2. 

Corollary 3.3. Let A be a 0-1 N x N matrix. We denote by EA the Markov shift asso-
ciated with A, i.e. 

EA = {(az)2Ez E Sz A(ai, a2+1) = 1}, 
where S = {1, ... , N} is an alphabet. If T = (Ta)aES is the creation operators for the 
Markov shift EA, then we have 

koo(T) = htop(EA)•
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 Proof It suffices to show that the unique maximal measure of EA satisfies the condition 
 in Theorem 3.2. For simplicity, we may assume that A is irreducible with the Perron 

 value a. Note that the topological entropy  htpp (EA) is equal to log a. If 1 and r are the 
 left and right Perron vectors with Ea lara = 1, then the unique maximal measure p is 

 given by 

lao ran  
                             p([ao, al, ... , an]) = an 

 where (a0, a1, • • • , an) E W,2+1 (EA) (e.g. see [Kit]). For any E > 0, there exists K E N 
 such that for any n > K , we have 

                              log larba  

                             n+1<~' 

 for all 1 < a, b < N. Therefore for any w E Wn+1(EA), we have 

1 n+llogp([w]) — loga <E, 
 for all n > K, i.e. the maximal measure p satisfies the condition in Theorem 3 .2. Li 

  More generally, there is a class of subshifts, which is called almost sofic (see [Pet]).  A 
subshift X is said to be almost sofic if for any E > 0, there is an SFT E C X such th
at htop (X) — E < ht0 (E), where a shift of finite type or SFT is a subshift that can be 

 described by a finite set of forbidden words , i.e. a subshift having the form Xy. for some  fi
nite set .7" of words. 

Corollary 3.4. If T = (Ta)aEA is the creation operators for an SFT E, then we have 
k;(T) = /hop (E). 

Proof We recall that every SFT E is topologically conjugate to a Markov shift EA asso-ciated with a 0-1 matrix A. Now we give a short proof of this result. Let E be an SFT 
that can be described by a finite set .7" of forbidden words. We may assume that all words 
in .F have length N + 1. We set Ar = WN (E) and the block map co : WN (E) -3 ,A.r, 
w 1—> w. We define the N-th higher block code 13N: E —+ (.AnZ by 

                       (fN(x))i =(xi,..., xi+N-1) E.ArN 
                                                                                        , for x = (xi)iEN E E. Note that ON is the sliding block code with respect to cp. The 

subshift ,6N (E) is given by a Markov shift, i.e. there is a 0-1 matrix A with )3N(E) = EA. 
  Let p be the maximal measure of EA. The maximal measure of E is given by v = µo ON. We recall that p is the Markov measure given by the left and right eigenvectors 1, r and the eigenvalue a. For w E Wn(E) with n > N, we have 

11([w]) = p([co(w[1,N]), ... , CO(w[n-N+1,4) 
                               larb 

an -N 

where a = cp(w[l,N]), b = co^w[n_N+1,n]) and w[k,1] = (Wk,... , wi) for k <1. Hence one can 
show that the maximal measure v of E satisfies the condition in Theorem 3 .2 by the same 
argument as in the proof of Corollary 3.3.O
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 Corollary 3.5. Let X be an almost sofic shift. If T = (Ta)aEA is the creation operators 
for X, then we have 

kc,o (T) = htop (X) • 

Proof. Let E > 0. Since X is almost sofic, there is an SFT E C_ X such that htop (X) — E < 
htop(E). Let yo : E —4 X be an embedding. Note that the subshift cp(E) is also an SFT. 
Thus we may identify cp(E) with E. Let µ be the unique maximal measure of E. For 
a E A, we set 

                   Xa = EE lu([aw])TwPOTaw, 
n>0 w 

where w runs over all elements in Wn(E) with aw E W(E). We have shown that the 
maximal measure p of E satisfies the condition of Theorem 3.2 in the proof of Corollary 

3.4. Hence by the same argument as

7,in the proof of Theorem 3.2, we have                          htop(E) < koo(T). 

Thus for arbitrary E > 0, the following holds: 

htop(X) — E < htop(E) < koo(T). 
It therefore follows from Proposition 3.1 that ht, (X) = lco (r) if X is an almost sofic 
shift.El 

  For /3 > 1, the 13-transformation T,a on the interval [0, 1] is defined by the multiplication 
with /3 (mod 1), i.e. Ts(x) = fix — [8x], where [t] is the integer part of t. Let N E N with 
N — 1 < /3 < N and A = {0, 1, ... , N — 11. The /3-expansion of x E [0,1] is a sequence 
d(x, /3) = {di(x, 13)}iEN of A determined by 

di(x, )3) = [,3TQ 1(x)]. 
We set 

(r) = sup (di(x, f ))iEN, 
                                   xE[0,1) 

where the above supremum is taken in the lexicographical order , and we define the shift invariant closed subset E; of the full one-sided shift AN by 

EQ ={x E AN IUZ(x) <~ai= 0, 1, ... 1 , 
where < is the lexicographical order on AN = {0, 1, ... ,N — 1}N The 0-shift Ea is the 
natural extension given by 

EQ = { (xi)iEz E AZ I (xi)i>k E E;13-, k E Z1. 
It is known that htop(EQ) = log/3, (see [Hof]). 

  The following result might be known among specialists. However, we give a proof here 
as we can not find it in the literature. 

Proposition 3.6. For 8 > 1, the 8-shift Ep is an almost sofic shift. 
Proof In [Par], it is shown that EQ is an SFT if and only if d(1, /3) is finite, i.e. there is K E N such that dk(1, )3) = 0 for all k > K . Thus we may assume that d(1, /3) is not finite. Let Cs = (ei)iEN. For n E N, there is /3(n) < /3 such that 

         _ -----2~n                    1
Q(n)0(n)2 + ... + Q(n)n •
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 In [Par, Theorem 5], it is proved that 

 lim f (n) _ 
n-*oo 

 Hence we may assume that N — 1 < f(n) < f for sufficiently large n . Since the maximal 
element (8(n) has the 

(form                       (1) 67 ... , ( n — 1)7 67 61 ... , (en — 1), 1, • • ), 
we have Co(n) < (, where < is the lexicographical order. Therefore we obtain 

                        E+(n)C-{0,1,...,N-1}N 

It follows that E(3(n) is the shift invariant closed subset of Ep with topological entropy 

logf(n). Since d(1, f(n)) is finite, the subshift E,s(n) is an SFT. It therefore follows form [P
ar, Theorem 5] that Ep is an almost sofic.^ 

  Hence it holds that k~ (r) = ht0 (E,9) for every 0-shift by Corollary 3.5. 

Corollary 3.7. Let EQ be the 3-shift for 13 > 1. If r = (Ta)aEA is the creation operators 
for E,ei then we have 

koo(r) = htop(E0) = log 0. 

                      4. GROUPS AND MACAEV NORM 

  We discuss a relation between groups and the Macaev norm. Let F be a countable 

finitely generated group, S a symmetric set of generators of F We denote by I Is the 
word length and by Wn(r, S) the set of elements in F with length n, with respect to 
the system of generators S. The logarithmic volume of a group F in a given system of 

generators S is the number 

                             toWF'S 
vs = lim gn ()  

n-+oon 

(cf. [Ver]). The following proposition can be proved in the same way as in the free group 
case [Voi3, Proposition 3.7. (a)]. 

Proposition 4.1. Let F be a finitely generated group with a finite generating set S and 
A the left regular representation of F If we set As = (Aa)aES, then 

                                     /coo— < vs. 

Proof. Let us denote by Pn the projection onto the subspace span{O9 E l2(r) I Igls = n}. 
If we set 

n—z /                   Xn=El1-IL)i, 
j-0 

then we have 

II XnAa —AaXnII= IItaXnAa— Xnll<1 

                                                   n for a E S. Hence 

                            log ~n0IWn(r,8)1 I       k
; (As) < lim sup max I [Xn, Act] 113<lim ~—= v 

         n_yoo aES—n-+ooS
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   Now we compute the exact value of k~ (As) for certain amalgamated free product 
 groups. 

 Proposition 4.2. Let A be a finite group,  G1i  •  • • ,G Ad  nontrivial finite groups contain-
 ing A as a subgroup and H1i ... , HN the product group of the infinite cyclic group Z 

 and the finite group A, (N + M > 1). Let F be the amalgamated free product group of 
GI,- - - , Gm-,111,• • • , HN with amalgamation over A. Set S = G1 U • • • U GM U (S1 x A) U 
• • • U (SN x A) \ {e}, where Si is the canonical generating set {xi, xi-11 of the infinite 

 cyclic group Z and e is the group unit. Let a be the left regular representation of F and 
As = (Aa)aES• Then we have 

                          k,(As) = vs. 
 In particular, for the free group FN (N > 2), we have 

ICo(As) = log(2N — 1). 

 Proof By Proposition 4.1, it suffices to show that vs < k~(As). Let SZi be the set of the 
 representatives of Gi/A with e E SZi for i = 1, ... , M. We identify xi with (xi, e) E Hi f

or j = 1, ... , N, and set SZM+3 _ {xi, x7 1, e}. Let 

_ M+N 

S= U SZi\{el. 
                                              i=1 

We define the 0-1 matrix A with index S by 

A(a, b) —{1 if I abI s = 2; 
                                   0 otherwise. 

One can easily check that the above matrix A is irreducible and the topological entropy h
top(EA) of the Markov shift EA coincides with the logarithmic volume vs of F with respect to the generating set S. 

  We denote by Fo the subset of F consisting of the group unit e and elements al • • • an E F
, (n E N) of the form 

               ak E 1lik \ {e} for k = 1, ...n                                                  ,, 

Zk � Zk+1if 1 < ik < M, 
               ak = ak-viif  M + 1 < ik < M + N, ik = tik+1 

Note that the subspace 12(F0) can be identified with the Fock space .FA of the Markov shift EA by the following correspondence: 

                           Srbe +-->o,                                (la...an +-->  eai ®• • • ® ean. 
Let us denote by Pn the projection onto the subspace 

span{59 E 12(F) I ISIs = n}. 
For a E S, we define the partial isometry T

a E I::(12(F)) by 

                        Ta = E Tn+1\aPn 
n>o
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Under the identification with .FA, the partial isometry  Ta  112(r0) for a E S is the creation 
operator on .TA, (cf. [Oka]). We also identify Fo and W(EA). For w= al • • • an E Fo, we 
set Tw = Tai • • Tan. Let bt be the maximal measure of EA. For a E S, we put 

                   Xa = EE µ([aw])TwPoTaw, 
n>0 w 

where w runs over all w E F0 with kids = n and law awls= I w l s+ 1._For a E S\ S, we 
set Xa = 0. It can be easily checked that P1a, Xa] = [Ta, Xa] for a E S. Therefore by the 
same proof as in the sufshift case, we obtain 

vs = htoP(EA) = k,(As)• 
                                                      El

Remark 4.3. Let F be a finitely generated group with a finite generating set S. In [Voi5], 
Voiculescu proved that if the entropy h(F, ,a) of a random walk tt on F with support S 
is non-zero, then k~((aa)aES) is non-zero. However the above proposition suggests that 
the volume vs of F is more related to the invariant k~((Aa)aES) rather than the entropy 
h(F, ii). It is an interesting problem to ask whether vs being non-zero implies k~((7a)aES) 
being non-zero. We also remark here that there is a relation between vs and h(F, µ): If 
h(F, tt) � 0, then vs 0, (see [Ver, Theorem 1]). If the above mentioned problem was 
solved affirmatively, then it would follow from Proposition 4.1 that k~((Aa)aes) 0 0 if 
and only if vs 0 0, i.e. F has exponential growth.
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                           Abstract 

   We give a construction of a nuclear C*-algebra associated with an amalgamated free 

product of groups, generalizing Spielberg's construction of a certain Cuntz-Krieger algebra 
associated with a finitely generated free product of cyclic groups. Our nuclear C*-algebras 

can be identified with certain Cuntz-Krieger-Pimsner algebras. We will also show that our 

algebras can be obtained by the crossed product construction of the canonical actions on 

the hyperbolic boundaries, which proves a special case of Adams' result about amenability 

of the boundary action for hyperbolic groups. We will also give an explicit formula of the 

K-groups of our algebras. Finally we will investigate the relationship between the KMS 

states of the generalized gauge actions on our C* algebras and random walks on the groups.

Introduction

In [Cho], Choi proved that the reduced group C*-algebra CT (Z2 * z3) of the free product 
of cyclic groups Z2 and Z3 is embedded in 02. Consequently, this shows that CT (z2 * z) 
is a non-nuclear exact C*-algebra, (see S. Wassermann [Was] for a good introduction to 
exact C*-algebras). Spielberg generalized it to finitely generated free products of cyclic 
groups in [Spi]. Namely, he constructed a certain action on a compact space and proved 
that some Cuntz-Krieger algebras (see [CK]) can be obtained by the crossed product 
construction for the action. For a related topic, see W. Szymanski and S. Zhang's work 

[SZ]. 
  More generally, the above mentioned compact space coincides with Gromov's notion 

of the boundaries of hyperbolic groups (e.g. see [GH]). In [Ada], Adams proved that 
the action of any discrete hyperbolic group F on the hyperbolic boundary 8F is amenable
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 in the sense of Anantharaman-Delaroche [Ana]. It follows from [Ana] that the corre-
 sponding crossed product  C(aF) F is nuclear, and this implies that C(F) is an exact 

C*-algebra. 

   Although we know that C(OF) xT F is nuclear for a general discrete hyperbolic group F 
 as mentioned above, there are only few things known about this C*-algebra. So one of our 

 purposes is to generalize Spielberg's construction to some finitely generated amalgamated 
 free product F and.to give detailed description of the algebra C(aF) xi T F. More precisely, 
 let I be a finite index set and Gi be a group containing a copy of a finite group H as a 

 subgroup for i E I. We always assume that each Gi is either a finite group or Z x H . 
 Let F = *HGi be the amalgamated free product group . We will construct a nuclear C*-

 algebra Or associated with F by mimicking the construction for Cuntz-Krieger algebras 

 with respect to the full Fock space in M. Enomoto, M. Fujii and Y. Watatani [EFW1] 
 and D. E. Evans [Eva]. This generalizes Spielberg's construction. 

   First we show that Or has a certain universal property as in the case of the Cuntz-

 Krieger algebras, which allows several descriptions of Or For example , it turns out that 
Or is a Cuntz-Krieger-Pimsner algebra, introduced by Pimsner in [Pim2] and studied by 

 several authors, e.g. T. Kajiwara , C. Pinzari and Y. Watatani [KPW]. We will also show 
that Or can be obtained by the crossed product construction . Namely, we will introduce 
a boundary space ci with a natural F-action , which coincides with the boundary of the 
associated tree (see [Ser], [W1]). Then we will prove that C(f2) >r F is isomorphic to O

r. Since the hyperbolic boundary aF coincides with f2 and the two actions of F on aF 
and S2 are conjugate, Or is also isomorphic to C(oF) xT F, and depends only on the group 
structure of F. As a consequence , we give a proof to Adams' theorem in this special case. 

   Next, we will consider the K-groups of Or . In [Pim1], Pimsner gave a certain exact 
sequence of KK-groups of the crossed product by groups acting on trees . However, it 
is not a trivial task to apply Pimsner's exact sequence to C(OF) xi

,. F and obtain its 
K-groups. We will give explicit formulae of the K -groups of Or following the method 
used for the Cuntz-Krieger algebras instead of using C(aF) ›a,. F We can compute the K-groups of C(oF) ~ r F for concrete examples. They are completely determined by the 
representation theory of H and the actions of H on Gi/H (the space of right cosets) by 
left multiplication. 

  Finally we will prove that KMS states on Or for generalized gaug
e actions arise from h

armonic measures on the Poisson boundary with respect to random w
alks on the discrete 

group F. Consequently, for special cases, we can determine easily the type of factor Or for 
the corresponding unique KMS state of the gauge action by ess

entially the same arguments 
in M. Enomoto, M. Fujii and Y. Watatani [EFW2], which generalized J. Ramagge and G

. Robertson's result [RR]. 

  Acknowledgment. The author gives special thanks to Pr
ofessor Masaki Izumi for 

various comments and many important suggestions .
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2 Preliminaries

In this section, we collect basic facts used in the present article. We begin by reviewing 

the Cuntz-Krieger-Pimsner algebras in  [Pim2]. Let A be a C*-algebra and X be a Hilbert 
bimodule over A, which means that X is a right Hilbert A-module with an injective *-
homomorphism of A to ,C(X), where £(X) is the C*-algebra of all adjointable A-linear 
operators on X. We assume thatX is full,that is,{(x, (x,y)Ax, y E X} generates A as 
a C*-algebra, where (•, •)A is the A-valued inner product on X. We further assume that 
X has a finite basis {u1i ... , un}, which means that x = E 1 ui(ui, x)A for any x E X. 
We fix a basis {u1, .. , un} of X . Let .1(X) = A ®®n>l x(n) be the full Fock space 
over X, where X (n) is the n-fold tensor product X ®A X ®A • • • ®A X. Note that .F(X ) 

, is naturally equipped with Hilbert A-bimodule structure. For each x E X, the operator 

Tx :.F(X) -i ..T(X) is defined by

Ts(xl®...®xn) = x®xi0•••®xn, 

TT (a) = xa,

for x, x1, ... , xn E X and a E A. Note that Tx E L( .7. (X)) satisfies the following relations

  * T:Ty = (x, OA/ x, y E X, 

aTxb = Taxb, x E X, a, b E A.

  Let 7r be the quotient map of £(..T.(X)) onto L(.T(X))/1C(.T'(X)) where 1C(.T(X)) is 
the C*-algebra of all compact operators of L (.P(X)) . We denote Ss = 7r (TT) for x E X. 
Then we define the Cuntz-Krieger-Pimsner algebra Ox to be

Ox=C*(Ss x E X).

Since X is full, a copy of A acting by left multiplication on F(X) is contained in Ox. 
Furthermore we have the relation

SuiSui=1. 

i=1

(t)

  On the other hand, Ox is characterized as the universal C*-algebra generated by A 

and SS, satisfying the above relations [Pim2, Theorem 3.12]. More precisely, we have

Theorem 2.1 ( [Pim2, Theorem 3.12]) Let X be a full Hilbert A-bimodule and Ox 
be the corresponding Cuntz-Krieger-Pimsner algebra. Suppose that {u1, - - , un} is a finite
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basis  for  X. If B is a C*-algebra generated by {sX}xEX satisfying

sy + sy 

aszb 

sxSy 

          * 

   Sui sui 

i=1

sx-Fy, 

Saxb, 

(x) y)A, 

1.

x E X, 

xEX,a,bEA, 

x,yEX,

Then there exists a unique surjective *-homomorphism from Ox onto C*(sz) that maps 
SS to sz.

  Next we recall the notion of amenability for discrete C*-dynamical systems introduced 

by C. Anantharaman-Delaroche in [Ana]. Let (A, G, a) be a C*-dynamical system, where 
A is a C*-algebra, G is a group and a is an action of G on A. An A-valued function h on 

G is said to be of positive type if the matrix [asti(h(s? lsi))] E WA) is positive for any 
Si, ... , sn E G. We assume that G is discrete. Then a is said to be amenable if there 
exists a net (hi)jEI C Cc(G, Z(A")) of functions of positive type such that

hi(e) < 1 for i E I, 
lim hi(s) = 1 for s E G, 

where the limit is taken in the a-weak topology in the enveloping von Neumann algebra 

A" of A. We remark that this is one of several equivalent conditions given in [Ana, 
Theoreme 3.3] . We will use the following theorems without a proof. 

Theorem 2.2 ( [Ana, Theoreme 4.5]) Let (A, G, a) be a C*-dynamical system such 
that A is nuclear and G is discrete. Then the following are equivalent: 

  1) The full C*-crossed product A >Ia G is nuclear; 
2) The reduced C*-crossed product A >l a,. G is nuclear; 

  3) The W*-crossed product A" >law G is injective; 
4) The action a of G on A is amenable.

Theorem 2.3 ( [Ana, Theoreme 4.8]) Let (A, G, a) be an amenable C*-dynamical sys-
tem such that G is discrete. Then the natural quotient map from A >a  G onto A >i

,,,. G i
s an isomorphism.

  Finally, we review the notion of the strong boundary actions in [LS]. Let r be a 
discrete group acting by homeomorphisms on a compact Hausdorff space S2. Suppose 
that S2 has at least three points. The action of F on CZ is said to be a strong boundar

y action if f
or every pair U, V of non-empty open subsets of S2 there exists -y E F such that 

yUc C V The action of F on S2 is said to be topologically free in the sense of [AS] if 
the fixed point set of each non-trivial element of F has empty interior .
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Theorem 2.4 ( [LS, Theorem 5]) Let  (Sl,  F) be a strong boundary action where S2 is 
compact. We further assume that the action is topologically free. Then C(C1) >17.F is purely 
infinite and simple.

3 A motivating example 

Before introducing our algebras , we present a simple case of Spielberg's construction for 
F2 = Z * Z with generators a and b as a motivating example. See also [RS]. The 
Cayley graph of 1F2 is a homogeneous tree of degree 4 . The boundary Sl of the tree in the 
sense of [Fre] (see also [Fur]) can be thought of as the set of all infinite reduced words 

= x1x2x3 • • • , where xi E S = {a, b,a-1,b-1}. Note thatQis compact in the relative 
topology of the product topology ofUN S.In an appendix, several facts about trees are 
collected for the convenience of the reader, (see also [FN]). Left multiplication of F2 on 
SZ induces an action of IF2 on C(12). For x E IF2i let 11(x) be the set of infinite words 
beginning with x. We identify the implementing unitaries in the full crossed product 
C(S2) >a IF2 with elements of F2. Let px denote the projection defined by the characteristic 
function Xc (x) E C(Sl). Note that for each x E S ,

Px + xpx-ix-1 = 1,

Pa +Pa-1 +pb Pb-1 = 1, 

hold. For x e S, let Sx E C(0) >a F2 be a partial isometry

Sx = x(1 — px-i).

Then we have

S~Sy = x-1PxPyy = bx,ySxSx = ox,y(1 
SxSZ = x(1 —Px-1)X-1 = Px, 

Sx* Sx=1—px-1= E SyS;. 
yOx`1 

These relations show that the partial isometries Sx generate the Cuntz-Krieger algebra 
OA [CK], where

A=

 1  0  1  1 

0 1 1 1 

1 1 1 0 

1 1 0 1

On the other hand, we can recover the generators of  C(C2) > IF2 by setting

x=SS+SS_1 andpx=SxS; .
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Hence we have  C(1) >i F2 0A• 
   Next we recall the Fock space realization of the Cuntz-Krieger algebras, (e.g. see [Eva], 

[EFW1]). Let {ea, eb, ea-1, eb-1 } be a basis of C4 We define the Fock space associated 
with the matrix A by 

.~•t] = (Ceo ®® (span------{exl ®... 0 exn I A(xz, xi+1) = 1}) , 
n>1 

where e0 is the vacuum vector. For any x E S, let Tx be the creation operator on .F, given 

by 

Teo = ex, 

                               ex 0 ex1 0 • • ®exn if A(x, x1) = 1, T
x (ex, ®• • • 0 exn) = 0otherwise . 

Let Po be the rank one projection on the vacuum vector e0. Note that we have 

TaTT +TbTb +Ta-iTa_1 +Tb-1T7,`- 1 +po = 1. 

If 7r is the quotient map of 13(T) onto the Calkin algebra Q(.F), then the C*-algebra 
generated by the partial isometries {7r(Ta), lr(Tb), 7r(T-1), 7r(Tb-1)} is isomorphic to the 
Cuntz-Krieger algebra OA. 

   Now we look at this construction from another point of view. We can perform the 

following natural identification: 

            e0~~ be  
      DE /2(F2). 

                                                              ex1 0••• 0 ex„bxl...xn 

Under this identification, the creation operator Tx on l2(F2) can be expressed as 

Txbe = Axbe, 
      \- 

1Jl/~xbxl...xn if x~x11 ,                   Txbxl...xn =0otherwise . 

where ) is the left regular representation of F2. 
  For a reduced word x1 • • • xn E F2, we define the length function on F2 by 

x1 • • •xnI = n. Let pn be the projection onto the closed linear span of {6
7 E l2(F2) 1lyJ = n}. Then we can express Tx for x E S by 

Tx = Epn+lAxpn• 
                                         n>0 

  Note that this expression makes sense for every finitely generated group . In the next 
section, we generalize this construction to amalgamated free product groups . 
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4 Construction of a nuclear  C*-algebra Or

In what follows, we always assume that I is a finite index set and Gi is a group containing 

a copy of a finite group H as a subgroup for i E I. Moreover, we assume that each Gi is 

either a finite group or Z x H . We set Io = {i E I I I Gil < oo}. Let r = *HGi be the 
amalgamated free product. 

   First we introduce a "length function' I I on each Gi. If i E Io, we set Igi = 1 for 
any g E Gi \ H and IN = 0 for any h E H. If i E I \ Io we set Kali,  h)I = InI for any 
(a2 , h) e Gi = Z x H where ai is a generator of Z. Now we extend the length function 

to r Let SZi be a set of left representatives of Gi/H with eS2i.If y E r is written 
uniquely asgl• • gnh, where 91 E,gnE Qin withi17-i2, • • • , in-i in(we write 
simply i1 • • # in), then we define 

171 = > Igkl. 
k=1 

  Let pn be the projection of l2 (r) onto l2 (rn) for each n, where rn = { y E r I I'y1 = n }. 
We define partial isometries and unitary operators on 12 (F) by 

{Tg = En>Opn+iAgpn if g E UiE7 Gi \ H, Vh=AhifhEH, 

where a is the left regular representation of I'. Let 7r be the quotient map of 13(12(r)) 
onto 13(12(r))/K(l2(r)), where 13(l2(r)) is the C*-algebra of all bounded linear operators 
on 12(r) and K(l2(r)) is the C*-subalgebra of all compact operators of X3(l2(r)). We set 
7r(Tg)=Sg and lr(Vh)=Uh. For yEF,we define S7by 

S7 = Sgl ... sgn , 

where y = gi • • • gn for some g1 E Gil \H,- • •  , gn E Gin \ H with i1 • • in. Note that 
ay does not depend on the expression y = g1 • gn. We denote the initial projections of 
Si, by Qry = Sry Si, and the range projections by P7 = Sy Sy for y E r. 

  We collect several relations, which the family { Sg, Uh I g E LIE/ Gi \ H, h e H } 
satisfies. 

For g,g'EU2C2\H with lgl=Ig'I=1 and hEH, 

Sgh = Sg Uh, Shg = Uh Sg,(1) 

                  PP=PgPg, if gH = g'H,          gs,0 if gH g'H .(2) 
Moreover, if g E Gi \ H and i E Io, then 

            Qg = E E Ps' + > Paj + Pa-1, (3) 
7 3Elo g'EStj\{e} jEI\Io 

jri
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and if g =  al and i E I \ Io, then

Qaf' = i Ps' + E (Pai+Pa1)+Pa1. 
jElo g'ESZj\{e} jEI\Io 

j ¢i

(3)'

Finally, 

1=E E Pg+ E (Pa, + Pail)(4) 
iElo geOs\{e} iEI\Io 

  Indeed, (1) follows from the relations Tgh = TgVh and Thg = VhTg. From the definition, 
we have Tg,Tg = En>opnA;,Pn+lAgpn• This can be non-zero if and only if = 0, i.e. 
g'—lg E H. We have (2) immediately. The relation 

1 = E E Tyr + E (TaiTZ+Ta1T'i)+PO 
                                                                                               t iElo gEf ,iEI\Io 

implies (4). By multiplying SS on the left and S9 on the right of equation (4) respectively, 
we obtain (3). 

  Moreover, the following condition holds: Let Pi = Egeo, P9 for i E Io, and Pi = 
Paa+Pa-1 for iEI\Io. For every iEl,wehave 

            4 C*(H) C* (PiUhPi I h E H) .(5)

Indeed, since the unitary representation P'VhP;' contains the left regular representation 
of H with infinite multiplicity, where PI is some projection with ir(P?) = Pi. we have 
relation (5). 

  Now we consider the universal C*-algebra generated by the family {S9, Uh g E 
UiEI Gi \ H, h E H} satisfying (1), (2), (3) and (4). We denote it by Or. Here, the 
universality means that if another family {sg, uh} satisfies (1), (2), (3) and (4), then there 
exists a surjective *-homomorphism 0 of Or onto C*(sg,uh) such that cb(SS) = sg and 
q(Uh) = uh. Summing up the above, we employ the following definitions and notation:

Definition 4.1 Let I be a finite index set and Gi be a group containing a copy of a finite 
group H as a subgroup for i E I. Suppose that each Gi is either a finite group or Z x H. 
Let Io be the subset of I such that Gi is finite for all i E I. We denote the amalgamated 
free product *HGi by F 

  We fix a set S2i of left representatives of Gi/H with e E S2i and a set Xi of representa-
tives of H\Gi/H which is contained in S2i. Let (ai, e) be a generator of Gi for i E I \ Io. 
We write ai, for short. Here we choose S2i = Xi = {ai I n E N}. We exclude the case 
where U 2 Sli \ {e} has only one or two points. 

  We define the corresponding universal C* -algebra Or generated by partial isometries 
S9 for g E UiEI Gi \ H and unitaries Uh for h E H satisfying (1), (2), (3) and (4).
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 We set  for  7Er , 
                      Qry=sy S7, Pry= 

                     Pi = IgESZiPg if 
Pi=Pa;+Pa-~ ifi 

For convenience, we set for any integer n,

Sy Sy, 

iEJo, 

EI\Io.

rn={-yErI1'71=n},

We also set 0

On = {'y E rn 17 = 71... 7n, 7k E , L1k 

Un>1 On•

,il ...#in}.

Lemma 4.2

Proof

ForiEI and h E H,

Use the above relations (2).

UhPZ = PZUh.

Lemma 4.3 Let 71,72 E r. 

IfI71I=I72I, then 5';Sry2 
  If 1711 > 1721, then S;51,,,, 
  If I7i I < 1721, then S 1 Sry2

Proof

Suppose that 5; Sry2 0. 
= Q9Uh for some g E UiEI G 
= Sy for some -y E r with 171 
= Sry for some 'y E r with 171

By (2), we obtain the lemma.

2,hEH. 
= 1711 — 1721. 
=I72I—171I•

Corollary 4.4

Or = span{ SµPPSUI it,VEr, i E I }.

Proof This follows from the previous lemma.^ 

  Next we consider the gauge action of Or. Namely, if z E T then the family { zSg, Uh } 
also satisfies (1), (2), (3), (4) and generates Or. The universality gives an automorphism 
az on Or such that az(Sg) = zSg and az(Uh) = Uh. In fact, a is a continuous action of 
T on Or, which is called the gauge action. Let dz be the normalized Haar measure on T 

and we define a conditional expectation of Or onto the fixed-point algebra Or = { a E 
Or I az (a) = a, for z E T } by

(a) = faz(a)dz 

,

for a E Or.

Lemma 4.5 The fixed-point algebra Or is an AF-algebra.
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Proof. For each i E I, set 

 =  span{  SSPPSv  I  ,  ,  v  E  Fri  }. 

We can find systems of matrix units in .Pn, parameterized by a, v E On, as follows: 

eZµ,,=S~ PS* 

• Indeed, using the previous lemma, we compute 

eµi ,vieµ2vz — — b~i,{~zeµi,~z' 

Thus we obtain the identifications 

                           r..MN('n,i) (C)®elii,AeiLi 

for some integer N(n, i) and some u E An. Moreover, for , rl, 

            i*iSSP:UhPiS1if e,r1E pH,             eµµ(SePzS'7)eµµ= { 0otherwise. 
for some h E H. Note that C*(S1,,PiUhPZS, I h E H) is isomorphic to C*(PiUhPi I h E H) 
via the map x H SµxSA. Therefore the relation (5) gives 

.71 Mk(C) ® span{ S,PiUhPiSv I h E H } Mk(C) ® C*(H). 

Note that {Ti I i E I } are mutually orthogonal and 

                                = ®iEIn 

is a finite-dimensional C*-algebra. 
  The relation (2) gives - n Hence,

Fn 

n>0 n>0 

is an AF-algebra. Therefore it suffices to show that F = Or. It is trivial that C O. 
On the other hand, we can approximate any a E Or by a linear combination of elements 
of the form S,,PZSv. Since (I)(a) = a, a can be approximated by a linear combination of 
elements of the form S,,PiSS with IµI = M. Thus a E .~'^ 

  We need another lemma to prove the uniqueness of Or. 

Lemma 4.6 Suppose that io E I and W consists of finitely many elements (p, h) E L x H 
such that the last word of p is not contained in Qio and W fl H = 0. Then there exists 
'y = 90 • • • 9n with gk E S2ik and io 0 • • • 0 in 0 io such that for any (,u, h) E W, Wry 
never have the form -y-y' for some ry' E F.

10



Proof Let  io E I and W be a finite subset of 0 x H as above. We first assume that 
III > 3. Then we can choose x E SZi, y E Slj and z E Of such that j io j' and j j' 
For sufficiently long word 

7 = (xy) (xz) (xyxy) (xzxz) (xyxyxy) (xzxzxz) • • • (• • • z), 

we are done. We next assume that III = 2. Since we exclude the case where 01U S22 \ {e} 
has only one or two elements, we can choose at least three distinct points x E 1407 y E Sl~ 
and zE Cif . If io j = j'weset 

ry = (xy) (xz) (xyxy) (xzxz) (xyxyxy) (xzxzxz) • • • (• • z), 

as well. If io = j # j'weset 

-y = (xz) (yz) (xzxz) (yzyz) (xzxzxz) (yzyzyz) • • • (• - • z). 

Then if y has the desired properties, we are done. Now assume that there exist some 

(p, h) E W such that phry = Ty' for some -y' Fix such an element (pt, h) E W By 
hypothesis, we can choose ö E A with Iy'I < Iaj such that the last word of 5 does not 
belong to Slio and b does not have the form -y'b' for some 5' Set %y = yS. Then p h=y does 
not have the form Ty" for any 7" Indeed, 

1-1,h7Y = µh'yb = 'Y Y S # t-y", 

for some 'y" Since W is finite, we can obtain a desired element ry by replacing 5,, induc-
tively.^

We now obtain the uniqueness theorem for Or.

Theorem 4.7 Let { s9, uh } be another family of partial isometries and unitaries satisfy-
ing (1), (2), (3) and (4). Assume that 

C* (H) "' C* (piuhpi I h E H ) 

where pi = EgEnme} sgs9 for i E Io and pi = sais + Sat 1s*. 1 for i E I \ Io. Then the 
canonical surjective *-homomorphism 7r of Or onto C* (s9, uh) is faithful. 

Proof To prove the theorem, it is enough to show that (a) 7 is faithful on the fixed-point 
algebra Or, and (b) Ih r (1.(a)) II < 117(a) 11 for all a E Or thanks to [BKR, Lemma 2.2]. 

  To establish (a), it suffices to show that 7r is faithful on FT,, for all n > 0. By the proof 
of Lemma 4.5, we have 

= MN(n,i)(C) ® C*(H),
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for some integer  N(n,  i). Note that sgsy* is non-zero. Hence 7r is injective on MN(n,i) (C)• 
By the other hypothesis, it is injective on C*(H). 

  Next we will show (b). It is enough to check (b) for 

                 aEE kt.P3Sv 
µ,vEF jEJ 

where F is a finite subset of F and J is a subset of I. For n = max{IµI I µ E F}, we have 

(1)(a) _ E CµSµPjS~ E 
{µ,vEFIIµI=M} jEJ 

  Now by changing F if necessary, we may assume that min{IµI, M} = n for every pair 
v E F with C4,v 0. Since .Fn = ®i.7, there exists some io E J such that 

IIir@ (a))II = II c,°,vsµp~osYll 
IµI=M 

  By changing F such that F C 0 again, we may further assume that 

IIir(4(a))II = II E EC~°v,hsµpaouhpiosvII 
µ,vEF hEF' I
µI=M 

where F' consists of elements of H, (perhaps with multiplicity). By applying the preceding 
lemma to 

W={(µ',h)EOxHI µ' is subword of µEF,h-'EF'}, 

we have -y E 0 satisfying the property in the previous lemma. Then we define a projection 

                               Q = srsipio S,;ST. 
TEA', 

By hypothesis, Q is non-zero. 
  If µ, v E An then 

                Q (sµpiosv) Q = sµsrypios.ypiosrypiosysv = Sµsypiosrysv 

is non-zero. Therefore sµ(s.ypios;)s: is also a family of matrix units parameterized by 
 v E An. Hence the same arguments as in the proof of Lemma 4 .5 give 

7r(' °) MN(fl,io)(C) ®C* sµsrypiouhpios;sµ I h E H ) 

By hypothesis, we deduce that b H Qir(b)Q is faithful on .F4°. In particular, we conclude 
that IIir(4)(a))II = IIQir0(a))QII•
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  We next claim that  Qir(4:1)(a))Q = Q7r(a)Q. We fix µ, v E F If IµI M then one of 
µ, v has length n and the other is longer; say WI = n and M > n. Then

            Q (sµpiouhpiosv) Q = sµsrypios;piouhPi0sv E Srsypiosysr* 
                                                                      rE,An 

 Since M > I'rl, this can have a non-zero summand only if v = Tv' for some v' However 
 s,*yuhs,*,srs.y = s~,uhs*,,,s.y, and 4,h_l781, is non-zero only if v'h-lry has the form Ty' This 

 is impossible by the choice of ry. Therefore we have Q (s1.,pios„) Q = 0 if IµI M, namely 
Qir(4.(a))Q = Qir(a)Q. Hence we can finish proving (b): 

Iiir( (a))II = IIQ'(4)(a))QII = IIQir(a)QII < Ik(a)II• 

Therefore [BKR, Lemma 2.2] gives the theorem.^ 
   By essentially the same arguments, we can prove the following . 

Corollary 4.8 Let {t9, vh} and {sg, uh} be two families of partial isometries and uni-
taries satisfying (1), (2), (3) and (4). Suppose that the map pivhpi H qiuhqi gives an 

 isomorphism: 

C* (pivhpi I h E H) "' C* (givhgi I h E H), 
where pi = EgEf \{e} t9t9, qi = E9ESti\{e} sgs9 and so on. Then the canonical map gives 
the isomorphism between C* (t9, vh) and C* (s9, uh). 

   Before closing this section, we will show that our algebra Or is isomorphic to a certain 

Cuntz-Krieger-Pimsner algebra. Let A = C* (PZUhPi I h E H, i E I) ' ®2E1 Cr* (H). We 
define a Hilbert A-bimodule X as follows: 

X= span{ S9PiIgEUGj, IgI=1,iEI} 
j#i 

with respect to the inner product (S9Pi, S9,Pj) = PPSSS9,Pj E A. In terms of the groups, 
the A-A bimodule structure can be described as follows: we set 

A=@Ai=EDC[H], 
iEI iEI 

and define an A-bimodule 7-4 by 

xi=C[{gEUGj I IgI=1}] 
j li 

with left and right A-multiplications such that for a = (hi)iEI E A and g E Gj \ H C 7-4, 
a•g=hjg and g•a=ghi ,
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and with respect to the inner product 

                      ig'g'  E  Ai if g-igi E H,                 (9' 9)rct ={ 0 otherwise. 
Then we define the A-bimodule X by 

X = ®xi, 
iEI 

and we obtain the CKP-algebra Ox • 

Proposition 4.9 Assume that A and X are as above. Then 

Or = OX. 

Proof. We fix a finite basis u(g, i) = g E xi for g E 12~, i E I with j i, IgI = 1. 
Then we have Ox = C*(Su(0)). Let su(g,i) = S9Pi in Or. Note that we have Or = 
C*(su(9,i)). The relation (4) corresponds to the relations (t) of the CKP-algebras. The 
family {su(9,2)} therefore satisfies the relations of the CKP-algebras. Since the CKP-
algebra has universal properties, there exists a canonical surjective *-homomorphism of 
Ox onto Or. Conversely, let s9 = L~jEI Su(g,i) and uh = @JElh for h E H in Ox, and 
then we have OX = C*(sg, uh). By the universality of Or, we can also obtain a canonical 
surjective *-homomorphism of Or onto Ox. These maps are mutual inverses. Indeed, 

S9 H >iEI `5'u(g,i) H >iEI SgPi = Sg, 
                Uh H ®iEI hH >iEI PiUhPi = Uh.

5 Crossed product algebras associated with O 

In this section, we will show that Or is isomorphic to a crossed product algebra . We first 
define a "boundary space" We set 

 A = { (in)n>0 I ryn E r, h + 1 = Vyn+iI, I'Yn 1N+1I = 1 for a sufficiently large n > Of. 
We introduce the following equivalence relation N; (ryn)n>o, (7'n)n>o E A are equivalent if 
there exists some k E Z such that rynH = 7 n+kH for a sufficiently large n. Then we define 
A = A/ ti We denote the equivalent class of ('Yn)n>o by [ in]n>o. 
  Before we define an action of r on A, we construct another space ci to introduce a 

compact space structure, on which r acts continuously . Let S2 denote the set of sequences 
x :N -p r such that

 x(n) E Stzn \ {e} for n > 1, 
x(n)E{an1}ifinEI\Io, 
in in+1if in E Io, 

x(n) = x(n + 1) if in E I \ Ip, in = -n-Fl. 

           14



Note that  Cl is a compact Hausdorff subspace of UN (U Sli \ {e}). 
between A and S2; for x = (x(n))n>1 E St, we define a map 0(x) = 

-Yo = e ifn=0
, 

yn = x(1) • • • x(n), ifn > 1.

We introduce a map 0 
['yn] E A by

Lemma 5.1 The above map cb is a bijection from A onto Sl and hence A inherits a 
compact space structure via 0. 

Proof. For x = (x(n)) x' = (x'(n)), there exists an integer k such that x(k) x'(k). If 
0(x) _ [ryn] and 0(x') = [ryn], then -ykH ; ykH. Hence we have injectivity of q5. Next we 
will show surjectivity. Let [7n] E E. We may take a representative (7n) satisfying brynI = n. 
Now we assume that 77,is uniquely expressed as 7n =91•• • 9n h, 7n+1 = gi . . .9;C+1 h' for 
9k ES2ik, gknn          E,Ljk, h, h' E H. Since 17771%4 = 1, we have 

h-1gv...9119i...gn+lh'=9, 
for some g H with 1g1  = 1. Inductively, we have g1 = g' , • • • , gn = gn. Hence we can 
assume that 7n = g1 • gn • We set x(n) = gn and get 0 ((x (n))) = [7n1. ^ 

  Next we define an action of 1' on A. Let ['yn]n>o E A. For 7 E P, define 

7. [7n]n>o = [77n]n>o• 
We will show that this is a continuous action of F on A. Let [yn],[yn1 E A such that (
yn) ('y) and 'y E P. Since there exists some integer k such that ynH = ryn+kH for 

sufficiently large integers n, we have yynH = yyn+kH. Hence this is well-defined. To 
show that 7 is continuous, we consider how 7 acts on 12 via the map q5. For g E Sti with 
Igl = 1 and x = (x(n))n>1 E 12,

(g • x)(1) =

 9 

 91

 9 

92

x(2)

if i i1, 

ifi=i1igx(1) H,ie1, 
and gx(1) = 91h1 (91 E E H), 
ifi=i1igx(1) H, iE I\Io, 
ifi=i1igx(1)EH,iEIo, 
and gx(1) = h1, hix(2) = g2h2(g2 E 142, 
ifi=i1igx(1)EH,iE[\Io,

hi, h2 E H),

and for n > 1,

(g x)(n) =

x(n — 1) 
 9n

x(n — 1) 
9n+1

x(n + 1)

if i i1, 

ifi = il, gx(1) O H, 
and hn-ix(n) = gnhn (gn E hn E H), 
ifi—i1,gx(1)¢H,iEI\Io, 
ifi=i1,gx(1)EH, 
and hnx(n + 1) = 9n+ihn+1, (gn+1 E R, , hn+1 
ifi = il, gx(1) E H, i E I \ Io.

E H),
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 For  h  E  H,

(h x)(n) =

gi  ifn  =  1, 
  and hx(1) = g1h1, (91 E S2i17 hn E H), 

gn ifn > 1, 
   and hn_ix(n) = gnhn, (gn E S2in, hn E H).

  Then one can check easily that the pull-back of any open set of 1 by ry is also an open 

set of Q. Thus we have proved that 7 is a homeomorphism on A. The equations 

(77) [7n] = [T Y' 7n] _ 'Y ([ry 7n]) = 7 ° y [7n] 

imply associativity. 
  Therefore we have obtained the following: 

Lemma 5.2 The above space 1 is a compact Hausdorff space and r acts on Q continu-
ously. 
  The following result is the main theorem of this section. 

Theorem 5.3 Assume that S2 and the action of r on S2 are as above. Then we have the 
identifications 

Cr C(Q) >a r C(Tl) >a, r. 

Proof. We first consider the full crossed product C(Q) >a r Let Y = { (x(n)) I x(1) E 
S2i } C S2 be clopen sets for i E I. Note that if i E Io, then Y is the disjoint union of 
the clopen sets { g(Q \ Y) g E S2i \ {e} }, and if i E I \ Io, then Y = Y+ U Y- where 

  = { (x(n)) I x(1) = a} 1. Let pi = Xc \Y; and pP = x1,±. We define T9 = gpi for 
gEGi\H and iEIo and Tati=a (Pi +pP) for iEI\Io. Let Vh = h for h E H. 
Then the family {T9, Vh} satisfies the relations (1), (2), (3) and (4). Indeed, we can first 
check that h E H commutes with pi and p ' So the relation (1) holds. Let g E Gi \ H 
and g' E Gj \ H with i, j E Io. Then 

779' = pig-1 9'pj = 9-1X9(c\YoX9'(n\Yj)9 = bi,j89H,9'Hpi9-1g~ 
Moreover it follows from S2 \ Y = Ujoi Y that 

TI9 = XSZ\i _ E XYi 
j 1i

EE X9(S2\Yj) + E Xai(S2\Yi) + Xai 1(S2\Yj) 
jEIo,j i9ES2i\{e}jEI\Io 

E > 9pj9-1 + E 
jEIo,j igES2i\{e}jEI\Io 

EE T9Ts + TajTai + Ta-1TQ-1. 
jElo,ji9ES2j\{e}jEI\Io
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 For all other cases, we can also check the relations (2) and (3) by similar calculations. 
 Since  SZ is the disjoint union of Y, we have (4). Note that g, pi, pt E C*(T9, Vh). Moreover, 

since the family {'y(Q \ Y) I -y E I', i E flu  {'Y± I ly E r, i E I \ Io } generates the topology 
 of Q, we have C(cl) >4 r = C*(Tg, Vh). By the universality of Or, there exists a canonical 
 surjective *-homomorphism of Or ontoC(0) >4 F, sending Sg to Tg and Uh to Vh.    C

onversely, let qi = Ej#i Pj andq}= Sap Sa1. Let 

             wg= S9+ E9'ESli\HUg-'H S99'S9i + S9for g E Gi \ H, i E-TO) 
        wa,=Sai+Sa-1for iEI\Io, 

L wh=UhforhEH. 

We will check that wg are unitaries for g E Gi \ H with i E Io. If g' ER \ H U g-'H, 
then gg'H = ryH for some -y E Qi \ {e, g}. Hence 

    w9w9 

     = Sg+ E Sgg,Sy, + 59-1Sg+ E S99,S9~ + Sg-1 )* 
g'ES2i\HUg-1Hg'ES2i\HUg-1H 

      = S9S9 + E S9g,S9,S9,599, + S9-1Sg-1 
g'ESli\HUg-1H 

     = Pg+ > Pg,+Qg=1. 
g'ESli\{e,g} 

Similarly, we have wg*wg = 1. For the other case , we can check in the same way. 
  If i E 10, T E S2i \ {e} then 

w9giw9 

gESli 

             = (s9+ ESi99,+ 59-1 S.**STws 
                    9Enig'ESli\HUg-1H 

_ E SgSTST Sg* + E S9S**gi+ Sg_1 
9ES2ig'ESli \HUg-1 H 

                 ISgSTSTSg=1. 
gESli 

For i E I \ Io, we have qz + wq2wai = 1 and q2 + qi + qi = 1 as well. Therefore 
the conjugates of the family {qi, q}by the elements of I' generate a commutative C*- 
algebra. This is the image of a representation of C(Sl). Therefore (qi, w) gives a covariant
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representation of the  C*-dynamical system (C(fl), r). Note that (qi, w9) generates Or. 
Hence by the universality of the full crossed product C(C1) >a r, there exists a canonical 
surjective *-homomorphism of C(11) >a I' onto Or. It is easy to show that the above two 
*-homomorphisms are the inverses of each other.

        S9 1-4 9piw9Q9 = S9, 
Sap Hi atl (pi + pi) r r waf i (Qati + Pap) = Sap, 
UH,~ t U t , 

  We have shown the identification Or C(f2) >a r. Since there exists a canonical 
surjective map of C(C2) >a r onto C(St) >a, r, we have a surjective *-homomorphism of Or 
onto C(S2) >a, r. Let C(C2) >a,. r = C*(~(pi), A) where Fr is the induced representation on 
the Hilbert space 12(r, 7-1) by the universal representation it of C(S2) on a Hilbert space 
7-1 and A is the unitary representation of r on 12(r, 7-1) such that (asx)(t) = x(s-it) for 
x E /2(r, 7-0. By the uniqueness theorem for Or, it suffices to check

C* (Fr(XY)Ahfr(XY)) ^—' C*(H)•

But the unitary representation irr(xy)Ahfe(XY) is quasi-equivalent to the left regular rep-
resentation of H. This completes the proof of the theorem .^ 

  In [Ser], Serre defined the tree GT, on which r acts . In an appendix, we will give the 
definition of the tree GT = (V, E) where V is the set of vertices and E is the set of edges. 
We denote the corresponding natural boundary by OCT. We also show how to construct 
boundaries of trees in the appendix. (See Furstenberg [Fur] and Freudenthal [Fre] for 
details.)

Proposition 5.4 The space OCT is homeomorphic to S2 and the above two actions of F 
on OCT and S2 are conjugate.

Proof. We define a map b from OCT to ft First we assume that I = {1, 2}. The corre-s
ponding tree GT consists of the vertex set V = r/G1 jl r/G2 and the edge set E = r/H . F
or co E aGT, we can identify co with an infinite chain {Gi1, giGi2, 91g2Gi37 ... } with 

9k E Stik \ {e} and i1 i2 • • • Then we define b(w) = [x(n) = gin]. We will recall the definition of the corresponding tree GT, in general, on the appendix, (see [Ser]). Simi-
larly, we can identify co E OCT with an infinite chain {Go, C1, 91Go, giGi2, 9192Go, • - . }. 
Moreover we may ignore vertices 7G0 for an infinite chain co

, 

{Go, Gil, (91Go --> ignoring), giGi2, (9i92Go -* ignoring), 9192Gi3, .. • }. 
Therefore, we define a map of OCT to St by

b(w) = [x(n) = 9~].

18



The pull-back  by of any open set of OCT is an open set on S2. It follows that is a 
homeomorphism. The two actions on aGT and S2 are defined by left multiplication . So it 
immediately follows that these actions are conjugate .^ 

  It is known that r is a hyperbolic group (see a proof in the appendix , where we recall 
the notion of hyperbolicity for finitely generated groups as introduced by Gromov e.g. see 
[GH]). Let S = {Uig/ Gil and G(r, S) be the Cayley graph of r with the word metric d. 
Let ar be the hyperbolic boundary .

Proposition 5.5 The hyperbolic boundary ar is homeomorphic to S2 

r are conjugate.
and the actions of

Proof. We can define a map from S2 to ar by (x(n)) i.—> [xn = x(1) • • • x(n)]. Indeed, 
since (xn I xm) = min{n, m} —* oo (n, m --* oo), it is well-defined. For x y in S1, there 
exists k such that x(k) y(k). Then (0(x)1'b(y)) < k + 1, which shows injectivity. 
Let (xn) E ar. Suppose that xn = gn(i)9n(k„)hn for some gi E Ui S2i \ {e} with 
n(1) • • . n(kn). If gn(i) = 9m(1), .. , 9n(i) = 9m(1) and 9n(1+1) 9m(1+1), then we set 
an,m = 9n(1) • go) = 9m(1) • • • gm(l). So we have

(xn xm) 5_ d(e, an,m) + 1 --> oo (n, m - + oo). 

Therefore we can choose sequences n1 < n2 < • • - , and m1 < m2 < • , such that ank,mk 
is a sub-word of ank+,,,,,k+i Then a sequence {gnk(1), ... , gnk(i), gnk+l(1+1), . . . } is mapped 
to (xn) by IG. We have proved that b is surjective. The pull-back of any open set in ar is 
an open set in ft So IP is continuous. Since S2, ar are compact Hausdorff spaces, is a 
homeomorphism. Again, the two actions on f2 and ar are defined by left multiplication 
and hence are conjugate.^ 

  Remark Since the action of F on ar depends only on the group structure of r in 
[GH], the above proposition shows that Or is, up to isomorophism, independent of the 
choice of generators of F.

6 Nuclearity, simplicity and pure infiniteness of Or 

We first begin by reviewing the crossed product B N of a C*-algebra B by a *-
endomorphism; this construction was first introduced by Cuntz [C1] to describe the Cuntz 
algebra On as the crossed product of UHF algebras by *-endomorphisms. See Stacey's 
paper [Sta] for a more detailed discussion. Suppose that p is an injective *-endomorphism 
on a unital C*-algebra B. Let B be the inductive limit lingB --* B) with the corre-
sponding injective homomorphisms an : B —> B (n E N). Let p be the projection ao(1). 
There exists an automorphism p given by p o an = an o p with inverse an (b) ' -> an+1(b). Th

en the crossed product B p N is defined to be the hereditary C*-algebra p(B >1p Z)p.
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The map  ao induces an embedding of B into B. Therefore the canonical embedding of B 

into B >a v Z gives an embedding 7r : B B x p N. Moreover the compression by p of the 

implementing unitary is an isometry V belonging to B >a p N satisfying 

Vlr(b)V* = ir(p(b)). 

In fact, B >a p N is also the universal C*-algebra generated by a copy 7r(B) of B and an 
isometry V satisfying the above relation. If B is nuclear, then so is B >a p N.

Proposition 6.1

Or Or >a , N
In particular, Or is nuclear.

Proof. We fix gi E Gi \ H for all i E I. We can choose projections ei which are sums of 
projections Pg such that ei < Q9j and>iEIei= 1. Then V =L~jEJS9,eiis an isometry 
in Or. 

  We claim that V OiT.V* C Or and Or = C* (Or, V) . Let a E O. It is obvious 
that VaV* E Or and C* (OrT., V) C Or. To show the second claim, it suffices to check 
that S,2PPSv E Or for all µ, v and i. If Jp4 = Jvi, we have SµPiS,* E Or. If IµI M, 
then we may assume JAI < M. Let JvJ — JµI = k. Thus Si,PZSv = (V*)kVkSµPiSS and 
VkSµPtiS~ E Or. This proves our claim. 

  We define a *-endomorphism p of Or by p(a) = VaV* for a E O . Thanks to 
the universality of the crossed product Or >ap N, we obtain a canonical surjective *-
homomorphism a of OiT )4p N onto C* (Or, V) . Since Or a p N has the universal property, 
there also exists a gauge action ,Q on Or, >ap N. Let ' be the corresponding canonical 
conditional expectation of OT, >ap N onto O . Suppose that a E kera. Then o-(a*a) = 0. 
Since a o u = a o 13, we have o- o W (a*a) = 0. The injectivity of a on Or implies i (a*a) = 0 
and hence a*a = 0 and a = 0. It follows that Or _"2 Or >ap N.^ 

  In section 2, we reviewed the notion of amenability for discrete group actions . The 
following is a special case of [Ada]. 

Corollary 6.2 The action of F on OF is amenable. 

Proof This follows from Theorem 2.2 and the above proposition.^ 
  We also have a partial result of [Kir], [D1], [D2] and [DS]. 

Corollary 6.3 The reduced group C*-algebra C(F) is exact. 

Proof. It is well-known that every C*-subalgebra of an exact C*-algebra is exact; see 
Wassermann's monograph [Was]. Therefore the inclusion CT (F) C Or implies exactness. 

0 

  Finally we give a sufficient condition for the simplicity and pure i
nfiniteness of Or.
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Corollary 6.4 Suppose that  r =  *HGi satisfies the following condition: 
  There exists at least one element j E I such that

n Ni = {e}, 
ij 

where Ni = f 9EGs gHg-1   Th
en Or is simple and purely infinite.

Proof. We first claim that for any p E and JgJ = 1 with JµgJ = JµJ + 1, 

µHµ 1 n H D µgHg-11.-1 n H. 

Suppose that µ = µl • • • An such that Pk E Stik with pi • • pi, and g E Gi with 
i in. We first assume that p = pi. If µghg-lµ 1 E µgHg-lµ 1 n H , then ghg-1 E 
µ-1Hµ c Gil. Thus ghg-1 E Gi n Gi, implies ghg-1 E H. Next we assume that JµJ > 1. 
If µghg-lµ 1 E µgHg-lp-1 n H , then 

112 • • • µnghg-161... µ21 E µi 1Hµ1 c Gil. 

Thus 1p2 • • µnghg-lµk 1 • • • µ2 1 J < 1 implies ghg-1 E H . This proves the claim. 
  Let {S9, Uhl be any family satisfying the relations (1), (2), (3) and (4). By the 

uniqueness theorem, it is enough to show that C* (PjUhPi J h E H) C* (H) for any 
i E I. We next claim that there exists v E r such that the initial letter of v belongs to 

S2i and {UhS„}hEH have mutually orthogonal ranges. 
  Let g E S2i. If gHg-1 n H = {e}, then it is enough to set v = g. Now suppose 

that there exists some h E gHg-1 n H with h e. We first assume that i = j . By the 
hypothesis, there exists some it E I such that g`lhg ¢ Ni1 and i i1. Hence there exists 
gl E S2i, such that g-lhg ¢ g1Hg31 1 and so h ¢ gg1Hgi 1g-1 If gg1Hgi 1g-1 n H = {e}, 
then it is enough to put v = gg1. If not, we set 'y = gigi for some gi E St;. By the first 
part of the proof, we have

gHg-1nHµylHYilµ-1nH. 

Since H is finite, we can inductively obtain 71, 72, . . . ryn satisfying 

gHg-1 n H g-y1H'6 19-1 n H .. g-y, ...7rHn(1 71-1g-1 n H = {e}. 

Then we set v = g'y1 • •'yn. If i j, we can carry out the same arguments by replacing 
g by -y = ggi for some gi E Sl;. Hence from the identification UhS„ H bh E 12(H), 
it follows that the unitary representation PPUhPi is quasi-equivalent to the left regular 

representation of H. Thus Cr is simple. 

  In Section 5, we have proved that Cr C(C2) )17. r We show that the action of r 
on Si is the strong boundary action (see Preliminaries). Let U,V be any non-empty open
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sets in  1. There exists some open set  0 = {(x(n)) E 1l I x(1) = g1i • • • , x(k) = gk} which 
is contained in V We may also assume that Uc is an open of the form {(x(n)) E S2 
x(1) = -yl, • • • , x(m) = `ym}. Let ry = gl • • • goni-1 • • • 71-1 Then we have lyUc C O C V 
Since C(1) >or r is simple, it follows from [AS] that the action of F is topological free. 
Therefore it follows from Theorem 2.4 that C(1) >or r, namely Or, is purely infinite. 0 

  Remark We gave a sufficient condition for Or to be simple. However, we can 

completely determine the ideal structure of Or with further effort. Indeed, we will obtain 

a matrix Ar to compute K-groups of Or in the next section. The same argument as 

in [C2] also works for the ideal structure of Or. For Cuntz-Krieger algebras, we need 
to assume that corresponding matrices have the condition (II) of [C2] to apply the 
uniqueness theorem. Since we have another uniqueness theorem for our algebras, we can 

always apply the ideal structure theorem. 

  Let E = I x {1, ... , r} be a finite set, where r is the number of all irreducible unitary 
representations of H. For x, y E E, we define x > y if there exists a sequence x1,... , xm of 

elements in E such that x1 = x, xm = y and Ar(xa, xa+i) 0(a = 1, ... , m - 1). We call 
x and y equivalent if x > y > x and write rAr for the partially ordered set of equivalence 
classes of elements x in E for which x > x. A subset K of rAr is called hereditary if 
'y1 >_ 'Y2 and ryl E K implies 72 E K. Let

E(K) = {x E E j x1 > x > x2 for some x1, x2 E U ry}. 
ryEK 

We denote by IK the closed ideal of Or generated by projections P(i , k), which is defined 
in the next section, for all (i, k) E E(K).

Theorem 6.5 ( [C2, Theorem 2.5.]) The map K IK is an inclusion preserving 
bijection of the set of hereditary subsets of TAr onto the set of closed ideals of Or.

7 K-theory for Or

In this section we give explicit formulae of the K-groups of Or . We have described Or 
as the crossed product Or N in Section 6. So to apply the Pimsner-Voiculescu exact 
sequence [PV], we need to compute the K-groups of the AF-algebra O . We assume 
that each Ga is finite for simplicity throughout this section . We can also compute the 
K-groups for general cases by essentially the same arguments . Recall that the fixed-point 
algebra is described as follows:

Or = U •Fn m 
n>0
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 •Fn  = ®iEIF 

For each n, we consider a direct summand of .Fn, which is 

              = C*(SµPiUhPiSv I h E H, I µI = I vI = n), 

and the embedding .Pn is given by 

S,1PjUhPjSv 

E SizUh(SgQgSg)Sv 
gEfti\{e} 

EESiiShgPi'SSg. 
                                  g i'#i 

   Let {Xi, ... , X,.} be the set of characters corresponding with all irreducible unitary 
representations of the finite group H with degrees nl, ... , n,.. Then we have the identifi-

cation C* (H) ^_- Mnl ((C) s • • • ® Ms,. (C) . We can write a unit pk of the k-th component 
Mnk (C) of C* (H) as follows: 

                      nk

H 
                      Pk=—> Xk(h)Uh. 

                          

I hEH 
  Suppose that for i j, 

                         —̂' MN(n,i) (C) ® C* (H), 
Yn+1 ,., MN(n+1J) (C) ® C* (H) • 

Now we compute each embedding of ,F;,, .7Z+1, 

MN(n,i) (C) ® Mni (C) MN(n+1,,) (C) ® Mn; (C) 

at the K-theory level. P(i, k) denotes PipkPi. Let P be the projection e®1 in MN(n,i)(C)® 
Mnk ((C) given by 

                 P = S,P(i, k)S, for some µ E An, 

where e is a minimal projection in the matrix algebras, and Q be the unit of MN(n+l,j)(C)® 
Mn, ((C) given by 

Q = E SvP(j, l)S,*. 
V66,n+1 

At the K-theory level, we have [P] = nk[e]. Hence it suffices to compute tr(PQ)/nk, 
where tr is the canonical trace in the matrix algebras.
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tr(PQ)
 nk

SvP(j, l)Sv) 

                                                                                 1 

       = —wit' (E xk(h)( E smshgpu, os,:g)) 
 1*1 =E E Xk(h)tr (SµgUg-1hgP(j, l)SWg) 
IHI gES2;\{e} hEH(g) 

1 _E E Xk(h)Xz(g-ing), 
              IHI gES2i\{e} hEH(g) 

where H(g) is the stabilizer of gH by the left multiplication of H. 
  Now fix x E Xi \ {e}. Let {g E 52z I HgH = HxH} = {go = x, g1, • • • , gm-i}. Then 

there exists h1, hi, ... , hm_i, hiii_1 E H such that h1x = g114, ... , hm_ix = gm_ih;n-i. 
Note that hsH(x)hs 1 = H(gs) for s = 1, ... ,m — 1. Since Xk, XI are class functions, we

= tr k(SµP(i, k)Sµ)( E S„P(~, l)Sv) 
                               vE1n- 1 

  ( 1 -------- 
= —wit* (E xk(h)( E E SI,ShgPiNS;g)( E 

  wit (E Xk(h)( E smshgpu, osm*g) 

   1
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have

tr(PQ)
 nk

              m-1 

 viiiE E    H
xEXis=1 hEH(x) 

       m-1
IHIxE.EhEE      ahEH(x) 

                   m,-1 _~glxEXis=1hEH(x) 

              L IHIE EE xEXis=1 hEH(x) 

   IH)IL1 
  xEXiIIs=1 

     (Xk, Xi) II 
xEXi

Xk (hshhs 1)Xl (hex

Xk(h4hh81)xi(h8x

Xk(h)X1(x-1hx) 

Xk(h)X7(h) 

Xt)H(x)

—1h-1 

    8

—1h
xh

h8hh81

where

i-1)

h8xh i—
s1)

  Let Ar((j 
1<k,l<r Then we describe the embedding .71 .F;741 at the K-theory level by the 
matrix [Ar ((i,1))ii<k,I<T. Let Ar = [Ar((i, k), (j ,1))]. We have the following lemma. 

_ Lemma 7.1 

Ko (01,) — 11 (ZN ZN 
K1 (Or) = 0 

where N = 11-1r 

  We can compute the K-groups of Or by using the Pimsner-Voiculescu sequence with 

essentially the same argument as in the Cuntz-Krieger algebra case (see [C21). 

Theorem 7.2 

Ko(Or) = ZN/(1 — Ar)ZN 
K1(Or) = Ker{1 — Ar : ZN ZN} on ZN

         Xi (h) = Xa (x-1 hx) 

                1  (Xk, Xl)H(x)= I) IH(xXk(h)x(h)• 
                             hEH(x) 

Then we describe the embedding .71 .F;1,,+1 at the K-theory level by the
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Proof. It suffices to compute the K-groups of  07=Or >tiP Z. We represent the inductive 
limit 

   (ZN+ZN)
as the set of equivalence classes of x = (x1, x2, • • •) such that xk E7GN with xk-F1=A(xk). 
If S is a partial isometry in Or such that ax(S) = zS and P is a projection in Or with 
P < S*S, then [p(P)] = [V PV*] = [(VS*S)P(VS*S)*] = [SPS*] in Ko(Or). Recall that 

                    Pk=n~ IE Xk (h) Uh • Hh
EH 

Let P = S~P(i, k)S, for some µ E On. If µ = µl • • • An, then 

[P 1(P)] 
              = [S1* S 11 

               = [~k>Xk(h) (s.... 5~,,,P$UhPtiS,,,, ... Sµ2)] 
                          hEH 

            = EEni E (Xk7Xl)[el] 
j#i 1=1 xEXi\{e} 

where the el are non-zero minimal projections for 1 < 1 < r Thus it follows that p* 1 is 

the shift on Ko(Or). We denote the shift by a. If x = (x1, x2, x3, • •) E Ko(Or), then 
o (x) = (x2, x3, • • • ). By the Pimsner-Voiculescu exact sequence, there exists an exact 
sequence 

0—+K1(Or)-->K0(Of)—'K0(0r) K0(Or)-'0. 

It therefore follows that Ko(Or) = Ko(Or)/(1 — a)Ko(Or) and K1(0r) = ker(1 — a) on 
Ko(Ora0)• 

  Finally we consider some simple examples. First let F = SL(2, Z) = Z4 *Z2 4. Let Xi 
be the unit character of Z2 and let X2 be the character such that X2(a) = —1 where a is 
a generator of Z2. These are one-dimensional and exhaust all the irreducible characters. 

Then we have the corresponding matrix

Ar =

 0010 

0 0 0 1 

2 0 0 0 

0 2 0 0

Hence the 
       /~corresponding                   /^K-groups are Ko(Or) = 0 and  K1(Or) = 0. Oz2*Z3®Oz2*Z3'2--'02®02.

In fact, OZ4*Z2Z6 '
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  Next let r  _  84  *63 84, T = (12) and a = (123). Note that 63 = (1, T, Q). 63 has 
three irreducible characters:

1 T  Q

Xi 1 1 1

X2 1 -1 1

X3 2 0 -1

  Moreover,  63\64/63 has only two points; say 63 and C73x63 with x = (12)(34). 
Then we obtain the corresponding matrix

AT =

 0  0  0  1  0  1 

0 0 0 0 1 1 

0 0 0 1 1 2 

1 0 1 0 0 0 

0 1 1 0 0 0 

1 1 2 0 0 0

Hence this gives  Ko(Or) = Z ED Z4 and K1 (Or) = 7Z. In this case, I' satisfies the condition 
of Theorem 6.3. So Or is a simple, nuclear, purely infinite C*-algebra.

8 KMS states on Or

In this section, we investigate the relationship between KMS states on Or for generalized 

gauge actions and random walks on I'. Throughout this section, we assume that all groups 
Gi are finite though we can carry out the same arguments if Gi = Z x H for some i E I. 

Let w = (wi)i€1 E ]IB By the universality of Or, we can define an automorphism cit for 
any tERon0rbyat(Sg)=e1 "itSg for gEGi\H and c4(Uh)=Uh for hEH. 
Hence we obtain the R-action aw on Or. We call it the generalized gauge action with 

respect to w. We will only consider actions of these types and determine KMS states on 

Or for these actions. 

  In [WI], Woess showed that our boundary S2 can be identified with the Poisson 
boundary of random walks satisfying certain conditions. The reader is referred to [W2] 
for a good survey of random walks. 

  Let µ be a probability measure on r and consider a random walk governed by µ, i.e. 

the transition probability from x to y given by 

p(x,y) = µ0-1y) 

A random walk is said to be irreducible if for any x, y E r, p(n) (x, y) 0 for some integer 
n, where 

p(n) (x, y) = p(x, x1)p(x1, x2) • • • p(xn-1, y) • 
x1,x2,...,xn_1 Er
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A probability measure  v on  fl is said to be stationary with respect to p if v = A* v, where 

p * v is defined by

      Jf (w)dp * v(w) = ff f(gw)dp(g)dv(w), for f E C(1l, v). S2uppµ 

By [W1, Theorem 9.1], if a random walk governed by a probability measure p on I' is 
irreducible, then there exists a unique stationary probability measure v on 5-2 with respect 

to A. Moreover if p has finite support, then the Poisson boundary coincides with (52, v). 
If v is a probability measure on the compact space 1, then we can define a state q„ 

by 
q„(X) = ff-�E(X)dv for X E Or, 

where E is the canonical conditional expectation of C(5-2) >a, r onto C(0). 
  One of our purposes in this section is to prove that there exists a random walk governed 
by a probability measure p that induces the stationary measure v on 52 such that the 
corresponding state 0, is the unique KMS state for a' Namely, 

Theorem 8.1 Assume that the matrix Ar obtained in the preceding section is irreducible. 
For any w = (wi)iEr E JR::1 there exists a unique probability measure p with the following 
properties: 

  (i) supp(µ) = Ui€1 Gi \ H. 
  (ii) p(gh) = p(g) for any g E UiE1 Gi \ H and h E H. 

  (iii) The corresponding unique stationary measure v on 52 induces the unique KMS 
state 0, for a" and the corresponding inverse temperature [3 is also unique.

  We need the hypothesis of the irreducibility of the matrix Ar for the uniqueness of 
the KMS state. Though it is, in general, difficult to check the irreducibility of Ar , by Th

eorem 6.5, the condition of simplicity of Or in Corollary 6.4 is also a sufficient condition 
for irreducibility of Ar. To obtain the theorem , we first present two lemmas. 

Lemma 8.2 Assume that v is a probability measure on Si. Then the corresponding state 
O, is the KMS state for a" if and only if v satisfies the following conditions: 

                                                        e_a"tl .. e-Q"4m-1 v(52(xl ... xm)) [
Gim : H] — 1+ ea"dm 

for xk E S2ik with it • • • # im, where 52(xl • • xm) is the cylinder subset of S2 defined by 

52(xl • • • xm) _ {(x(n))n>i E 52 I x(1) = xi, ... , x(m) = xm}.
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  Proof  „ is the KMS state for aW if and only if 

         gv(SePiUhS,~ SQPjUkST) = q(SaPjUkST • a,r_70(SePiUhs,7)), 

for any e, 77, a, T E 0, h, k E H and i, j E I. 
  We may assume that I l + lal= 1771 + IT' andInI>IalSet I I =p,= q,= 

s, 17-1  = t and let e = e1 • • • ep, = ?7i • • • 9qq with ek E SZik \ {e}, E cij \ {e} and 
it y • • 0 jP, jl 0 • • • 0 jq. Then 

              /v(SVPiUhS~ SaPjUkST) =,abre+1,0vlSgPiUh'Sie+1...,79Uks7) 
_ (5711...ne,aa71e+1,j07/(SthPiSTk—ine+1...719) 

6771..17e,a597e+1,j(511,1-k-171e+1...719 E v(12(ex)), 
xES2i\{e} 

and

Ov(SaPjUkS. • aa(SePjUhS~)) 
        = e-Q"'1 ... e-13W=veQ'''i1 ... ea@Wig0v(SaPjUkS7 ' SSPiUhS;*) 

e-Q'"'ii .. a-QwiPe wii • • • eQWi9(ST,e,...66et+i,j(kv(Saket+i...6hPisn*) 
        = e-pwii ... e-Q'iyeSwji • epWj°bT~...£bet+i,jbakG+1...cph,71 E v(ii(rlx)), 

xESti\{e} 

where 6.0 = 1 only if g E Gi \ H. Therefore the corresponding state 0, is the KMS state 
for aw if and only if v satisfies the following conditions: 

v(S2(ei ... epx)) = e—a"°i ... e—p~ipv(l(x)), 

for xEfli\{e} with i i3. 
  Now we assume that (/)v is the KMS state for aW Then for i E I, 

v(Y) _ (Pi) _ E gv(SSSS) 
gEfti\{e} 

E ov(Sa Q(S9)) 
gES2i\{e} 

e—QW`gv(Qg) 
gES2i\{e} 

                  = E .1)v (1 - Pi) 
gES2i\{e} 

                   = e-~Wi([Gi : H] - 1)(1 - v(Y)).
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Hence, 

                   v(y)-  [Gi:H]-1  [G
i:H]-1+eQwi 

Moreover,

(~                         v(dL(xi ... xni)) - 0„(Sxl ... Sxmsx*m ... S2]) 
                       = 0v(Sym ... SSla

,-(Sx,... Sxm)) e—Qwi'... e-Qwi,,,4'(`~nxm ) 
                      = e-Qwi' ... e-Qwim (1 - v(S2(jim))) 

e-Qwii ... e-Qwim-i 

[Gin,: H] - 1 + ei3wim . 

Conversely, suppose that a probability measure v satisfies the condition of this lemma. 
By the first part of this proof, 0, is the KMS state for aw.^

Lemma 8.3 Assume that v is the unique stationary measure on Si with respect to a 

random walk on r, governed by a probability measure it with the conditions (i), (ii) in 
Theorem 8.1. Then 0, is a ,Q-KMS state for aw if and only if µ satisfies the following 
conditions: 

         µ(g) _ /~TT7Cjfor g E Gi \ H and i E I,                  2
kEIlgk111kLIZ) 

where gi = I Gi \ HI and Ci = (1 - e-awi)gi - (1 - e0")IHI for i E I . 

Proof Assume that 0, is a 0-KMS state for aw For any f E C(S2),

               = E µ(g)q5v(A9fAg) 
gEsupp(p.) 

= E ii(g)0,,(fAgap(A9)) 
gEsupp(µ) 

where Or .' C(S2) )lr r = C*(f, Ary f E CP) , 7 E r)•

ff f (w)dv(w) = f f f (w)dµ * v(w) 
= f f f (gw)dv(w)dµ(g) 

    fP
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  Put f  = Xsl(x) = P. for i E I and x E S2i\{e}. Since Ag = Sg+~g,ES2i,\HUg-1H 599'S9,+ 
S9_1 for gEGi,\H and i'EI,wehave 

        1 = E p(g)eawi + E µ(g) + E µ(g)e-13w' 
            gH=xH gEGi\H,gH#xH gEGj\H,j¢i 

for any i E I and x E Cli \ {e}. Let x, y E fli \ {e} with xH yH. Then 

          1 = > Ni(g)epw` + E a(g) + E µ(g)e-aw', 
           gH=xHgH0xHgEGAH,j0i 

1 = E µ(g)eaw` + E µ(g) + E 1_1(g)e-pw1 
gH=yHgH#yH gEGAH,j0i 

By the above equations, we have µ(x) = µ(y), and then it follows from hypothesis (ii) in 
Theorem 8.1 that µ(g) = pi for any g E Gi \ H. Therefore we have 

1= I H I eSw` j.ti + (gi — IHI )µi + E gj e-'°wa l ij, 
jOi 

for any i E I, where gi = I Gi \ HI. Thus by considering the above equations for i and 
j E I, 

   Hleaw°µi — I HI eRwi + (gi — IHI )µi — (gj — IHI )µj + µj — gie-awiµi = 0. 

Hence we obtain the equation, 

(I HI eQw2 + gi — IHI — gie-awi)µi = (IHI epwi+gj — IHI —)µj. 

Since/.G(UierGi\H) = 1, we havel 

                      (1— e-Awi)gi — (1—e)IHI               9
ilti+93 (1 —e-Qw')gj— (1 —e-Rwi)IHIµi— 1. 

                    jOi 

We put Ci = (1 — e-awi) gi — (1 — e-awi) I H I and then 

(gi + Ci E C )µi = 1. 
j#i 7 

Therefore 

                        1 

=------------------ 

                    gi+ciEj#igi
7/C'j 

_ uj#i Cj 
gi l ljoi C~+ Ejoi(gjCi!lkiCk) 

_ uj#iCCi  
EkEI gk 1110k Cl• 
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  On the other hand, let  v be the probability measure on  f2 satisfying the condition in 
Lemma 8.2. Then the corresponding state 0, is the KMS state. It is enough to check 
that µ * v = v by [W1]. Since 

v(S2(xl • • • xn)) = e—Q"il . • • e-19wen_1 v(11(xn)), 

for xk E „ik \ {e} with it in, we have 

         ~./ * v(n(.x.1 . • . xn)) = Jf Xfl(Z1...yn) (W)(lµ * v(w)
E µ(g) f(xxi...xn9)(w)dv(w) 

                      gEsuppi 

//,~r E/^i1Ov(Sx2 ... 8.,,s;„ ...'sx2) 
9EGi1 \H,x1 H=9H 

+EY"sl¢V(Sg-1 x1 Sx2 • • • Sxns ,i • • • sX2 S9-1x1) 
gEGi1\H,x1H gH 

+ Eµi0v(S9-1 Sx1 Sx2 ... Sxn Sin ...,SZ2,SZ1$91) 
gEGi\H,i0i1 

(IHPe1ii + (gi1 — I111)/ 1 + E gie-Q"iµi v(f2(x1 ... xn)) i#i1 

v(f2(xi • • • xn))•

O 

  To prove the uniqueness of KMS states of Or, we need the irreducibility of the matrix 

Ar (See [EFW2] for KMS states on Cuntz-Krieger algebras). Set an irreducible matrix 
B = [B((i, k), (j, l))] _ [eQ"iAr((i, k), (j, l))]. Let KK be the set of all /3-KMS states for 
the action a" We put 

L = {y = [y(i, k)] E RN I By = y, y(i, k) 0, E E nky(i,k) = 1}. 
iEI k=1 

We now have the necessary ingredients for the proof of Theorem 8.1. 

  Proof of Theorem 8.1 We first prove the uniqueness of the corresponding inverse tem-
perature. Let ¢ be a 0-KMS state for a". For i E I, 

cb(Pi) _ E o(sgsg) = E q5(Sga a(sg)) 
gES2i\{e}gES2i\{e} 

               = eq5(Q9) 

gES2i\{e} 

                   = e-S"i([Gi : H] — 1)(1 — q5(Pi)). 
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Thus  0(Pi) _ )4(0) / (1  + )4(0)), where .i(/3) = e-13"4([Gi : H] — 1). Since >61Pi = 1, 

1  

                       III-1_ 
iEr1+A ) 

The function EiEI 1/(1 + A2(/3)) is a monotone increasing continuous function such that 

                1  __ { EiEI 1/[Gi : H] if a = 0, 
1 + Ai(0)III if ,Q —* oo. 

Since >iEI 1/[Gi : H] < I1I/2 < III — 1, there exists a unique /Q satisfying 

       _~ 1                  III-1 
                          71- ([Gi:H]-1)e-awi+1 

Therefore we obtain the uniqueness of the inverse temperature 0. 
   We will next show the uniqueness of the KMS state 0,,. We claim that KQ is in 

one-to-one correspondence with L. In fact, we define a map f from KK to Lo by 

f (0) = [q(P(i, k))/nk]. 

Indeed, 

eP"20(P(i, k)) = E Cb(YkSgawo(S;)) 
gESZ;\{e} 

          = E .(SgpkS9) 
gESti \{e} 

IHI St~e}hEXk(h)cb(SSUhS9) 
  gE 

=E E Xk(h)cb(Q9Ug-lhg) 
                IHInk gEfls\{e} hEH(g) 

                   nk 

I Xk(h) E (1)(P,Ug—Ih9Pj) !HI gES2i\{e} hEH(g)j#i 

                   nk          =E E Xk(h) E E 0(P(j,l)Ug-lhgP(j, 1)). 
                IHI gEf24\{e} hEH(g)j i 1=1 

Since 0 is a trace on C*(P(j,l)UhP(j,l) h E H) Mn1(C) and Mni((C) has a unique 
tracial state, we have 

(P(j, l)Ug_lhgP(j, 1)) = xi(g-1hg) '�'(P(.7,1))  
nl 
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Therefore, by the same arguments as in the previous section, we obtain 

 elMc(P(i, k)) 

                   nk 

                 EE)Xk(h)EEO(P(i,l)U9-14PU,l))     HI 
gEe}h 

nk E E >(Xk, X1)H(x)Q(P(j, l))/ni 
xEX;\{e} jOi 1=1 

          = nk E Ar((j,1), (i, k))q(P(j, l))/ni. 
(.j,1) 

Hence this is well-defined. 
   Suppose that v is the probability measure in Lemma 8.2 and 0„ is the induced /3-KMS 

state for a". Set a vector y = [y(i, k) = O„(P(i, k))/nk]. Since y is strictly positive and B 
is irreducible, 1 is the eigenvalue which dominates the absolute value of all eigenvalue of 
B by the Perron-Frobenius theorem. It also follows from the Perron-Frobenius theorem 
that Lp has only one element. Hence f is surjective. 

Let E Ks. For _ it .. - Sin, 77 =  ... nin with it•Zn, j1 ... in, h E H 
and i E I, 

           eQ~~l .. eS"in0(SjUhpiSn) = q5(S6UhPiap(Sn)) 
           = q5(SnS6UhPi) = S cb(UhPi) 

   rr 

(5Cn E o(UhP(i, k)) = 6607 E Xk(h)c(P(i, k))/nk, 
k=1k=1 

because is a trace on C*(UhP(i, k) h E H) Mnk (C). If f (0) = f (b), then the above 
calculations imply ¢ = on O. By the KMS condition , 0(b) = 0 = ib(b) for b O. 
Thus q = ' and f is injective. Therefore 0v is the unique 13-KMS state for a`' , ^ 

  Remarks and Examples Let v be the corresponding probability measure with 
the gauge action a. Under the identification L°°(fl, v) >a,,, r irv(Or)", we can determine 
the type of the factor by essentially the same arguments as in [EFW2]. If H is trivial, 
then Or is a Cuntz-Krieger algebra for some irreducible matrix with 0-1 entries . In this 
case, we can always apply the result in [EFW2]. This fact generalizes [RR]. If H is 
not trivial, then by using the condition of simplicity of Or in Corollary 6 .4 to check the 
irreducibility of the matrix Ar, we can apply Theorem 8 .1. In the special case where 
Gi = G for all i E I, we can easily determine the type of the factor irv(Or)" for the gauge 
action. The factor ir„(Or)" is of type III), where A = 1/([G : H] — 1)2 if I/1 = 2 and 
A = 1/(111 — 1)([G : H] — 1) if Ill > 2. For instance, let r = 64 *~3 64. We have already 
obtained the matrix Ar in section 7, but we can determine that the factor L°°(11, v) >aw I' 
is of type III1/9 without using Ar.
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    We next discuss the converse . Namely any R-actions that have KMS states induced 
 by a probability measure  p on P with some conditions is

, in fact, a generalized gauge 
 action. 

   Let µ be a given probability measure on P with supp(p) = El Gi \ H. By [W1],  there exists an unique probability measure v on SZ such that µ * v = v. Let (7r,, 14, xv) 
 be the GNS-representation of Or with respect to the state qv. We also denote a vector 

 state of xv by qv. 
cbv(a) = (ax„, xv) for a E 7r„(0r)" 

 Let Qt be the modular automorphism group of cv. 

 Theorem 8.4 Suppose that µ is a probability measure on r such that supp(µ)=U ZEIGi\  H and p(g) = A(hg) for any g E UZEI Gi \ H, h E H. If v is the corresponding stationary 
 measure with respect to i , then there exists w

9 E R+ such that 

ot(71-v(Sg))=a/w9t1rv(S9) for gEGi\H,iEI, 

 and 

o (1v(Uh)) = 7rv(Uh) for h E H. 

Proof To prove that o (irv(S9)) = e w9t7rv(Sg), it suffices to show that there exists 
S9 E R+ such that 

        (*) (irv(Sg)a) = (90v(aiv(S9)) for g E GA, a E 7v(00" 

In fact, Let Ai, be the modular operator and Jv be the modular conjugate of Ov. 

                    (left hand side of (*)) = (irv(Sg)axv, xv) 
                        = (axv, lrv(Sg)*xv) 

                         _ (axv, Jv~,1,/27rv(Sg)xv) 
_ (1/27v (Sg)xv, Jvaxv) 
_ (Av/2,7rv(Sg)xv, 0,1,/2a*xv). 

and 

                     (right hand side of (*)) = (g(airv(Sg)xv, xv) 
                           =Cg7r v(Sg)xv, a*xv). 

Therefore for a E irv(Or)", 

(Av/2iv(Sg)xv, Ovl2a*xv) _ (9(7v(Sg)xv, a*xv). 

and hence for y E dom(0,1,/2), we have 

(L /21v(Sg)xv, Di1.l2y) (9(7v(S9)xv, y).
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Thus  O1,127rv(Sg)xv E dom(D,i,/2) and we obtain 

= (gir„(Sg)xv. 

Therefore
r                    Aft7rv(Sg)xv =(g trv(s9)xv, 

and then 

                    (~t(7vr(S9)) —Sg t7fv(s9))xv = 0, 
where vt is the modular automorphism group of 0,,. Since xv is a separating vector, 

Crt (Iry (SO) = Sg t7rv(S9). 

   Now we will show that 

Ov(7rv(S9)a) = (94(airv(S9)) forg E Gi \ H, a E 7rv(0r)" 

We may assume that a = f ag-i for f E C(S2). Recall that Sg = AgxSZ\Y E C(S2) )lr r. 
Since 

                                                                           -1         cbU(7r„(S9a)) =ff (g-lw)dv(w) = ff (w)d-------v (w)dv(w) 
         SAY,\Y; 

we claim that 

            glr                       d
dvv(w) =Sg on S2 \ 

 is the Martin kernel K(g-1, w), (See [W1]). Hence it suffices to show that K(g-1, x) i
s constant for any x = xi • • • xn E I' such that x1 Gi. By [W1], we have 

                            -1
, x) =G(9-1, x)        K(g G(e

, x) 

where G(y, z) = Er -1 p(k) (y) z) is the Green kernel. Since any probability from g-1 to x 
must be through elements of H at least once, we have 

G(g-1, x) = E F(g-1, h)G(h, x), 
hEH 

where s- = inf{n > 0 I Zn = x} and F(g , x) = E,7_0 Prg[sx = n] in [W2]. By hypothesis 
t(g) = .t(hg) for any g E UiE j Gi \ H and h E H , we have 

                  G(h, x) = G(e, x) for any h E H. 

Therefore we have w9 = log(EhEH F(g-1, h)). o (7fv(Uh)) = 7rv(Uh) can be proved in the 
same way. Hence we are done .D
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9 Appendix

Trees We first review trees based on [FN]. A graph is a pair (V, E) consisting of a set 
of vertices V and a family E of two-element subsets of V , called edges. A path is a finite 
sequence  {x1,  .. , xn} C V such that {xi, xi+1} E E. (V, E) is said to be connected if for 
x, y E V there exists a path {x1, ... , xn} with x1 = x, xn = y. If (V, E) is a tree, then for 
x, y E V there exists a unique path {x1, ... , xn} joining x to y such that x2 xi+2. We 
denote this path by [x, y]. A tree is said to be locally finite if every vertex belongs to 
finitely many edges. The number of edges to which a vertex of a locally finite tree belongs 

is called a degree. If the degree is independent of the choice of vertices , then the tree is 
called homogeneous. 

  We introduce trees for amalgamated free product groups based on [Ser]. Let (Gi)iEI 
be a family of groups with an index set I. When H is a group and every Gi contains H 

as a subgroup, then we denote *HGi by r, which is the amalgamated free product of the 

groups. If we choose sets 1l of left representatives of Gi/H with e E S2i for any i E I, 
then each 7 E r can be written uniquely as

7=9192•••9nh,

where h E H, g1 E \ {e}, ... , gn E Qin \ {e} and it i2, i2 i3, ... , in_1 0 in. 
  Now we construct the corresponding tree. At first, we assume that I = {1, 2}. Let 

V= r/G1 TT r/G2 and E= r/H, 

and the original and terminal maps o : r/H -+ r/G1 and t : r/H -* r/G2 are natural 
surjections. It is easy to see that GT = (V, E) is a tree. In general, we assume that the 
element 0 does not belong to I. Let Go = H and Hi = H for i E I . Then we define

V = JJ r/Gi 
iEIU{0} 

Now we define two maps o, t : E --* V For

and E = Hr 
iEI

Hi E E, let

o(H2) = Go and t(Hi) = Gi.

For any 7H2 E E, we may assume that 7H = g1 • • gnHi such that gk E 112k with i
l0•••0in. If 1= i we define

o(7Hi) = /Gin and t('yHi) = yGo•

If i in we define 

o(7H2) = 7G0 and t(7Hi) =-- 

Then we have a tree GT = (V, E).
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   For a tree (V, E), the set V is naturally a metric space. The distance d(x, y) is defined 
by the number of edges in the unique path [x,  y). An infinite chain is an infinite path 
{xi, x2i ... } such that xi xi+2. We define an equivalence relation on the set of infinite 
chains. Two infinite chains {x1, x2, ... }, {yl, Y2, ... } are equivalent if there exists an 
integer k such that xn = yn+k for a sufficiently large n . The boundary c of a tree is the 
set of the equivalence classes of infinite chains . The boundary may be thought of as a 

point at infinity. Next we introduce the topology into the space V U SZ such that V U S2 is 
compact, the points of V are open and V is dense in V U Q . It suffices to define a basis 
of neighborhoods for each w E Q. Let x be a vertex. Let {x, x1, x2, ... } be an infinite 
chain representing co. For each y = xn, the neighborhood of w is defined to consist of all 

vertices and all boundary points of the infinite chains which include [x, y). 
  Hyperbolic groups We introduce hyperbolic groups defined by Gromov . See 
[Gil for details. Suppose that (X, d) is a metric space. We define a product by 

(xIy)z=                       1 {d(x, z) + d(y, z) - d(x, y)}, 

for x, y, z E X. This is called the Gromov product . Let (5 > 0 and w E X. A metric space 
X is said to be 6-hyperbolic with respect to w if For x

, y, z E X, 

(xty)„ > min{(xlz)w, (y+z)w} - 8.(t) 

Note that if X is 6-hyperbolic with respect to w
, then X is 26-hyperbolic with respect to 

any w'EX.

Definition 9.1 The space X is said to be hyperbolic if X is 8-hyperbolic with respect to 
some w E X and some d > 0.

  Suppose that I' is a group generated by a finite subset S s
uch that S-1 = S. Let 

G(F, S) be the Cayley graph. The graph G(F , S) has a natural word metric. Hence G(F
, 8) is a metric space.

Definition 9.2 A finitely generated group F is said to be hy
perbolic with respect to a finite 

generator system S if the corresponding Cayley graph G(F , S) is hyperbolic with respect to the word metric . 
  In fact, hyperbolicity is independent of the choice of S . Therefore we say that F is a h

yperbolic group, for short.

  We define the hyperbolic boundary of a hyperbolic spa
ce X. Let w E X be a point . A sequence (xn) in X is said to converge to infi nity if (xnjx,n)w - oo, (n, m -3 oo). Note that this is independent of the choice of w

. The set X00 is the set of all sequences 
converging to infinity in X . Then we define an equivalence relatio

n in X00. Two sequences 
(xn), (yn) are equivalent if (xnlyn)v, -> oo, (n -, oo). Although this is not an equivalence
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relation in general, the hyperbolicity assures that it is indeed an equivalence relation . The 
set of all equivalent classes of  X00 is called the hyperbolic boundary (at infinity) and d
enoted by ax. Next we define the Gromov product on X U aX . For x, y E X U ax, 

we choose sequences (xn), (yn) converging to x, y, respectively. Then we define (xI y) 
lim infn-.00 (xn I yn),„. Note that this is well-defined and if x, y E X then the above product 
coincides with the Gromov product on X . 

Definition 9.3 The topology of X U aX is defined by the following neighborhood basis: 

               {y E X d(x, y) < r} for x E X, r > 0, 

{yEXUaX I (xIy) > r} for xEaX,r>0. 
  We remark that if X is a tree , then the hyperbolic boundary ax coincides with the 

natural boundary S2 in the sense of [Fre]. 
  Finally we prove that an amalgamated free product r _ *HGi , considered in this 

paper, is a hyperbolic group. 

Lemma 9.4 The group 1' = *HGi is a hyperbolic group . 

Proof. Let S = {g E Ui Gi I I9I < 1}. Let G(F, S) be the corresponding Cayley graph. It 
suffices to show ($) for w = e. For x, y, z E F, we can write uniquely as follows:

                                     x = xi...xnhx, 

Y = y1 ... ymhy, 

z = zl .. zkhz, 

where 
x1 E fi(xl), ... , xn E ,Li(x n), hx E H, 
Ui E Ili(m), ... , Yrn E E H, 
zl E Sli(z1), ... , zk E Sli(zk), hz E H. 

such that each element has length one. Then d(x, e) = n , d(y, e) = m and d(z, e) = k. If 
i(xi) = i(y1), . . . , i(xl(x,y)) = i(yl(x,y)) and i(xl(x,y)+1) 9-` i(yl(x,y)+1), then (xI y)e = l(x, y). 
Similarly, we obtain the positive integers l(x, z), l(y, x) such that (xI z)e = l(x, z), (y) z)e = 
l(y, z). We can have ($) with 6 = 0.^
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TYPE III FACTORS ARISING FROM CUNTZ-KRIEGER 

                ALGEBRAS

 RUI OKAYASU

ABSTRACT. We determine the types of factors arising from GNS-representations 

of quasi-free KMS states on Cuntz-Krieger algebras. Applying our result to 

the Cuntz-Krieger algebras arising from the boundary actions of some amal-

gamated free product groups, we also determine the types of the harmonic 
measures on the boundaries.

                          1. INTRODUCTION 

  The Cuntz algebra On [Cun] and the Cuntz-Krieger algebra OA [CK], a general-
ization of On, are important examples of C*-algebras. The Cuntz-Krieger algebra 
OA, associated with a 0-1 matrix A, is the universal C*-algebra generated by the 
family of partial isometries {Si}a'_1 satisfying the Cuntz-Krieger relations. The 
universal property of OA allows us to define the so-called gauge action on OA. The 
existence of KMS states for one-parameter automorphisms is one of the natural 
questions. The KMS states for the gauge actions on On and OA were obtained by 
D. Olesen and G. K. Pedersen [OP], and M. Enomoto, M. Fujii and Y. Watatani 
[EFW], respectively. More generally, D. E. Evans determined the KMS states on 
On for the quasi-free actions in [Eva]. In order to construct examples of subfactors, M

. Izumi determined the types of factors obtained by the GNS-representations of 
quasi-free KMS states in [Izu]. One of the purposes in this paper is to generalize his 
result to Cuntz-Krieger algebras. The existence and the uniqueness of quasi-free 
KMS states on Cuntz-Krieger algebras were proved by R. Exel and M. Laca in [EL]. 
It implies that the von Neumann algebras arising from their GNS-representations 
are factors. We will compute the Connes spectrum of the modular automorphism 
group and determine the types of quasi-free KMS states. 

  As an application, we can give a construction of type III factors from geometric 
objects. J. Spielberg proved in [Spi] that some Cuntz-Krieger algebras can be 
obtained by the crossed product construction of the boundary action (Or, r), where r i

s the free product of cyclic groups and 8r is the hyperbolic boundary as a 
hyperbolic group. This construction was generalized to amalgamated free product 
groups in [Oh]. Under this identification, it was shown that there is one-to-one 
correspondence between quasi-free KMS states and some class of random walks on 
r. Namely, by identifying ar with the Poisson boundary, harmonic measures on 
8r induce quasi-free KMS states. We will apply the main result to the harmonic 
measures and determine the types of them. It turns out that the resulting factors 
are either of type IIIi or of type IIIA (0 < A < 1), where A is some algebraic number. 
Therefore, by combining these results, we can make type III factors from boundary 
actions and harmonic measures on the boundary, which generalizes J . Ramagge and 
G. Robertson's result in [RR]. 
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                         2.  PRELIMINA1UES 

2.1. Perron-Frobenius theorem. Let A = [A(i, j)]N =1 be an N x N matrix with 
non-negative entries. We denote the (i, j)-entry of Am by A'n(i, j). A matrix A is 
irreducible if for every pair of indices i and j there is an m > 0 with Am(i, j) > 0. 
For 1 < i, j < N, put E(i, j) = {m E N I Am (i, j) > 0) and p(i) = g.c.d.{m E 
N A'n(i, i) 0). Note that if A is irreducible, then p - p(i) for any i and we 
call it the period of A. An irreducible matrix A is said to be periodic of period p if 
p > 1 and aperiodic if p = 1. Set Ik = {i I 1 < i < N, E(i,1) = k — 1 (mod p)} for 
k = 1, ... ,p. If A is periodic, then the index set {1, ... , N} can be decomposed into 
distinct subsets Ii,... , IP such that the matrix A translates from Ik into Ik+l , (IP 
into I1), and the restriction of AP to Ik is aperiodic. If A is irreducible, the Perron-
Frobenius theorem guarantees the existence of the strictly positive eigenvector with 
respect to the simple root a of the characteristic polynomial such that a > I/3J for 
any other eigenvalue /. Moreover, the following theorem is known. 
Theorem 2.1 ([Kit, Theorem 1.3.8]). Let A be an irreducible matrix with non-
negative entries and p the period of A. If x = 7'(x1 i ... , xN) and y = (yl, . . . , yN) 
are the right and left Perron eigenvectors of the Pen-on eigenvalue a such that 
~i=1 xiyi = p, then 

                     lim APn(i,j)/apn = xiyj, 
n-).co 

for any i,j=1,...,N. 

2.2. Cuntz-Krieger algebras. Let A be an N x N 0-1 matrix without zero rows. 
Then the Cuntz-Krieger algebra OA is the universal C*-algebra generated by the 
family of partial isometries S1, ... , SN satisfying: 

NN 
           SbSi=A(i,j)SjS~, and 1=>SjSz. 

      j=1i=1 
For i = 1, ... , N, let us denote the initial projection of Siby Qi and the range 
projection by Pi. We say that e = (ei i ...,Sn)Elli-1{ 1,..., N} with A(6, 6+1) # 
0 is an admissible word and denote the set of all admissible words by WA. We 
define two maps s and r by s(e) = Si and r(e) For = (Sl, ... , Sn), = O

h, ... , 11m) E WA with A(G„ rl1) = 1, we define the concatenation e • 7/ in WA by 
(6, ... , En, 711, ... , rl,,,). Let us say that an admissible word e = (j,... , en) is a 
loop if A(l:n, e1) = 1. We say that a loop e is a circle if ek # ea for any 1 < k, l < n, (k l) 

  Let co = (w1 i ... , WN) E R . We define the action a' of R on OA by at (Si) = 
erSi for t E R and i = 1, ... , N. If w = (1, ... , 1), then aw is the gauge 
action. We define two word-length functions. For e = (e1 i .. _ , en) E WA, we d
enote the canonical one by lel = n and the other by we = we, + • • • + we„ Let O
A ={(ak)°Ok A(ak, ak+1)= 1) be the set of all one-sided infinite admissible 

words. Note that there is the faithful conditional expectation 4. from OA onto
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span{S£S£ f E WA} C(StA) (see [CK]). We assume that there is Q E 11t+ and 
xi > 0 that satisfies: 

               N 

             xi =Ee-p"4A(i,j)xj, and 1 = xi +•••+XN. 
j-1 
 We can define a probabilitymeasurev on11A by 

                 v(1A (S1...Sn-1,Sn))=e-43"fl ... e-Q"En-1 x£, 

                                                                                    n 

 where IlA (6, ... ,W is the cylinder set {(ak)r 1 E 12A a1 = 6,•••, an = en}. 
 This probability measure induces a f3-KMS state for a" on OA by ¢" = v 0 (I). Set 

A" (i, j) = e-I"'A(i, j). Note that the vector x = T (x1, ... , xnr) is the right Perron 
 eigenvector of the matrix A" with respect to the Perron eigenvalue 1. R. Exel and 

 M. Laca, in fact, showed the following in [EL]. 

 Theorem 2.2 ([EL, Theorem 18.5]). If A is irreducible, then there exists the unique 
f3-KMS state 4)" of the Cuntz-Krieger algebra OA for the action a" and the inverse 

 temperature [3 is also unique. 

   Throughout this paper, we assume that A is irreducible and not a permutation 
matrix. Let (ire. , , Co. ) be the GNS-triple of ¢" The above theorem, in 
particular, says that the von Neumann algebra M = (OA)" becomes a factor. 

2.3. AF-algebras. The following results are based on [SV, Theorem I.3.12.]. Con-
sider an AF-algebra B = Un>0 Bn, where {Bn}°O_0 is an increasing family of finite C*-subalgebras. We assume That B0 = Cl. We define a maximal abelian subalge-
bra C of B as follows. Let Co = B0 and Cn-F1 the C*-subalgebra generated by Cn 
and Dn+1, where Dn+1 is a masa of Bn+1, containing Cn. We define C = Un>0 Cn. O

ne can check that C is a masa of B. There is a conditional expectation 11i from 
B onto C, and there is a topological dynamical system (1l, r) such that C C(11), 
B = n{ f u I f E C(1l), u E r} and r = Un>0 rn, where rn consists of all uni-
taries u in Bn with uCnu* = Cn. Let v be a r-quasi-invariant probability measure 
on Sl. It induces a state tfi = v o W of B. Let Oro, Ho , t:o) be the GNS-triple of 0. Th

en we obtain the following: 

 (1) ir,,(C)" is a masa in rip (B)" 
 (2) it (C)" ^' L°°(1l, v). 

 (3) The conditional expectation A can extend to irp(B)" whose image is irp(C)" 

                            3. LEMMATA 

  We denote by Ocr the fixed-point algebra under a" We first introduce an 
equivalence relation on the index set I = { 1, ... ,IV}. We say that i is equivalent 
to j if there are E WA such that s(e) = i,8(71) = j,r (6)  = r(rl) and wf = con. It is eas

y to check that this is an equivalence relation. We obtain the corresponding 
disjoint union I = Il U • • U 4'. - Note that if a" is the gauge action, then this d
ecomposition coincides with the one with respect to the period of A. Set Pp. = 

EiErN Pi. Our goal in this section is to prove the following lemma. 

Lemma 3.1. 

                                                               nW 

Z(ircb.. (Or )") = it (O1~ )" n row (OAW )' _ ®Ciro. (PO. 
k-1
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  We need some lemmata to show the above. 

Lemma 3.2. The fixed-point algebra  Of is an AF-algebra. 

Proof Set Ft = span{SSPPS;i I we = w,i = t} for t E {w4 11: E WA). Since 
{SSP;S,n*} gives the matrix units, Ft is a simple finite-dimensional C*-algebra. We 
can define finite-dimensional C*-algebras Fn as follows: 

F_1  = Cl, 

Fn = V VFt=Ft for n>0, 
iEI tEKniEI tEK1, 

where wmin = min{wi I i E I) and 

Kn = {we I e E WA, A(r(0) i) = 1, nwmin — Wi < W£ < nwmin}. 

Indeed, let S6 P=Sn1 E Ft for t E Kn and Sg2 P3S;I*2 E Fe for s E K. We assume 
that Sgl P1SS1 St, Pi S.n*2 � 0. If 17/11 = 161, then 711 = 6 and thus s = t and i = j. 
We now suppose that # 161. Without loss of generality, we may assume that 
I'^/il < 161. Since P1SS,1%Pj 0 0, we have PIS 1SS2Pj = S6P3 for some e with 
6 = rll and s(e) = i. Hence we obtain wi < we. However,

w£2 = W,1 + W£ > nwmin — Wi + Wi = nwmin-

Thus nwmin < W6 < nwmin and this is a contradiction. 

  We next show that Fn is a C*-subalgebra of Fn+1. Let SSP;S,n E Ft with t E K. 
If (n + 1)wmin — wi < t, then we have SSP=S;, E Fn+1. If t < (n + 1)wmin — cot, then 
we have 

             ‘ViS, = > A(i,j)S PjSi Sn E Fn+1. 
jEl 

We can define an AF-algbera F = Lin Fn. 
  We claim that F = OA" It is clear that F C O f To show the converse, we 

need the conditional expectation. If wi/wj E Q for all i, j E I, then we can define the 
faithful conditional expectation from OA onto (95C  by the integration on T. If not, 
we consider an action a of TN such that aZ (Si) = ;Si for z E (z1, ... , zN) E TN 
Since there is the embedding of IR into TN, t H (e\ _1u'1t, ... , e"), we can 
consider the closure of JR in TN via this embedding. Therefore the conditional 
expectation is given by the integration on the compact group R. One can easily 
check that the fixed-point algebra under alit- coinsides with Of and thus we can 
show that of = F by using this conditional expectation. ^

  We will need one more lemma. Let p be the period of the matrix A . We define 
partial isometries for in E N, i E I by 

Bm) = E SSS,IP,S£S,~ 
f ,TI EL; (mp) 

where Li(n) = { E WA I s(e) = i, A(r( ), i) = I = n} is the set of all loops 
of i with length n. Note that 9k,? is self-adjoint. We define the tracial state by 

  = ¢ Ior on OA , and use the same symbol for for its normal extension to 
irt,. (OAW )" for simplicity.
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 Lemma 3.3. Let f E  1r  (C(SZA))" and a E (Of )". Then for any i E I, 

           tnlim (B(m)e(,n)f)tw                       fa) =w(Pi.(Pia)xiyi, 
 where y = (yi i ... , yN) is the left Perron eigenvector of Aw with E1€I xiyi = P. 

 Proof. Note that C(SlA) c span{SCSS I e E WA} is a masa in the AF-algebra OAW 
 We denote by 1k the conditional expectation from iro. (Of )" onto it (C(1A))" 

L°°(SIA, v). We first prove the lemma for f E C(S1A) and a E OAW Remark that 
   = v 0 T. We may assume that a E C(114. Indeed, if the statement holds for 

11(a) instead of a, then since em') fog) , E C(11A), we will have 
lim (o;,i)f91,i)a) = lim (0,9 f9$,)W(a)) 

= 1Pw (Pi .f)lbw(PiP(a))xiY 
                         _ w(Pi f)iw (Pi a)xiyi. 

It suffices to check the statement for f = SC1 F 1 SSl , a = SC2 P22 SS2 with 16.1 = k
p,1C21 = 1p and s((1) = s(6) = i. In this case, for sufficiently large m we have 

0$,i2 f8C3a = E SC2 SC' S,1Spi,PiS ,SS1 SS1SS2, 
                        Vor 

where 1=' and r/ run over all admissible words from j2i j1 to i with 1e'1 = (m — 
l)p, lrl'I = (m - k)p. Therefore 

Ow (OW fecm)a) = e-13wC2Awm-i)"U2,2)e-swClA~m—k)P(11,i)xi 
—~ 

,e/'`Q"c2xj2yie-Rwelxilyixi (m-3oo) =bw(f)",b1(a)xi0 
Next let f E L°° (S1A, v). We choose g E CPA) with 11(1 — < E. Then 

(61,9 f Oa) a) - (Pi .f)ir(Pia)xiy: I <I~Gw(9g`)(f - g)emY)a)I 
                         + IOW(9;,t)g9$ )a) - w(Pi g)Ow(Pia)xiyi 

1iw(Pi(f — MOW (Pia)xiy I, 
and we get the following estimate of the first term: 

10'09(a)(f -g)B(„2a)1 = I w(9(„i)ae(m2(f -g))1 
II''                   < 1,bw(9(m)ao(i)e(m)a*e(ii))1/2/,w((f - g)*(f - g))1/2 

< I IaI II I(f -9)4)4, 
because le is tracial. In a similar way, we can show the statement for a E 

  We will use the following folklore among specialists, (e.g. see [Izu]). 
Lemma 3.4 ([Izu, Lemma 4.1]). Let B be a unital C*-algebra, ¢ a state of B and 
(Oro, H0,4) the GNS-triple of 0. We assume that the cyclic vector 4, is a separating 
vector for 7r,(B)" Let C be a unital C*-sublagebra of B and z, the restriction of ¢ 
to C. Then (irolc, Ho) is quasi-equivalent to the GNS-representation (ir,,,, Ho) of 

  Now we have the necessary ingredients for the proof of Lemma 3.1.
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 .Proof of Lemma 3.1. It is easy to show that 71-0W (Pik) E Z(71-0• (OAW )") for k = 
1,...,n. By Lemma 3.4, iro. (OA' )" is isomorphic to 7r0W (OA')". It therefore 
suffices to show that Z(Ir, (OAW )") = ®k=I CPib . Let z E Z(iroW (Or)") be 

 a non-trivial projection. Since L°°(1tA) is a masa in irtp. (OA)", we have z E 
L°°(1 A). We can apply Lemma 3.3 to f = Piz: 

lim"(Bns)z9,nla)_Ow (Pi z)le(Pi a)xi yi2 • 
m->oo 

 On the other hand, since z is centered, we get 

      l~Ow(leze„i)a) =l~zI-'7i,2 772lza)_~"(POO' (Pi za)xiy~• 

Therefore 
ow (POO' (Piza) = b"(Piz)b"(Pia). 

Since Ow is faithful on 7r0W (On" and a is arbitrary, we get 
                                 "Pz 

                                         _

•                    Piz 1P"(Pi)---------Pt 
Therefore we obtain z = >iEI CiPi for c; E {0,1}. If cti � 0 for i E Ik , then there 
are admissible words Col with s(e) = i, s(q) = j, r(e) = r(n) and w£ = con for 
j E Ik , and z must commute with SS~ E OA" Hence we have z=7k=1 CkPIk 
for Ck E {0,1}.^ 

                         4. MAIN THEOREM 

  We first review some notations in [Con]. Let (M,118,0-) be a W*-dynamical system. For f E LI (R), we define 
/f(t)a-t(x)dta a--weakly continuous linear map on M by af(x) =  for x E M. 

The Arveson spectrum of o- is defined by 

Sp(a) = n{Z(f) 1 f E L1(I'), of = 01, 
where Z(f) = {r E 1V I f(r) = 0} and 111 is the dual group of IR. Then the Connes 
spectrum of a- is defined by 

r(o) = n Sp(a1 PMP), 

p where p runs over all non-zero projections in Z(Mu) = M° fl (M°)' Note that 
F(a) C Sp(o-IpMp) holds for any non-zero projection p in M° 

  For each i E I, let Gi be the closed additive subgroup of II8 generated by ,Bwe for all loops with s(e) = i and G the closed additive subgroup generated by /3w
c for all circles 6. 

Lemma 4.1. For any i E I, G = Gi. 

Proof It is clear that G C_ Gi. Conversely, let t be a loop with s(e) = i . Then 
there are circles £(1), ... , (n) such that wk = wf(I) + • • • +w

0nl. Thus Gi C G. ^ 
  We will prove the following main theorem. 

Theorem 4.2. (1) If wdwn E Q for all circles e, r1, then M (04" is the     AFD t
ype IIIa factor for A = e-', where G = rZ for some r E 118+.
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 (2) If  w£/con 0 Q for some circles (, r), then M (OA)" is the AFD type IIIi 
    factor. 

Proof. Since ow is a`"-invariant, e can be extended to an action on M. We use the 
same symbol ow for its normal extension. Let o be the modular automorphism 
group for ow , which satisfies yr = ept for t E R. We first claim that Mu = 
ire (OA)" One can check that the conditional expectation from OA onto OAW 
in the proof of Lemma 3.2 can extend to the one on 7ro. (OA)" Thus by the 
approximation arguments, we can obtain our claim. 

  By Lemma 3.1, we obtain r(o ) = nk Sp(Qr I pl~ Mplr ). Since Sp(o'W I P MP1) C 
SP(ar I PI. MPI.) for i E Ik , we have r(o ) = RE' SP(04"' Ip,Mpt )• 

  We now claim that Sp(o.r I P;MPi) = Gi for each i E I. Let 6,71 be loops with 
s(() = s(n) = i. If f E Kera0- I piMP,, then 

0 = v f"' (P1S£SnPi) = .f (a(wt — wn))PiSS;1*Pi. 
Since PPSSSSPi # 0, we have /3(w{ — wn) E Sp(oAr IPiMpi). Thus a group gen-
erated by /3w£ for all loops ( with s(() = i is contained in Sp(o-eIP;MPi)• Since 
SP(o IPiMPi) is closed, Gi C Sp(Q''' I p,Mpi) holds. Conversely let r E R \ Gi. 
Choose a function f E Ll (R) with f(r) # 0 and f I ci = 0. We have

4 I P;MPi (PiSSSq*Pi) = .f (f3(we — wn))PiSSSSPi. 
If PiSSS~Pi 0 0, then we have s(() = s(n) = i and A(r((), j) = A(r(n), j) = 1 for 
some j E I. Since A is irreducible, there is an admissible word ( with s(C) = j and 
A(r((), i) = 1. Two admissible words ( (, 7i • ( are loops with s((• () = s(rj • () = i. 
Hence 

/3(wg — wn) = /3(wg + wS — wn — WC) = /3(wg•S — wn.S) E Gi. 
We therefore obtain f E Kero I pi MPi . It follows from Lemma 4.1 that r(i ) = 
G. In the case (1),we have G = rZ for some r EIl8.and A is determined by 
e_r^

Example 4.3. Let F,, be the free group with the canonical generators al,. • • , an 
and S = {al, ai 1, ... , an, an-11 the generating set. The corresponding Cayley graph 
is the homogeneous tree with degree 2n. We define a compact space by 

00 

={(xi)r=1 Ixi xi+1}C[JS. 
i=1 

Note that ft is compact and r acts on Il by left multiplications. We remark that S2 
coinsides with the hyperbolic boundary c9 Fn of IFn . In [Spi], Spielberg showed the 
identification OA ̂ . C(SZ) w 1Fn, where

A=

 1  0  1 

0 1 1 

1 1 1 

1 1 0 

1 1 1 

1 1 1

1 

1 

0 

1 

1 

1

••• 1 1 

••• 1 1 

••• 1 1 

••• 1 1 

••• 1 0 

••• 0 1

(2n x 2n-matrix).
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   We now apply Theorem 4.2 to OA  C(11) >I IF, . Notethat the canonical masa 
 C(51,1) of OA coinsides with C(0). Letw1R= (wx)xEs Eand v the corresponding 

 probability measure on 11, which induces the KMS state for ce By Theorem 4.2, 
 we have the following: 

  (1) If wx/wy E Q for all x, y E S, then L°°(12, v) A FT, is the AFD type 111A factor 
     for some 0<A<1. 

  (2) If wx/wy ¢ Q for some x, y E S, then L°°(12, v) w IF,„ is the AFD type III1 
      factor. 

   Let i be a probability measure on Fm with suppµ = S. By [Oka], the random 
 walk with law µ induces the harmonic measure v on 1 such that the modular 

 automorphism group of the state votk has the form ae' for some co = (wx)xES E 1[8+ 
 Therefore the above result also means that we determine the type of harmonic 

 measures on ft (cf. [RR]). 
 Remark 4.4. We can also prove the same results for Or in [Oka] in the same way, 

 where r is an amalgamated free product group *HGi. Here, we will give a sketch 
 of the proof. 

  Let I be a finite index set and Gi a group containing a copy of a group H as a 
subgroup for i E I. We assume that Gi is finite for simplicity. Or is the universal 
C*-algebra generated by partial isometries S9, g E UiEI G,\ H and unitaries Uh, h E H satisfying certain conditions (see [Oka]). We use some symbols in [Oka]. For 
w = (wi),EI E II8, we consider the action a' of IR given by 

at (S9) = e/"'tS9 for i E I, g E Gi \ H, 
at (Uh) = Uh for h E H, 

where III is the cardinality of I. Remark that there is an identification Or ^-
C(11) r for some compact space ft ((Oka, Theorem 5.3]). Let I. be the canonical 
conditional expectation from C(1l) r onto C(9). It was shown that there is the 
unique 13-KMS state 0 = v o for a"', where v is the corresponding probability 
measure on 12. However the difference from the above example is that C(1t) may be 
not a masa of the fixed-point algebra under a' . Therefore we need some arguments 
to obtain the similar result for Or. Choose a masa C, containing C(12). We assume 
that r = *HGi satisfies the following condition: 

  For any i E I, there is an element yi = 91 • • g,6 E F such that hryiH # ry2H for any (e )h E H, where gk E Gi,, \ H with i = iI i2, i2 is, ... , in-1 � in. 
  We remark that the above assumption holds if F = *HGi satisfies the condition of [Oka, Corollary 6.4]. Fix ryi satisfying the above. Let W be the restriction of 0 

on the fixed-point algebra under Or For g E Gi \ H, we set 
e E ScS SP9Sf S*S~, 

                                f,n 
where ~, n run over all words from g to an element, which is not in Gi, with length m if III > 2 and length 2m if II( = 2. Let 71-0 be the GNS-representation of tk. Then we will 

get the similar result of Lemma 3.3. 
Lemma 4.5. For f E iry, (C)" and a E iro (Or")", we have 

1m W(B(7s) f0(9)a) _ P(Psf)' (P9a)x9y9z. , 
where x9, y9, zry are some constants .
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  Using this lemma, we can prove the following similarly. 

Proposition 4.6. 

            Z(71-,/,(Or)") — ®C1eP                             if Ill > 2. 
  Hence we can compute the Connes spectrum of the modular automorphism group 

in the similar way. This gives a generalization on  [RR]. 
Corollary 4.7. Let Or, w, q5, v be the above and 7ro the GNS-representation of 0. 
Then 
 (1) If wi/wj E Q for any i, j E I, then 7rd,(O0" v) I' is the AFD type 

IIIA factor for some 0 < A < 1. 
 (2) If wi/wj ¢ Q for some i,j E I, then 1r4,(Or)" L°O(S2, v) i r is the AFD 

    type IIIl factor.
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