<table>
<thead>
<tr>
<th>Title</th>
<th>Hypervalent Organobismuth Compounds: Synthesis, Reaction, and Applications to Organic Synthesis (Dissertation:全文)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikegami, Toru</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-01-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.11501/3133203</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
学位申請論文
池上亨
Hypervalent Organobismuth Compounds:
Synthesis, Reaction, and Applications to Organic Synthesis

（高原子価有機ビスマス化合物の合成、反応及び有機合成への応用）

1997

京都大学大学院
理学研究科化学専攻
有機合成化学分科

池上 亨
Contents

General Introduction

Chapter 1 Oxidation of Triaryl(bismuthanes and Stibanes with Iodosylbenzene. Preparation, Reaction and Isolation of Bismuthane Oxides 1

Chapter 2 Unexpected Formation of Highly Stabilized Tetrakis[(2-alkoxyphenyl)bismuthonium Salts in the Oxidation of Tris[(2-alkoxyphenyl)bismuthanes with Iodosylbenzene 37

Chapter 3 A Convenient in situ Generation and Mild Oxidizing Ability of Triaryl(bismuthane Tosylimides 73

Chapter 4 Preparation and the First X-ray Structure Analysis of Highly Stabilized Triaryl(bismuthane Imides 86

List of Publications 122

Acknowledgments 124
General Introduction

Bismuth was already known in the Middle Age and its identity as a specific element was established as early as the middle of eighteenth century. The Clarke number of bismuth 2×10^{-5} classifies this element as rare as silver and mercury, but it is not so expensive because large amounts are recovered as a by-product from the refining process of non-ferrous heavy metals. Bismuth has an electron configuration $[\text{Xe}]4f^45d^06s^26p^3$ and usually utilizes the three $6p$ electrons in bond formation, thus exhibiting the oxidation state $+3$ in the majority of its compounds. Two $6s$ electrons retained as a lone pair can also be utilized in high oxidation state. The principal uses of bismuth are the manufacture of alloys, medicines, electric devices, catalysts and cosmetics. Low toxicity of this element has led to various bismuth-based preparations administered orally for treatment of intestinal disorders.

However, the usefulness of this element in organic synthesis has been recognized little until the last decade, when extensive works by Barton’s, Wada’s and our groups revealed the uniqueness and promising potentials of bismuth as the reagent for organic transformations.1-9 Though the chemistry of organobismuth compounds possessing trivalent or pentavalent bismuth center has been considerably developed in these years, the chemistry of quaternary organobismuth compounds, represented by bismuthane oxides, bismuthane imides, ylides and bismuthonium salts, has remained almost untouched. The main reason why they have been neglected so far may be attributed to the fact that there has been only limited access to these types of compounds. However, some general and more efficient methods for the synthesis of bismuthonium salts and ylides have been developed recently,10 allowing their chemistry to be explored further.

In this thesis, some novel methods for the synthesis of bismuthane oxides and imides as well as their structures and chemical behaviors have been reported. The author has found that the intramolecular coordinating groups exert great influence on the nature (thermal– and moisture–stabilities and reactivities) and chemistry of bismuthane oxides and imides. This thesis provides the best source of information on the chemistry of these type of compounds.
References

Chapter 1 Oxidation of Triarylbumuthanes and Stibanes with Iodosylbenzene. Preparation, Reaction and Isolation of Bismuthane Oxides

Abstract

Treatment of triarylbumuthanes 3 with iodosylbenzene under ultrasonic irradiation or gentle heating leads to the generation of triarylbumuthane oxides 2 in good yields, and it was found that their chemical behavior were quite different from those of lighter organopnictogen oxides in the following aspects. Triarylbumuthane oxides 2 are highly reactive against carbon dioxide and water to give triarylbumuth carbonates 6, and have mild oxidizing ability to convert alcohols, hydrazobenzene and triphenylphosphane into the corresponding carbonyl compounds, azobenzene and phosphane oxide in good yields under completely neutral conditions. The oxides 2 also react with a variety of active methylene compounds to give a variety of products. Attempts to isolate the oxides 2 sometimes gives abnormal products; oxidation of trimesitylbismuthane 3d and tris-(2-methoxyphenyl)bismuthane 3e with iodosylbenzene in dichloromethane led to the corresponding trimesitylbismuth dichloride and diarylbismuth chloride, respectively. Triarylbumuthane oxide 23 derived from 10-(4’-methylphenyl)phenothiabismine 22 could be isolated as a stable compound under atmospheric conditions.
Introduction

Oxides of triarylbismuthanes are a class of compounds which have potential as a versatile precursor for a variety of organobismuth(V) compounds. In contrast to the extensive works on lighter organonpnicogen oxides, only little attention has hitherto been paid to the chemistry of organobismuthane oxides. The first synthesis of this class of compounds was reported by Goel and Prasad in 1972, who carried out the metathetical reaction of triphenylbismuth dichloride 1a and silver(I) oxide in a mixture of benzene-water to obtain triphenylbismuthane oxide 2a as a white polymeric powder in 10–40 % isolated yields. Their oxide 2a melted at 155 °C, and they supposed that the oxide 2a existed as a polymer, which contained -Bi-O-Bi- linkage, by IR spectrum. They reported a same type of reaction between triphenylbismuth dicyanide and mercuric oxide to obtain the oxide 2a, however, yield and chemical behavior of the oxide were not described. Metathesis reaction between dichloride 1a and silver(I) oxide resulted in formation of bismuthane 3a in moist acetone, while triphenylbismuth dihydroxide was formed in water by the same type of reaction.

Triphenylbismuthane oxide 2a has been tried to prepare by the direct oxidation of bismuthane 3a with a variety of oxygen transfer reagent to lead discordant results. Attempted oxidation of bismuthane 3a with hydrogen peroxide, dinitrogen trioxide, potassium permanganate, 1-pyrroline-1-oxide led to none of expected product. And the reaction between the bismuthane 3a with selenium dioxide gave bismuth selenate and benzeneseleninic acid. Other recent works have not suggested any efficient methods to prepare triarylbismuthane oxides.
Photochemical reduction of uranyl ion11 or titanium(IV) oxide12 with bismuthane 3\texttext{a} have reported to give the oxide 2\texttext{a}, however, in both reports, there are no information on the chemical nature of the oxide. Conversion of bismuthane 3\texttext{a} into its oxide 2\texttext{a} with N-bromosuccinimide-hydrochloric acid-potassium bromide system was used for oxidimetric titration of bismuthane.13 Barton et al. reported that the oxide 2\texttext{a} was unable to cleave trans-decaline-9,10-diol, although no method for preparation of the oxide was described.14 Naumann et al. succeeded to prepare the oxide 2\texttext{a} by the hydrolysis of triphenylbismuthane N-(trifluoromethanesulfonyl)imide. Their sample of the oxide 2\texttext{a} melted at 152-154 °C, which was identical with those of the Goel's sample, though there was no further information on spectral feature.15

In view of above results, it seems that the chemical nature of organobismuthane oxides remained untached. A similar phenomenon has long been reported for triphenylstibane oxide 4\texttext{a}, which exists as dimeric or polymeric form.16 To establish the method for preparation of bismuthane oxides 2, we carried out the direct oxidation of triarylbismuthanes with a variety of oxidants. Among several oxidants, ozone and iodosylbenzene led to unique and unexpected results. The former oxidized bismuthanes 3 into a mixture of triarylbismuth dicarboxylates at low temperature, and the ratio of the products depended upon the reaction medium.17 On the other hand, the latter oxidant converted bismuthanes 3 into soluble bismuthane oxides 2 effectively under mild conditions. We wish to report herein the novel method of preparation of bismuthane oxides 2, the mild oxidizing ability of the bismuth oxide function, and the reactivity of them against active methylene compounds.
Results and Discussion

In situ Generation of Triarylbumthane Oxide

First we examined oxidation of bismuthane 3a with iodosylbenzene in chloroform. The cream yellow starting mixture was stirred at ambient temperature to change into yellow solution after 5 min. The resulting solution was concentrated under reduced pressure to give mixture consisted of iodobenzene, bismuthane 3a and unidentified compounds. Similar oxidation of tris-(4-methylphenyl)bismuthane 3b was examined in CDCl₃ to get insight of the reaction. The mixture of bismuthane 3b and iodosylbenzene in CDCl₃ was sonicated over ultrasound washing machine for 1 h until it changed into a yellow solution. ¹H NMR spectrum of the solution showed broad peaks at around δ 2.37, 7.19, 7.41, 7.84 and 8.28. By the addition of acetic anhydride, these NMR signals were replaced by those of tris-(4-methylphenyl)bismuth diacetate 5b (for aromatic region, 7.38, d, J 8.0 and 8.02, d, J 8.0) and tris-(4-methylphenyl)bismuth dichloride 1b (for aromatic region, δ 7.44, d, J 8.0 and 8.36, d, J 8.0) (Fig. 1).

The formation of the latter compound suggested that chloroform reacted with the intermediate of the reaction, and it was less suitable solvent for our purpose. When the sonochemical oxidation of the bismuthane 3a was carried out in ethyl acetate, triphenylbismuth diacetate 5a was obtained as the side product, therefor, it was also not suitable solvent. Then the solvent was replaced by toluene or benzene. ¹H NMR spectrum (C₆D₆) of a reaction mixture prepared from bismuthane 3b and iodosylbenzene, exhibited somewhat a broad signal at δ 2.02 and two broad peaks due to
Fig. 1: 1H NMR (CDCl$_3$) spectra of in situ generated $\text{Pt}^{0}\text{B}=\text{O}$ and its trapping experiment with Ac_2O.

- No Ac_2O was added
- 0.3 eq of Ac_2O was added
- 1 eq of Ac_2O was added
- Excess of Ac_2O was added
No Ac²O was added

0.2 eq of Ac²O was added

1 eq of Ac²O was added

Fig. 2: H NMR (CD₆) spectra of in situ generated Pt₃Bi=0 3b, and its trapping experiment with Ac²O.
aromatic protons around δ 7.0 and 8.5 with an approximate peak area of 1:1. By the adding of acetic anhydride, these signals were replaced by those of the diacetate 5b similar to the NMR experiment in CDCl₃. A signal at δ 7.98 showed no change during the above procedure (Fig. 2). According to the above trapping experiment using acetic anhydride, we may safely conclude that the oxygen transfer reaction from iodosylbenzene to bismuthane occurred smoothly, and the bismuthane oxides 2 exist in the yellow solution (Scheme 1).

![Scheme 1](image)

Reagent and conditions: i, PhI=O, CH₂Cl₂ or Toluene, 40 °C or))

After several trial, we have found that dichloromethane is also useful solvent. ¹H NMR spectrum (400 MHz, CD₂Cl₂) of compound 2b at 25 °C exhibited a methyl signal at δ 2.38 and two broad signals due to aromatic protons at δ 7.4 and 8.2; the latters turned into a pair of doublets (δ 7.39 and 8.14; J = 7.6) below at -50 °C (Fig. 3).

The representative procedure for the generation of soluble tris(4-methylphenyl)bismuthane oxide 2b is as follows; tris(4-methylphenyl)bismuthane 3b (482 mg, 1.0 mmol) was added to a suspension of freshly prepared iodosylbenzene (264 mg, 1.2 mmol) in dry dichloromethane (30 cm³) and the resulting mixture was sonicated at 35 °C under argon on a commercial ultrasonic washing machine until bismuthane 3b was completely consumed (checked by TLC).
FIG. 3 \(^1 \text{H NMR (CD}_2\text{Cl}_2) \) spectra of in situ generated \(^{19}\text{F} \text{DFOBq}^+ \) at 25, 50, and -75°C.
After 2–3 h the chalky suspension turned into a bright yellow solution, which was quickly filtered through a Celite bed. When exposed to breath or air, this bright yellow solution gradually lost its characteristic colour, forming triarylbismuth carbonate $6b^{18}$ as a powdery precipitate. Careful removal of the solvent together with iodobenzene under high vacuum left a glassy residue, which was soluble in benzene, acetone, tetrahydrofuran and dichloromethane, but insoluble in hexane. When scratched by a spatula in hexane, the residue was gradually transformed into an intractable powder, which, however, on stirring for 3 days with a half in weight of triphenylphosphane in benzene at ambient temperature, produced compound $3b$ and phosphane oxide in 57 and 65 % yields, respectively, together with unchanged phosphane in 35 % yield. Treatment of a solution of triphenylbismuthane oxide $2a$ in toluene with benzoic anhydride or toluene-p-sulfonic acid monohydrate afforded triphenylbismuth dibenzoate 7^{19} and bis(toluene-p-sulfonate) 8^{20}, respectively, in 66 and 70 % isolated yields (Scheme 2). Reaction between stibane oxides and organosulfonic acids has been reported to give organostibane disulfonates.20

Attempts to isolate the presumed oxides 2 by diluting its bright yellow solution with hexane led to a pale yellow precipitate, which was only slightly soluble in benzene. 1H NMR spectrum (C_6D_6) of the precipitation obtained by adding hexane to a solution of bismuthane oxide $2b$ agreed with those of the unchanged signals observed in the above mentioned NMR experiment in C_6D_6. Elemental analysis of this precipitate was inconsistent with the theoretical value for compound $2b$. Both the carbon and hydrogen contents were significantly lower than the expected, suggesting the
extensive decomposition of oxide 2b during the forced precipitation.

\[
\begin{align*}
5a, b & \quad \text{Bi(OCOMe)2Bi(OCOPh)2Bi(OSO2PTo1)2} \\
7 & \quad \text{Bi(OCOPh)2Bi(OSO2PTo1)2} \\
8 & \quad \text{Bi(OCOMe)2Bi(OCOPh)2Bi(OSO2PTo1)2} \\
2 & \quad \text{Bi=O} \\
6 & \quad \text{BiCO3} \\
9 & \quad \text{BiPh3} \\
10b, c & \quad \text{Bi^{+}BF4^-} \\
\end{align*}
\]

Scheme 2
Reagent and conditions: i, (MeCO)2O, r.t.; ii, (PhCO)2O, r.t.; iii, pTolSO3H, r.t.; iv, CO2, r.t.; v, dimedone, r.t.; vi, BF3 • OEt2, -60 °C

In support of this view, its FAB-MS spectrum (m-nitrobenzyl alcohol was used as a matrix) contained peaks attributable to fragment ions PhBi6O8, Bi6O8, Ph2Bi5O8, Bi5O7, PhBi4O5, PhBi3O3, Bi3O4, Bi3O3, Ph3BiOCH2C6H4NO2, Ph4Bi, Ph2Bi, PhBi, Bi and others, suggesting hydrolysis of Bi-C bond caused the formation of these bismuth(III) oxide derivatives. A similar polymeric degradation product was obtained from the autooxidation of trialkylbismuthanes. Reaction of the insoluble solid with 5,5-
dimethylcyclohexane-1,3-dione (dimedone) in dichloromethane under reflux for 2 h led to the formation of a known bismuthonium ylide 9a in 55% yield.22,23 Suzuki \textit{et al.} reported the reaction of oxide 2a with a sodium salt of dimedone to give the ylide 9a,24 however, we did not need any additional base for the present reaction. The action of boron trifluoride etherate on compound 2b,c in dichloromethane resulted in the formation of tetraaryl bismuthonium tetrafluoroborate 10b and 10c in 24% and 6% yield, respectively.

The present sonochemical oxidation procedure was extended to the convenient preparation of triarylstibane oxides; a mixture of triphenylstibane 11a (353 mg, 1.0 mmol), iodosylbenzene (220 mg, 1.0 mmol) and dry dichloromethane (20 cm3) was sonicated at ambient temperature for 1 h. Usual workup followed by recrystallization from hexane-dichloromethane (3:1; 20 cm3) afforded compound 4a as colourless crystals (310 mg; 84%), mp 219-221 °C (lit.16 220-222 °C). Crystalline stibane oxide 4a has previously been prepared by the thermal decomposition of methoxytetraphenylantimony 12; heating of this compound at 60-70 °C in xylene for 6 days gave the oxide 4a in 31% yield (Scheme 3).16 Direct oxidation of stibane 11a with hydrogen peroxide produced polymeric stibane oxide as an amorphous solid.16 In contrast to triphenylphosphane oxide and triphenylarsane oxide which occur in monomeric form, the crystalline form of compound 4a has been shown by X-ray analysis to exist in a dimeric state.16 Little information for 1H NMR spectrum of the stibane oxide is available; McEven had reported that 1H NMR spectrum (CCl\textsubscript{4}) of triphenylstibane oxide exhibited two regions with centre at 8 7.28 and 7.58.25 1H NMR spectrum (CDCl\textsubscript{3}) of the oxide 4a which prepared by sonochemical oxidation exhibited two
regions with centre at δ 7.35 and 7.74.

$$\begin{align*}
\text{Sb} & \quad \text{i} & \quad \text{SbO} & \quad \text{ii}
\end{align*}$$

Scheme 3
Reagent and conditions: i, PhI=O, CH$_2$Cl$_2$, ; ii, Xylene, heat

Judging from the above results, it seems that the bismuthane oxides are air and moisture sensitive. This indicates that the previous method would be less suitable for the preparation of the oxides. In fact, metathesis reaction between dichloride 1b and silver(I) oxide led to the formation of bismuthane 3b and unidentified compound. 1H NMR signals due to the latter product agreed with those of observed in direct oxidation of bismuthane 3b in PhI=O–CDCl$_3$ system. Attempt to isolate the product failed due to its instability, although spectroscopic data suggested the structure as μ-oxybis-(4-methylphenyl)bismuth dichloride.2

Reactivity of Triarylbismuthane Oxides

The soluble triarylbismuthane oxides 2 proved themselves to be a mild oxidizing agent for some organic compounds under neutral conditions (Table 1). They easily converted secondary alcohols to ketones, allylic and benzylic alcohols to aldehydes, benzoin to benzil, and benzopinacol to benzophenone. Similar oxidation reaction using bismuth carbonates 6 under basic condition was reported by Barton and co-workers.26 Hydrazobenzene was rapidly dehydrogenated to azobenzene, and triphenylphosphane was oxidized to phosphane oxide. Organic sulfides such as thioanisole and methyl n-octyl sulfide remained intact even after
stirring for 6 days at ambient temperature. In the presence of an equimolar boron trifluoride etherate, 2-(4-methoxyphenyl)-1,3-dithiolane was cleaved to form 4-methoxybenzaldehyde in 33% yield. Cinnamyl chloride remained unchanged after treatment with a solution of the bismuthane oxide 2b. No obvious improvement was observed by the addition of tetra-(n-butyl)ammonium bromide to the reaction mixture. Based on these results, we have concluded that the bismuthane oxides have poor nucleophilicity in contrast that amine N-oxides react as nucleophiles. These results might support the hypothesis that bismuthane oxides exist in oligomeric form consist of -Bi(Ar)3-O- repeating unit so that the oxygen has only poor nucleophilicity. In contrast, stibane oxide 4a has been found to exhibit only a limited ability as oxidant for organic substrates; stirring of an equimolar mixture of stibane oxide 4a and a given substrate in dichloromethane at ambient temperature under argon resulted in most cases in the recovery of starting materials. Exceptions are benzoin and benzopinacol, which were oxidized to benzil and benzophenone, respectively. Baechler claimed that stibane oxides is less reactive as an oxygen donor against phosphane than triphenylarsane oxide. By addition of CDCl₃ solution of bis(tert-butyldimethylsilyl) selenide to a C₆D₆ solution of oxide 2b, and the change of the NMR signals was observed. The formation of bismuthane 3a would support the oxygen transfer from bismuth to silicon readily underwent in contrast to the inertness of both amine N-oxides and phosphine oxides against disilylchalcogenides. These results clearly show the different chemical nature of the "Bi=O" compared with the other pnicogen oxide P=O, As=O and Sb=O.
Table 1. Oxidation of Organic substrates with Bismuthane Oxide 2b

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reaction time (h)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCH(OH)Me</td>
<td>2</td>
<td>PhCH(Me)</td>
<td>86</td>
</tr>
<tr>
<td>Ph=CH(CH$_2$OH)</td>
<td>2</td>
<td>Ph=CH=CHO</td>
<td>80</td>
</tr>
<tr>
<td>MeO-CH$_2$OH</td>
<td>2</td>
<td>MeO-CHO</td>
<td>100</td>
</tr>
<tr>
<td>PhCOOH</td>
<td>2</td>
<td>PhCOOH</td>
<td>95</td>
</tr>
<tr>
<td>PhH$_2$O</td>
<td>2</td>
<td>PhH$_2$O</td>
<td>75</td>
</tr>
<tr>
<td>PhNHNHPH</td>
<td>1</td>
<td>Ph=N=N=Ph</td>
<td>52</td>
</tr>
<tr>
<td>Ph$_3$P</td>
<td>2</td>
<td>Ph$_3$P=O</td>
<td>100</td>
</tr>
<tr>
<td>MeO-CH$_2$S-S</td>
<td>6</td>
<td>MeO-CHO</td>
<td>33*</td>
</tr>
<tr>
<td>Ph=CH$_2$Cl</td>
<td>18</td>
<td>No Reaction</td>
<td></td>
</tr>
</tbody>
</table>

BF$_3$•OEt$_2$ (1.0 mmol) was added.
Then we examined the reaction between bismuthane oxide 2 with active methylene compounds such as dibenzoylmethane, malononitrile and nitromethane. Treatment of these substrates with a solution of the oxide 2b led to the formation of a yellow or an orange suspension. In the case of dibenzoylmethane 13, 2-(4-methylphenyl)-1,3-diphenylpropane-1,3-dione 14 and bismuthane 3b were obtained in 83 and 41% yield, respectively. Since unchanged dibenzoylmethane was recovered in 17%, no diarylated product was obtained. This is significantly different from that the arylation reaction of active methylene compounds using hypervalent organobismuth compounds give di- or poly-arylated products.31 The reaction between the oxide 2b and dibenzoylmethane might proceed via abstraction of the acidic methylene proton to afford bismuth(V) intermediate 13, which decomposed at room temperature to give an arylated product. Similarly, the oxide 2b reacted with ω-(toluene-p-sulfonyl)acetophenone 15 to give the monoarylated product 16 in moderate yield. While in the case of the reaction of oxide 2 with malononitrile, no such arylation products were obtained; the reaction mixture changed into characteristic red colour, however, complex mixture was obtained after usual work-up. This reaction was monitored by 1H NMR in CD$_2$Cl$_2$ at -70 °C; the ArH peaks due to oxide 2b completely changed into a pair of broad doublet at δ 7.45 and 7.67, which decomposed after warmed to room temperature (Fig. 4). The intermediate could not isolate due to its thermal unstability, however, it reacted with chalcone 17 to give product 18 via C-C bond formation at low temperature. Judging from these facts, the intermediate may be supposed as a bismuthonium ylide 19 (Scheme 4).
Fig. 4. H NMR (CD2Cl2) spectra of in situ generated PtO2P=O 3b and its reaction with malononitrile at -75 °C.

CH2(CN)2 was added
Isolation of Triaryl bismuthane Oxides

As described above, it is so difficult to isolate triaryl bismuthane oxides 2a-c under the atmospheric conditions, due to their high reactivity against carbon dioxide. Then we tried to isolate the oxides 2 by changing the aryl groups attached to bismuth centres. Mesityl group (2,4,6-trimethylphenyl group) was chosen for the steric protection group; trimesitylbismuthane 2d was treated with iodosylbenzene in boiling dichloromethane, however, the major product was the corresponding dichloride 1d. In chlorine free solvent such as benzene, the oxidation reaction did not proceed smoothly, and gave a complex mixture. This result is quite different that tirmesitylstibane 11d is oxidized with iodosylbenzene to give its dihydroxide 20 in excellent yield.

Tris-(4-fluorophenyl) and tris-(4-chlorophenyl)bismuthane were
not oxidized by iodosylbenzene; almost of the starting bismuthanes were recovered after the prolonged heating. The direct oxidation of tris-(2-methoxyphenyl)bismuthane 1e in boiling dichloromethane led to the unexpected result; the product was tetrakis-(2-methoxyphenyl)bismuthonium chloride monohydrate 21. It is the first example of the thermally stable bismuthonium salts containing chloride as counter anion. For detail of the reaction, see part 2 of this thesis. In the case of oxidation of tris-(2-methoxyphenyl)stibane 11e, the corresponding oxide 4e32b was obtained in quantitative yield. These differences of chemical behaviour of bismuthanes 3 and stibanes 11 toward oxidation may be caused due to difference of the reactivity of the corresponding oxides; bismuthane oxides 2 may be reactive enough to abstract chlorine atom from dichloromethane under the reaction conditions (Scheme 5).

\textbf{Scheme 5}

Reagent and conditions: i, PhI=O, CH\textsubscript{2}Cl\textsubscript{2}, 40 °C; ii, PhI=O, CH\textsubscript{2}Cl\textsubscript{2}, 35 °C,); iii, PhI=O, C\textsubscript{6}H\textsubscript{6}, 80 °C; iv, PhI=O, CH\textsubscript{2}Cl\textsubscript{2}, r.t.
After several trials, we found that a heterocyclic bismuthane could stabilize the corresponding oxide effectively; treatment of 10-(4'-methylphenyl)phenothiabismine 2230 with iodosylbenzene in dichloromethane gave the corresponding oxide 23 as a yellow microcrystalline solid in quantitative yield (Scheme 6). FAB-MS spectrum of the oxide 23 exhibited a peak due to M+1 fragment. IR spectrum does not show any significant peaks due to sulfoxide function. Judging from the result of elemental analysis, it is supposed as a monohydrate, although the possibility of the dihydroxide can not be reuled out. In contrast to the previously prepared bismuthane oxides 2, the oxide 23 can be handled under atmospheric conditions, and it is the first example of the isolable bismuthane oxide. The oxide 23 is soluble in dichloromethane, chloroform, 1,2-dichloroethane, and insoluble in acetonitrile, diethylether and hexane. Single crystals of oxide 23 for X-ray crystallographic study could be grown from a mixture of 1,2-dichloroethane–acetonitrile, however, the crystals become cloudy during handling under atmospheric conditions due to its efflorescence nature. We now trying to prepare good crystals for X-ray crystallographic study.

Interestingly, 10-(4'-methylphenyl)phenoxyabismine 2430 which

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\textbf{Scheme 6}};
\node at (0,-1) {Reagent and conditions: i, PhI=O, CH\textsubscript{2}Cl\textsubscript{2}, 40 °C};
\node at (-1.5,0) {22};
\node at (1.5,0) {23};
\draw[->] (2.5,0) -- (3.5,0);
\node at (6.5,0) {SBO SB.Ot PToK ' O};
\node at (8,0) {PToI}
\end{tikzpicture}
\end{center}
possess a similar structure to \(\text{22} \) does not produce the isolable bismuthane oxide. In addition, tris-(2-methylthiophenyl)bismuthane \(\text{3f}^{33} \) was oxidized with iodosylbenzene to recover the unchanged bismuthane and thioanisole. These findings suggest that the six membered cyclic structure containing sulfur and bismuth might be essential for the stabilization of the bismuthane oxide \(\text{23} \).

Experimental

Dichloromethane, toluene, ethyl acetate and chloroform were all distilled from calcium hydride under argon before use. Triarylrbismuthanes \(\text{3a-f} \) were prepared by the reaction between bismuth(III) chloride and the corresponding arylmagnesium bromides. Iodosylbenzene was prepared according to the reported procedure,\(^{34} \) and stored in refrigerator below -20 °C to avoid thermal disproportionation.\(^{35} \) All mps were determined on a Yanagimoto hot stage apparatus and are uncorrected. \(^1\)H and \(^{13}\)C NMR spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer for solutions in CDCl\(_3\) with tetramethylsilane as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100 spectrophotometer. FAB-MS spectra were determined on a JEOL JMS HS 110 mass spectrometer. Elemental analyses were performed at Microanalytical Laboratory, Institute for Chemical Research, Kyoto University.

General procedure for the preparation of \(^1\)H NMR sample of the bismuthane oxides 2

To a mixture of bismuthane \(\text{3} \) (12 mg, 25 µmol) and iodosylbenzene (7
mg, 33 µmol), solvent (ca. 1 cm³) was added and sonicated at 40 °C under argon until a starting suspension turned into a clear solution. The resulting solution was used in further 1H NMR experiment.

Reaction of bismuthane oxide 2b with bis-(tert-butyl dimethylsilyl)selenide. A solution of oxide 2b (25 µmol) in toluene-d₆ was treated with excess of a solution of bis-(tert-butyl dimethylsilyl)selenide in CDCl₃. The broad peaks due to oxide 2b changed into sharp peaks, which gradually turned into those of bismuthane 3b.

In situ generation of triaryl bismuthane oxides 2

In toluene. General procedure: triaryl bismuthane 3 (1.0 mmol) was added to a suspension of freshly prepared iodosylbenzene (286 mg, 1.3 mmol) in dry toluene (40 cm³) and the resulting mixture was sonicated at 40 °C under argon on a commercial ultrasonic washing machine until bismuthane 2 was completely consumed (checked by TLC). Generally, it takes 2–3 h to complete the reaction. The resulting bright yellow solution was quickly filtered through a Celite bed, if needed. The FAB-MS spectrum of the filtrate (m-nitrobenzyl alcohol was used as a matrix) exhibited definite peaks due to fragment ions; for oxide 2a, m/z; 1459 (PhBi₆O₆), 1382 (Bi₆O₆), 1295 (Ph₂Bi₅O₆), 1157 (Bi₅O₇), 993 (PhBi₄O₇), 751 (PhBi₃O₇), 691 (Bi₃O₄), 675 (Bi₃O₃), 592 (Ph₃BiOCH₂C₆H₄NO₂), 517 (Ph₄Bi), 363 (Ph₂Bi), 286 (PhBi) and 209 (Bi); for oxide 2b, m/z; 1473 (PTolBi₆O₈), 1382 (Bi₆O₈), 1323 (PTol₂Bi₅O₆), 1157 (Bi₅O₇), 1007 (PTolBi₄O₇), 766 (PTolBi₃O₇), 691 (Bi₃O₄), 675 (Bi₃O₃), 634 (PTol₃BiOCH₂C₆H₄NO₂), 573 (PTol₂Bi), 391 (PTol₂Bi), 300 (PTolBi) and 209.
In dichloromethane. General procedure. A mixture of triarylborane 3 (1.0 mmol) and freshly prepared iodosylbenzene (286 mg, 1.3 mmol) in dry dichloromethane (40 cm³) was heated at 40 °C under argon until bismuthane 2 was completely consumed (checked by TLC). Generally, it takes 1–2 h to complete the reaction. The resulting yellow solution was used further reaction.

Trapping reaction of bismuthane oxide 2a with benzoic anhydride

To a toluene solution (40 cm³) of bismuthane oxide 2a, was added a solution (3 cm³) of benzoic anhydride (226 mg, 1 mmol) to give a yellow suspension, which was filtered and the filtrate was concentrated under reduced pressure. Recrystallization of the residue from benzene–hexane (1:4) gave triphenylbismuth dibenzoate 7 (450 mg, 66%), mp 172-174 °C (lit.¹⁹ 169 °C); δ_H 7.30–7.48 (9 H, m), 7.58 (6 H, t, J=8.0), 7.99 (4 H, d, J=8.0) and 8.32 (6 H, d, J=8.0); \nu_{max} (KBr)/cm⁻¹ 1599, 1559, 1470, 1437, 1364, 984, 719 and 681.

Trapping reaction of bismuthane oxide 2a with toluene-p-sulfonic acid monohydrate

To a toluene solution (40 cm³) of bismuthane oxide 2a, was added an acetonitrile solution (5 cm³) of toluene-p-sulfonic acid monohydrate (190 mg, 1 mmol) to afford a yellow solution. Usual work-up afforded triphenylbismuth bis(toluene-p-sulfonate) 8 (273 mg, 70%), mp 175-177 °C (lit.²⁰ 178 °C); δ_H 2.30 (6 H, s), 7.00 (4 H, d, J_{AB}=8.0), 7.22 (4 H, d, J_{AB}=8.0), 7.59 (3 H, t, J=8.0), 7.72 (6 H, t, J=8.0) and 8.18 (6 H, t, J=8.0).
Preparation of polymeric bismuthane oxides

A toluene solution of bismuthane oxide 2a (1 mmol) prepared by the above method was evaporated under reduced pressure till 5 cm³. Addition of cold hexane (20 cm³) to this solution gave cream yellow precipitates, which was washed with hexane (2 cm³ x 3). This precipitates decomposed upon heating above 150 °C without showing a definite melting range (Found: C, 31.1; H, 2.3%. C_{18}H_{15}BiO requires C, 47.4; H, 3.3%). By the similar procedure, polymeric oxide 2b was prepared (Found: C, 38.43; H, 3.20%. C_{21}H_{21}BiO requires C, 50.6; H, 4.2 %).

Reaction of polymeric bismuthane oxide 2b with triphenylphosphine

A mixture of polymeric bismuthane oxide 2b (220 mg, estimated as 0.43 mmol of pure oxide), triphenylphosphane (110 mg, 0.43 mmol), and benzene (5 cm³) was stirred at ambient temperature for 3 days. Insoluble powder was filtered off and the filtrate was separated by silica-gel column chromatography to give unchanged phosphane (35%), bismuthane 3b (159 mg, 57%) and triphenylphosphane oxide (78 mg, 65%), respectively.

Reaction of polymeric bismuthane oxide 2a with dimedone

To a mixture of polymeric oxide 2a (137 mg, estimated as 0.3 mmol of oxide) and dimedone (36 mg, 0.26 mmol), was added dichloromethane (10 cm³) and heated at reflux for 3 h. The resulting suspension was filtered and the filtrate was concentrated under reduced pressure to give orange residue (40 mg), in which contained bismuthonium ylide 9. The yield of the
ylide 9 was estimated as 55 % by 'H NMR spectroscopy.

Reaction of bismuthane oxide 2b with boron trifluoride etherate

To a solution of bismuthane oxide 2b, prepared from bismuthane 3b (482 mg, 1.0 mmol) and iodosylbenzene (264 mg, 1.2 mmol) in CH₂Cl₂ (30 cm³), was added boron trifluoride etherate (0.12 cm³, 1.0 mmol) at -60 °C, and the reaction mixture was warmed to room temperature. The mixture was stirred at room temperature for 1 day, and the insoluble precipitate was filtered off through a Celite bed. The filtrate was concentrated to leave a brown solid, which was chromatographed on silica-gel using CH₂Cl₂-EtOH (1 : 0 to 100 : 5) to give tris-(4-methylphenyl)bismuth dichloride 1b (50 mg, 9%) and tetrakis-(4-methylphenyl)bismuthonium tetrafluoroborate 10b (162 mg, 24%). **Compound 10b;** mp 205-207 °C; δH 2.44 (12 H, s), 7.49 (8 H, d, JAB 8.0) and 7.63 (8 H, d, JAB 8.0); νmax (KBr)/cm⁻¹ 1487, 1446, 1391, 1312, 1281, 1209, 1188, 1121, 1061, 1005, 799, 519 and 475; m/z (FAB) 573 (PTol₄Bi), 391 (PTol₂Bi) and 300 (PTolBi) (Found: C, 50.73; H, 4.15. C₂₈H₂₈BBiF₄ requires C, 50.93; H, 4.27%).

Reaction of bismuthane oxide 2c with boron trifluoride etherate

To a solution of bismuthane oxide 2c, prepared from tris-(4-methoxyphenyl)bismuthane 3c (530 mg, 1.0 mmol) and iodosylbenzene (440 mg, 2.0 mmol) in CH₂Cl₂ (50 cm³), was added boron trifluoride etherate (0.7 cm³, 5.8 mmol) at -60 °C, and the reaction mixture was warmed to room temperature. The mixture was stirred vigorously with aqueous sodium
tetrafluoroborate (3 g) at room temperature for 2 h. Organic phase was separated, and the aqueous layer was extracted with CH₂Cl₂ (5 cm³ X 3). The extracts were combined and dried (MgSO₄), and filtered. The filtrate was concentrated to leave a brown oil, which was chromatographed on silica-gel using CH₂Cl₂-EtOH (1 : 0 to 100 : 5) to give tetrakis-(4-methoxyphenyl)bismuthonium tetrafluoroborate 10c (45 mg, 6%).

Compound 10c; mp 174-175 °C; δH 3.85 (12 H, s), 7.20 (8 H, d, JAB 8.8) and 7.65 (8 H, d, JAB 8.1); δC 55.5 (MeO-), 118.0, 125.1 (Bi-C), 136.8 and 162.7; νmax(KBr)/cm⁻¹ 1580, 1568, 1489, 1458, 1296, 1254, 1179, 1121, 1050, 1017, 822, 521 and 513 (Found: C, 46.64; H, 3.85. C₂₈H₂₈BiBF₄O₄ requires C, 46.43; H, 3.90%).

Preparation of triphenylstibane oxide
A mixture of triphenylstibane 11a (353 mg, 1.0 mmol), iodosylbenzene (220 mg, 1.0 mmol) and dry chloroform (20 cm³) was sonicated at ambient temperature for 1 h to give the expected stibane oxide 4a. Usual workup followed by recrystallization from hexane-chloroform (3:1; 20 cm³) afforded compound 4a as colourless crystals (310 mg, 84%), mp 219-221 °C (lit.16 220-222 °C). δH 7.28-7.42 (9 H, m) and 7.66-7.82 (6 H, m); νmax (KBr)/cm⁻¹ 1478, 1433, 1064, 739, 727, 692, 668, 656, 650, 476 and 453; m/z 506, 504 (Ph₃SbOCH₂C₆H₄NO₂), 490, 488 (Ph₃Sb₂O), 431, 429 (Ph₄Sb), 371, 369 (Ph₃SbO), 277, 275 (Ph₂Sb) and 200, 198 (PhSb).

Metathesis reaction between dichloride 1b and silver(I) oxide
To a benzene solution (30 cm³) of tris-(4-methylphenyl)bismuth
dichloride 1b (554 mg, 1 mmol), was added an aqueous suspension (5 cm³) of silver(I) oxide, freshly prepared from 308 mg of silver nitrate and 80 mg of sodium hydroxide, and the resulting suspension was stirred vigorously at ambient temperature for 7 h in the dark. The resulting light grey suspension was filtered through a Celite bed, and the organic layer was separated, dried (Na₂SO₄), and concentrated to afford pale yellow crystals (220 mg), mp 105–107 °C. ¹H NMR spectrum of the solid showed the product was a mixture of bismuthane 3b and μ-oxybis-{tris-(4-methylphenyl)bismuth} dichloride as follows; δₘₚ 2.32 (9 H, s, PTol₃Bi), 2.41 (18 H, s, μ-oxy), 7.19 (6 H, d, J₄.0, PTol₃Bi), 7.43 (12 H, d, J₄.0, μ-oxy), 7.62 (6 H, d, J₄.0, PTol₃Bi) and 8.29 (12 H, d, J₄.0, μ-oxy); vₚₜ (KBr)/cm⁻¹ 1483, 1389, 1308, 1182, 1113, 1003, 793, 617 and 474; m/z 648 (PTol₃Bi(O)OCH₂C₆H₄NO₂), 544 (PTol₂BiOCH₂C₆H₄NO₂), 517 (PTol₃BiCl), 391 (PTol₂Bi), 300 (PTolBi) and 209 (Bi).

Oxidation reaction using bismuthane oxide

General procedure. To a toluene solution (40 cm³) of bismuthane oxide 2 (1 mmol), was added a substrate (0.8 mmol) in the same solvent (5 cm³) at ambient temperature, and the resulting mixture was stirred for several hours. The resulting suspension was filtered through a Celite and the filtrate was concentrated to leave an oily residue, which was separated by silica-gel column chromatography using hexane-ethyl acetate (1:0 to 20:1) as an eluent.

sec-Phenethyl alcohol

26
Treatment of oxide the 2b (1 mmol) with sec-phenethyl alcohol (100 mg, 0.8 mmol) at room temperature for 4 h gave bismuthane 3b (201 mg, 42%) and acetophenone (82 mg, 86%).

Cinnamyl alcohol

Treatment of oxide the 2b (1 mmol) with cinnamyl alcohol (107 mg, 0.8 mmol) at room temperature for 12 h gave bismuthane 3b (240 mg, 50%) and cinnamaldehyde (84 mg, 80%).

4-Methoxybenzyl alcohol

Treatment of oxide the 2b (1 mmol) with 4-methoxybenzyl alcohol (111 mg, 0.8 mmol) at room temperature for 12 h gave bismuthane 3b (160 mg, 33%) and 4-methoxybenzaldehyde (108 mg, 100%).

Benzoin

Treatment of oxide the 2b (1 mmol) with benzoin (170 mg, 0.8 mmol) at room temperature for 12 h gave bismuthane 3b (121 mg, 25%) and benzil (159 mg, 95%).

Benzopinacol

Treatment of oxide the 2b (1 mmol) with benzopinacol (366 mg, 1.0 mmol) at room temperature for 2 h gave bismuthane 3b (390 mg, 81%), unchanged benzopinacol (91 mg, 25%) and benzophenone (270 mg, 75%).

Hydrazobenzene

Treatment of oxide the 2b (1 mmol) with hydrazobenzene (147 mg, 0.8 mmol) at room temperature for 1 h to give a mixture (248 mg) of bismuthane 3b (36%) and azobenzene (52%). The yield was estimated by 'H NMR.

Triphenylphosphane

Treatment of oxide the 2b (0.48 mmol) with cinnamyl alcohol (125 mg,
0.48 mmol) at room temperature for 2 h gave bismuthane 3b (160 mg, 69%) and triphenylphosphane oxide (133 mg, 100%).

2-(4-Methoxyphenyl)-1,3-dithiolane
Treatment of oxide the 2b (1 mmol) with 2-(4-methoxyphenyl)-1,3-dithiolane (170 mg, 0.8 mmol) at room temperature for 12 h, however no reaction occurred (checked by TLC). To the reaction mixture, was added boron trifluoride etherate (0.12 cm³, 1.0 mmol) to give unchanged dithiolane (99 mg, 58%) and 4-methoxybenzaldehyde (37 mg, 33%).

Reaction between bismuthane oxide 2b and dibenzoylmethane 13
To a solution (40 cm³) of bismuthane oxide 2b (1 mmol) in CH₂Cl₂, was added dibenzoylmethane 13 (224 mg, 1 mmol) in the same solvent (6 cm³), and stirred at ambient temperature for 4 h. Resulting pale yellow suspension was filtered through a Celite bed and the filtrate was concentrated to give yellow residue, which was separated by silica-gel column chromatography using hexane-ethyl acetate (1:0 to 7:1) as an eluent to give bismuthane 3b (197 mg, 41%), recovered compound 13 (38 mg, 17%) and 2-(4'-methylphenyl)-1,3-diphenylpropane-1,3-dione 14 (260 mg, 83%). The latter compound was pale yellow crystals, mp 146–149 °C (lit., 30 147–150 °C); δH 2.33 (3 H, s), 6.53 (1 H, s), 7.19 (2 H, d, JAB 8.0), 7.27 (2 H, d, JAB 8.0), 7.43 (4 H, t, JAB 8.0), 7.55 (2 H, t, JAB 8.0) and 7.98 (4 H, d, JAB 8.0); m/z 314 (M⁺), 236 (M-Ph), 209 (M-PhCO), 105 (PhCO) and 91 (PToI⁺). Treatment of compound 13 (224 mg, 1 mmol) with bismuthane oxide 2b (1 mmol) in toluene at ambient temperature for 7 h gave the bismuthane 3b (220 mg,
46%), recovered 13 (67 mg, 30%) and product 14 (220 mg, 70%) after the same work-up.

Reaction between bismuthane oxide 2b and ω-toluene-ω-sulfonyl acetophenone 15

To a solution (40 cm³) of bismuthane oxide 2b (1 mmol) in CH₂Cl₂, was added ω-toluene-ω-sulfonyl acetophenone 15 (274 mg, 1 mmol) in the same solvent (10 cm³), and stirred at ambient temperature for 12 h. Resulting yellow suspension was filtered through a Celite bed and the filtrate was concentrated to give yellow oil, which was separated by silica-gel column chromatography using hexane-ethyl acetate (1:0 to 7:1) as an eluent to give bismuthane 3b (288 mg, 60%), recovered compound 15 (130 mg, 48%) and ω-(4'-methylphenyl)-ω-(toluene-ω-sulfonyl)acetophenone 16 (116 mg, 32%).

Compound 16; mp 145–146 °C; δ, 2.33 (3 H, s), 2.42 (3 H, s), 6.08 (1 H, s), 7.10 (2 H, t, J7.8), 7.20–7.24 (4 H, m), 7.40 (2 H, t, J7.4), 7.50–7.55 (3 H, m) and 7.86 (2 H, d, J8.6); ν_max(KBr)/cm⁻¹ 1682, 1315, 1221, 1143, 1086, 982, 687, 575 and 530; m/z 364 (M⁺), 209 (M - pTolSO₂), 182 (M - 2pTol) and 105 (PhCO).

Reaction between bismuthane oxide 2b and malononitrile

Without trapping reagent. To a CH₂Cl₂ solution (30 cm³) of bismuthane oxide 2b (1 mmol), was added malononitrile (66 mg, 1.0 mmol) in the same solvent (10 cm³), and stirred at room temperature for 12 h. Resulting red solution changed into a brown suspension, which was filtered through a Celite bed and the filtrate was concentrated to give brown oil,
which was separated by short silica-gel column chromatography using CH$_2$Cl$_2$ as an eluent to give a mixture (350 mg) of iodobenzene (45%), bismuthane 3b (36%) and dichloride 1b (10%). The yield of the products was estimated by 1H NMR.

In the presence of charcone. To a CH$_2$Cl$_2$ solution (30 cm3) of bismuthane oxide 2b (1 mmol), was added marononitrile (66 mg, 1.0 mmol) in the same solvent (10 cm3) at -40 °C, and stirred at the same temperature for 30 min. To the resulting reddish orange solution, was added a solution of charcone 17 (208 mg, 1.0 mmol) in CH$_2$Cl$_2$ (5 cm3) at -40 °C, and the mixture was allowed to warm to room temperature. The mixture was stirred at the same temperature for 12 h, filtered through a Celite bed and the filtrate was concentrated to give brown oil, which was separated by silica-gel column chromatography using hexane—ethyl acetate (1 : 0–10 : 1) to give iodobenzene (78 mg, 32%), bismuthane 3b (130 mg, 27%), charcone 17 (64 mg, 31%) and 1,3-diphenyl-4,4-dicyanobutane-1-one 18 (189 mg, 69%), mp 127–128 °C (lit.,36 125–126 °C); δ_H 3.68 (1 H, d, J 6.1), 3.70 (1 H, d, J 7.7), 3.92–4.01 (1 H, m), 4.77 (1 H, d, J 4.5), 7.41–7.70 (8 H, m) and 7.98 (2 H, d, J 9.0).

Oxidation of trimesitylbismuthane 3d

A mixture of trimesitylbismuthane 3d (283 mg, 0.5 mmol) and iodosylbenzene (132 mg, 0.6 mmol) in CH$_2$Cl$_2$ (20 cm3) was sonicated at 35 °C for 1.5 h to afford a bright yellow solution, which was filtered through a Celite bed. The filtrate was concentrated under reduced pressure, and diluted with hexane to deposit pale yellow crystals of trimesitylbismuth dichloride 1d (271 mg,
85\%), mp 130 °C (decomp.); \(\delta_H 2.31 \ (9 \ H, \ s), \ 2.72 \ (18 \ H, \ s) \) and 7.14 \ (6 \ H, \ s);
\(v_{\text{max}}\)\,(KBr)/cm\(^{-1}\) \,3013, 1568, 1453, 1293, 980, 936, 849 and 538 \ (\text{Found: } C, 50.33; \ H, 5.24. \ \ \ C_{27}H_{33}BiCl_2 \text{ requires } C, 50.94; \ H, 5.19\%).

Oxidation of trimesitylstibane 11d

A mixture of trimesitylstibane 11d (479 mg, 1.0 mmol) and iodosylbenzene (242 mg, 1.1 mmol) in CH\(_2\)Cl\(_2\) (30 cm\(^3\)) was stirred at room temperature for 3 h to afford a chalky suspension, which was filtered through a Celite bed. The filtrate was concentrated under reduced pressure to give trimesitylstibane dihydroxide 20 (490 mg, 99\%), mp 182–184 °C (lit. \(^{32b}\) 202 °C, DTA); \(\delta_H 2.30 \ (9 \ H, \ s), \ 2.57 \ (18 \ H, \ s) \) and 6.97 \ (6 \ H, \ s); \(\delta_C 21.0, \ 24.7, \ 130.0, \ 139.7, \ 142.1 \) and 142.2; \(v_{\text{max}}\)\,(KBr)/cm\(^{-1}\) \,3642, 3480 (br), 2963, 1599, 1559, 1455, 1289, 1026, 847, 586, 519 and 492 \ (\text{Found: } C, 63.52; \ H, 6.94. \ \ \ C_{27}H_{33}SbO_2 \text{ requires } C, 63.26; \ H, 6.89 \%).

Oxidation of tris-(2-methoxyphenyl)bismuthane 3e

Tris-(2-methoxyphenyl)bismuthane 3e (530 mg, 1.0 mmol) and freshly prepared iodosylbenzene (440 mg, 2 mmol) were suspended in CH\(_2\)Cl\(_2\) (50 cm\(^3\)) and heated at reflux until 3e was consumed. The resulting suspension was filtered through a Celite bed to remove any insoluble materials and the filtrate was concentrated under reduced pressure to give an oily residue. Ethyl acetate (20–30 cm\(^3\)) was added to the residue and separated microcrystalline solid of tetrakis-(2-methoxyphenyl)bismuthonium chloride monohydrate 21. Further crystallization from CH\(_2\)Cl\(_2\)-EtOAc (1 : 5) gave pure compound 21 \ (469 mg, 68\%); mp 195–197 °C (dec.); \(\delta_H\)
2.19 (2 H, br s), 3.67 (12 H, s), 7.22–7.32 (8 H, m) and 7.55–7.75 (8 H, m); δc 56.46, 112.59, 124.50, 127.20 (Bi-C), 134.20, 134.79 and 159.74; νmax(KBr)/cm⁻¹ 3450 (br), 1472, 1433, 1277, 1242, 1043, 785 and 760; m/z (FAB) 637 (Ar₄Bi), 423 (Ar₂Bi), 316 (ArBi) and 209 (Bi) (Found: C, 48.84; H, 4.28. C₂₈H₃₀BiClO₅ requires C, 48.66; H, 4.34 %).

Oxidation of tris-(2-methoxyphenyl)stibane 11e with iodosylbenzene

A mixture of tris-(2-methoxyphenyl)stibane 11e (443 mg, 1 mmol), iodosylbenzene (242 mg, 1.1 mmol,) and benzene (50 cm³) was heated at reflux for 1 h to give a pale yellow suspension, which was filtered through a Celite bed while hot. The filtrate was concentrated under reduced pressure to give a mixture (556 mg) of iodobenzene and tris-(2-methoxyphenyl)stibane oxide 4e. Trituration of this mixture with hexane gave a pure oxide 4e (454 mg, 99 %), mp 247–249 °C (lit., 32a 247 °C); δH 3.78 (9 H, s), 7.00 (3 H, dd, J 8.3, 1.0), 7.12 (3 H, dt, J7.4, 1.0), 7.44 (3 H, ddd, J8.3, 7.4, 1.7) and 7.88 (3 H, dd, J 7.4, 1.7).

Oxidation of 10-(4'-methylphenyl)phenothiabismine 22

A mixture of 10-(4'-methylphenyl)phenothiabismine 22 (242 mg, 0.5 mmol) and freshly prepared iodosylbenzene (165 mg, 0.75 mmol) in CH₂Cl₂ (30 cm³) was heated at reflux for 1.5 h. The resulting suspension was filtered through a Celite bed to remove any insoluble materials and the filtrate was concentrated under reduced pressure to leave a yellow solid. The residue was recrystallized from a mixture of CH₂Cl₂–hexane to give 10-(4'-
methylphenyl)pheno thiabismine-Bi-oxide monohydrate 23 (225 mg, 90%), mp 166–167 °C; δH 2.32 (3 H, s), 7.22 (2 H, d, JAB 8.1), 7.27 (2 H, dt, J 7.4 and 1.4), 7.44 (2 H, dt, J 7.4 and 1.4), 7.75 (2 H, dd, J7.4 and 1.4), 8.03 (2 H, d, JAB 8.1) and 8.45 (2 H, dd, J7.4 and 1.4); δC 21.4, 129.9, 130.2, 131.1, 132.4, 134.2, 136.4, 140.5, 140.9, 150.3 and 161.8; νmax(KBr)/cm⁻¹; 3400 (br), 1482, 1426, 1183, 1090, 1009, 795, 770, 750, 569, 473, 446 and 415; m/z (FAB) 501 (M+1), 485 {(M-O)+1 }, 394 (M-pTol-O), 300 (pTolBi) and 209 (Bi) (Found: C, 44.61; H, 3.05. C₁₉H₁₇BiO₂S requires C, 44.02; H, 3.28 %).

Oxidation of 10-(4’-methylphenyl)pheno xabismine 24
A mixture of 10-(4’-methylphenyl)pheno xabismine 24³⁰ (94 mg, 0.2 mmol) and iodosylbenzene (66 mg, 0.3 mmol) in CH₂Cl₂ (10 cm³) was heated at reflux for 1 h. The resulting suspension was filtered through a Celite bed to remove any insoluble materials and the filtrate was concentrated under reduced pressure to leave an orange oil (80 mg), which was a complex mixture.

Oxidation of tris-(2-methylthiophenyl)bismuthane 3f
A mixture of tris-(2-methylthiophenyl)bismuthane 3f³³ (289 mg, 0.5 mmol) and iodosylbenzene (165 mg, 0.75 mmol) in CH₂Cl₂ (25 cm³) was heated at reflux for 25 min. The resulting suspension was filtered through a Celite bed to remove any insoluble materials and the filtrate was concentrated under reduced pressure to leave an orange oil (286 mg), which contained iodosylbenzene (50%), starting bismuthane 3f (62%) and thioanisole (16%). The yield of products was estimated by ¹H NMR.
References

28. R. D. Baechler, M. Stack, K. Stevenson and V. Vanvalkenburgh,

Acknowledgment

We acknowledge financial support of this work by a Grant-in-Aid for Special Project Research No. 05236101 from the Ministry of Education, Science and Culture of Japan.
Chapter 2

Unexpected Formation of Highly Stabilized Tetrakis-(2-alkoxyphenyl)bismuthonium Salts in the Oxidation of Tris-(2-alkoxyphenyl)bismuthanes with Iodosylbenzene

Abstract

Treatment of tris-(2-alkoxyphenyl)bismuthanes 1 with iodosylbenzene in methylene dichloride at 40 °C led to none of the expected bismuthane oxides 2 but, quite unexpectedly, tetrakis-(2-alkoxyphenyl)bismuthonium chlorides 3 in moderate to good yields. In some cases, bismuthonium formates 4 accompanied the reaction. A similar treatment in benzene in the presence of benzyl bromide, ethyl bromide, or 2,2,2-trifluoroethyl iodide led to the corresponding bismuthonium bromides 7 and iodides 8. Through the anion exchange, a variety of bismuthonium salts including formate 4, tetrafluoroborate 11, toluene-β-sulfonate 12, bromide 7, iodide 8 and perchlorate 13 were prepared from the salt 3 in good yields. In contrast to the known tetraphenylbismuthonium salts, all of these new bismuthonium salts exhibited high thermal stability. The molecular structure of compound 7a was elucidated by X-ray analysis, where the four neighbouring oxygen atoms are found to surround the bismuth atom tetrahedrally via a weak through-space interaction with the metal, making the bismuth centre less susceptible to the nucleophilic attack of the halide anion.

Introduction

In contrast to well documented triorganyl|nicogen oxides derived from lighter 15 group elements, R₃Pn=O (Pn = N, P, As and Sb), the oxides of triorganyl bismuthanes remain to be characterized yet.¹ This
class of compounds are of interest because of their high potential as precursor to a variety of organobismuth(V) compounds. However, the literature to date contains only a few papers dealing with somewhat conflicting results. Many attempts by previous workers to obtain triarylbumuthane oxides by direct oxidation of triarylbumuthanes 1 have so far met with failure; attempted oxidation of triphenylbumuthane with hydrogen peroxide, dinitrogen trioxide, potassium permanganate, selenium dioxide, and cyclic nitrones all led to none of the expected product.

Recently, we have found that iodosylbenzene was effective as the oxidant for this purpose; under ultrasonic irradiation or gentle heating in an appropriate organic solvent, some triarylbumuthanes were smoothly converted to the corresponding oxides in good yield. However, we could not isolate these oxides due to their high sensitivity toward moisture and carbon dioxide; during the course of evaporation under reduced pressure, the oxides were readily decomposed to intractable polymeric substances.

Results and Discussion

Since the 2- and 2, 6-dimethoxy-phenyl groups have been shown by PM3 calculation to stabilize the bismuthonium cation more effectively than the phenyl or 4-methoxyphenyl group, we came to an idea of obtaining tris-(2-methoxyphenyl)bumuthane oxide 2a by the oxidation of tris-(2-methoxyphenyl)bumuthane 1a with iodosylbenzene, expecting that the 2-alkoxyphenyl ligand might work effectively to stabilize the polar bismuth oxide function. Treatment of bismuthane 1a with an excess of iodosylbenzene in boiling methylene dichloride led to rapid disappearance of the oxidizing
agent to give an orange-coloured solution or suspension. Evaporation of the solution under reduced pressure left a brown oily residue which, much to our delight, could be crystallized out from CH₂Cl₂-Et₂O as a light brown solid. More conveniently, the reaction mixture was concentrated to a syrup, which was diluted with ethyl acetate to separate the same compound as a microcrystalline solid melting at 195-197 °C with decomposition. Elemental analysis of this compound showed a composition C₂₈H₃₀BiClO₅. Its ¹H-NMR spectrum in CDCl₃ exhibited a broad 2H absorption at around δ 2.2, a singlet due to the methoxy group at δ 3.66, and two peak clusters at around δ 7.22-7.32 and 7.55-7.75 due to aromatic protons. The broad resonance at high field suggests the presence of one water molecule, which was confirmed by an IR absorption at 3450 cm⁻¹. ¹³C-NMR spectrum exhibited absorptions at δ 56.46, 112.59, 124.50, 127.20 (Bi-C), 134.20, 134.79 and 159.74 (MeO-C), showing the presence of four intact 2-methoxyphenyl moieties. A peak at δ 127.20, assigned to the ipso carbon attached to the bismuth atom, shifted 15.6 ppm upfield as compared with that of parent bismuthane 1a. Such noticeable upfield shift of the signal due to the ipso carbon atom attached to a positively charged heteroatom centre is generally observed for various heteroatomonium compounds. Thus the new compound may safely be formulated as a bismuthonium compound 3a, (2-MeOC₆H₄)₄BiCl·H₂O, which was further supported by a fast atom bombardment (FAB) mass spectrum showing diagnostic fragment peaks at m/z 637 (Ar₄Bi), 423 (Ar₂Bi), 316 (ArBi), and 209 (Bi). Formation of 3a in a hydrated form may be attributed to adventitious water in commercial solvent used for workup.
Scheme 1 Reagents and conditions: i, PhI=O, CH$_2$Cl$_2$, 40 °C; ii, PhI=O, RX (EtBr, PhCH$_2$Br, CF$_3$CH$_2$I), PhH, 40-50 °C
The present new oxidation reaction of triaryl(bismuthane was highly
dependent on the solvent system employed; in chloroform, only a trace
amount of the onium salt 3a was obtained and 50 % of bismuthane 1a was
recovered intact, while in 1,2-dichloroethane the salt 3a was obtained in 43 %
yield. In benzene, the reaction did not proceed in the expected way; anisole
and iodobenzene were the major products with a recovery of 59 %
bismuthane 1a, no other organobismuth compounds being detected in the
product mixture. Since iodosylbenzene is known to disproportionate to
iodoxybenzene and iodobenzene on heating,10 low-boiling methylene
dichloride was apparently the solvent of choice. Even in the presence of
added water, the oxidation in methylene dichloride proceeded smoothly to
give the onium salt 3a in a similar or slightly reduced yield.

Tris-(2-ethoxyphenyl)bismuthane 1c, tris-(2-
isopropoxyphenyl)bismuthane 1d, and tris-(2-methoxy-4-
methylphenyl)bismuthane 1e were all similarly oxidized by the present
procedure to give the corresponding bismuthonium chlorides 3c-e in
moderate yield (Scheme 1). In the case of bismuthane 1c, however,
bismuthonium formate 4c was obtained as the major product. The 3c : 4c
ratio was estimated as 1 : 3.3 by 1H-NMR analysis. Tris-(4-
methoxyphenyl)bismuthane 1b and tris-(2-methylphenyl)bismuthane
behaved quite differently toward iodosylbenzene under similar reaction
conditions; the former was converted to a presumed oxide 2b, while the latter
resisted to oxidation. Interestingly, tris-(2,4,6-trimethylphenyl)bismuthane
1f was converted to the corresponding dichloride 5f in 80 % yield, while tris-
(2-
methoxymethylphenyl)bismuthane 1g gave
the corresponding diarylchlorobismuthane, bis-(2-methoxymethylphenyl)bismuth chloride 6g in 22 % yield. From these findings, it became clear that the alkoxy grouping attached to the ortho position of the bismuth atom is indispensable to stabilize tetraarylbumhonium salts 2 in the oxygen-transfer oxidation of bismuthanes 1 by iodosylbenzene.

The ozone oxidation of bismuthane 1a was also examined; bismuthane 1a was added to a solution of ozone in methylene dichloride at -40 °C and gradually warmed to room temperature to afford a mixture of unchanged bismuthane 1a (44 %) and tris(2-methoxyphenyl)bismuth dichloride (23 %) 5a. This result was similar to that observed in the ozone oxidation of triphenylbismuthane in methylene dichloride, in which triphenylbismuth dichloride was obtained in 42 % yield. Supposedly, this oxidation reaction would proceed via the intermediacy of a bismuthane ozonide.11

It would be pertinent to mention herein that tris-(2-methoxyphenyl)stibane 9 was smoothly oxidized with iodosylbenzene in benzene at reflux to give the expected oxide 1012 in almost quantitative yield (Scheme 2). Stibane oxides are more stable against moisture as compared with the corresponding bismuthane oxides 2.7

\[
\begin{align*}
\text{OMe} & \quad \text{OMe} \\
\text{Sb} & \quad \text{Sb}=\text{O} \\
9 & \quad 10
\end{align*}
\]

Scheme 2

Reagents and conditions: i, PhI=O, PhH, 80 °C
Onium salts 2 are readily soluble in methylene dichloride, chloroform, acetone, acetonitrile and ethanol, but almost insoluble in ethyl acetate, ether, hexane and benzene. When chlorides 3a, c-e were treated with silver(I) tetrafluoroborate in acetonitrile, the corresponding tetrafluoroborates 11a, c-e were obtained in good yield (Scheme 3). Similarly, the chloride 3c was converted to the formate 4c and tosyl ester 12c by treatment with an aqueous solution of sodium formate or tosylate. All of these new bismuthonium compounds 3a, c-e, 4c, 11a, c-e and 12c were thermally stable; they did not show any significant sign of degradation after 3 months storage under ambient conditions.

\[
\begin{align*}
\text{Bi}^+\text{Cl}^+ \cdot \text{H}_2\text{O} & \quad \text{3a, c-e} \\
\text{Bi}^+\text{X}^- \cdot \text{H}_2\text{O} & \quad \text{7a; X = Br} \\
\text{Bi}^+\text{X}^- \quad \text{12c; X = OTs} \\
\text{Bi}^+\text{X}^- \quad \text{11a, c-e; X = BF}_4 \\
\text{Bi}^+\text{X}^- \quad \text{8a; X = I} \\
\end{align*}
\]

a; R₁ = Me, R₂ = H; c; R₁ = Et, R₂ = H; d; R₁ = iPr, R₂ = H; e; R₁ = Me, R₂ = Me

Scheme 3
Reagents and conditions: i, MX (AgBF₄, HCO₂Na, NaOTs, NaBr, NaI or AgClO₄), water–CH₂Cl₂(CHCl₃), room temp.

The first preparation of tetraphenylbismuthonium chloride and bromide was reported by Wittig and co-workers, who obtained them by treating pentaphenylbismuth with hydrogen chloride or bromine. They described that these salts decomposed within several minutes at room temperature, producing the triphenylbismuthane and corresponding...
halobenzenes. Hence, all stable bismuthonium salts so far known carry low-nucleophilic, bulky counter anions such as perchlorate, tetrafluoroborate, trifluoromethanesulfonate, and tetraphenylborate.14-18 Beaumont and Goel have prepared a variety of bismuth(V) compounds, Ph\textsubscript{4}BiX, by anion exchange reaction between tetraphenylbismuthonium chloride and appropriate metal salts.14 They observed that the nature of Ph\textsubscript{4}BiX changes depending on the anions involved; when X was ClO\textsubscript{4}, BF\textsubscript{4} or PF\textsubscript{6}, the compounds showed an ionic nature, while X was NO\textsubscript{3}, Cl\textsubscript{3}CCO\textsubscript{2}, NCO or NCS, they took a non-ionic pentacoordinate structure. X-Ray crystallographic study of tetraphenylbismuthonium perchlorate demonstrated that the bismuth centre possesses a tetrahedral onium structure.15 When X was N\textsubscript{3} or NCSe, the corresponding Bi(V) compounds were thermolabile at room temperature and readily decomposed to triphenylbismuthane and others.

We were also successful in obtaining the isolable bismuthonium bromide 7 and iodide 8 from the chloride 3 by the anion exchange. Shaking a chloroform solution of bismuthonium salt 3a with an aqueous sodium bromide gave the corresponding bromide 7a as crystals in 74 % yield. A similar treatment with sodium iodide gave the iodide 8a in 74 % yield. Both salts 7a and 8a are remarkably stabilized and decompose only above 200 °C. Similarly to the chloride 3a and tetrafluoroborate 11a, they do not show any sign of degradation when stored at room temperature. Compounds 7a and 8a constitute the first example of tetraarylbismuthonium halides of indefinite shelf life. These halides were also readily available by the oxidation of bismuthane 1a with iodosylbenzene in benzene in the presence of corresponding alkyl halides; bismuthane 1a was oxidized in
the presence of ethyl or benzyl bromide at 40–50 °C to give compound 7a in 39 and 42 % yields, respectively. In the latter case, the formation of benzaldehyde as by-product was observed. A similar oxidation of bismuthane 1a in the presence of 2,2,2-trifluoroethyl iodide afforded compound 8a in 13 % yield (Scheme 1).

In connection with the anion exchange, the metathesis reaction of tris-(2-methoxyphenyl)bismuth dichloride 5a with silver perchlorate was reexamined in acetone18 and butan-2-one,14 respectively. In acetone, tris-(2-methoxyphenyl)(2-oxopropyl) bismuthonium perchlorate 14a was obtained in 55 % yield, while in butan-2-one, the formation of a dark tarry substance was predominant, tetrakis-(2-methoxyphenyl)bismuthonium perchlorate 13a being obtained only in a slight amount (~1 %) (Scheme 4).

Treatment of the salt 14a with brine gave bismuthane 1a (100 %), probably via the intermediacy of a pentacoordinate bismuth compound. Metathesis of compound 5a with silver(I) oxide in benzene-water gave bismuthane 1a in a low yield, while the same reaction in methylene
dichloride gave tetrakis-(2-methoxyphenyl)bismuthonium hydroxide 15a, which probably arose from the metathesis of the initially formed chloride 3a with silver(I) oxide. A trace amount of the formate 4a was also detected by 1H-NMR monitoring. The likely source of the formate anion is formaldehyde, derived from methylene dichloride according to the sequence shown in Scheme 6. By treatment with tetrafluoroboric acid in acetonitrile-water, hydroxide 15a was converted to tetrafluoroborate 11a in good yield. A similar conversion of iodonium chloride to the tetrafluoroborate has previously been reported.19

Onium salts 3a, 7a, 8a, 11a and 13a were all similar in their 1H- and 13C-NMR and IR spectral patterns, although the salt 9a showed additional broad IR absorption due to BF₄ anion (Table 1). IR spectrum of salt 4c contained a strong carbonyl absorption at 1632 cm⁻¹, which falls within the carboxylate anion region, endorsing the ionic structure of salt 4c. Spectral data showed that these bismuthonium salts have a similar ionic structure with a long separation between the bismuth atom and the corresponding anions, thereby the decomposition of these salts via a ligand coupling mode being suppressed.

Tetrakis(4-methoxyphenyl)bismuthonium salt.

In order to get insight into the influence of the 2-alkoxyphenyl groups on the thermal stability of the corresponding bismuthonium salts, we prepared tetrakis-(4-methoxyphenyl)bismuthonium salts, and compared its chemical nature with those of tetrakis-(2-alkoxyphenyl)bismuthonium salts. By the action of 4-methoxyphenylmagnesium bromide, tris-(4-
methoxyphenyl)bismuth dichloride \(5b\) was converted to pentakis-(4-methoxyphenyl)bismuth, which was further treated with trifluoromethanesulfonic acid to give the corresponding bismuthonium salt.\(^{20,21}\) The counter anion was changed into tetrafluoroborate by metathesis reaction to obtain tetrakis-(4-methoxyphenyl)-bismuthonium tetrafluoroborate \(11b\) in moderate yield (Scheme 5). \(^1\)H NMR spectrum of salt \(11b\) showed peaks at \(\delta_H 3.85\) (12 H), 7.20 (8 H) and 7.65 (8 H), while \(^{13}\)C NMR spectrum exhibited peaks due to MeO- and Bi-C carbon at \(\delta_C 55.52\) and 125.11, respectively. In contrast to \(^1\)H NMR spectra of tetrakis-(2-alkoxyphenyl)bismuthonium salts as shown in Table 1, no high field shift of the methoxy proton was observed in the case of the salt \(11b\). \(^{13}\)C NMR spectrum of salt \(11b\) suggests that the electron density of the Bi-C carbon is not so different from those of 2-alkoxyphenyl moieties.

\[
\begin{array}{c}
\text{MeO-} \\
\text{BiCl}_2
\end{array}
\begin{array}{c}
\rightarrow
\end{array}
\begin{array}{c}
\text{MeO-} \\
\text{Bi}^+\text{BF}_4^-
\end{array}
\]

\(5b\) \(\rightarrow\) \(11b\)

Scheme 5 *Reagents:* i, 4-MeO-C\(_6\)H\(_4\)MgBr; ii, Me\(_3\)SiOSO\(_2\)CF\(_3\), EtOH; iii NaBF\(_4\)

However, treatment of the salt \(11b\) with sodium chloride led to the complete decomposition of the bismuthonium salt, giving the corresponding bismuthane \(1b\) and 4-chloroanisole in almost quantitative yield. This fact strongly suggests that 4-methoxyphenyl group has no ability to stabilize the bismuthonium centre, and an interaction between oxygen and bismuthonium centre may be essential for the thermal stabilization of tetrakis-(2-alkoxyphenyl)bismuthonium salts.
X-Ray structure analysis of compound 7a

In order to get sight into the extraordinarily enhanced thermal stability of tetrakis-(2-alkoxyphenyl)bismuthonium salts, an X-ray crystallographic analysis was performed for compound 7a. As shown in Fig.1 and Table 2, the bismuth centre has a tetrahedral geometry with the Bi-C bond lengths [2.194(8) - 2.207(9) Å] and C-Bi-C bond angles [105.9(3) - 114.7(3) °]. The values are in accordance those of the previously reported tetraarylbismuthonium salts.\(^{15,21}\) Compound 7a is subject to the interactions between Bi and four oxygen atoms and the intramolecular Bi-O distances are intermediate between the sum of covalent radii (2.10 Å) and that of the estimated van der Waals radii (3.72 Å).\(^{22}\)

<table>
<thead>
<tr>
<th>Bond Number</th>
<th>Bond Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-C(1)</td>
<td>2.201(9)</td>
<td>C(1)-Bi-C(8)</td>
<td>112.4(3)</td>
<td>Bi-C(8)</td>
<td>2.194(8)</td>
<td>C(1)-Bi-C(15)</td>
<td>105.9(3)</td>
</tr>
<tr>
<td>Bi-C(15)</td>
<td>2.203(9)</td>
<td>C(1)-Bi-C(22)</td>
<td>107.7(3)</td>
<td>Bi-C(22)</td>
<td>2.207(9)</td>
<td>C(8)-Bi-C(15)</td>
<td>114.7(3)</td>
</tr>
<tr>
<td>Bi-Bi•••Br</td>
<td>6.752(3)</td>
<td>C(8)-Bi-C(22)</td>
<td>107.7(3)</td>
<td>Bi-Bi•••O(1)</td>
<td>2.968(7)</td>
<td>C(15)-Bi-C(22)</td>
<td>108.2(3)</td>
</tr>
<tr>
<td>Bi-Bi•••O(2)</td>
<td>3.099(2)</td>
<td>C(1)-C(1)-C(2)</td>
<td>114.2(6)</td>
<td>Bi-Bi•••O(3)</td>
<td>2.968(6)</td>
<td>Bi-C(1)-C(6)</td>
<td>124.0(7)</td>
</tr>
<tr>
<td>Bi-Bi•••O(4)</td>
<td>3.091(6)</td>
<td>Bi-C(8)-C(9)</td>
<td>116.7(7)</td>
<td>Bi-Bi•••Br</td>
<td>6.752(3)</td>
<td>C(15)-C(16)</td>
<td>121.6(7)</td>
</tr>
<tr>
<td>Bi-C(15)-C(16)</td>
<td>115.0(7)</td>
<td>Bi-C(15)-C(20)</td>
<td>124.0(7)</td>
<td>Bi-C(22)-C(23)</td>
<td>117.0(7)</td>
<td>Bi-C(22)-C(27)</td>
<td>122.1(7)</td>
</tr>
<tr>
<td>Bi-C(23)-O(1)</td>
<td>114.2(8)</td>
<td>Bi-C(2)-C(3)</td>
<td>127.0(9)</td>
<td>Bi-C(2)-C(8)</td>
<td>116.8(8)</td>
<td>Bi-C(9)-C(10)</td>
<td>125.4(9)</td>
</tr>
<tr>
<td>O(1)-C(2)</td>
<td>114.2(8)</td>
<td>Bi-C(16)-C(15)</td>
<td>114.0(9)</td>
<td>O(3)-C(16)-C(15)</td>
<td>125.9(9)</td>
<td>Bi-C(23)-C(22)</td>
<td>116.1(8)</td>
</tr>
<tr>
<td>O(4)-C(23)-C(24)</td>
<td>124.6(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1 ORTEP drawing of compound 7a, with crystallographic numbering scheme. The percentage probability level of the ellipsoids in this drawing is 50%.
All methoxyl groups are found to lean slightly toward the bismuth atom with a deviation of about 5° from the standard sp² bond angle of 120°. A similar type of the Bi-O interaction has been observed for tris-(2,6-dimethoxyphenyl)bismuthane.⁸ A large separation between the bismuth and bromine atoms [6.752(3) Å] is in accord with the ionic nature of compound 7a. Since the previously reported bismuth-bromine covalent bond lengths are around 3 Å, we may safely conclude that there is little or no direct interaction between the bismuthonium moiety and bromide anion.

A possible mechanism for the formation of bismuthonium salts 3.

The mechanism of the formation of the salt 3 is not clear at present. However, one possible pathway leading to compound 3 may be depicted as shown in Scheme 6. Of course, other possible mechanisms could not be ruled out. Bismuthane 1a, c-e undergoes oxygen-transfer reaction with iodosylbenzene to give the corresponding oxide 2a, c-e as the initial product, which is assumed to react with methylene dichloride to form a penta-coordinate intermediate 16a, c-e. Insertion of another molecule of oxide 2 to the bismuth-chlorine bond of this intermediate 16a, c-e would result in the formation of a μ-oxo type intermediate 17a, c-e. Elimination of a formaldehyde molecule from 17a, c-e would give another μ-oxo type intermediate 18a, c-e, in which one of the aryl groups may migrate toward the neighbouring bismuth atom to form bismuthonium chloride 3a, c-e. The counterpart of the bismuth moieties is supposed to be transformed into triaryl bismuthane 1a, c-e and other products by subsequent
disproportionation reaction. Although the compounds of type 18 have been reported previously, their exact nature has not been established well to date. So we withhold detailed discussion on the mode of the formation of bismuthonium compounds 3a, c-e at the present stage.

\[
\begin{align*}
Ar_3Bi + PhI=O & \quad \rightarrow \quad [Ar_3Bi=O] \quad \text{[Reagents: i, CH}_2\text{Cl}_2; \text{ii, Ar}_3Bi=O] \\
2a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
16a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
17a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
18a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
19a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
20a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
21a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
22a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
23a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
24a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
25a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
26a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
27a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
28a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
29a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
30a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
31a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
32a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
33a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
34a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
35a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
36a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
37a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
38a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
39a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
40a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
41a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
42a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
43a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
44a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
45a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
46a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
47a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
48a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
49a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
50a, c-e & \quad \rightarrow \quad [Ar_3Bi=O] \\
\end{align*}
\]

Scheme 6 Reagents: i, CH\textsubscript{2}Cl\textsubscript{2}; ii, Ar\textsubscript{3}Bi=O

To further the above mechanistic considaration, the following experiments were carried out. First, possible involvement of aryl radical species is ruled out, since no aryl-aryl coupling products were detected from any of the present reactions; the oxidation proceeded smoothly even in the presence of a radical scavenger, 1,1-diphenylethylene. Oxidation of an equimolar mixture of bismuthanes 1a and 1e with excess iodosylbenzene gave a mixture of all four possible bismuthonium chlorides 3a, 3e, \(Ar^1Ar^2BiCl\), and \(Ar^1Ar^2Ar^3BiCl\) (Ar1 = 2-methoxy-4-methylphenyl, Ar2 = 2-methoxyphenyl), as was confirmed by FAB-mass spectroscopy. This observation is consistent
with the formation and subsequent decomposition of the μ-oxo type intermediates 17 and 18. The main product from the oxidation of bismuthane 1c, was bismuthonium formate 4c (vide supra). This result may be taken to support the elimination of a formyl moiety from the intermediate 17. In accordance with this observation, benzaldehyde was detected in the oxidation of bismuthane 1a with iodosylbenzene in benzene in the presence of benzyl bromide.† In the present oxidation leading to bismuthonium compounds, alkyl halide including methylene dichloride should have worked not only as a halide anion source but also as an oxygen acceptor.

The formation of bismuthonium salt 15a in the metathesis reaction between dichloride 5a and silver (I) oxide is also suggestive of the formation of the corresponding μ-oxo type intermediate 18. The conversion of triaryl bismuth dichlorides 5 to the corresponding μ-oxo type compounds have previously been reported by Goel and co-workers.1a However, Doak and co-workers had earlier reported that the reaction between triphenylbismuth dichloride and silver perchlorate in anhydrous ethanol gave a good yield of tetraphenylbismuthonium perchlorate.17 Additional conflicting result, also reported by Goel,14 suggests a possibility that the μ-oxo type compound 18 may be converted to the bismuthonium salt 3 under certain conditions. With an intent to verify the reaction pathway shown in Scheme 5, attempts to prepare the μ-oxybis{tris-(2-methoxyphenyl)bismuth} dichloride 18a by a few different approaches including the anion exchange reaction of μ-oxybis{tris-(2-methoxyphenyl)bismuth} di(perchlorate) or di(triflate) have been made. As has been mentioned above, the reaction of dichloride 5a with silver perchlorate gave three different type of products, 13a, 14a and
15a, but any expected μ-oxybis{tris-(2-methoxyphenyl)bismuth} di(perchlorate) could not be obtained. The reaction was carried out in a benzene-water mixture, a typical reaction condition to obtain a μ-oxo type compound from the corresponding dichloride; however, the product was bismuthonium salt 13a in 18 % yield. A newly developed preparative method of μ-oxybis(trarylbismuth) di(trifrate) was also applied to the present purpose; dichloride 5a was treated successively with trimethylsilyl triflate and hexamethyldisiloxane, but the reaction gave a mixture of at least four compounds including bismuthonium salt (checked by 1H-NMR). By treatment of this mixture with brine, we could isolate the bismuthonium salt 3a by chromatography over silica gel. These findings are highly suggestive of the facile conversion of the μ-oxybis{tris-(2-methoxyphenyl)bismuth} derivative into tetrakis-(2-methoxyphenyl)bismuthonium salt. At present, the preparation of the μ-oxobis{tris-(2-methoxyphenyl)bismuth} compound is not successful and the development of more promising methodology for our purpose are under way.

Some of these stabilized bismuthonium salts have been found to exhibit a prominent in vitro antimicrobial activity against Helicobacter pylori, and relevant biological data will be published elsewhere.

Experimental

All oxidation reactions were carried out under an atmosphere of dry argon. All solvents were distilled from CaH₂ and stored over molecular sieves 4 Å. Triarylbismuthanes were prepared from the corresponding arylmagnesium bromides or aryllithiums with bismuth(III) chloride and recrystallized
from benzene-methanol. Iodosylbenzene was prepared according to the reported procedure25 and stored at -20 °C. Other commercially available reagents were used without further purification. Column chromatography was performed on silica gel (Wakogel, 200 mesh). All mps were determined on a Yanagimoto hot-stage apparatus and are uncorrected.1H- and 13C-NMR spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer in CDCl\textsubscript{3} with tetramethylsilane as an internal standard. Coupling constant \textit{J} values are given in Hz. IR spectra were recorded on a Shimadzu FTIR-8100 spectrophotometer. FAB mass spectra were obtained on a JEOL JMS-HS 110 spectrometer using 3-nitrobenzyl alcohol as a matrix. Elemental analyses were performed at Microanalytical Laboratory, Institute of Chemical Research, Kyoto University.

Triarylbismuthanes

Compound 1a; mp 159-161 °C (lit.,26 167-169); \textit{\delta}_\text{H} 3.76 (9 H, s), 6.87 (3 H, dt, \textit{J}7.3, 1.0), 6.99 (3 H, dd, \textit{J}8.1, 1.0), 7.32 (3 H, ddd, \textit{J}8.1, 7.3, 1.7) and 7.45 (3 H, dd, \textit{J} 7.3, 1.7); \textit{\delta}_\text{C} 55.49, 109.73, 123.99, 129.12, 139.05, 142.81 (BiC\textsubscript{ipso}) and 162.14.

Compound 1c; mp 123-124 °C (lit.,27 121-122); \textit{\delta}_\text{H} 1.25 (9 H, t, \textit{J}7.0), 3.99 (6 H, q, \textit{J}7.0), 6.85 (3 H, dt, \textit{J}7.2, 1.0), 6.96 (3 H, dd, \textit{J}8.1, 1.0), 7.28 (3 H, ddd, \textit{J}8.1, 7.2, 1.7) and 7.50 (3 H, dd, \textit{J} 7.2, 1.7); \textit{\delta}_\text{C} 14.74, 63.74, 110.72, 123.75, 128.86, 139.09, 143.55 (Bi-C) and 161.49.

Compound 1d; mp 101-102 °C; \textit{\delta}_\text{H} 1.21 (18 H, d, \textit{J}6.0), 4.50 (3 H, hept, \textit{J}6.0), 6.82 (3 H, dt, \textit{J}7.2, 1.0), 6.96 (3 H, d, \textit{J}8.1), 7.25 (3 H, ddd, \textit{J}8.1, 7.2, 1.7) and 7.53 (3 H, dd, \textit{J} 7.2, 1.7); \textit{\delta}_\text{C} 22.13, 70.01, 111.88, 123.55, 128.66,
139.56, 145.04 (Bi-C) and 160.47 (Found: C, 52.65; H, 5.44. C₂₇H₃₃BiO₃
requires C, 52.77; H, 5.41 %).

Compound 1e; mp 151-153 °C; δₜₘ 2.13 (9 H, s), 3.72 (9 H, s), 6.89 (3 H, d, J 8.2), 7.10 (3 H, ddd, J 8.2, 2.2, 0.7) and 7.29 (3 H, d, J 1.6); δ_C 20.59,
55.69, 109.63, 129.47, 132.84, 139.47, 142.5 (Bi-C) and 160.24 (Found: C,
50.42; H, 4.81. C₂₄H₂₇BiO₃ requires C, 50.35; H, 4.72 %).

Preparation of tetrakis-(2-alkoxyphenyl)bismuthonium chloride monohydrates 3

In methylene dichloride. General Procedure. Tris-(2-
alkoxyphenyl)-bismuthane 1 (1 mmol) and freshly prepared iodosylbenzene
(330–440 mg, 1.5–2 mmol) were suspended in methylene dichloride (50 cm³)
and heated to reflux until 1 was consumed (usually 0.5–1.5 h). When part
of bismuthane 1 remained unchanged, additional amount of iodosylbenzene
was introduced to complete the reaction. The resulting solution or
suspension was filtered through a Celite bed to remove any insoluble
materials and the filtrate was concentrated under reduced pressure to give an
oily residue. Ethyl acetate (20–30 cm³) was added to the residue and
separated microcrystalline salt 3 was collected, washed with a minimum
amount of the same solvent, and dried *in vacuo*. Further crystallization
from CH₂Cl₂-EtOAc (1 : 5) gave pure compound 3, the yield of which was
calculated on the basis of bismuth.

In chloroform. Typical Procedure. Tris-(2-
methoxyphenyl)bismuthane 1a (530 mg, 1 mmol) and freshly prepared
iodosylbenzene (330 mg, 1.5 mmol) were suspended in chloroform
(30 cm3) and heated to reflux for 3 h. The resulting white suspension was filtered through a Celite bed to remove any insoluble materials and the filtrate was evaporated under reduced pressure to give a product (476 mg), the composition of which was estimated by 1H-NMR as follows; $3a$ (0.01 mmol), anisol (0.48 mmol), 2-chloroanisol (0.1 mmol), iodobenzene (0.67 mmol), and $1a$ (0.57 mmol).

Tetrakis-(2-methoxyphenyl)bismuthonium chloride monohydrate 3a. Yield, 68%; mp 195-197 °C (dec.); δ_h 2.19 (2 H, br s), 3.67 (12 H, s), 7.22–7.32 (8 H, m) and 7.55–7.75 (8 H, m); δ_c 56.46, 112.59, 124.50, 127.20 (Bi-C), 134.20, 134.79 and 159.74; ν_{max}(KBr)/cm$^{-1}$ 3450 (br), 1472, 1433, 1277, 1242, 1043, 785 and 760; m/z (FAB) 637 (Ar$_4$Bi), 423 (Ar$_2$Bi), 316 (ArBi) and 209 (Bi) (Found: C, 48.84; H, 4.28. $C_{28}H_{30}BiC_7O_5$ requires C, 48.66; H, 4.34 %).

Tetrakis-(2-ethoxyphenyl)bismuthonium chloride monohydrate 3c. A product mixture from a similar oxidation of bismuthane $1c$ was dissolved in chloroform (20 cm3) and stirred vigorously with brine (20 cm3) for 1 h. Organic layer was separated and aqueous layer was extracted with chloroform (10 cm3 x 4). The combined extracts were dried (MgSO$_4$) and evaporated to give salt $3c$ (28 %). Mp 212-214 °C (dec.); δ_h 0.81 (12 H, t, J7.0), 2.65 (2 H, br s), 3.98 (8 H, q, J7.0), 7.18–7.30 (8 H, m) and 7.55–7.75 (8H, m); δ_c 13.72, 64.97, 112.69, 124.20, 127.19 (Bi-C), 134.21, 134.86 and 159.15; ν_{max}(KBr)/cm$^{-1}$ 3450 (br), 1482, 1464, 1443, 1277, 1242, 1044, 1032 and 762; m/z (FAB) 693 (Ar$_4$Bi), 451 (Ar$_2$Bi), 330 (ArBi) and 209 (Bi) (Found: C, 49.84; H, 5.31. $C_{32}H_{38}BiC_7O_5$ requires C, 51.42; H, 5.09 %).
Tetrakis-(2-isopropoxyphenyl)bismuthonium chloride monohydrate 3d. Yield, (39 %); mp 225-227 °C (dec.); δ_H 0.84 (24 H, d, J 6.0), 2.17 (2 H, br s), 4.60 (4 H, hept, J 6.0), 7.15~7.25 (8 H, m) and 7.55~7.75 (8 H, m); δ_C 20.96, 71.13, 113.01, 123.72, 128.31 (Bi-C), 134.11, 135.58 and 157.96; ν_{max}(KBr)/cm^{-1} 3450 (br), 1582, 1468, 1443, 1275, 1240, 1125, 1103, 947 and 758; m/z (FAB) 749 (Ar_4Bi), 479 (Ar_2Bi), 344 (ArBi) and 209 (Bi) (Found: C, 53.80; H, 5.68. C_{36}H_{46}BiClO_5 requires C, 53.83; H, 5.73 %).

Tetrakis-(2-methoxy-4-methylphenyl)bismuthonium chloride dihydrate 3e. Yield, (29 %); mp 210-212 °C (dec.); δ_H 2.19 (4 H, br s), 2.34 (12 H, s), 3.62 (12 H, s) 7.18 (4 H, broad d, J 8) 7.30 (4 H, br s) and 7.43 (4 H, br d, J 8); ν_{max}(KBr)/cm^{-1} 3450 (br) 1487, 1281, 1250, 1146, 1042, 1011, 806 and 729 (Found: C, 50.46; H, 5.10. C_{32}H_{40}BiClO_6 requires C, 50.26; H, 5.23 %).

Oxidation of tris-(2-methoxymethylphenyl)bismuthane 1g
A mixture of tris-(2-methoxymethylphenyl)bismuthane 1g (572 mg, 1 mmol), iodosylbenzene (330 mg, 1.5 mmol) and methylene dichloride (50 cm^3) was heated to reflux for 1 h to obtain a bright yellow coloured solution, which was filtered through a Celite bed and the filtrate was evaporated off to leave a brown residue (910 mg), which was chromatographed on alumina, using CH_2Cl_2 as the eluent to give unchanged bismuthane (40 %) and bis-(2-methoxymethylphenyl)bismuth chloride 6g (22 %), mp 140-142 °C; δ_H 3.45 (6 H, s), 4.60 (2 H, d, J12), 4.78 (2 H, d, J12), 7.33~7.55 (6 H, m) and 8.59 (2 H, d, J7.6); ν_{max}(KBr)/cm^{-1} 1453, 1208, 1088, 1046, 957, 760 and 737 (Found: C, 39.90; H, 3.87. C_{16}H_{16}BiClO_2 requires C, 39.47; H, 3.70 %).
Ozone oxidation of bismuthane 1a in methylene dichloride

Ozonized oxygen (10 mmol h⁻¹) was passed into methylene dichloride (50 cm³) at -70 °C for 1 h to obtain a blue solution, to which was added bismuthane 1a (530 mg, 1 mmol) in the same solvent (15 cm³) in one portion. The resulting pale yellow suspension was allowed to warm to room temperature during the course of 30 min to give an orange-coloured suspension, which was filtered through a Celite bed. The filtrate was evaporated off under reduced pressure to leave a brown residue, which was chromatographed on silica gel, using CH₂Cl₂-EtOH (1 : 0 -50 : 1) as the eluent, to give unchanged bismuthane 1a (224 mg, 44 %) and tris-(2-methoxyphenyl)bismuth dichloride 5a (137 mg, 23 %). Compound 5a; mp 196-197 °C; δᵣ 3.87 (9 H, s), 7.20-7.28 (6 H, m), 7.50 (3 H, dt, J 7.7, 1.5) and 8.13 (3 H, dd, J 8.2, 1.6); δᶜ 56.33, 113.36, 123.34, 132.53, 133.44, 151.65 and 157.65; νₓ(KBr)/cm⁻¹ 1588, 1472, 1431, 1273, 1248, 1046, 1019, 1001 and 750 (Found: C, 42.22; H, 3.51. C₂₁H₂₁BiCl₂O₃ requires C, 41.95; H, 3.52 %). This compound was also prepared by treating bismuthane 1a with sulfuryl chloride in methylene dichloride at 0 °C. Tris-(2-ethoxyphenyl)bismuth dichloride 5c was similarly obtained. Compound 5c; mp 190 °C (decomp.); δᵣ 1.10 (9 H, t, J 7.0), 4.14 (6 H, q, J 7.0), 7.15-7.30 (6 H, m), 7.46 (3 H, t, J 7.9) and 8.13 (3 H, d, J 8.4); νₓ(KBr)/cm⁻¹ 1584, 1480, 1466, 1441, 1397, 1279, 1248, 1163, 1125, 1044, 1003, 922 and 758 (Found: C, 44.73; H, 4.20. C₂₄H₂₇BiCl₂O₃ requires C, 44.81; H, 4.23 %).

Oxidation of tris-(2-methoxyphenyl)stibane 9 with
iodosylbenzene

A mixture of tris-(2-methoxyphenyl)stibane 9 (443 mg, 1 mmol), iodosylbenzene (242 mg, 1.1 mmol,) and benzene (50 cm³) was heated to reflux for 1h to give a pale yellow suspension, which was filtered through a Celite bed while hot. The filtrate was concentrated under reduced pressure to give a mixture (556 mg) of iodobenzene and tris-(2-methoxyphenyl)stibane oxide 10. Trituration of this mixture with hexane gave a pure oxide 8 (454 mg, 99 %). Compound 10, mp 247-249 °C (lit.,12b 247 °C); δH 3.78 (9 H, s), 7.00 (3 H, dd, J8.3, 1.0), 7.12 (3 H, dt, J7.4, 1.0), 7.44 (3 H, ddd, J8.3, 7.4, 1.7) and 7.88 (3 H, dd, J7.4, 1.7).

Preparation of bismuthonium tetrafluoroborates 11

An acetonitrile solution (5 cm³) of silver(I) tetrafluoroborate (200 mg) was added to a solution of salt 3a (517 mg, 0.75 mmol) in the same solvent (10 cm³) and the resulting mixture was stirred in the dark under ambient conditions. After 2 h silver(I) chloride was filtered off and the filtrate was evaporated to leave a brown solid, which was extracted with methylene dichloride (10 cm³ x 3). The combined extracts were evaporated and then treated with EtOAc (20 cm³) to give tetrakis-(2-methoxyphenyl)bismuthonium tetrafluoroborate 11a (468 mg, 86 %) as fine colourless crystals. Compound 11a; mp 268-270 °C; δH 3.66 (12 H, s), 7.22–7.32 (8 H, m) and 7.55–7.75 (8 H, m); δC 56.49, 112.67, 124.60, 127.40 (Bi-C), 134.28, 134.94 and 159.92; νmax(KBr)/cm⁻¹ 1472, 1433, 1279, 1244, 1097, 1061, 1009 and 762 (Found: C, 46.00; H, 3.84. C₂₈H₂₈BBiF₄O₄ requires C, 46.43; H, 3.90 %). Compound 3c (0.154 mmol, 115 mg) was similarly converted to
compound 11c (87 %, 104 mg). Compounds 3d (0.138 mmol, 111 mg) and 3e (0.25 mmol, 186 mg) gave the corresponding tetrafluoroborates 11d (107 mg, 92 %) and 11e (156 mg, 80 %), respectively, as fine crystals.

Tetrakis-(2-ethoxyphenyl)bismuthonium tetrafluoroborate 11c. Mp > 300 °C; δH 0.80 (12 H, t, J7.0) 3.98 (8 H, q, J7.0), 7.15-7.30 (8 H, m) and 7.50-7.70 (8 H, m); δc 13.73, 64.99, 112.73, 124.20, 127.28 (Bi-C), 134.21, 134.90 and 159.25; νmax(KBr)/cm⁻¹ 1584, 1466, 1445, 1279, 1063, 1040 and 772 (Found: C, 48.95; H, 4.62. C32H36BBiF4O4 requires C, 49.25; H, 4.65 %).

Tetrakis-(2-isopropyloxyphenyl)bismuthonium tetrafluoroborate 11d. Mp > 300 °C; δH 0.83 (24 H, d, J 6.1) 4.60 (4 H, hept, J 6.1), 7.15-7.25 (8 H, m) and 7.55-7.75 (8 H, m); δc 20.96, 71.10, 113.00, 123.67, 128.30 (Bi-C), 134.08, 135.57 and 157.97; νmax(KBr)/cm⁻¹ 1584, 1468, 1277, 1242, 1125, 1105, 1055, 1038, 947 and 754 (Found: C, 51.63; H, 5.28. C36H44BBiF4O4 requires C, 51.69; H, 5.30 %).

Tetrakis-(2-methoxy-4-methylphenyl)bismuthonium tetrafluoroborate 11e. Mp 183-184 °C; δH 2.33 (12 H, s) 3.61 (12 H, s), 7.17 (4 H, d, J8.4) 7.31 (4 H, br s) and 7.43 (4 H, ddd, J8.4, 1.8, 0.7); δc 20.70, 56.45, 112.32, 127.15 (Bi-C), 134.25, 134.59 134.74 and 157.82; νmax(KBr)/cm⁻¹ 1601, 1487, 1441, 1279, 1248, 1150, 1097, 1061, 1011, 820 and 729 (Found: C, 49.06; H, 4.60. C32H36BBiF4O4 requires C, 49.25; H, 4.65 %).

Preparations of bismuthonium formate 4c, tosyl ester 12c, bromide 7a and iodide 8a
Tetrakis-(2-ethoxyphenyl)bismuthonium formate

monohydrate 4c. To a solution of compound 3c (52 mg, 0.07 mmol) in chloroform (15 cm3) was added an aqueous solution (5 cm3) of sodium formate (1 g) and the resulting mixture was stirred vigorously for 2 h at room temperature. Organic layer was separated and aqueous layer was extracted with chloroform (5 cm3 x 4). The combined organic phase was dried (MgSO$_4$) and evaporated to give formate 4c (37 mg, 70%).

Compound 4c; mp 153-155 °C (dec.); δ_H 0.81 (12 H, t, $J_{7.0}$), 3.84 (2 H, br s), 3.97 (8 H, q, $J_{7.0}$), 7.18-7.30 (8 H, m) 7.55-7.75 (8 H, m) and 8.80 (1 H, s); $\nu_{max}(KBr)/cm^{-1}$1632, 1582, 1461, 1443, 1277, 1242, 1044 and 762 (Found: C, 52.92; H, 5.47. C$_{33}$H$_{39}$BiO$_7$ requires C, 52.38; H, 5.16 %).

Tetrakis-(2-ethoxyphenyl)bismuthonium toluene-p-sulfonate 12c. Similarly obtained from compound 3c (192 mg, 0.257 mmol) and sodium tosylate (0.68 g per 15 cm3). The product was chromatographed on silica gel, using CH$_2$Cl$_2$-EtOH (1 : 0~10 : 1) as an eluent, to give tosylate 12c (152 mg, 68%). Mp 272-273 °C; δ_H 0.79 (12 H, t, $J_{7.0}$), 2.29 (3 H, s), 3.97 (8 H, q, $J_{7.0}$), 7.09 (2 H, d, $J_{AB} 8.3$), 7.15-7.28 (8 H, m), 7.55-7.75 (8 H, m) and 7.90 (2 H, d, $J_{AB} 8.3$); $\nu_{max}(KBr)/cm^{-1}$1584, 1464, 1445, 1275, 1240, 1217, 1204, 1121, 1042, 1034, 1013, 762 and 681; m/z 693 (Ar$_4$Bi), 451 (Ar$_2$Bi), 330 (ArBi) and 209 (Bi) (Found: C, 54.07; H, 5.01. C$_{39}$H$_{43}$BiO$_7$S requires C, 54.17; H, 5.01 %).

Tetrakis-(2-methoxyphenyl)bismuthonium bromide monohydrate 7a. To a solution of compound 3a (235 mg, 0.34 mmol) in methylene dichloride (10 cm3) was added an aqueous solution (10 cm3) of sodium bromide (2 g) and the resulting mixture was stirred vigorously
for 30 min at room temperature. Usual work up gave compound 7a (184 mg, 74 %) as fine colourless crystals. Mp 220-223 °C (dec.); δn 1.67 (2 H, br s), 3.67 (12 H, s), 7.22~7.32 (8 H, m) and 7.55~7.75 (8 H, m); δc 56.66, 112.75, 124.63, 127.36 (Bi-C), 134.31, 134.92 and 159.87; νmax(KBr)/cm⁻¹ 3450 (br), 1470, 1435, 1277, 1244, 1044, 781 and 760; (Found: C, 46.00; H, 3.93. C₂₃H₂₀BiBrO₅ requires C, 45.71; H, 4.08 %).

Tetrakis-(2-methoxyphenyl)bismuthonium iodide monohydrate 8a. Similarly obtained from compound 3a (235 mg, 0.34 mmol) and sodium iodide (2 g). Yield, (198 mg, 74 %). Mp 202-204 °C (dec.); δn 1.61 (2 H, br s), 3.67 (12 H, s), 7.22~7.32 (8 H, m) and 7.55~7.75 (8 H, m); δc 56.76, 112.76, 124.66, 127.33 (Bi-C), 134.30, 134.92 and 159.84; νmax(KBr)/cm⁻¹ 3450 (br), 1470, 1435, 1277, 1244, 1044, 781 and 760; (Found: C, 42.73; H, 3.72. C₂₈H₃₃BiI₂O₇ requires C, 42.97; H, 3.84 %).

Oxidation of bismuthane 1a with iodosylbenzene

In benzene in the presence of alkyl halides: typical procedure.

A mixture of bismuthane 1a (530 mg, 1 mmol), iodosylbenzene (330 mg, 1.5 mmol), benzyl bromide (1 mmol, 171 mg), and benzene (50 cm³) was stirred at 40~50 °C for 5 h. The resulting suspension was filtered through a Celite bed and the filtrate was evaporated to give an oily residue (597 mg), which was passed through a short column of silica gel to give an oily mixture (278 mg), the composition of which was estimated by ¹H-NMR analysis as follows; bismuthane 1a (0.09 mmol), anisol (0.09 mmol), benzyl bromide (0.74 mmol) iodobenzene (0.45 mmol), and benzaldehyde (0.02 mmol). The solid residue on a Celite bed was extracted with methylene dichloride (20 cm³...
x 4) and the combined extracts were evaporated off to give bismuthonium salt 7a (309 mg, 42%). Similar oxidation of bismuthane 1a in the presence of ethyl bromide and 2,2,2-trifluoroethyl iodide gave the corresponding bismuthonium bromide 7a and iodide 8a in 39% and 13% yields, respectively.

Preparation of tetrakis-(4-methoxyphenyl)bismuthonium tetafluoroborate 11b

To a solution of 4-methoxyphenylmagnesium bromide, prepared from 4-bromoanisole (1.12 g, 6 mmol) and magnesium (0.146 g, 6 mmol) in THF (7 cm³), was added dropwise a solution of tris-(4-methoxyphenyl)bismuth dichloride 5b²⁸ (1.46 g, 2.43 mmol) in THF (10 cm³) at -60 °C, and the reddish purple suspension was allowed to warm to room temperature. The mixture was stirred at the same temperature for 30 min, and treated with a mixture of trimethylsilyl trifluoromethanesulfonate (0.70 cm³, 3.5 mmol) and ethanol (0.25 cm³) in THF (5 cm³) at -40 °C. The characteristic purple colour of pentaarylbismuth faded out completely, and the resulting pale yellow solution was stirred at room temperature for 30 min, and concentrated to dryness. The residue was dissolved in CH₂Cl₂ (15 cm³) and stirred vigorously with an aqueous solution (30 cm³) of sodium tetrafluoroborate (3 g) for 2 h at room temperature. Organic layer was separated and aqueous layer was extracted with CH₂Cl₂ (5 cm³ x 3). The combined organic phase was dried (MgSO₄) and evaporated to afford a yellow oily residue, which was chromatographed on silica-gel using CH₂Cl₂. Theonium salt 11b was obtained in 67% yield (1.19 g) as a colourless crystals.
11b; mp 174-175 °C; δH 3.85 (12 H, s), 7.20 (8 H, d, JAB 8.8) and 7.65 (8 H, d, JAB 8.1); δC 55.5 (MeO-), 118.0, 125.1 (Bi-C), 136.8 and 162.7; νmax(KBr)/cm⁻¹ 1580, 1568, 1489, 1458, 1296, 1254, 1179, 1121, 1050, 1017, 822, 521 and 513 (Found: C, 46.64; H, 3.85. C29H28BiBF₄O₄ requires C, 46.43; H, 3.90%).

Treatment of salt 11b (0.362 g, 0.5 mmol) with an excess of brine in CH₂Cl₂ at room temperature readily gave bismuthane 1b and 4-chloroanisole quantitatively. After recrystallization from CH₂Cl₂-EtOH, 0.252 g (95%) of bismuthane 1b was obtained.

Metathesis reaction of tris-(2-methoxyphenyl)bismuth dichloride 5a with silver(I) perchlorate

In acetone. To a solution of 5a in acetone (50 cm³) was added commercial silver(I) perchlorate (460 mg, 2 mmol; from Wako Pure Chemical Industries. LTD. content 90 %) in the same solvent (10 cm³) and the resulting suspension was stirred at room temperature in the dark. After 1 h the precipitated silver chloride was filtered off and the filtrate was concentrated under reduced pressure to leave a dark brown oily residue, which was triturated with a mixture of acetone (2 cm³) and benzene (20 cm³) to give a tris-(2-methoxyphenyl)(2-oxopropyl)bismuthonium perchlorate 14a as light brown crystals (375 mg, 55 %). Compound 14a, mp 149-150 °C (dec.); δH 2.48 (3 H, s), 3.82 (9 H, s), 5.09 (2 H, s), 7.15-7.30 (6 H, m) and 7.50-7.65 (6 H, m); δC 30.28, 51.79, 56.54 (Bi-CH₂), 112.19, 124.34, 126.23 (Bi-C), 134.07, 135.14, 159.97 and 202.99 (C=O); νmax(KBr)/cm⁻¹ 1458, 1429, 1233, 1092, 1049, 1021 and 758 (Found: C, 41.96; H, 3.77. C₂₄H₂₆BiClO₆ requires C, 41.97; H, 3.82 %).
Treatment of salt 14a with an excess of brine in chloroform at room temperature readily gave bismuthane 1a quantitatively.

In butan-2-one. Dichloride 5a in butan-2-one (50 cm³) was treated with silver(I) perchlorate (460 mg, 2 mmol, from Wako Pure Chemical Industries, LTD., content 90 %). Usual work up gave a dark brown oily residue, which was triturated with a mixture of MeOH (2 cm³) and EtOAc (20 cm³) to give tetrakis-(2-methoxyphenyl)bismuthonium perchlorate 13a as light brown crystals (8 mg, 1 %), mp 250-251 °C; δh 3.66 (12 H, s), 7.25~7.35 (8 H, m) and 7.55~7.75 (8 H, m); δc 56.39, 112.58, 124.51, 127.19 (Bi-C), 134.20, 134.86 and 159.79; νmax(KBr)/cm⁻¹ 1472, 1435, 1279, 1244, 1098, 1044 and 762 m/z 637 (Ar₄Bi), 423 (Ar₂Bi), 316 (ArBi) and 209 (Bi) (Found: C, 45.67; H, 3.80. C₂₈H₂₉BiClO₈ requires C, 45.62; H, 3.80 %).

Reaction of dichloride 5a with silver(I) oxide in methylene dichloride. To a suspension of silver(I) oxide, freshly prepared from 4 mmol of silver(I) nitrate and sodium hydroxide in methylene dichloride (5 cm³), was added dichloride 5a (601 mg, 1 mmol) in the same solvent (45 cm³) and the resulting suspension was heated at reflux in the dark. After 4 h, the mixture was filtered through a Celite bed and the filtrate was evaporated off under reduced pressure to leave a light yellow solid, which contained tetrakis-(2-methoxyphenyl)bismuthonium hydroxide trihydrate 15a and bismuthane 1a. The presence of a formate in the product mixture was detected by ¹H-NMR spectroscopy. The mixture was recrystallized from CH₂Cl₂-EtOAc (1 : 5) to deposit compound 15a (271 mg, 38 % based on Bi). Compound 15a, mp 155~160 °C (dec.); δh 2.77 (6 H, br s), 3.67 (12 H, s), 7.22~7.32 (8 H, m)
and 7.55–7.75 (8 H, m), OH group was not observed; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3450 (br), 1586, 1566, 1471, 1277, 1244, 1044, 1009, 783 and 760 (Found: C, 47.53; H, 4.60. \(\text{C}_{28}\text{H}_{35}\text{BiO}_{8} \) requires C, 47.46; H, 4.94 %). Compound 15a was also obtained by the reaction of salt 3a and silver (I) oxide as follows; to a suspension of salt 3a in THF (30 cm\(^3\)) {prepared from bismuthane 1a (1 mmol, 530 mg) and iodosylbenzene (2 mmol, 440 mg)}, was added silver(I) oxide (prepared from silver nitrate 1.1 mmol and sodium hydroxide) in water (5 cm\(^3\)) and the resulting suspension was stirred for 40 min in the dark under ambient conditions. Organic solvent was removed under reduced pressure and the aqueous layer was extracted with methylene dichloride (20 cm\(^3\) x 4). The combined extracts were dried (MgSO\(_4\)) and evaporated off under reduced pressure to leave compound 15a (392 mg, 55 %).

Treatment of compound 15a with 42 % tetrafluoroboric acid in acetonitrile at 0–5 °C gave the corresponding tetrafluoroborate 11a (mp 268–270 °C) in 91 % yield.

Oxidation in the presence of a radical scavenger

A mixture of bismuthane 1a (530 mg, 1 mmol), iodosylbenzene (286 mg, 1.3 mmol), 1,1-diphenylethylene (2 mmol, 360 mg) and methylene dichloride (50 cm\(^3\)) was heated to reflux, and after 1.5 h it was filtered through a Celite bed. Usual workup gave the salt 3a (299 mg, 43 %). 1,1-Diphenylethylene was recovered unchanged from the mother liquor, from which the salt 3a had separated out.

Crossing over between bismuthanes 1a and 1d during the
oxidation with iodosylbenzene

A mixture of bismuthanes 1a (265 mg, 0.5 mmol), 1e (286 mg, 0.5 mmol), iodosylbenzene (330 mg, 1.5 mmol) and methylene dichloride (50 cm³) was heated to reflux for 1 h. Usual workup gave a mixture of bismuthonium salts (284 mg), which was found by FAB-MS analysis to contain 3a, 3e, tris-(2-methoxyphenyl)(2-methoxy-4-methylphenyl) and (2-methoxyphenyl)tris-(2-methoxy-4-methylphenyl)-bismuthonium chlorides; m/z, 693 (Ar'4Bi), 679 (Ar'3Ar2Bi), 651 (Ar'Ar23Bi), 637 (Ar24Bi), 451 (Ar'2Bi), 437 (Ar'Ar2Bi), 423 (Ar22Bi), 330 (Ar'Bi), 316 (Ar2Bi), and 209 (Bi) (1Ar = 2-methoxy-4-methylphenyl, 2Ar = 2-methoxyphenyl).

Attempt to prepare µ-oxybis{tris-(2-methoxyphenyl)bismuth} di(trifluoromethanesulfonate)

To a suspension of dichloride 5a (601 mg, 1 mmol) in dry methylene dichloride (8 cm³), was added trimethylsilyl triflate (0.19 cm³, 1 mmol) at 0 °C, and the mixture was stirred at room temperature for 20 h. To the resulting yellow solution, was added hexamethyldisiloxane (0.11 cm³, 0.5 mmol) and stirred for 48 h at room temperature to give a brown solution, which was evaporated under reduced pressure to obtain a grey solid (680 mg). 1H-NMR spectrum of the mixture supported that the mixture contained at least four products, including bismuthonium salt. The starting material 5a was found to be consumed completely. The residue was dissolved in methylene dichloride (15 cm³) and shaked with brine vigorously for 3h. After extractive work up, a dark brown solid (245 mg) was obtained. The residue was chromatographed on silica gel using
methylene dichloride-ethanol (1 : 0 ~ 10 : 1) to give dichloride 5a (68 mg, 11%) and bismuthonium salt 3a (113 mg, 16%).

X-Ray crystallography of compound 7a

A crystal of dimensions 0.450 X 0.380 X 0.200 mm, grown from a mixture of EtOH-EtOAc (1 : 5) at room temperature, was sealed in a glass capillary and used for X-ray crystallography.

Crystal data. C_{28}H_{28}O_{4}BiBr, M = 717.41. Monoclinic. Space group P2_1/c, a = 11.466(4) Å, b = 19.802(9) Å, c = 12.369(5) Å, β = 103.30(3)°, V = 2733(2) Å³, Z = 4, D_c = 1.743 g/cm³. Prisms, μ(Mo-Kα, λ = 0.71069 Å) = 79.08 cm⁻¹.

Data collection and processing. Intensity data were collected on a Rigaku AFC5R diffractometer using graphite-monochromated Mo-Kα radiation from a 12 KW rotating anode generator using the ω-2θ scan technique to a maximum 2θ value of 55.0°. Scans of (0.79 + 0.30 tan θ)° were made at a speed of 16.0 deg min⁻¹ (in omega). Data were corrected for Lorentz and polarization effects. Of the 6754 reflections which were collected, 6446 were unique (R_int = 0.074). The intensities of three representative reflections which were measured after every 150 reflections declined by 5.7%. A linear correction factor was applied to the data to account for this phenomenon. An empirical absorption correction, based on azimuthal (Ψ) scans of several reflections, was applied which resulted in transmission factors ranging from 0.53 to 1.00.

Structure analysis and refinement. The structure was solved by direct methods. The non-hydrogen atoms were refined
anisotropically. The positions of hydrogen atoms were calculated from those of the non-hydrogen atoms and were included in the F_c calculation. The final cycle of full-matrix least-squares refinement, $\Sigma w(\mid F_o \mid - \mid F_i \mid)^2$ where:

$$w = 1/\sigma^2(F_o)$$

was based on 3547 observed reflections [$I > 2.5\sigma(I)$] and 308 variable parameters and converged with unweighted and weighted agreement factors of $R=0.042$ and $R_w=0.036$. The weighting scheme, $w = 1/\sigma^2(F_o)$, was employed. The standard deviation of an observation of unit weight was 1.17, and the maximum peak and minimum though in the final DF syntheses surpluses which are 0.80 and -1.34 Å$^{-3}$. All calculations were performed using the TExSAN29 crystallographic software package of the Molecular Structure Corporation. The ORTEP30 program was used to obtain the drawing in Fig.1. Selected bond lengths and bond angles, and fractional atomic coordinate are given in Table 2.

Acknowledgements

We acknowledge support of this work by Grant in Aid (No. 07740496) from the Ministry of Education, Sports and Culture, Japan. We would like to thank Dr. A. Kita (Kyoto University) for her help with the X-ray experiments. T. I. thanks the Japan Society for the Promotion of Science for the fellowship (No. 6710).

References

1980, 19, 902.

Footnotes

† One referee suggested the possibility of direct formation of benzaldehyde from the adduct of type 16 formed from benzyl bromide and the corresponding bismuthane oxide.

‡ Atomic coordinates, thermal parameters, bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 207/109.

§ Standard deviation of an observation of unit weight: \[
\left[\sum w(|F_0| - |F_c|)^2 / (N_0 - N_v) \right]^{1/2}
\] where \(N_0\) = number of observations and \(N_v\) = number of variables.
Chapter 3 A Convenient in situ Generation and Mild Oxidizing Ability of Triarylbumethane Tosylimides

Abstract

Direct imination of triarylbumethanes 1 with (tosyliminoiodo)benzene 2 to triarylbumethane N-tosylimide 3 was performed under mild conditions. The bismuthane imides 3 were found to possess a mild oxidizing ability to convert activated alcohols into the corresponding carbonyl compounds. Tris-(4-methylphenyl)stibane 4 is similarly iminated to give the stibane imide 5, which lacks the corresponding oxidizing ability.

Introduction

The chemistry of triorganylbismuth imines has not been studied much. Wittig et al. reported in 1964 the first synthesis of triphenylbismuthane N-tosylimide (3a) by the direct action of anhydrous Chloramine-T on bismuthane 1a in boiling acetonitrile. We also prepared several bismuthane imides according to Wittig’s procedure and examined their chemistry in some detail. Bismuthane imides 3a and 3b reacted with aromatic aldehydes, benzoyl chloride and phenyl isocyanate to give N-arylidene-toluene-p-sulfonamides, N-benzoyl-toluene-p-sulfonamide and N-aryl-N'-tosyureas, respectively. Both groups failed to isolate the bismuthane imides as crystals due to moisture sensitivity. Recently, Naumann et al. were successful in obtaining several bismuthane imides as crystalline solids by treatment of triarylbismuth difluorides with N, N-
bis(trimethylsilyl)sulfonamides. They reported that the bismuthane imide 3a underwent gradual hydrolysis in wet dioxane to give triphenylbismuthane oxide and toluene-p-sulfonamide in almost quantitative yields. However, both methods for the preparation of the bismuthane imides 3 are not free from drawbacks; Wittig’s method uses dehydrated Chloramine-T as oxidant, which is potentially explosive and troublesome to prepare, while Naumann’s method requires a multi-step procedure for the preparation of starting materials.

Results and Discussion

We have found that (tosyliminoiodo)benzene(2) smoothly transfers its imino function to triaryl bismuthanes 1 under mild conditions to form triaryl bismuthane tosylimides 3 almost quantitatively. Thus, when a suspension of an equimolar amount of bismuthane 1 and (tosyliminoiodo)benzene 2 in dry dichloromethane was stirred for 0.5 h at ambient temperature, there resulted a clear yellow solution of bismuthane imide 3 (Scheme 1).

\[
\text{Scheme 1} \\
\text{Reagent and condition: i, PhI=NSO}_2^{\text{pTol}} 2, \text{CH}_2\text{Cl}_2, \text{r.t.}
\]

A trapping experiment of bismuthane imide 3a with acetic acid gave a mixture of the expected triphenylbismuth diacetate, iodobenzene and
toluene-\(p\)-sulfonamide in stoichiometric yield, confirming that bismuthane imide 3a was formed quantitatively by the present procedure.

This imination procedure proved to be useful also for the in situ preparation of triarylstibane imines.\(^{1,6}\) (Iminoiodo)benzene 2 reacted rapidly with tris(4-methylphenyl)stibane 4 under similar conditions to give the corresponding triarylstibane imide 5 almost quantitatively as a colourless solution (Scheme 2).

\[
\begin{array}{c}
\text{Scheme 2} \\
\text{Reagent and condition: i, PhI-NSO_2^{\text{PTo1}}, CH_2Cl_2, r.t.}
\end{array}
\]

We have recently reported a mild oxidizing ability of triarylbismuthane oxides toward alcohols.\(^7\) As part of our study on the oxidation with bismuth(V) compounds, we have now examined the reaction of bismuthane imides 3 with a series of alcohols. Treatment of tris(4-methylphenyl)bismuthane imide 3b with alcohols as well as benzoin were easily oxidized to the corresponding carbonyl compounds, while benzopinacol was cleaved to benzophenone. However, primary alcohols were not oxidized (Table 1). The reaction proceeded smoothly at ambient temperature under neutral conditions. In the oxidation of allylic and benzylic alcohols, \(N\)-allylidene- and benzylidene-toluene-\(p\)-sulfonamides were obtained in low yields, suggesting that bismuthane imide 3b reacted further with the resulting aldehydes via the Wittig-type mechanism.
<table>
<thead>
<tr>
<th>%</th>
<th>Compound</th>
<th>%</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>TSNH₂</td>
<td>47</td>
<td>TSNH₂</td>
</tr>
<tr>
<td>94</td>
<td>TSNH₂</td>
<td>53</td>
<td>TSNH₂</td>
</tr>
<tr>
<td>43</td>
<td>TSNH₂</td>
<td>21</td>
<td>TSNH₂</td>
</tr>
<tr>
<td>63</td>
<td>TSNH₂</td>
<td>69</td>
<td>TSNH₂</td>
</tr>
</tbody>
</table>

Products

<table>
<thead>
<tr>
<th>ROH</th>
<th>(\text{t-L})</th>
<th>(\text{t-L})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSNH₂</td>
<td>TSNH₂</td>
<td>TSNH₂</td>
</tr>
</tbody>
</table>

Table 1. Oxidation of Alcohols with Dibutyl Bi sulfide

Note: The table above represents the percentages of different products obtained from the oxidation of alcohols with dibutyl bisulfide.
The most striking result was the isolation of bis(p-methylphenyl)bismuthyl N-tosylamide 7 in moderately yields in the case of the oxidation of allylic and benzylic alcohols. The amide was easily removed off from the reaction mixture only extracting with benzene due to its low solubility in cold benzene. It seems to be insensitive against atmospheric moisture in the solid state, however, it slowly decomposes to tris-(4-methylphenyl)bismuthane 1b and insoluble white powder in solution.

An additional important result of the present work was the first isolation of a stable aminobismuthane derivative, bis(4-methylphenyl)(tosylamino)bismuthane (7). The amine 7 was obtained in moderate yield from the reaction of allylic or benzylic alcohols with compound 3b. When the solid residue obtained after evaporation of the reaction mixture under reduced pressure was repeatedly washed with cold benzene to remove any soluble organic substances, compound 7 remained as a difficulty soluble white powder, which was not so sensitive toward atmospheric moisture in a solid state, but slowly decomposed to bismuthane 1b and a white powderly deposit when stood in CDCl₃.

The formation of aminobismuthane derivative 7 suggests that the oxidation of alcohols by compound 3 may proceed via two different pathways. In one pathway, the -NHTs group and an α-proton of the alkoxy function are simultaneously eliminated from the adduct 6 to form the corresponding carbonyl compound, bismuthane and toluene-p-sulfonamide, while in the other pathway the -Ar group and the α-proton combine to yield the
aminobismuthane 7 and a carbonyl compound (Scheme 3). In the case of primary alcohols, however, both modes of degradation would become more difficult for the pentavalent intermediate 6; 2-phenylethanol disappeared rapidly when treated with bismuthane imide 3b (checked by TLC), but subsequent reaction did not apparently proceed. Heating of the reaction mixture at reflux only resulted in the regeneration of the original alcohol accompanied by bismuthane 1b. On the other hand, the oxidation of benzopinacol with compound 3b gave benzophenone and bismuthane 1b in quantitative yields, suggesting a possible intermediacy of a five-membered ring (8). Tertiary alcohols seem to be inert toward bismuthane imide 3b; quenching of the reaction mixture of α-terpineol and 3b with acetic acid gave the unchanged alcohol, tris-(4-methylphenyl)bismuth diacetate5 and toluene-p-sulfonamide in stoichiometric yield.

2°, Allylic, Benzylic Alcohols

\[
\text{R}^1\text{R}^2\text{CHOH} \xrightarrow{3b} \begin{array}{c}
\text{R}^1\text{R}^2\text{CHOH} \\
\text{R}^1\text{R}^2\text{CONH} + \text{R}^1\text{R}^2\text{Bi} + \text{R}^1\text{R}^2\text{NO}_2 + \text{R}^1\text{R}^2\text{SO}_2\text{NH}_2
\end{array}
\]

Diols

\[
\text{R} \xrightarrow{3b} \text{TsNH}_2 \begin{array}{c}
\text{R} \xrightarrow{3b} \text{TsNH}_2 \xrightarrow{\text{TsNH}_2} \begin{array}{c}
\text{R} \xrightarrow{3b} \text{TsNH}_2 \xrightarrow{\text{TsNH}_2} \text{R}
\end{array}
\end{array}
\]

Scheme 3
In order to compare the oxidizing ability of stibane imides and bismuthane imides, stibane imide 5 was treated with several alcohols, listed in Table 1. Similarly to triphenylstibane oxide, compound 5 exhibited only limited oxidizing ability toward organic substrates; stirring of an equimolar mixture of imide 5 and a given alcohol in dichloromethane at ambient temperature under argon resulted in most cases in consume of starting materials, but the expected oxidation products were not obtained. The only exceptions were benzoin and benzopinacol, which were oxidized to benzil and benzophenone, respectively, just as had been observed in the reaction with triphenylstibane oxide. These results also clearly show the different chemical nature of the formal "Bi=NR" bond from the Sb=NR bond. A similar difference in chemical reactivity was also observed between the formal "Bi=O" bond and the other pnicogen-oxygen double bonds (P=O, As=O and Sb=O).

Experimental Part

Mps were determined on a Yanagimoto hot-stage apparatus and are uncorrected. IR spectra were recorded as KBr pellet on a Shimadzu FTIR-8100 spectrophotometer. 1H NMR spectra were recorded in CDCl3 on a Varian Gemini-200 (200 Mhz) spectrometer with Me4Si as an internal standard. Mass spectra (FAB) were determined on a JEOL JMS HS 110 mass spectromete, using 3-nitrobenzyl alcohol as matrix. Microanalysis was performed at Microanalytical Laboratory, Institute of Chemical Research, Kyoto University.
Typical Procedure for *in situ* Generation of Triarylbismuthane Tosylimide

A suspension of triphenylbismuthane 1a (440 mg, 1.0 mmol) and (tosyliminoiodo)benzene 2 (373 mg, 1.0 mmol) in dry dichloromethane (30 cm³) was stirred at ambient temperature under argon until it became clear yellow. Bismuthane 1a was completely consumed at this stage (checked by TLC; if part of bismuthane 1a remains unchanged after disappearance of iminnoiodo compound 2, add further amounts of the imination reagent). It usually took 0.5 h to complete the reaction. The resulting yellow solution of bismuthane imide 3a was used as such for the further experiments. Evaporation of the solution under reduced pressure gave a mixture of imide 3a and iodobenzene as a bright yellow syrup. Since compound 3a is known, no attempt was made to isolate it.

Typical Procedure for *in situ* Generation of Triarylstibane Tosylimide

A suspension of tris(4-methyphenyl)stibane 4 (394 mg, 1.0 mmol) and iminoiodobenzene 2 (373 mg, 1.0 mmol) in dichloromethane (30 cm³) was stirred at ambient temperature under argon. The reaction completes within 5 min and tris(4-methylphenyl)stibane tosylimide 5 was obtained as a colourless solution. On treatment with water under aerial conditions, this solution afforded tris(4-methylphenyl)stibane oxide and toluene-*p*-sulfonamide in quantitative yields.
Trapping Experiment of Bismuthane Imide

A solution of riphenylbismuthane N-tosylimide 3a, prepared from triphenylbismuthane 1a (220 mg, 0.5 mmol) and (iminoiodo)benzene 2 (224 mg, 0.6 mmol) was treated with acetic acid (78 mg, 1.3 mmol) at ambient temperature, and the resulting mixture was stirred for 1 h. The mixture was evaporated to leave an orange coloured solid (391 mg), which contained triphenylbismuth diacetate and toluene-p-sulfonamide in the ratio of 1:1.2 (estimated by 1H NMR), suggesting that their yield were quantitative.

General Procedure for the Oxidation of activated Alcohols with Triarylbismuthane Imide

To an in situ prepared solution of bismuthane imide 3b (1 mmol) in dichloromethane (30 cm³) was added an alcohol (1 mmol) and the resulting mixture was stirred at ambient temperature for 10 h. After completion of the reaction the mixture was evaporated under reduced pressure to leave a solid residue, which was triturated with benzene (15 cm³) and filtered through a thin Celite bed. The residue was washed with benzene (5 cm³ x 2) and the washings were combined with filtrate. The solvent was removed under reduced pressure and the residue was chromatographed on silica-gel using hexane-ethyl acetate (1:0 – 1:2) as an eluent.

Cinnamil alcohol. Treatment of cinnamil alcohol (134 mg, 1 mmol) with 1.0 mmol of bismuthane imide 3b prepared from 1.0 mmol of bismuthane 1b and 1.2 mmol of 2 gave bismuthane 1b (45 mg, 9%), cinnamaldehyde (93 mg, 70%), N-(toluene-p-sulfonyl)-cinnamaldehyde
imine10 (62 mg, 22\%) and toluene-\textit{p}-sulfonamide (89 mg, 47\%) after column chromatography. The residue on the Celite bed was extracted with chloroform (5 cm3 x 6) and the combined extracts were evaporated to give bis-(4-methylphenyl){\textit{p}-toluenesulfonyl}amino)bismuthane (7) as a colourless microcrystalline solid (278 mg, 39\%). Compound 7, mp 163-165 °C; \(\delta\text{H} 2.34 (6\text{ H, s}), 2.38 (3\text{ H, s}), 4.33 (1\text{ H, br s}), 7.16 (2\text{ H, br d, } J\text{=}8), 7.40 (4\text{ H, d, } J_{AB}=8.0), 7.62 (2\text{ H, br d, } J=8)\) and 7.88 (4\text{ H, d, } J_{AB}=8.0); \(v_{\text{max/cm}}-1}1 (\text{KBr}) 3281, 1487, 1312, 1294, 1279, 1134, 1086, 947, 928, 808, 793, 668, 563, 544 and 478; \text{m/z} (\text{FAB}) 952 \{(\text{ToI}_2\text{Bi})_2\text{NHTs}, 861 \{(\text{ToI}_2\text{Bi})_2\text{NHTsBiTol}, 707\{(\text{ToI}_2\text{Bi})_2\text{NH}_2}, 562 \{(\text{ToI}_2\text{Bi})_2\text{NH}_2\text{Ts}, 544 \{(\text{ToI}_2\text{Bi})_2\text{NS(O})\text{ToI}, 470 \{(\text{ToI}_2\text{Bi})_2\text{NH}_2\text{Ts, 391 \{(ToI}_2\text{Bi) and 300 (TolBi). (Found: C, 44.6; H, 3.9; N, 2.6. C}_{21}\text{H}_{22}\text{BiNO}_2\text{S requires C, 44.92; H, 3.95; N, 2.49\%).}

4-Methoxybenzyl alcohol. Treatment of 4-methoxybenzyl alcohol (69 mg, 0.5 mmol) with 0.5 mmol of bismuthane imide 3b prepared from 0.5 mmol of bismuthane 1b and 0.6 mmol of 2, gave bismuthane 1b (85 mg, 35\%), 4-methoxybenzaldehyde (43 mg, 63\%), \textit{N}-\textit{p}-toluenesulfonyl)-4-methoxybenzaldehyde imine8 (31 mg, 21\%) and toluene-\textit{p}-sulfonamide (33 mg, 35\%) after column chromatography. By the same procedure, compound 7 was obtained in 43\% (121 mg).

Benzopinacol. Treatment of benzopinacol (183 mg, 0.5 mmol) with 0.5 mmol of bismuthane imide 3b, prepared from 0.5 mmol of bismuthane 1b and 0.6 mmol of 2, gave bismuthane 1b (237 mg, 99\%), benzophenone (180 mg, 99\%) and toluene-\textit{p}-sulfonamide (85 mg, 83\%) after column chromatography.
Benzoin. Treatment of benzoin (106 mg, 0.5 mmol) with 0.5 mmol of bismuthane imide 3b, prepared from 0.5 mmol of bismuthane 1b and 0.5 mmol of 2, gave bismuthane 1b (173 mg, 72%), oxidized products (88 mg) and toluene-\(p\)-sulfonamide (77 mg, 90%) after column chromatography. The components of oxidized products were unchanged benzoin (20%), benzaldehyde (13%) and benzil (54%). The yield of these compounds was estimated by \(^1H\) NMR.

4-\textit{tert}-Butyl-cyclohexanol. Treatment of 4-\textit{tert}-butyl-cyclohexanol (153 mg, 1.0 mmol) with 1.0 mmol of bismuthane imide 3b, prepared from 1.0 mmol of bismuthane 1b and 1.1 mmol of 2, gave bismuthane 1b (111 mg, 23%) and a mixture (223 mg) after column chromatography. The components of a mixture were iodobenzene (17%), unchanged alcohol (33%), 4-\textit{tert}-butyl-cyclohexanone (52%) and toluene-\(p\)-sulfonamide (47%). The yield of these compounds was estimated by \(^1H\) NMR. In addition, compound 7 was obtained in 47% (262 mg).

2-Phenylethanol. Treatment of 2-phenylethanol (112 mg, 1.0 mmol) with 1.0 mmol of bismuthane imide 3b, prepared from 1.0 mmol of bismuthane 1b and 1.0 mmol of 2 led to complete consumption of the starting alcohol (checked by TLC) after 3 h. The reaction mixture was heated at reflux for 5 h, and concentrated to leave a yellow solid, which was chromatographed to afford bismuthane 1b (351 mg, 73%) and a mixture (265 mg) of 2-phenylethanol (100%) and toluene-\(p\)-sulfonamide (81%). The yield was estimated by \(^1H\) NMR.
α-Terpineol. α-Terpineol (77 mg, 0.5 mmol) was treated with 0.5 mmol of bismuthane imide 3b, prepared from 0.5 mmol of bismuthane 1b and 0.5 mmol of 2, at ambient temperature for 19 h and the mixture was concentrated. According to 1H NMR spectrum of the mixture, the starting alcohol was recovered completely. The reaction mixture was treated with acetic acid (120 mg, 2 mmol) and concentrated to leave a mixture (404 mg), which contained α-terpineol (100%), tris-(4-methylphenyl)bismuth diacetate (100%) and toluene-p-sulfonamide (100%). The yield was estimated by 1H NMR.

We acknowledge financial support of this work by a Grant-in-Aid for Special Project Research No. 05236101 from the Ministry of Education, Science and Culture of Japan.

References

Chapter 4 Preparation and the First X-ray Structure Analysis of Highly Stabilized Triarylbismuthane Imides

Abstract

Triarylbismuthane imides which contain intramolecular coordination groups were prepared by the reaction between corresponding dichlorides of azabismocine 7, azabismepine 12 and acyclic bismuthane which contained 2-(4,4-dimethyl-oxazoline-2-yl)phenyl group 18a–c, and trifluoromethanesulfonamide in the presence of potassium tert butoxide in almost quantitative yields. In contrast to all known bismuthane imides, these imides from cyclic bismuth compound, 8 and 13, as well as imide from acyclic bismuthanes 19a–c were found to be air– and moisture– stable, and could be handled under atmospheric conditions. They can be recrystallized easily to give crystals, which melt at relatively high temperature. The molecular structure of imide 19b was elucidated by X–ray crystallographic analysis, where the bismuth centre possessed distorted trigonal bipyramidal structure. The nitrogen atom of the oxazoline ring and oxygen atom of the sulfonyl group coordinated to the bismuth centre. The bond length of Bi–N(imide) suggested that this imide possessed a polar Bi$^{+}$–N$^{-}$ single bond rather than Bi=N double bond. IR spectra of these imides exhibited strong peaks around 610 cm$^{-1}$, probably due to the Bi–N absorption.

Introduction

Bismuthane imides of the general formula R$_3$Bi=NE are the bismuth analog of phosphane imides R$_3$P=NE, which have long been known as the intermediate
in the Staudinger reactions.\(^1\) In contrast to those derived from lighter 15th and 16th Group elements, bismuthane imides have remained almost untouched until recently. The synthesis of bismuthane imide was first reported by Wittig and Hellwinkel in 1964, who obtained triphenylbismuthane \(N\)-(4-methylbenzenesulfonyl)imide \(1\) \(\text{Ph}_3\text{Bi}=\text{NSO}_2\text{pTol}\) as a moisture-sensitive solid by treating triphenylbismuthane with anhydrous Chloramine-T\(^\circ\) in boiling MeCN.\(^2\) Reactions of this and related triarylbismuthane imides with aldehydes, acid chlorides, and isocyanates afforded the corresponding aldimines, amides and urea derivatives, respectively.\(^3\) The reaction of triarylbismuthane with \(\text{PhI}=\text{NSO}_2\text{pTol}\)\(^4\) is convenient for the \textit{in situ} generation of bismuthane imides,\(^5\) while the metathesis between triarylbismuth dihalides and sulfonamides is also efficient for the preparation of similar imides.\(^6\) All known bismuthane imides have a sulfonyl group on the imido nitrogen atom and, though thermally stable, they are quite moisture-sensitive. Under dry nitrogen, the solid imides can be stored over weeks,\(^3,6\) but they gradually decompose in solution. Thus, the imide \(1\) undergoes hydrolysis in a wet dioxane to form triphenylbismuthane oxide, \(\text{Ph}_3\text{Bi}=\text{O}\).\(^6\)

Results and Discussion

Heterocyclic bismuthane imides

Some heterocyclic bismuthane derivatives are known to exhibit characteristic feature; 10-alkynyl-, alkenyl- and alkyl-phenothiabismine \(2\) and its 5,5-dioxide \(3\) derivatives can be isolated as an air- and moisture stable compounds.\(^7\) The X-ray structure analysis of 10-alkynylphenothiabismine
5,5-dioxide showed the existence of the intramolecular interaction between bismuth and oxygen, however, there seems to be no reasonable explanation on the origin of the stabilization of Bi-alkynyl, alkenyl and alkyl bond, which are generally unstable against oxidation. The other methylbismuth derivatives, 6,12-dimethyl-dibenz[c,f][1,5]azabismocine 4 was reported though the chemical nature was not described in detail. The chemistry of cyclic bismuthanes containing intramolecular coordination groups has been limited in the case of trivalent compound.

![Chemical structures]

We tried to apply the unique chemistry of the heterocyclic bismuthane derivatives for the stabilization of bismuthane imides, pentavalent bismuth compounds, and found that the intramolecular coordination ligands was efficient to our purpose. First we tried azabismocine derivatives; 12-chloro-dibenz[c,f][1,5]azabismocine 5 was prepared in 71% yield by the modification of the reported procedure. Treatment of the chlorobismuthane 5 with ρ-tolylmagnesium bromide gave the corresponding 12-(4-methylphenyl) derivative 6 in 79% yield. So the bismuthane 6 was sensitive against silica gel, it was essential to use deactivated alumina column chromatography for the purification. Then the bismuthane 6 was chlorinated with sulfuryl chloride to give the desired dichloride 7 and the chlorobismuthane 5 in 38 and 28% yield, respectively. Iodobenzene
dichloride seemed to be a more useful for our purpose; treatment of bismuthane 6 with the agent at 0–5 °C in dichloromethane afforded the dichloride 7 and the chlorobismuthane 5 in 74 and 19% yield, and they could be isolated easily by silica gel column chromatography. The dichloride 7 was thermally unstable compound, which decomposed into the chlorobismuthane 5 quantitatively when heated at 40 °C for 1 day. According to the Naumann’s procedure, the dichloride 7 was treated with the mixture of CF₃SO₂NH₂ and KOBut in THF at room temperature. After 1 h, the resulting suspension was evaporated to dryness, and the residue was extracted with dichloromethane successively. The combined extracts were concentrated to give the desired bismuthane imide 8 in quantitative yield (Scheme 1).

![Scheme 1](image)

Scheme 1

Reagent and conditions: i, PTolMgBr, Et₂O, 40 °C; ii, PhICl₂, CH₂Cl₂, 0 °–r.t.; iii, CF₃SO₂NH₂, KOBut, THF, r.t.

In contrast to the previously reported bismuthane imide, the imide 8 was air- and moisture-stable, and could be handled under atmospheric conditions.
By the recrystalization from benzene-acetone, it forms crystals, which melts at 177–179 °C. Elemental analysis suggested the crystal contained 2 molecule of benzene per 3 molecule of the imide. All new organobismuth compounds 5–8 were fully characterized by 1H−NMR, IR and elemental analyses. These azabismocine derivatives exhibited characteristic 1H−NMR spectral features as shown in Table 1.

Table 1. Selected H-NMR spectral data of compound 5–8 (δ / ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>N−Me</th>
<th>Methylene</th>
<th>Aromatic proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.86</td>
<td>4.12, 4.27</td>
<td>7.30–7.60, 8.66</td>
</tr>
<tr>
<td>6</td>
<td>2.51</td>
<td>3.69, 3.93</td>
<td>7.05–7.59, 7.76</td>
</tr>
<tr>
<td>7</td>
<td>2.49</td>
<td>4.17, 4.75</td>
<td>7.40–7.75, 8.54</td>
</tr>
<tr>
<td>8</td>
<td>1.83</td>
<td>3.67, 3.90</td>
<td>7.25–7.70, 8.67</td>
</tr>
</tbody>
</table>

In a H−NMR spectrum of the imide 8, a signal due to the N−Me group was observed at 1.83 ppm, which shifted to higher field with 0.68 ppm, compared with that of bismuthane 6. Aromatic protons attached to the *ortho* positions of the bismuthane center appeared at 8.67 ppm, suggesting the existence of strong interaction between the hydrogen and imide nitrogen. X-ray crystallographic study of compounds 5 and 7 have shown that these compound possess trigonal bipyramidal and octahedral structure, respectively.10 Judging from the characteristic low field shift of the *ortho* protons, the structure of these two compounds in solution are supposed to be similar to those of the solid state.

Then the preparation of azabismepine derivatives, which contained
nitrogen and bismuth in the seven member ring, and the transformation of them to the corresponding bismuthane imides was examined. The chemistry of azaheteropines is less studied, though the preparation of azasilepine11 and azarsepine12 derivatives have reported. Similar to the azabismocine derivatives, dibenz[b,e][1,4]azabismepine derivatives have been prepared as follows. The amine 9 was lithiated and treated with bismuth(III) chloride in ether, and the resulting suspension was further treated with aqueous sodium iodide to give 5-methyl-11-iodo-dibenz[b,e][1,4]azabismepine 10 in 63\% yield. So the iodobismuthane 10 was less soluble in ether, it separated out from the reaction mixture as orange–coloured precipitation, which was extracted with hot chloroform successively. By the action of an excess of 4-methylphenylmagnesium bromide, the iodobismuthane 10 was transformed to the corresponding triaryl bismuthane 11, which was further changed without purification, into the dichloride 12 with iodobenzene dichloride. All attempts to purify the bismuthane 11 by silica or alumina gel column chromatographies failed; the bismuthane seemed to be absorbed on such gel too strongly to be separated from them. Interestingly, the dichloride 12 could be isolated by silica gel column chromatography easily. The imination of the dichloride was carried out by the action of CF\textsubscript{3}SO\textsubscript{2}NH\textsubscript{2} in the presence of KOBu1 in THF at room temperature, to give the desired bismuthane imide 13 in quantitative yield (Scheme 2). The imide 13 also seemed to be air– and moisture–stable compound as the imide 9, however, the recrystallization have not been succeeded so far. Anyway, the bismuthane imide 13 prepared from
azabismepine could be handled under atmospheric conditions. The H NMR spectral feature of compound 10–13 was summarized in Table 2. Compared with those of azabismocine derivatives, the degree of the change of the chemical shifts of N–Me, methylene and aromatic protons are small, though compound 10, 12 and 13 are all supposed to possess TBP structure. These phenomena would be caused by the rather rigid structure of the azabismepine derivatives.

![Diagram of synthesis](image)

Scheme 2
Reagent and conditions: i, BuLi, Et₂O; ii, BiCl₃, Et₂O, -70 °C; iii, NaI, H₂O, r.t.; iv, PTolMgBr, THF, reflux; v, PhICl₂, CH₂Cl₂, 0 °r.t.; vi, CF₃SO₂NH₂, KOBut, THF, r.t.

Table 2. Selected H NMR spectral data of compound 10–13 (δ / ppm)

<table>
<thead>
<tr>
<th>Compound</th>
<th>N–Me</th>
<th>Methylene</th>
<th>Aromatic proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.14</td>
<td>4.40, 5.10</td>
<td>7.30–7.60, 8.89, 9.02</td>
</tr>
<tr>
<td>11</td>
<td>2.89</td>
<td>4.06, 4.36</td>
<td>6.94–7.75</td>
</tr>
<tr>
<td>12</td>
<td>2.91</td>
<td>4.16, 5.18</td>
<td>7.32–7.80, 8.65</td>
</tr>
<tr>
<td>13</td>
<td>2.71</td>
<td>4.28, 4.45</td>
<td>7.30–7.70, 8.27, 8.42</td>
</tr>
</tbody>
</table>
Bismthane imides containing oxazoline groups

Then we prepared a highly stabilized bismuthane imides, bearing an oxazoline group as the protecting ligand at ortho position to the bismuth and succeeded the first X–ray structure analysis of a bismuthane imide, [2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl]bis(4-methylphenyl)bismuthane N-(trifluoromethanesulfonyl)–imide 19b. The imides 19 were obtained by four steps starting from triarylbismuthanes Ar₃Bi, where a; Ar = Ph, b; Ar = 4-Me–C₆H₄, c; Ar = 4-F–C₆H₄, d; Ar = 4-Cl–C₆H₄, and e; Ar = 4-MeO–C₆H₄, treatment of Ar₂BiOSO₂CF₃·(HMPA)₂ with an excess of 2-(4,4-dimethyl-2-oxazoline-2-yl)phenylmagnesium bromide 14 gave bismuthanes 15a–d in moderate yields. Because in the case of 4-methoxyphenyl moiety, the reaction gave a complex mixture, ligand exchange reaction on the bismuth centre of bismuthane 20e with aryllithium 21 was carried out to obtain bismuthane 15e. Bismuthanes 15 were less stable than Ar₃Bi and readily decomposed during column chromatography on alumina or silica gel using CHCl₃ as the eluent to give diarylchlorobismuthanes 16 in a good yields. Alike other halobismuthanes containing an intramolecularly coordinating group,¹⁴ the compounds 16 were quite moisture–stable. Bismuthanes 15a–e were converted by PhICl₂ to dichloride 18a–e in good yields. When gently heated in a organic solvent, these dichlorides slowly decomposed to give chlorobismuthanes 16. On treatment with a 2:1 molar ratio of KOBu¹ and CF₃SO₂NH₂ in THF at room temperature, dichlorides 18 gave the corresponding bismuthane imides 19 in quantitative yields, while
chlorobismuthane 16b was simply converted to amidobismuthane 17b (Scheme 3). In contrast to pTol₂BiNHSO₂pTol,⁵ compound 17b was thermally stable and did not undergo disproportionation in solution. All new organobismuth compounds 15–19 were fully characterized by ¹H–NMR, ¹³C–NMR, IR and elemental analyses.

![Scheme 3](attachment:scheme3.png)

Scheme 3

Reagent and conditions: i, Ar₂BiOSO₂CF₃·(HMPA)₂, THF; ii, SiO₂, CHCl₃; iii, CF₃SO₂NH₂, KOBu¹, THF, r.t.; iv, PhICl₂, CH₂Cl₂, 0°–r.t.; v, 40–50°C; vi, BuLi, Et₂O; vii, (pAn)₂BiCl, Et₂O; viii, OxLi, THF

The imides 19 are soluble in CH₂Cl₂, CHCl₃ and THF, but poorly soluble in Et₂O and hexane; 19a–c can be readily purified by recrystallization from a CH₂Cl₂–Et₂O mixture, while 19d slowly decomposed during the recrystallization procedure. The imide 19e could be handled easily in solution like 19a–c, however, it was difficult to obtain crystalline solids. In marked contrast to the known bismuthane imides,⁴ they did not show any sign of decomposition even when stood in a wet CHCl₃. In acetone, they slowly decomposed to give a mixture of products in which amidobismuthane 17 was
a major component. Compound 19a–c provide examples of moisture-insensitive bismuthane imides, which can be handled safely under atmospheric conditions. After several months storage on a bench shelf, crystals of imides 19 were still alive.

X-Ray structure analysis of compound 19b

In order to get an insight into the structure of bismuthane imide 19b, an X-ray crystallographic study was performed. As shown in Fig. 1, the bismuth atom is attached by three carbon atoms C(1), C(12) C(19) and one nitrogen atom N(1), with the C–Bi–C bond angles 112.0(5)–119.9(5)° and N(1)–Bi–C bond angles 94.2(5)–107.8(5)°. The oxazoline nitrogen atom N(2) coordinates intramolecularly to the bismuth center from an apical side with a distance of 2.69(1) Å and an N(1)–Bi–N(2) bond angle of 163.5(4). The geometry around the bismuth center can be regarded as a distorted trigonal bipyramid (TBP), although the contribution of tetrahedral (TD) structure is not negligible; the bismuth atom is located 0.49 Å above the plane which three carbon atoms C(1), C(12) and C(19) make. The sum of three C–Bi–C bond angles (345.4°) lies between the predicted values of a TBP (360°) and a TD structure (328.5°). From an open C(12)–Bi–C(19) side, one of the sulfonyl oxygen atoms O(1) coordinates to the bismuth with a distance of 2.97(1) Å. The intramolecular distance between the bismuth and the N(2) atoms is longer than the sum of covalent radii Bi–N (2.16 Å), but shorter than the sum of van der Waals radii Bi–N (ca 3.6 Å). The corresponding sums of covalent radii Bi–O and of van der Waals radii Bi–O are 2.12 Å and ca 3.5 Å, respectively.
Fig. 1 ORTEP drawing of compound 19b, with crystallographic numbering scheme. The percentage probability level of the ellipsoids in this drawing is 30%.
Table 3. Selected bond distances (Å) and angles [°] for imide 19b, with estimated standard deviations in parentheses.

<table>
<thead>
<tr>
<th>Bond Length</th>
<th>Bond Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi–N(1)</td>
<td>2.13(1)</td>
</tr>
<tr>
<td>Bi–C(1)</td>
<td>2.23(1)</td>
</tr>
<tr>
<td>Bi–C(12)</td>
<td>2.19(1)</td>
</tr>
<tr>
<td>Bi–C(19)</td>
<td>2.20(2)</td>
</tr>
<tr>
<td>S–O(1)</td>
<td>1.45(1)</td>
</tr>
<tr>
<td>S–O(2)</td>
<td>1.43(1)</td>
</tr>
<tr>
<td>S–N(1)</td>
<td>1.53(1)</td>
</tr>
<tr>
<td>Bi–N(2)</td>
<td>2.69(1)</td>
</tr>
<tr>
<td>Bi–O(1)</td>
<td>2.97(1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X-ray crystallography has supported that the imide 19b possesses a similar structure both in solution and in the solid state: some characteristic features in 1H–NMR spectrum of imide 19b can be explained according to the solid structure. Highfield shift of two gem–methyl groups on the oxazoline ring (0.68 ppm) with respect to those of bismuthane 15b (1.13 ppm), should be caused by the anisotropic effect of two pTol groups. The ortho aromatic protons appeared at 7.76 (pTol) and 8.97 ppm (oxazoline substituted phenyl group), respectively 0.14 and 0.99 ppm lower shifted than those of compound 15b. This observation is indicative of the TBP structure of imide 19b; in which the degree of deshielding effect by N(1) atom is much greater in the latter case than the former case, probably because pTol group are not fixed for the direction.

The most interesting feature of compound 19b is the Bi–N(1) bond length; the observed value 2.13(1) Å almost falls in the range of the known Bi–N single bond distance; 2.12(2)–2.28(2) Å for (Ph₂N)₃Bi,¹⁷ 2.180(21)–
2.189(18) Å for (Me₂N)₃Bi, ²¹ 2.14(2)–2.214(13) Å for [(tBu₃C₆H₂)NH]₃Bi, ²⁰ 2.158(4)–2.174(5) Å for a cyclic amidobismuthane, ²⁰ and 2.101(7)–2.237(7) Å for a cubic amidobismuthane. ²¹ Therefore, the Bi–N(1) bond in compound 19b can be regarded by nature as a polarized single bond, Bi⁺–N⁻, rather than a double bond, Bi≡N. For a further detailed comparison of the Bi–N(imide) bond length and Bi–N bond in Ar₂Bi–NR, an amidobismuthane 22b was prepared by the same procedure used for compound 17b. In contrast to compound 17b, amidobismuthane 22b forms well–shaped crystals, which would be suitable for an X-ray study (Scheme 4).

![Scheme 4 Reagents and Conditions: i, KOBut, THF, r. t.; ii, 16b, THF, r.t.](image)

Attempt to use {2–(N–Methyl–N–Phenylaminomethyl)phenyl} groups as a protecting group of the bismuthane imides instead of oxazoline group failed; bismuthane 23 and its dichloride 24 were prepared as well as compound 15 and 18. Compound 24 was treated with CF₃SO₂NH₂ in the presence of KOBut to give the corresponding bismuthane imide 25, however, it decomposed into a complex mixture (Scheme 5).

Coordination of the oxazoline nitrogen atom to the bismuth should play an important role in the stabilization of the polarized Bi–N bond, where the Bi, N(1), S and O(1) atoms as well as all ring atoms of the oxazoline [C(7)–C(9), N(2), O(3)] are nearly coplanar with a mean deviation of 0.012 Å from the
plane \([\text{C}(1)\text{--C}(6)]\) defined by one of the benzene rings.

\[
\text{ARMgBr} \quad \xrightarrow{i} \quad \text{AR—Bi(PTol)}_2 \quad \xrightarrow{\text{ii}} \quad \text{AR—Bi(PTol)}_2^{\text{Cl}} \quad \xrightarrow{\text{iii}} \quad \text{AR—Bi(PTol)}_2^{\text{NSO}_2\text{CF}_3}
\]

Scheme 5

Reagent and conditions: i, \((\text{PTol})_2\text{BiOSO}_2\text{CF}_3 \cdot (\text{HMPA})_2, \text{THF}; ii, \text{PhICl}_2, \text{CH}_2\text{Cl}_2, 0^\circ\text{r.t.; iii, CF}_3\text{SO}_2\text{NH}_2, \text{KOBu}^+, \text{THF, r.t.})

These observations strongly suggest that the \(\text{N}(2)\text{--Bi—N}(1)\) linkage has the nature of a so-called hypervalent bond and that a charge on the \(\text{Bi—N(imide)}\) bond would be distributed over the array of \(\text{N}(2)\text{--Bi—N}(1)\text{--S—O}(1)\) atoms in a push–pull way from the \(\text{N}(2)\) toward the \(\text{O}(1)\) end. The short \(\text{N}(1)\text{--S}\) bond distance in 7, 1.53(1) Å, is highly suggestive of substantial multiple character, since it is 0.21 Å shorter than the sum of covalent radii of sulfur and nitrogen, 1.74 Å. In addition to this resonance stabilization between the imide and sulfonfonyl functions, the intramolecular coordination of the \(\text{O}(1)\) atom to the bismuth may also be effective for the stabilization of the \(\text{Bi—N(imide)}\) bond (Scheme 6). Thus, in the case of the imide 19b, C form in Scheme 6 may be the most important structure.

Scheme 6

Our experimental result is in good accordance with a recent theoretical study on the electronic configuration of \(\text{H}_3\text{Bi=NH}\) and \(\text{H}_2\text{Bi—NH}_2\) at MP2/DZ–d
level, where the lengths of the \(\text{Bi} = \text{N} \) and \(\text{Bi} - \text{N} \) bonds were estimated to be 1.997 Å and 2.133 Å, respectively.22

Discussion on IR data

As described above, bismuthane imides are concluded to possess the polarized single bond nature (\(\text{Bi}^+ - \text{N}^- \)), rather than double bond nature (\(\text{Bi}=\text{N} \)). This conclusion may be supported by the discussion on IR data of amidobismuthanes and bismuthane imides; cyclic amidobismuthane \textbf{26}, prepared as well as \textbf{17b} or \textbf{22b}, and bismuthane imide \textbf{8} exhibited strong peaks at 615 and 613 cm\(^{-1}\), respectively. These peaks were not observed in the IR spectra of the other azabismocine derivatives, and could be considered as an adsorption due to \(\text{Bi} - \text{N} \) bonds. Similarly, the series of amidobismuthane and bismuthane imides containing oxazoline group exhibited strong peaks around 610 cm\(^{-1}\); amidobismuthane \textbf{17b} and \textbf{22b} showed peaks at 617 and 623 cm\(^{-1}\), respectively, while bismuthane imides \textbf{19a, b} and \textbf{c} showed peaks at 613, 613 and 611 cm\(^{-1}\), respectively. These facts may suggest that \(\text{Bi} - \text{N} \text{(amide)} \) bond and \(\text{Bi} - \text{N} \text{(imide)} \) possess the similar nature.

Experimental Part

All reactions were carried out under an atmosphere of dry argon. Ether and THF were distilled under argon from sodium benzophenone ketyl before use. Triaryl-bismuthanes were prepared from the corresponding arylmagnesium bromides or aryllithiums with bismuth(III) chloride and recrystallized from benzene-methanol. Commercially available bismuth(III) chloride was
puriﬁed by reﬂuxing with thionyl chloride for 2 h. Other commercially available reagents were used without further puriﬁcation. Column chromatography was performed on silica gel (Wakogel, 200 mesh) or activated alumina (Wako, 300 mesh). All mps were determined on a Yanagimoto hot-stage apparatus and are uncorrected. 1H- and 13C-NMR spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer in CDCl$_3$ with tetramethylsilane as an internal standard. Coupling constant J values are given in Hz. IR spectra were recorded on a Shimadzu FTIR-8100 spectrophotometer. Elemental analyses were performed at Microanalytical Laboratory, Institute of Chemical Research, Kyoto University.

Preparation of 6-Methyl-5,6,7,12-tetrahydro-12-chloro-dibenz[c,f][1,5] azabismocine 5

To a solution of bis(2-bromobenzyl)methylamine (11.07 g, 30 mmol) in dry ether (30 cm3), was added n-butyllithium in hexane (1.5 M, 43.3 cm3, 65 mmol) at 0 °C, and the mixture was heated at reﬂux for 3.5 h under argon to give the corresponding dilithio derivative, which was added dropwise during 1.5 h at -60 °C to a solution of bismuth trichloride (10.08 g, 32 mmol) in dry ether (200 cm3) to give a salmon pink coloured suspension. The reaction mixture was gradually warmed to -20 °C during 12 h, and then poured into cold brine (100 cm3). The resulting suspension was ﬁltered through a Celite bed to leave a light grey sludge, which was successively extracted with CHCl$_3$ (100 cm3 x 3). The combined extracts were dried over Na$_2$SO$_4$, and evaporated under reduced pressure to give a light brown residue, which was
recrystallized from CHCl₃-EtOH (1:1) to afford product 1 as colourless crystals (9.69 g, 21.4 mmol, 71 %).

Compound 5 mp 195-197 ºC (lit.⁹, 199-200 ºC); \(\delta_r; \) 2.86 (3 H, s), 4.12 (2 H, d, \(J_{AB} \) 14.3), 4.27 (2 H, d, \(J_{AB} \) 14.3), 7.30-7.60 (6 H, m) and 8.66 (2 H, d, J 7.9); \(\nu_{\text{max}} \text{(KBr)/cm}^{-1} \); 1455, 1439, 1103, 878, 822, 764, 749 and 428.

6-Methyl-12-(4-methylphenyl)-5,6,7,12-tetrahydro-dibenz[c,f][1,5] azabismocine 6

To a suspension of compound 5 (4.53 g, 10 mmol) in dry ether (20 cm³), was added at room temperature a solution of (4-methylphenyl)magnesium bromide, prepared from 4-bromotoluene (2.46 cm³, 20 mmol) and magnesium (0.486 g, 20 mmol) in dry ether (20 cm³). The resulting mixture was heated at reflux for 2 days, and then poured into brine (50 cm³). Ether was removed under reduced pressure, and the mixture was extracted with CH₂Cl₂ (50 cm³ x 3). The combined extracts were dried (Na₂SO₄), and evaporated under reduced pressure to give a pale yellow solid, which was recrystallized from CHCl₃-EtOH (1:2) to afford product 6 (4.00 g, 7.86 mmol, 79 %) as colourless crystals. **Compound 2** mp 157-158 ºC; \(\delta_r; \) 2.40 (3 H, s), 2.51 (3 H, s), 3.69 (2 H, d, \(J_{AB} \) 14.3), 3.93 (2 H, d, \(J_{AB} \) 14.3), 7.05-7.28 (8 H, m) 7.59 (2 H, d, \(J_{AB} \) 6.8) and 7.76 (2 H, d, J 7.7); \(\nu_{\text{max}} \text{(KBr)/cm}^{-1} \); 2793, 1435, 1358, 1051, 878, 795, 749, 480 and 438 (Found: C, 51.62; H, 4.30; N, 2.72. C₂₂H₂₂BiN requires C, 51.84; H, 4.32; N, 2.75%).

12,12-dichloro-6-Methyl-12-(4-methylphenyl)-5,6,7,12-
Chlorination with SO$_2$Cl$_2$. To a solution of compound 6 (2.545 g, 5 mmol) in CH$_2$Cl$_2$ (30 cm3), was added SO$_2$Cl$_2$ (0.402 cm3, 5 mmol) at 0 °C, and the resulting yellow solution was stirred at room temperature for 45 min. The mixture was evaporated under reduced pressure to leave a yellow solid, which was chromatographed on silica gel, using CH$_2$Cl$_2$ as the eluent, to give compound 5 (0.706 g, 1.39 mmol, 28 %) and product 7 (1.093 g, 1.88 mmol, 38 %).

Chlorination with iodobenzene dichloride. To a solution of compound 6 (1.436 g, 2.82 mmol) in CH$_2$Cl$_2$ (50 cm3), was added iodobenzene dichloride (0.795 g, 2.88 mmol) at 0 °C, and the resulting yellowish brown solution was stirred at room temperature for 20 min. The same work-up procedure gave compound 5 (0.236 g, 0.52 mmol, 19 %) and product 7 (1.214 g, 2.10 mmol, 74 %). Compound 7 mp 202-204 °C (decomp.); δH: 2.45 (3 H, s), 2.49 (3 H, s), 4.17 (2 H, d, J_{AB} 14.3), 4.75 (2 H, d, J_{AB} 14.3), 7.40–7.50 (6 H, m) 7.55 (2 H, d, J_{AB} 7.8) 7.65–7.75 (2 H, m) and 8.54 (2 H, d, J_{AB} 8.3); ν_{max}(KBr)/cm$^{-1}$: 1453, 1435, 1420, 1188, 1047, 1001, 804, 752, 745 and 474 (Found: C, 45.35; H, 3.73; N, 2.31. C$_{22}$H$_{22}$BiCl$_2$N requires C, 45.50; H, 3.79; N, 2.41%).

6-Methyl-12-(4-methylphenyl)-5,6,7,12-tetrahydro-12λ5-dibenz[c,f][1,5]-azabismocine N-trifluoromethanesulfonylimide 8

A mixture of trifluoromethanesulfonamide (0.074 g, 0.5 mmol) and potassium tert-butoxide (0.112 g, 1 mmol) was suspended in dry THF (5 cm3), and...
warmed to 50 °C for 20 min, then stirred at room temperature for more 30 min to give a white suspension, to which was added a suspension of compound 7 (0.290 g, 0.5 mmol) in the same solvent (25 cm³). The resulting mixture was stirred at room temperature for 2.5 h to give a pale yellow suspension, which was evaporated under reduced pressure to leave a yellow oil. The residue was dried in vacuo to remove THF completely, and extracted with CH₂Cl₂ (15 cm³ x 3). The combined extracts were evaporated under reduced pressure to leave a pale yellow glassy mass (0.349 g), which was recrystallized from acetone-C₆H₆ (1:1) to give product 8 as colourless crystals (0.154 g, 0.235 mmol, 47 %). Compound 8 mp 177-179 °C; δH: 1.83 (3 H, s), 2.36 (3 H, s), 3.67 (2 H, d, J₈.1 15.3), 3.90 (2 H, d, J₈.1 15.3), 7.31 (2 H, d, J₈.1 15.3), 7.43 (2 H, d, J₇.2 7.2), 7.48 (2 H, d, J₈.1 8.1), 7.56 (2 H, t, J₇.2 7.2), 7.68 (2 H, t, J₇.4 7.4) and 8.67 (2 H, d, J₇.7 7.7); νmax(KBr)/cm⁻¹: 1478, 1439, 1258, 1202, 1152, 1119, 994, 681, 613 and 480 (Found: C, 45.76; H, 3.67; N, 3.95%.

N-(2-Bromobenzyl)-N-methyl-2-bromoaniline 9

N-(2-Bromobenzyl)-2-bromoaniline (13.5 g, 39 mmol) was added to a mixture of formic acid (7.5 cm³) and formalin (6.4 cm³, 37% solution in water) and heated at reflux for 18 h. Excess acid was removed by distillation under reduced pressure, and the residue was poured into an aqueous solution of sodium hydroxide, extracted with ethyl acetate (30 cm³ X 3), dried (Na₂SO₄) and evaporated. The orange oil was chromatographed on silica gel using hexane as eluent to give N-(2-bromobenzyl)-N-methyl-2-
bromoaniline 9 as light brown oil (9.31 g, 26.2 mmol, 67%).

Compound 9, oil; δ_h 2.75 (3 H, s), 4.28 (2 H, s), 6.91 (1 H, dt, $J_{7.5}$ and 1.8), 7.05-7.20 (2 H, m), 7.22-7.35 (2 H, m), 7.53 (1 H, dd, $J_{8.0}$ and 1.3) 7.58 (1 H, dd, $J_{8.0}$ and 1.6) and 7.73 (1 H, dd, $J_{7.7}$ and 1.7).

6-Hydro-11-iodo-5-methyl-[b,e][1,4]dibenzoazabismepine 10

To a solution of bismuth trichloride (9.45 g, 30 mmol) in ether (200 cm3), was added in 3 h at -70 °C, a suspension of N-(2-lithiobenzyl)-N-methyl-2-lithioaniline, prepared from the amine 9 (10.65 g, 30 mmol) and butyllithium (40 cm3, 64 mmol, 1.6 M solution in hexane). The resulting mixture was allowed to warm to room temperature during night, and treated with an aqueous solution of sodium iodide (6.0 g). The precipitated orange solid was filtered and extracted with hot acetone (200 cm3 X 2). The acetone extracts were combined, and evaporated to give 6-hydro-11-iodo-5-methyl-dibenz[b,e][1,4]azabismepine 10 (10.02 g, 18.9 mmol, 63%) as light orange solid. This crude product was pure enough to use for further synthesis. The bismepine 10 was further purified by recrystallization from acetone. **Compound 10**, mp, 284-285 °C; δ_h 3.14 (3 H, s), 4.40 (1 H, d, J_{AB} 16.0), 5.10 (1 H, d, J_{AB} 16.0), 7.30-7.35 (3 H, m), 7.50-7.60 (3 H, m), 8.89 (1 H, d, $J_{6.3}$) and 9.02 (1 H, d, $J_{7.8}$); δ_c 45.8, 64.5, 123.6, 128.0, 128.7, 129.8, 130.3, 132.1, 135.0, 143.7, 154.0, 156.6 and 165.2; ν_{max}(KBr)/cm$^{-1}$ 1454, 1433, 960, 773, 760, 744, 723 and 436 (Found: C, 31.54; H, 2.07; N, 2.72. **C$_{14}$H$_{13}$BiN** requires C, 31.66; H, 2.47; N, 2.64%).
6-Hydro-5-methyl-11-(4-methylphenyl)-
[b,e][1,4]dibenz[1,4]azabismepine 11

To a solution of 4-methylphenylmagnesium bromide, prepared from 4-methylbromobenzene (1.71 g, 10 mmol) and magnesium (0.243 g, 10 mmol) in THF (10 cm³), was added a suspension of iodobismuthane 10 (3.61 g, 6.8 mmol) in THF (20 cm³). The resulting suspension was heated at reflux for 1.5 h, poured into water, and extracted with chloroform (100 cm³ X 3). The combined extracts were dried (Na₂SO₄) and evaporated to give yellow oily residue. H-NMR spectrum of the reaction mixture exhibited that the desired 6-hydro-5-methyl-11-(4-methylphenyl)-dibenz[b,e][1,4]azabismepine 11 was the major product as follows; δH 2.28 (3 H, s), 2.89 (3 H, s), 4.06 (1 H, d, JAB 15.4), 4.36 (1 H, d, JAB 15.4), 6.94(1 H, dt, J 7.0 and 1.6), 7.10-7.40 (9 H, m) and 7.55-7.75 (4 H, m). Attempt to purify the mixture by chromatography on alumina led to partial decomposition of the product.

11,11-dichloro-6-Hydro-5-methyl-11-(4-methylphenyl)-11λ5-
dibenz[b,e][1,4]azabismepine 12

To a solution of crude bismuthane 11 (3.0 g, ca. 6 mmol) in CHCl₃ (20 cm³), was added PhICl₂ (1.595 g, 5.8 mmol) and the resulting solution was stirred at room temperature for 30 min to give a bright yellow solution, which was filtered through a Celite bed. The filtrate was evaporated to give a brown-yellow semisolid (4.77 g), which was chromatographed on silica gel using CHCl₃ as the eluent to afford crude 11,11-dichloro-6-Hydro-5-methyl-11-
(4-methylphenyl)-12λ5-dibenzo[b,e][1,4]azabismepine 12. The crude product was recrystallized from CHCl₃-EtOH (1:1, 30 cm³) to give pure dichloride 12 as bright yellow crystals (1.80 g, 47%), mp, 173–175 °C (decomp.); δH 2.49 (3H, s), 2.91 (3 H, s), 4.16 (1 H, d, Jₐb 15.4), 5.18 (1 H, d, Jₐb 15.4), 7.32 (1 H, ddd, J7.8, 6.4 and 2.2), 7.40-7.55 (5 H, m), 7.59 (2 H, d, Jₐb 9.0), 7.78 (1 H, dd, J7.4 and 1.2), 7.80 (1 H, d, J7.6) and 8.65 (2 H, d, Jₐb 8.4); δc 21.4, 39.1, 63.0, 123.8, 127.1, 130.2, 130.5, 130.7, 131.2, 131.6, 131.9, 132.5, 135.4, 139.4, 142.4, 147.1, 150.5, 163.1 and 163.24; νmax(KBr)/cm⁻¹ 1580, 1466, 1443, 1190, 997, 760, 468 and 430 (Found: C, 44.27; H, 3.40; N, 2.46. C₂₁H₂₁BiCl₂N requires C, 44.54; H, 3.56; N, 2.47%).

6-Hydro-5-methyl-11-(4-methylphenyl)-
[b,e][1,4]dibenzoazabismepine N–trifluoromethanesulfonylimide 13

A mixture of trifluoromethanesulfonamide (0.074 g, 0.5 mmol) and potassium tert-butoxide (0.112 g, 1 mmol) was suspended in dry THF (5 cm³), and warmed to 50 °C for 20 min, then stirred at room temperature for more 30 min to give a white suspension, to which was added compound 12 (0.283 g, 0.5 mmol) and the mixture was stirred at room temperature for 3 h and evaporated to afford light brown solid residue, which was extracted with CH₂Cl₂ (30 cm³). The combined extracts were evaporated to give crude 6-Hydro-5-methyl-11-(4-methylphenyl)-[b,e][1,4]dibenzoazabismepine N–trifluoro-methanesulfonylimide 13 as brown amorphous solid. Compound 13, δH 2.35 (3 H, s), 2.71 (3 H, s), 4.28 (1 H, d, Jₐb 16.9), 4.45 (1 H, d, Jₐb 16.2),
7.30-7.70 (10 H, m), 8.27 (1 H, d, J8.0) and 8.42 (1 H, d, J7.4).

Preparation of 2–(4,4-dimethyl-2-oxazoline-2-yl)phenyldiaryl-bismuthanes 15a–d

General procedure. To a solution of 2–(4,4-dimethyl-2-oxazoline-2-yl)phenylmagnesium bromide 14, prepared from the corresponding bromoarene (10 mmol) and Mg (10 mmol) in THF (20 cm³), was added in one portion a solution of Ar₂Bi(OSO₂CF₃)(HMPA)₂ (6 mmol) in the same solvent (10 cm³) at -20 °C under Ar. The resulting mixture was stirred at room temperature for 30 min and then poured into cold brine, and the mixture was extracted with benzene (50 cm³ x 3). The combined extracts were dried and concentrated to one tenth of the original volume. Methanol (50 cm³) was added to the concentrate and the mixture was stood at -15 °C to give bismuthanes 15 as colorless crystals.

2–(4,4-dimethyl-2-oxazoline-2-yl)phenyl-diphenylbismuthane 15a. Yield 58%; mp 99–100 °C; δ_H 1.10 (6 H, s), 3.95 (2 H, s), 7.18–7.42 (8 H, m), 7.74 (4 H, dd, J7.6 and 1.5), 7.83 (1 H, dd, J7.2 and 1.2) and 8.01 (1 H, dd, J7.5 and 1.6); δ_C 28.3, 67.7, 79.0, 126.9, 127.4, 129.5, 130.1, 130.4, 133.2, 137.5, 137.7, 139.4, 160.2 and 164.3; ν_max(KBr)/cm⁻¹ 1653 (C=N), 1309, 1070, 1034, 777, 723, 682 and 449.

2–(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis(4-methylphenyl)-bismuthane 15b. Yield 69%; mp 112–113 °C; δ_H 1.13 (6 H, s), 2.30 (6 H, s), 3.97 (2 H, s), 7.15 (4 H, d, J_AB 7.3), 7.25 (1 H, dt, J7.3 and 1.7), 7.38 (1 H, dt, J7.4 and 1.7), 7.62 (4 H, d, J_AB 7.8), 7.85 (1 H, dd, J7.2 and
1.5) and 7.98 (1 H, dd, $J_{7.5}$ and 1.7); δ_c 21.5, 28.4, 67.7, 79.0, 127.3, 129.4, 131.0, 133.0, 136.5, 137.8, 139.4, 159.6, 160.2 and 164.2; v_{max}(KBr)/cm$^{-1}$ 1644 (C=N), 1309, 1073, 1038, 795, 729, 683 and 480 (Found: C, 53.18; H, 4.60; N, 2.51. $C_{25}H_{26}BiNO$ requires C, 53.10; H, 4.63; N, 2.48%).

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis(4-fluorophenyl)-bismuthane 15c. Yield 35%; mp 115–116 °C; δ_h 1.10 (6 H, s), 3.99 (2 H, s), 7.00 (4 H, dd, J_{CH} 8.0 and J_{FH} 9.1), 7.30 (1 H, dt, $J_{7.5}$ and 1.4), 7.40 (1 H, dt, $J_{6.9}$ and 1.3), 7.65 (4 H, d, J_{CH} 7.8 and J_{FH} 6.5), 7.76 (1 H, dd, $J_{7.1}$ and 1.1) and 8.01 (1 H, dd, $J_{6.9}$ and 1.3); v_{max}(KBr)/cm$^{-1}$ 1647 (C=N), 1572, 1483, 1227, 1213, 1159, 1077, 820, 729 and 507 (Found: C, 48.09; H, 3.48; N, 2.42. $C_{25}H_{26}BiF_2NO$ requires C, 48.18; H, 3.52; N, 2.44%).

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis(4-chlorophenyl)-bismuthane 15d. Yield 88%; mp 156–157 °C; δ_h 1.12 (6 H, s), 4.01 (2 H, s), 7.28 (4 H, dd, J_{AB} 8.1), 7.33 (1 H, dt, $J_{7.3}$ and 1.5), 7.43 (1 H, dt, $J_{7.4}$ and 1.5), 7.62 (4 H, d, J_{AB} 8.1), 7.76 (1 H, dd, $J_{7.4}$ and 1.4) and 8.01 (1 H, dd, $J_{7.4}$ and 1.4); δ_c 28.4, 67.7, 79.2, 127.8, 129.7, 130.4, 132.7, 133.2, 133.5, 139.1, 160.4, 162.5 and 164.6; v_{max}(KBr)/cm$^{-1}$ 1647 (C=N), 1556, 1469, 1356, 1311, 1086, 1072, 1041, 1005, 966, 802, 779, 727, 711, 684 and 486, 478. (Found: C, 45.86; H, 3.32; N, 2.33. $C_{25}H_{26}BiCl_2NO$ requires C, 45.56; H, 3.32; N, 2.31%).

Column chromatography of compound 15b

Bismuthane 15b (ca. 3 mmol) was passed through an alumina (neutral) column using CHCl$_3$ as the eluent. chloro–2–(4,4–dimethyl–2–oxazoline–
2-yl)phenyl-(4-methylphenyl)bismuthane 16b was obtained as colorless crystals in 80% yield. **Compound 16b**, mp 184–186 °C: δ_\(\mathrm{H}\) 1.13 (3 H, s), 1.43 (3 H, s), 2.24 (3 H, s), 4.24 (1 H, d, \(J_{AB}\) 8.5), 4.30 (1 H, d, \(J_{AB}\) 8.5), 7.27 (2 H, d, \(J_{AB}\) 7.4), 7.56 (1 H, dt, \(J_{7.5}\) and 1.2), 7.86 (1 H, dt, \(J_{7.5}\) and 1.3), 7.98 (1 H, dd, \(J_{7.2}\) and 1.2), 8.01 (2 H, d, \(J_{AB}\) 7.9) and 9.10 (1 H, d, \(J_{7.3}\)); δ_\(\mathrm{C}\) 21.5, 28.1, 29.2, 67.1, 80.7, 127.9, 131.1, 131.9, 132.0, 135.9, 136.8, 137.4, 137.8, 175.0, 176.0 and 179.4; \(v_{\text{max}}\)(KBr)/cm\(^{-1}\) 1630 (C=N), 1375, 1327, 1088, 938, 793, and 478 (Found: C, 42.43; H, 3.68; N, 2.70. \(\text{C}_{18}\text{H}_{19}\text{BiClNO}\) requires C, 42.41; H, 3.76; N, 2.75%).

Preparation of \(N\)-(trifluoromethanesulfonyl)amido-2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-(4-methylphenyl)bismuthane 17b

A solution of compound 16b (0.97 mmol) in THF (20 cm\(^3\)) was added to a solution of CF\(_3\)SO\(_2\)NH\(_2\) (0.97 mmol) and tBuOK (0.97 mmol) in the same solvent (10 cm\(^3\)), and the resulting mixture was stirred at room temperature for 3 h. The solvent was evaporated to dryness and the residue was extracted with CH\(_2\)Cl\(_2\) (5 cm\(^3\) x 6). The combined extracts were concentrated to give compound 17b as crystals in quantitative yield. **Compound 17b**, mp 153–155 °C (decomp.); δ_\(\mathrm{H}\) 1.01 (3 H, s), 1.42 (3 H, s), 2.27 (3 H, s), 3.96 (1 H, br s), 4.25 (1 H, d, \(J_{AB}\) 8.5), 4.30 (1 H, d, \(J_{AB}\) 8.5), 7.28 (2 H, d, \(J_{AB}\) 8.0), 7.60 (1 H, dt, \(J_{7.5}\) and 1.1), 7.86 (2 H, d, \(J_{AB}\) 7.9), 7.89 (1 H, dt, \(J_{7.5}\) and 1.4), 8.03 (1 H, dd, \(J_{7.7}\) and 1.4) and 8.66 (1 H, dd, \(J_{7.2}\) and 1.0); δ_\(\mathrm{C}\) 21.5, 28.0, 29.0, 67.1, 81.0, 117.1, 123.5, 128.3, 131.7, 132.2, 132.4, 136.1,
136.8, 138.5, 172.6, 176.4 and 181.4; \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 3279 (NH), 1632 (C=N), 1372 (SO\(_2\)), 1310, 1215, 1180 (SO\(_2\)), 1130, 1086, 976, 953, 729 and 617 (Found: C, 36.02; H, 3.19; N, 4.35. \(\text{C}_{19}\text{H}_{20}\text{BiF}_3\text{N}_2\text{O}_3\text{S} \) requires C, 36.67; H, 3.24; N, 4.50%).

Preparation of 2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-diarylbismuth dichloride 18

General procedure for Compound 18a–d. A solution of bismuthane 15 (2 mmol) in CH\(_2\)Cl\(_2\) (10 cm\(^3\)) was added to a suspension of PhICl\(_2\) (2 mmol) in the same solvent (10 cm\(^3\)) at 5 °C. The resulting mixture was stirred at this temperature for 30 min and then concentrated under reduced pressure to one fifth of the original volume. Dilution of the concentrate with ethanol (30 cm\(^3\)) gave compound 18 as yellow crystals.

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-diphenylbismuth dichloride 18a. Yield 79%; mp 172–174°C (decomp.); \(\delta_{\text{H}} \) 0.94 (6 H, s), 4.17 (2 H, s), 7.45–7.70 (8 H, m), 7.77 (1 H, dt, \(J_{7.7} \) and 1.2), 8.09 (1 H, dd, \(J_{7.4} \) and 1.5) and 8.7 (4 H, br s); \(\nu_{\text{max}}(\text{KBr})/\text{cm}^{-1} \) 1649 (C=N), 1466, 1434, 1364, 1320, 1086, 984, 957, 739, 731, 677 and 448.

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis-(4-methylphenyl)-bismuth dichloride 18b. Yield 80%; Mp 187–189 °C (decomp.); \(\delta_{\text{H}} \) 0.96 (6 H, s), 2.40 (6 H, s), 4.15 (2 H, s), 7.43 (4 H, d, \(J_{AB} \) 7.7), 7.53 (1 H, dt, \(J_{7.4} \) and 1.2), 7.66 (1 H, dt, \(J_{7.8} \) and 1.6), 7.79 (1 H, dd, \(J_{7.8} \) and 1.1), 8.07 (1 H, dd, \(J_{7.4} \) and 1.6) and 8.5 (4 H, br s); \(\delta_{\text{C}} \) 21.3, 27.6, 67.9, 81.3, 124.6, 128.9, 129.8, 130.4, 131.8, 134.7, 136.0(broad), 140.9,
151.8(broad), 162.2 and 167.7; ν\text{max}(KBr)/cm\text{"} 1649 (C=N), 1362, 1320, 1181, 1086, 1005, 992, 953, 808, 725 and 475 (Found: C, 46.89; H, 4.02; N, 2.13. C\textsubscript{26}H\textsubscript{26}BiCl\textsubscript{2}NO requires C, 45.84; H, 4.27; N, 2.13%).

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis-(4-fluorophenyl)-bismuth dichloride 18c. Yield 74%; Mp 186–188 °C (decomp.); δ\text{H} 0.97 (6 H, s), 4.19 (2 H, s), 7.32 (4 H, t, J 8.7), 7.56 (1 H, ddd, J 7.5, XX), 7.66–7.75 (2 H, m), 8.09 (1 H, d, J 8.0) and 8.6 (4 H, br d); ν\text{max}(KBr)/cm\text{"} 1649 (C=N), 1572, 1478, 1366, 1321, 1227, 1159, 1086, 1005, 959, 830, 820, 727 and 504.

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis-(4-chlorophenyl)-bismuth dichloride 18d. Yield 71%; Mp 175–177 °C (decomp.); δ\text{H} 0.98 (6 H, s), 4.21 (2 H, s), 7.53–7.75 (3 H, m), 7.61 (4 H,d, J\textsubscript{AB}8.7), 8.10 (1 H, dd, J 7.4 and 1.4) and 8.6 (4 H, br d); ν\text{max}(KBr)/cm\text{"} 1647 (C=N), 1466, 1361, 1319, 1086, 1001, 989, 819, 725 and 480 (Found: C, 40.63; H, 2.92; N, 2.05. C\textsubscript{23}H\textsubscript{20}BiCl\textsubscript{4}NO requires C, 40.79; H, 2.98; N, 2.07%).

Preparation of 2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis(4-methoxyphenyl)bismuth dichloride 18e

2-(tert-Butylsulfonyl)phenyl-bis(4-methoxyphenyl)bismuthanes 20e. To a cooled (-60 °C) suspension of bis(4-methoxyphenyl)bismuth chloride, prepared from tris-(4-methoxyphenyl)bismuthane (2.12 g, 4 mmol) and bismuth(III) chloride (0.63 g, 2 mmol) in dry Et\textsubscript{2}O (35 cm3), was added a suspension of lithiated tert-butyl phenylsulfone, generated from tert-butyl phenylsulfone (1.188 g, 6 mmol)
and butyllithium (1.59 M, 3.89 cm³, 6 mmol) in dry Et₂O (15 cm³) at -60 °C. The resulting mixture was allowed to warm to room temperature during 2 h, and stirred at the same temperature for additional 3 h, and then poured into cold brine (100 cm³). The mixture was extracted with CHCl₃ (3 x 50 cm³) and the combined extracts was dried (Na₂SO₄), and concentrated under reduced pressure to leave a pale yellow solid. The solid residue was recrystallized from CHCl₃-EtOH (1:1, 30 cm³) to give 2—(tert—Butylsulfonyl)phenyl—bis(4—methoxyphenyl)bismuthanes 20e (2.89 g, 78%), mp 173—174 °C; δH 1.39 (9 H, s), 3.78 (6 H, s), 6.94 (4 H, d, J_AB 8.6), 7.43 (1 H, dt, J 7.2 and 1.5), 7.52 (1 H, dt, J 7.6 and 1.5), 7.58 (4 H, d, J_AB 8.5), 8.03 (1 H, dd, J 7.3 and 1.7) and 8.06 (1 H, dd, J 7.3 and 1.3); δC 24.0, 54.9, 60.5, 116.5, 127.6, 132.5, 135.4, 138.8, 139.5, 140.7, 155.1, 158.2 and 159.1; ν_max(KBr)/cm⁻¹ 1578, 1489, 1458, 1283, 1242, 1175, 812, 731, 642 and 573 (Found: C, 46.19; H, 4.37. C₂₄H₂₇BiSO₄ requires C, 46.46; H, 4.39%).

2—(4,4—dimethyl—2—oxazoline—2—yl)phenyl—bis(4—methoxyphenyl)—bismuth dichloride 18e. To a cooled (-78 °C) solution of bismuthane 20e (0.620 g, 1 mmol) in THF (20 cm³), was added a suspension of 2—(4,4—dimethyl—2—oxazoline—2—yl)phenyllithium 21, prepared from 2—(4,4—dimethyl—2—oxazoline—2—yl)phenyl iodide (0.602 g, 2 mmol) and butyllithium (1.54 M, 1.3 cm³, 2 mmol) in THF (10 cm³). The resulting bright yellow suspension was allowed to warm to room temperature during 3 h, and poured into a cold brine (50 cm³). The mixture was extracted with CHCl₃ (50 cm³ X 3) and the combined extracts were evaporated to give a brown oily residue, which was treated with PhICl₂ (0.275
Preparation of 2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-diarylbismuth N-(trifluoromethanesulfonyl)imides 19

General procedure. The dichloride 18 (0.5 mmol) suspended in THF (15 cm³) was added to a suspension of CF₃SO₂NH₂ (0.5 mmol) and tBuOK (1 mmol) in the same solvent (10 cm³), and the resulting mixture was stirred at room temperature for 1.5 h. The solvent was evaporated to dryness and the residue was extracted with CH₂Cl₂ (10 cm³ x 4). The combined extracts were evaporated to one tenth of the original volume, and Et₂O (10 cm³) was added and the mixture was stood at -15 °C to deposit the imide 19.

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-diphenylbismuth N-(trifluoromethanesulfonyl)imide 19a. Yield 65%, mp 178–180 °C; δH 0.63 (6 H, s), 4.10 (2 H, s), 7.40–7.65 (6 H, m), 7.77 (1 H, t, J 7.5), 7.88 (4 H, d, J 7.2), 7.97 (1 H, t, J 7.7), 8.14 (1 H, d, J 7.3) and 8.97 (1 H, d, J 7.7); δC 27.0,
67.8, 81.1, 118.4, 124.9, 130.0, 130.1, 131.4, 132.2, 134.0, 135.4, 137.7, 144.4, 151.7 and 164.2; ν_{max}(KBr)/cm$^{-1}$ 1642 (C=N), 1439, 1372 (SO$_2$), 1252, 1170, 1150 (SO$_2$), 980, 733, 683, 613 and 448.

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis(4-methylphenyl)-bismuth N-(trifluoromethanesulfonyl)imide 19b.
Yield 90%, mp 188–190 °C (decomp.); δ_h 0.68 (6 H, s), 2.38 (6 H, s), 4.10 (2 H, s), 7.36 (4 H, d, J_{AB} 8.3), 7.76 (4 H, d, J_{AB} 8.1), 7.7 (1 H, dt, J value could not determined), 7.96 (1 H, dt, $J_{7.7}$ and 1.3), 8.12 (1 H, dd, $J_{7.6}$ and 1.5) and 8.97 (1 H, d, $J_{7.7}$); δ_c 21.4, 27.2, 67.8, 81.1, 118.5, 125.0, 130.0, 131.8, 132.0, 133.8, 135.3, 137.6, 141.8, 144.6, 148.2 and 164.1; ν_{max}(KBr)/cm$^{-1}$ 1642 (C=N), 1370 (SO$_2$), 1254, 1204, 1159 (SO$_2$), 1113, 1090, 988, 793, 613 and 478 (Found: C, 43.32; H, 3.62; N, 3.85. $C_{26}H_{26}BiF_3N_2O_3S$•0.5H$_2$O requires C, 43.28; H, 3.77; N, 3.88%).

2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-bis(4-fluorophenyl)bismuth N-(trifluoromethanesulfonyl)imide 19c.
Yield 80%, mp 191–193 °C; ν_{max}(KBr)/cm$^{-1}$ 1644 (C=N), 1576, 1483, 1368 (SO$_2$), 1240, 1225, 1202, 1175, 1113, 986, 828, 791, 644, 611 and 505.

Preparation of N-(4-methylphenyl)$-N$-(trifluoromethanesulfonyl)-amido-2-(4,4-dimethyl-2-oxazoline-2-yl)phenyl-(4-methylphenyl)bismuthane 22b

A solution of compound 16b (0.5 mmol) in THF (10 cm3) was added to a solution of CF$_3$SO$_2$NH(pTol) (0.5 mmol) and tBuOK (0.5 mmol) in the same solvent (10 cm3), and the resulting mixture was stirred at room temperature
for 2 h. The solvent was evaporated to dryness and the residue was extracted with \(\text{CH}_2\text{Cl}_2 \) (5 cm\(^3\) x 6). The combined extracts were concentrated to give compound 22b as crystals. Recrystallization from \(\text{CH}_2\text{Cl}_2\)-hexane gave colourless crystals of compound 22b, mp 165–167 °C (decomp.); \(\delta \)H 0.90 (3 H, s), 1.40 (3 H, s), 2.13 (3 H, s), 2.16 (3 H, s), 4.12 (1 H, d, \(\text{J}_{\text{AB}} \) 8.5), 4.21 (1 H, d, \(\text{J}_{\text{AB}} \) 8.5), 6.60 (2 H, d, \(\text{J}_{\text{AB}} \) 8.6), 6.66 (2 H, d, \(\text{J}_{\text{AB}} \) 8.7), 7.02 (2 H, d, \(\text{J}_{\text{AB}} \) 7.7), 7.50 (2 H, d, \(\text{J}_{\text{AB}} \) 7.7), 7.58 (1 H, t, \(\text{J}_{7.5} \)), 7.96 (1 H, t, \(\text{J}_{7.1} \)) and 7.98 (1 H, d, \(\text{J}_{7.5} \)) and 8.80 (1 H, d, \(\text{J}_{7.3} \)); \(\nu_{\text{max}} \)(KBr)/cm\(^{-1}\) 1634 (C=N), 1507, 1380 (SO\(_2\)), 1320, 1210, 1160, 1113, 1090, 986, 943, 845, 795, 729, 706, 623, 590, 513 and 478 (Found: C, 43.88; H, 3.63; N, 3.91. \(\text{C}_{26}\text{H}_{26}\text{BiF}_3\text{N}_2\text{O}_3\text{S} \) requires C, 43.83; H, 3.68; N, 3.93%).

Preparation of \{2–(N–methyl–N–phenylaminomethyl)phenyl\}–bis–(4–methylphenyl)bismuthane 23

A solution of 2-(N-methyl-N-phenylaminomethyl)phenyllithium prepared from 2-bromo-(N-methyl-N-phenylaminomethyl)benzene (0.905 g, 3.28 mmol) and butyllithium (2.2 cm\(^3\), 3.5 mmol, 1.6 M in hexane) in Et\(_2\)O (10 cm\(^3\)) was added in 10 min at -70 °C to a suspension of chlorobis-(4–methylphenyl)bismuthane, prepared from tris-(4–methylphenyl)bismuthane (1.054 g, 2.187 mmol) and bismuth(III) chloride (0.344 g, 1.093 mmol) in the same solvent (10 cm\(^3\)). The reaction mixture was allowed to warm to room temperature during 10 h, and the solvent was evaporated under reduced pressure. The residue was treated with water and extracted with CHCl\(_3\) (30 cm\(^3\) X 3), and the extracts were combined, dried (Na\(_2\)SO\(_4\)), and filtered.
filtrate was evaporated under reduced pressure. Chromatography on alumina gel with hexane as the eluent gave tris-(4-methylphenyl)bismuthane (0.200 g, 19%) and {2-(N-methyl-N-phenylaminomethyl)-phenyl}–bis–(4–methylphenyl)bismuthane 23 (1.130 g, 1.92 mmol, 59%) as colourless crystals, mp 90–91 °C; δH 2.29 (6 H, s), 2.57 (3 H, s), 4.35 (2 H, s), 6.69–6.82 (3 H, m), 7.14 (4 H, d, JAB 7.7), 7.13–7.37 (5 H, m), 7.54 (4 H, d, JAB 7.7) and 7.79 (1 H, d, J7.1); δC 21.5, 39.0, 60.6, 114.9, 118.4, 127.8, 128.9, 129.9, 131.1, 131.2, 137.0, 137.7, 139.5, 144.1, 150.2, 152.2 and 156.4; v_{max}(KBr)/cm⁻¹ 1601, 1502, 1319, 1257, 1186, 1032, 1012, 792, 758, 692 and 478 (Found: C, 57.16; H, 4.73; N, 2.26. C_{28}H_{28}BiN requires C, 57.24; H, 4.80; N, 2.38%).

{2–(N–methyl–N–phenylaminomethyl)phenyl}–bis–(4–methylphenyl)–bismuth dichloride 24

The bismuthane 23 (4.70 g, 8 mmol) was treated with PhICl₂ (2.20 g, 8 mmol) in CH₂Cl₂ (30 cm³) at 0–5 °C for 1 h. The mixture was evaporated to give a deep orange oily residue, which was chromatographed on silica gel using hexane–EtOAc (6:1–2:1) to obtain a crude product. Recrystallization from CH₂Cl₂–EtOH gave the product 24 as orange crystals, mp 163–165 °C; δH 2.34 (6 H, s), 2.72 (3 H, s), 4.69 (2 H, s), 6.72–6.85 (3 H, m), 7.01 (2 H, t, J7.8), 7.27 (4 H, d, JAB 8.1), 7.42–7.52 (3 H, m), 7.82–7.89 (1 H, m) and 8.27 (4 H, d, JAB 8.2); v_{max}(KBr)/cm⁻¹ 1579, 1505, 1235, 1179, 1092, 994, 799, 752, 685, 477 and 467 (Found: C, 50.52; H, 4.25; N, 2.01. C_{28}H_{28}BiN requires C, 51.08; H, 4.29; N, 2.13%).
6-Methyl-5,6,7,12-tetrahydro-12-(trifluoromethanesulfonyl)amido-dibenz[c,f][1,5] azabismocine 26

A solution of compound 5 (0.453 g, 1.0 mmol) in THF (20 cm³) was added to a solution of CF₃SO₂NH₂ (0.149 g, 1.0 mmol) and tBuOK (0.112 g, 1.0 mmol) in the same solvent (5 cm³), and the resulting mixture was stirred at room temperature for 2 h. The solvent was evaporated to dryness and the residue was extracted with CHCl₃ (15 cm³ x 3). The combined extracts were concentrated to afford a white solid, which was recrystallized from CHCl₃–Et2O to give compound 26 as colourless crystals (0.378 g, 67%).

Compound 26, mp 190–192 °C; δH 2.82 (3 H, s), 4.11 (2 H, d, JAB 14.6), 4.28 (2 H, d, JAB 14.6), 7.37 (2 H, dt, J7.4 and 1.2), 7.48 (1 H, t, J7.4), 7.55 (2 H, dt, J7.4 and 1.4) and 8.25 (2 H, d, J7.4); vₘₐₓ(KBr)/cm⁻¹ 3276 (NH), 1439, 1323 (SO₂), 1213, 1179 (SO₂), 968, 750 and 615 (Found: C 33.90; H 2.75; N 4.96. C₁₆H₁₆BiF₃N₂SO₂ requires C, 33.93; H, 2.85; N, 4.95%).

X-Ray crystallography of compound 19b

A crystal of dimensions 0.32 x 0.10 x 0.10 mm, grown from mixture of CH₂Cl₂–Et₂O (1:1) at room temperature was used for X-ray crystallography.

Crystal data. C₂₆H₂₆BiF₃N₂O₃S. Monoclinic. Space group C2/c (No 15), a = 25.556(3), b = 15.137(3), c = 17.563(2) Å, β = 125.263(7)°, V = 5547(1) Å³, Z = 8, Dc = 1.706 gcm⁻³, μ(Mo-Kα, λ = 0.71069 Å) = 64.7 cm⁻¹.

Data collection and processing. Intensity data were collected on a Rigaku AFC7S diffractometer using graphite–monochromated Mo-Kα radiation at 25±1 °C using ω-2θ scan technique to a maximum 2θ value of
55.0°. Of the 6767 reflections which were collected for Lorentz and polarization effect, 6619 were unique ($R_{int} = 0.066$).

Structure analysis and refinement. The structure solution and refinement was carried out with Patterson Method (DIRDIF92 PATTY) and Full-matrix least-squares, the non-hydrogen atoms were refined anisotropically. No. of observations was 2652 reflections with $I > 3.00 \sigma(I)$, 325 variables, no decay correction was applied. $R = 0.047$, $R_w = 0.060$. Hydrogen atoms were included but not refined. All calculation were performed using the TEXSAN24 crystallographic software package of the Molecular Structure Corporation. The ORTEP25 program was used to obtain the drawing in Fig. 1. Further details of the crystal structure investigation may be obtained from Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ (UK), on quoting the depository number 100431.

References

6 S. V. Pasenok, N. V. Kirij, Y. L. Yagupolskii, D. Naumann and W. Tyrra, *J.
Fluorine Chem., 1993, 63, 179.

16 If we take the coordination by oxygen atom O(1) into consideration, the
geometry around the bismuth center should be regarded as a distorted octahedral structure.

List of Publications

Review Bismuth in Organic Transformations

Chapter 1 Ultrasonic Reaction of Triarylbumuthines and TriarylStibines

with Iodosylbenzene. Mild Oxidizing Ability of the
Organobismuth Oxide Function for Organic Substrates.

Chapter 2 Unexpected formation of highly stabilized tetrakis-(2-alkoxyphenyl)bismuthonium salts in the oxidation of tris-(2-alkoxyphenyl)bismuthanes with iodosylbenzene

Chapter 3 A Convenient *in situ* Generation and Mild Oxidizing Ability of Triarylbumuthane Tosylimides

Chapter 4 A Highly stabilized triarylbumuthane imide: synthesis and first

X-ray structure analysis

Other Publications

1. Electron–rich Triarylbismuthines as Selective Condensation Reagent under Neutral Conditions. Condensation of Aliphatic Carboxylic Acids with Amines and Alcohols

2. Unexpected Formation of Triarylbismuth Diformates in the Oxidation of Triarylbismuthines with Ozone at Low Temperatures

3. Selective Activation of Primary Carboxylic Acids by Electron–rich Triarylbismuthanes. Application to Amide and Ester Synthesis under Neutral Conditions

4. Enhanced Nucleophilicity of Tris-(2,6-dimethoxyphenyl)bismuthane as Studied by X-ray Crystallography, 17O NMR Spectroscopy and Theoretical Calculations. X-Ray Molecular Structure of Tris-(2,6-dimethoxyphenyl)bismuthane and of Trimesitylbismuthane
Acknowledgments

The present researches have been carried out under direction of Prof. Hitomi Suzuki in his laboratory at Kyoto University during 1992–1997. I would like to express grateful acknowledgments to Hitomi Suzuki for his continuing guidance, discussion and encouragement throughout the studies on the chemistry of organobismuth compounds. I also express grateful acknowledgments to Dr. Yoshihiro Matano for his useful and helpful discussion and encouragement throughout this work. I am very grateful to Associate Professor Kazuhiko Tanaka and Dr. Naoki Komatsu for their discussion and suggestions. I am also grateful to Associate Professor Takuji Ogawa (Ehime University), Dr. Toshihiro Murafuji (Yamaguchi University) and Dr. Takashi Murashima (Ehime University) for their useful discussion and kind cooperation.

I wish gratefully to express appreciation to Professor Nagao Azuma (Ehime University) for his helpful cooperation in X-ray crystallographic study. I wish thank to Dr. Akiko Kita, Kyoto University for her kind help for the preparation of samples for X-ray structure analysis. I also thank Mrs. Toshiko Hirano, Institute for Chemical Research, Kyoto University for elemental analysis.

I am very grateful to all the past and present members of the laboratory, especially Dr. Tohru Nakamura, Dr. Hideji Osuga, Dr. Tadashi Mori, Takeji Enya, Hajime Abe, Takehiko Kawakami, Mbuaki Nonoyama and Yoshinori Kitahara for their assistance and so kind cooperation. I also wish to thank graduate students Md. Mizanur Rahman and his wife, Shameem Ara Begum, Yoshiyuki Aratani, Masanori Yoshimune, Takashi Miyamatsu and Haruto Kurata for their cooperation in my studies on organobismuth chemistry. I am so grateful to Yuka Shogase for her kind encouragement.

I am grateful to Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists for their financial support.

Finally, I am deeply thank to my parents for their constant financial support and continuing encouragement, although they have had a hard time of the damage due to Hanshin–Awaji Grate Earthquake, which has occurred in 1995.