学 位 申 請 論 文
\qquad
\qquad
丸 山 正 樹
\qquad

```
            On a family of algebraic vector bundles.
            By
                                    論
                    Masaki MARUYAMA
    Introductior: In the theory of algebraic vector bundles,
it seems to the writer that it is very important to have a nice answer
to the problem to "conatruct a lot of vector bundles on high dimensional
algebraic variety." It is, of course, desirable that the structure
of a vector bundle is easily known from its construction, A main
purpose of this paper is to look for an answer to the above problem.
    As for our problen, two answers are known:
    (1) Schwarzenberger - Hironaka - Kleiman (48], [8], L0] ),
    For a vector bundle E on a mmooth quasi-projective variety }
over an Infinite field there is a monoldal transforiation f : X'\longrightarrowX .
with smooth center such that f*(E) containg a sublinebundle. This
Was proved by Schwarzenberger in the case where X is a surface, by
Hironaks in the characteristic 0 case and by Kleiman in the general
case. The above fact implies that every vector bundle on a smooth
```

[^0]

```
bundle is simple (Theorem 3.10). Using this criterion we can cover
almost all results of Schwarzenberger without the theory of moduli
of non-simple vector bundles and we get further result.
    Notation and convention. Throughout this paper k denotes an
algebraically closed field and all varietits are reduced and irreducible
Algebralc schenes over k. We use the terms "vector bundles" and
"Locally free sheaves" interchangeablly. For a raonoidal transformation
f: X', X with center Y and a subscheme }Z\mathrm{ of }X,\mp@subsup{f}{}{-1}(Z)\mathrm{ denotes
the total transform of Z and f}\mp@subsup{f}{}{-1}[z] denotes the proper (strict
transforn of Z. If X and }Y\mathrm{ are smooth and if D = \n iD i
(Di:irreducible) is a divisor on (X', then f[D] denotes
```



```
D_车 (fl
In the case where a birational map g : X }\mp@subsup{X}{1}{}->\mp@subsup{X}{2}{}\mathrm{ is a composition
f
f
```


divisor D on a scheme $X, O_{X}(D)$ denotes the invertible sheaf defined by D. If L is a linebundle on a non-singular projective variety X, then $|L|$ denotes the complete linear system | D | for a divisor D on X with $O_{X}(D) \cong L$. For an algebraic $k-s c h e m e$ X, $X(k)$ denotes the set of k-rational points of X. If E is a locally free O_{S} module (=a vector bundle on S), then $P(E)$ denotes $\operatorname{Proj}\left(S_{O_{S}}(E)\right)$, where $S_{O_{S}}(E)$ is the O_{S}-symetric algebra of E. The author wishes to thank Professors M. Nagata, H. Hironaka, S. Nakano and T. Oda for their encouragement and valuable suggestions. Contents.

Chapter I, Elementary transformations of P^{N}-bundies. \%1. Definition of elementary transformations.
§ 2. Proof of Theorem 1.1 and Theorem 1.3.
§3. Some properties of elementary transformations.
Chapter II. Regular vector bundles.
$\oint 1$. Definition of regular vector bundles.
§ 2. Families of regular vector bundles.
§ 3. Chern classes of regular vector bundles.
Chapter III. Simple vector bundles.
§1. Simple regular vector bundles.
§2. Simple regular vector buridles of rank 2.
Chapter IV, Some special cases.
§1. Tangent bundle of $\mathbf{P}_{\mathbf{k}}^{\mathbf{n}}$.
§2. Vector bundles on $\mathrm{P}_{\mathrm{k}}^{2}$.
§3. Vector bundles on rational ruled surfaces.

Chapter I. Elementary transformations of P^{N}-bundles.
§ 1. Definition of elementary transformations.

Let S be a locally noetherian scheme and let $\pi: x \longrightarrow S$ be the projective bundle $P(E)$ associated with a vector bundle E of rank $N+1(N \geq 1)$. Let T and Y be closed subschemes of S and X respectively, satisfying the following condition;
(E_{n}^{0}) The ideal I_{T} which defines T is locally principal whose generator is non-zero divisor in every local ring of S, that is, IT is a Cartier divisor on S. Y is a closed subscheme of X_{T} and $\pi_{T} T: X \longrightarrow T$ induces a P^{n}-bundle on $T(0 \leq n \leq N-1)$ such that $\left(T_{T} \mid Y\right)^{-1}(t)$ is a linear subspace of $\pi^{-1}(t)$ for any $t \in T$ Roughly speaking $\pi_{T} \mid Y: Y \longrightarrow T$ is a subbundle of $\pi_{T}: X_{T} \longrightarrow T$.

Now consider the monoidal transformation $f: \tilde{X} \longrightarrow X$ with center Y and put $f^{-1}\left[X_{T}\right]=\bar{X}_{T}, f^{-1}(Y)=E_{Y} . \quad$ In this situation we have the following theorem, whose proof will be given in the
next section.

Theorem 1.1. There exist a P^{N} bundle $\pi^{2}: X^{2} \longrightarrow S$ which is the projective bundle $P\left(E^{\prime}\right)$ associated with a vector bundle E, and an S-morphism $g: \widetilde{X} \longrightarrow X^{\prime}$ such that the closed s.bscheme Y^{\prime} of X^{\prime} defined by the ideal $g\left(\mathrm{I}_{\mathrm{X}_{\mathrm{T}}}\right)$) with the defining ideal I_{X} for $\overline{\mathrm{X}}_{\mathrm{T}}$ in X and T satisfies the condition $\left(E_{N-n-1}^{0}\right)$, and that $E^{*}(L) \cong f^{*}\left(O_{X}(1)\right)$) $O_{X}\left(-E_{Y}\right)$ for sone tautological inebundle L on X and the taytological Line bundle $\rho_{X}(1)$ on X of $E^{2)} E$ is the monoldal transfornation with center Y^{\prime}. Moreover, such ($\mathrm{X}^{\prime}, \mathrm{g}$) is unique, that is, if there exists another ($\mathrm{X}^{\prime \prime}, \mathrm{g}^{\prime}$) satisfying the above conditions, then there is a unique bundle isomorphism $h: X^{\prime} \longrightarrow X^{\prime \prime}$ with $h \cdot g=g^{\prime} \cdot$

The above theorem enables us to generalize elementary transformations
of ruled surfaces to those of p^{N}-bundles. Namely :
Definition. Under the above notation the birational map g. $\mathbf{f}^{-\mathbf{1}}$
is called the elementary transformation of X with center Y and we denote it by elmy ; we denote X^{\prime}; by elm $\mathrm{n}_{\mathrm{Y}}^{\mathrm{n}}(\mathrm{X})$.

Corollary 1.1.1. $\quad \operatorname{eim}_{Y}^{N-n-1}\left(\theta \ln _{Y}^{n}(x)\right)=x$.

We note that our treatment can be applied to P^{N}-bundles if S

```
is factorial, that is, every local ring of S is a unique factorization
domain, because of the following fact :
```

Lemma 1.2. (A. Grothendiack [4]) If $\pi: X \longrightarrow s$ is a
\mathbf{P}^{N}-bundle (in Zariski topology) on a factorial scheme S , then there 1s a vector bundie E on S such that $P(E) \cong X$.

Proof, Since S is a direct sum of irreducible subschemes, we may assume that S is irreducible. The exact sequence of group achemes on s

$$
e \rightarrow G_{m, s} \longrightarrow G L(n+1, s) \longrightarrow P G L(N, S) \longrightarrow e
$$

provides the exact sequence of cohomologies

$$
\mathrm{H}^{\mathbf{1}}(\mathrm{S}, \mathrm{GL}(\mathrm{~N}+1, \mathrm{~S})) \longrightarrow \mathrm{H}^{\mathbf{z}}(\mathrm{S}, \mathrm{PGL}(\mathrm{~N}, \mathrm{~S})) \rightarrow \mathrm{H}^{2}\left(\mathrm{~S}, \mathrm{o}_{\mathrm{S}}^{*}\right)
$$

Thus we have only to prove $H^{2}\left(S, O_{S}^{*}\right)=0$. In order to see this, consider the exact sequence of sheaves

$$
\mathrm{o} \rightarrow \mathrm{o}_{\mathrm{S}}^{*} \rightarrow \mathrm{~K}_{\mathrm{S}}^{*} \rightarrow \mathrm{D}_{\mathrm{S}} \rightarrow \mathrm{o}
$$

Where K_{S}^{*} is the sheaf of non-zero rational functions of S and D_{S} is the sheaf of Cartier divisors on S. Since every local ring of S is a U.F.D., D_{S} is isomorphic to the sheaf of Weil divisors on S. Thus D_{S} is a flabby sheaf (because evexy Weil divisor on an open set is extengible to that on the whole space). On the other hand, $\mathrm{K}_{\mathrm{S}}^{*}$ is also flabby beoause $\mathrm{K}_{\mathrm{S}}^{*}$ is a constant sheaf. Therefore the above sequence can be regarded as a part of a flabby resolution of O_{S}^{*}, whence $H^{2}\left(S, O_{S}^{*}\right)=0$. q. e. d.

Sheaf theoretic interpretation of elementary transformations is stated as follows.

Theorem 1.3. Let E be a locally free θ_{S}-rodule of rank $N+1$ and let T, Y be closed subschemes of $S, X=P(E)$ satisfying the condition (E_{n}^{*}).
(1) Denote by I_{X} the ideal defining Y and by $O_{X}(1)$ a tautological line-bundle on x, then $E^{\prime}=\pi_{*}\left(I_{Y}\right.$ O $\left.O_{X}(1)\right)$ is a locally free O_{S} module, $P\left(E^{\prime}\right) \approx e m_{Y}^{n}(X)$ and $R^{1} \pi_{*}\left(I_{Y} \beta O_{X}(1).\right)$
$=0 \quad(i>0)$, where $\pi: x \rightarrow s$ is the natural projection.

O_{T}-module of rank $n+1$, (i) can be said in other words; If F is
a quotient bundle of $E_{T}=E Q_{S} O_{T}$ of rank $n+1$, then $K e r \varphi=E$ is
a locally free O_{B}-module of rank $\mathrm{N}+\mathrm{l}$, where $\varphi: \mathrm{E} \longrightarrow \mathrm{E}_{\mathrm{T}} \longrightarrow \mathrm{F}$
is the natural honomorphism. And we have the following exact commatative
diagram ;

Moreover, the locally free O_{T}-module F^{\prime} of rank $\mathrm{N}-\mathrm{n}$ defines
closed subscheme Y^{\prime} of $P\left(E^{\prime}\right)$ in Theorem 1.1. and the step
obtaining E^{\prime}, F^{\prime} corresponds to the inverse of eln y_{Y}^{n} (see

Corollary 1.1.1 and note that $P(B)=P\left(B \otimes I_{T}\right)$.
§2. Proof of Theorem 1.1 and Theorem 1.3.

In this section the notation of the preceding section is
preserved.

The following is a key lemma.

Leman 1.4. Assume that $S=\operatorname{spec}(A), X=\operatorname{Proj}\left(A\left[7_{0}, \ldots 4{ }_{N}\right]\right)$ and that the defining ideals I_{T}, I_{Y} for T and Y in A and $A\left[7_{0}, \ldots, 4_{N}\right]$ respectively are generated by $t \in A$ and t, $\eta_{n+1}, \ldots, 7_{N}$, respectively. Then elm ${ }_{Y}$ exists and elm $(x)=$
 $(n+1 \leq j \leq N)$.

Proof. Put $\xi_{\alpha}^{\beta}=4_{\beta} / \%_{\alpha}, \quad \xi_{\alpha}^{\beta}=7_{\alpha}^{\prime} / 4, \quad(0 \leq \alpha, \beta \leq N)$ and put $X^{:}=\operatorname{Proj}\left(A\left[\begin{array}{l}7 \\ 0\end{array}, \ldots, 7_{N}^{\prime}\right]\right) . \quad$ Let $f: \underset{X}{\mathrm{X}} \rightarrow \mathrm{X}$ be the monoidal transformation of X with center Y, then
where $U_{\alpha}^{*}=\operatorname{spec}\left(A\left\{\xi_{\alpha}^{6}, \ldots, \xi_{\alpha}^{N}, \quad 3_{\alpha / t}^{n+1}, \ldots+, \quad 3_{\alpha}^{N} / t\right\}\right)=$

$$
\begin{aligned}
& \operatorname{spec}\left(A\left[\xi_{\alpha}^{*}, \ldots, \xi_{\pi}^{n}, \quad z_{x}^{\beta}, t / \xi_{x}^{\beta}, \quad \xi_{\beta}^{n-1}, \ldots, \xi_{\phi}^{N}\right]\right) \text {, } \\
& 0_{\gamma}^{11}=\operatorname{spec}\left(A\left[\mathcal{Z}_{\gamma}^{0}, \ldots, \mathcal{\xi}_{\gamma}^{N}\right]\right) \text { (Enetysthing is considered in } \\
& \left.Q(A)\left(\xi_{0}^{1}, \ldots, \xi_{c}^{N}\right)\right) .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
& U_{\alpha}^{1} \cap U_{\alpha^{\prime}}^{\prime}=U_{\alpha}^{\prime}\left(\xi_{\alpha^{\prime}}^{\alpha^{\prime}}\right)=U_{\alpha^{\prime}}^{\prime}\left(\xi_{\alpha^{\prime}}^{\alpha}\right)^{4)} \\
& \mathrm{U}_{\alpha}^{\prime} \cap \mathrm{U}_{x^{\prime}=}^{\beta}=\mathrm{U}_{\alpha}^{\prime}\left(\xi_{\alpha / \mathrm{L}}^{\beta} \cdot \xi_{\alpha}^{\alpha^{\prime}}\right)=\mathrm{U}_{\alpha}^{\beta}\left(\mathrm{t} / \mathcal{Z}_{\alpha}^{\beta}, \quad, \xi_{\alpha}^{\alpha^{\prime}}\right) \\
& U_{a t}^{\beta} \cap U_{\alpha^{\prime}}^{\beta^{\prime}}=U_{a}^{\beta}\left(\quad \xi_{a}^{\alpha^{\prime}} \cdot \xi_{\beta}^{\beta^{\prime}}\right)=U_{\alpha^{\prime}}^{\rho^{\prime}}\left(\quad \xi_{a y^{\prime}}^{\alpha} \cdot \xi_{\beta^{\prime}}^{\beta}\right) \\
& U_{\alpha}^{+} \cap U_{\gamma}^{12}=U_{\alpha}^{\prime}\left(\overline{3}_{\alpha}^{\sigma}\right)=U_{\gamma}^{\prime \prime}\left(\xi_{\gamma}^{\alpha} t\right) \\
& \mathrm{U}_{\alpha}^{\gamma} \cap \mathrm{U}_{\gamma}^{\mathrm{\gamma}}=\mathrm{U}_{\alpha}^{\beta}\left(\xi_{\alpha}^{\gamma} \cdot \xi_{\beta}^{\gamma}\right)=\mathrm{U}_{\gamma}^{\mathrm{H}}\left(\xi_{\gamma}^{\alpha} \cdot \xi_{\gamma}^{\beta}\right) \\
& \mathbf{u}_{\gamma}^{\mathbf{\prime}} \cap \mathbf{u}_{\gamma^{\prime}}^{\prime \prime}=\mathbf{u}_{\gamma}^{\prime \prime \prime}\left(\xi_{\gamma}^{\gamma^{\prime}}\right)=\mathbf{u}_{\gamma}^{\prime \prime}\left(\xi_{\gamma^{\prime}}^{\boldsymbol{\gamma}}\right)
\end{aligned}
$$

On the other hand, for the monotdal transformation $g: \widetilde{X}^{+} \rightarrow X$,
with center $Y \prime=\operatorname{Proj}\left(A\left[7_{5}^{\prime}, \ldots, 7_{N}^{\prime}\right] /\left(t, 7_{6}^{\prime}, \ldots, 7_{n}^{t}\right)\right.$ we have an affine open covering $\tilde{X}^{\prime}=\left(\bigcup_{\gamma * n+1}^{N} V_{\gamma}^{\prime}\right) \cup\left(\underset{\substack{0 \leq n \leq n \\ n+1 \leq \beta \leq N}}{U} V_{\beta}^{\alpha}\right) \cup\left(\bigcup_{\alpha=0}^{n} V_{\alpha}^{\prime \prime}\right)$
where

$$
\begin{aligned}
& \operatorname{spec}\left(A\left[\xi_{\gamma}^{n+1}, \ldots, \xi_{\gamma}^{N}, \xi_{\gamma}^{0}, \ldots, \xi_{\gamma}^{n}\right]\right)=U_{\gamma}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\beta}^{\alpha}=\operatorname{spec}\left(A\left[\xi_{\beta}^{n+1}, \ldots, \xi_{\beta}^{N}, \xi_{\beta}^{* \alpha}, t / \xi_{\alpha}^{\prime a}, \xi_{\alpha}^{+0}, \ldots, \xi_{\alpha}^{+n}\right]\right) \\
& =\operatorname{spec}\left(A\left[\xi_{\beta}^{n+1}, \ldots, \xi_{\beta}^{N}, t / 3_{\alpha}^{\beta}, \xi_{\gamma}^{\beta}, \xi_{o}^{0}, \ldots ., \xi_{n}^{n}\right]\right) \\
& =\mathrm{U}_{\alpha}^{\rho} \text {. } \\
& V_{\alpha}^{\prime \prime}=\operatorname{spec}\left(A\left[\xi_{\alpha}^{*}, \ldots, \xi_{\alpha}^{N}\right]\right)=\operatorname{spec}\left(A \left[\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{*}, \xi_{\alpha}^{n+1} / t,\right.\right. \\
& \left.\left.\ldots, \xi_{x}^{N} / t\right]\right)=U_{\alpha}^{+} .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
& V_{\gamma}^{\prime} \cap V_{\gamma}^{\prime}=V_{\gamma}^{\prime}\left(\xi_{\gamma}^{\prime \gamma_{\gamma}^{\prime}}\right)=v_{\gamma}^{\prime \prime}\left(\xi_{\gamma}^{\gamma^{\prime}}\right)=\Psi_{\gamma}^{\prime \prime \prime} \cap V_{\gamma}^{\prime \prime} \\
& V_{\gamma} \cap V_{\beta}^{*}=V_{\gamma}^{\prime}\left(\xi_{\gamma}^{\prime \alpha} / t \cdot \xi_{\gamma}^{\beta}\right)=U_{\gamma}^{*}\left(\xi_{\gamma}^{\alpha} \cdot \xi_{\gamma}^{\beta}\right)=U_{\gamma}^{\alpha} \cap U_{i}^{(\beta} \\
& V_{\beta}^{\alpha} \cap V_{\beta}^{\alpha \prime}=V_{\beta}^{\alpha}\left(3_{\beta}^{\prime \beta^{\prime}} \cdot \xi_{\gamma}^{\alpha \alpha}\right)=U_{\alpha}^{\beta}\left(\xi_{\alpha}^{\alpha^{\prime}} \cdot \xi_{\beta}^{\beta^{\prime}}\right)=U_{\alpha}^{\beta} \cap U_{\alpha \alpha^{\prime}}^{\beta^{\prime}} \\
& V_{\gamma}^{\top} \cap V_{\gamma}^{\prime \prime}=V_{\gamma}^{\prime}\left(\xi_{\gamma}^{\alpha}\right)=U_{\gamma}^{+\prime}\left(t \xi_{\gamma}^{\alpha}\right)=U_{\alpha}^{*} \cap U_{\gamma}^{*} \\
& V_{\beta}^{\alpha} \cap V_{\alpha \prime}^{\prime \prime}=V_{\beta}^{\alpha}\left(\frac{3^{\prime} \alpha^{\prime}}{\beta} \cdot \xi_{\alpha}^{\prime \alpha^{\prime}}\right)=\pi_{\alpha}^{\beta}\left(t / 5_{a^{\prime}}^{0} \cdot \xi_{\alpha}^{\alpha^{\prime}}\right) \\
& V_{\alpha}^{\tau} \cap V_{\alpha \prime}^{\prime \prime}=V_{\alpha}^{\prime \prime}\left(\xi_{\alpha}^{\prime \alpha^{\prime}}\right)=U_{\alpha}^{\prime}\left(\xi_{\alpha}^{\alpha^{\prime}}\right)=U_{\alpha}^{*} \cap U_{\alpha}^{t}
\end{aligned}
$$

Thus we obtain $\widetilde{X}=\tilde{X}$. It is easy to see that $g_{*}\left(O_{X}\right)=o_{X}$. .
(see Leman 1.5) Now let us prove $\mathrm{g}_{\boldsymbol{*}}\left(\mathrm{I}_{\mathrm{X}_{\mathrm{T}}}\right)=\mathrm{I}_{\mathrm{Y}}$, , In order to show this let us consider the affine covering $X^{\prime}=\bigcup_{i=0}^{N} W_{i}^{\prime}, w_{i}^{\prime}=$ $\operatorname{Spec}\left(A\left[\xi_{i}^{*}, \ldots, \xi_{i}^{\prime N}\right]\right)$ and put $\widetilde{W}_{i}=g^{-1}\left(W_{i}^{\prime}\right)$. Then we have

$$
\widetilde{W}_{0}^{*}=V_{\alpha}^{\prime \prime}=U_{\alpha}^{*} \quad(0 \leq \alpha-\leq n)
$$

$$
\widetilde{W}_{\gamma}^{\prime}=V_{\gamma} U\left(\sum_{\alpha \neq 0}^{n} V_{\gamma}^{\alpha}\right)=v_{\gamma}^{\prime \prime} U\left(\bigcup_{\alpha=0}^{n} U_{\alpha}^{\gamma}\right) \quad(n+1 \leq \gamma \leq N)
$$

Since $\mathrm{U}_{\alpha} \cap \overline{\mathrm{X}}_{\mathrm{T}}=\{\mathrm{t} / \mathrm{t}=0\}=\phi$, we know $\mathrm{U}_{\alpha}^{\mathrm{K}} \cap \mathrm{g}\left(\bar{X}_{\mathrm{T}}\right)=\phi,(0 \leq \alpha \leq n)$. Furthermore since the ideal of $\mathrm{U}_{\mathrm{r}}^{\prime \prime} \cap \overline{\mathrm{X}}_{\mathrm{T}}$ (or, $\mathrm{U}_{\alpha}^{\gamma} \cap \overline{\mathrm{X}}_{\mathrm{T}}$) is generated by t (or, $t / \widehat{\zeta}_{\alpha}^{\gamma}=\xi_{\gamma}^{\prime \alpha}$, resp.), $H^{0}\left(\tilde{W}_{\gamma}^{\prime}, I_{X_{T}}\right)$ is generated by t, (Pere the proof of Lemma 1.5)
$\xi_{\gamma}^{\prime 0}, \ldots, \xi_{\gamma}^{\prime n}$ as $\left.H^{0} \tilde{W}_{\gamma}^{\prime}, o_{X}\right)$-module χ_{γ}^{\prime} whence $\mathrm{E}_{*}\left(\mathrm{I}_{\mathrm{X}_{\mathrm{T}}}\right)=\mathrm{I}_{\mathrm{Y}}$.

Finally we must show that for a tautological linebundle L on X there is a tautological linebundle L^{\prime} on X^{\prime} with $g^{*}\left(L^{\prime}\right) \cong f^{*}(L) \otimes \mathcal{X}^{\left(-B_{Y}\right)}$. Assume that there are tautological linebundles L_{1} on X and L_{1} on X' with $G^{*}\left(L_{1}^{\prime}\right) \cong f^{*}\left(L_{1}\right) \otimes O_{X}\left(-E_{Y}\right)$, then $L \approx L_{1} \otimes \pi^{*}(M)$ for some linebundle M on S and therefore $g^{*}\left(L_{1} \otimes \pi^{*}(M)\right) \approx g^{*}\left(L_{1}^{r}\right) \otimes g^{*} \pi^{*}(M)$
 $O_{X}\left(-E_{Y}\right)$, which implies that $L_{1}^{+} \otimes \pi^{*}(M)=L^{\prime}$ is a desired inabundle. Thus we may assume that L is an invertible sheaf with $1 / 3_{\alpha}^{N}$ as a generator in $W_{\alpha}=\operatorname{sp\theta c}\left(A\left[\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{N}\right]\right)$. Then a generator of $f^{*}(L) \otimes O_{X}^{\left(-E_{Y}\right)}$ in $\widetilde{W}_{\alpha}^{\prime}=V_{\alpha}^{\prime \prime}=U_{\alpha}^{\prime}(0 \leq \alpha \leq n)$ is $t / \zeta_{\alpha}^{N}=1 / \xi_{\alpha}^{1 N}$, the one in $V_{\gamma}^{\prime}=U_{\gamma}^{\prime \prime}(n+1 \leq \gamma \leq N)$ is $1 / 3_{\gamma}^{N}=1 / 3_{\gamma}^{\prime N}$ and the one in $V_{\gamma}^{\alpha}=U_{\alpha}^{\gamma}(0 \leq \alpha \leq n, n+1 \leqslant \gamma \leqslant N)$ is $\quad z_{\alpha /}^{\boldsymbol{x}} \xi_{\alpha}^{N}=1 / \xi_{\gamma}^{1} N$, whence
the one in $\mathbb{W}_{i}^{t}=g^{-1}\left(\mathbb{W}_{i}^{\prime}\right)$ is $1 / \xi_{i}^{\prime N}$. Thus if L^{\prime} is an invertible sheaf on X, whose generator in w_{i} is $1 / \xi_{i}^{*}$, then $g^{*}\left(L^{t}\right)=f *(L)$ $\otimes O_{X}\left(-E_{Y}\right)$. It is clear that L^{\prime} is a tautological linebundle.
q. e. d.

As a corollary to the above proof, we have

Lemma 1.5. If E_{Y} is the Cartier divisor $f^{*}\left(I_{Y}\right)$, then $\left.\mathbf{f}_{*}\left(O_{X}\left(-r E_{Y}\right)\right)=I_{Y}^{r}, \quad f_{*}\left(O_{\mathbb{X}}^{\left(r E_{Y}\right.}\right)\right)=o_{X} \quad$ for any $\quad r \geq 0$.

Proof. We have only to prove $H^{0}\left(\mathbf{f}^{-1}\left(U_{x}\right), o_{\tilde{X}^{(-r E}}^{Y}\right)=\left(t, \xi_{\alpha}^{n+1}\right.$, $\left.\ldots, \xi_{\alpha}^{N}\right)^{T}\left[\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{N}\right]$ and $H^{0}\left(f^{-1}\left(U_{Q}\right), O_{X}\left(r_{Y}\right)\right)=A\left[\xi_{\alpha}^{0}, \ldots\right.$, $\left.\xi_{\alpha}^{N}\right]$ for $U_{\alpha}=\operatorname{spoc}\left(A\left[\xi_{x}^{0}, \ldots, \xi_{\alpha}^{N}\right]\right), 0 \leq \alpha \leq n$ under the same situation as in Lemma 1.4. If $F \in Q(A)\left(\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{N}\right)$ is contained in $H^{0}\left(f^{-1}\left(U_{\alpha}\right), \tilde{X}_{X}\left(r E_{Y}\right)\right)$, then $t^{r_{F}} \in A\left[\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{n}, \quad 3_{\alpha}^{n+1} / t, \ldots\right.$, $\left.\xi_{\alpha / t}^{N}\right],\left(\xi_{\alpha}^{\beta}\right)_{F} r_{F A}\left[\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{N}, t / \xi_{\alpha}^{e}, \xi_{\alpha}^{n+1} / \xi_{\alpha}^{\beta}, \ldots, \xi_{\beta_{\gamma}^{N}}^{N} / \xi_{\alpha}^{\beta}\right]$ for $n+1 \leq \beta \leq N$. Thus $F \in A_{t}\left[\begin{array}{lll}0 \\ \xi_{x}, \ldots . & \xi_{x}^{N}\end{array}\right] \cap A\left[\xi_{x}^{0}, \ldots . \xi_{x}^{N}\right]_{\xi_{\alpha}^{\beta}}^{\beta}$ $\left.=A\left[\xi_{\alpha}^{0}, \ldots,\right\}_{\alpha}^{N}\right]$. Conversely it is clear that $\left.A\left[\xi_{x}^{0}, \ldots,\right\}_{x}^{N}\right]$
 since $f_{*}\left(O_{X}\right)=O_{X}$ by the above proof, $f_{*}\left(\mathcal{O}_{X}\left(-\mathbf{r} E_{Y}\right) \subseteq O_{X} . \quad\right.$ Fe
$A\left[\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{N}\right]$ is contained in $H^{0}\left(f^{-1}\left(U_{\alpha}\right), \sigma_{X}^{\sim}\left(-r E_{Y}\right)\right)$ if and only if $\left.F / t^{x} \in A\left[3_{\alpha}^{0}, \ldots, \xi_{\alpha}^{n}, \quad 3_{\alpha}^{n+1} / t, \ldots,\right\}_{\alpha}^{N} / t\right], F /\left(\xi_{\alpha}^{\beta}\right)^{r} \in A\left[\xi_{\alpha}^{0}, \ldots\right.$,
 $H^{0}\left(f^{-1}\left(U_{\alpha}\right), \alpha_{\alpha}\left(-r E_{Y}\right)\right)=\left(t, \xi_{\alpha}^{n+1}, \ldots, \xi_{\alpha}^{N}\right)_{A}\left[\xi_{\alpha}^{0}, \ldots, \xi_{\alpha}^{N}\right]$.

Lemma 1.6. If P^{N} bundle $\pi_{i}: x_{i} \longrightarrow S(i=1,2)$ and morph1sms $g_{i}: \tilde{x} \longrightarrow X_{i}$ satisfy the conditions stated is Theorem 1.1, then there exists a unique 1 somorphism $\mathrm{h}: \mathrm{x}_{1} \longrightarrow \mathrm{X}_{2}$ such that $\mathrm{h} \cdot \mathrm{g}_{1}$ $=\mathrm{g}_{2}$.

Proof. Let $\mathrm{L}_{\mathbf{i}}(\mathrm{i}=1,2)$ be a tautological linebundle on X_{i} with $g_{1}^{*}\left(L_{1}\right) \approx{ }^{*}\left(O_{X}(1)\right) \otimes \alpha_{X}\left(-E_{Y}\right)$. Then since $g_{1}^{*}\left(L_{1}\right) \approx g_{2}^{*}\left(L_{2}\right)$, we. have $\mathrm{L}_{2} \cong\left(\mathrm{~g}_{2}\right)_{*}\left(\mathrm{~g}_{1}^{*}\left(\mathrm{~L}_{1}\right)\right)$. Put $\mathrm{E}_{\mathrm{i}}=\left(\pi_{\mathrm{i}}\right)_{*}\left(\mathrm{~L}_{1}\right)$, then $\mathrm{E}_{2} \cong\left(\pi_{2}\right)_{*}\left(\mathrm{E}_{2}\right){ }_{*}$
 $=\mathrm{X}_{2}, \mathrm{P}\left(\mathrm{E}_{\mathrm{I}}\right)=\mathrm{X}_{1}$, this isomorphism yields an isomorphism $\mathrm{h}: \mathrm{X}_{1} \longrightarrow$ x_{2} with $\mathrm{h} *\left(\mathrm{~L}_{2}\right)=\mathrm{L}_{1}$. Thus we get an isomorphism $\mathrm{h}: \mathrm{X}_{1} \longrightarrow \mathrm{X}_{2}$ with h. $g_{1}=g_{2}$ (E. G. A. Chap. II, 4.2.3). Uniqueness clearly follows from the construction.

Lemua 1.7. If $U \sum V$ are open subscbemes of S and if
$g_{U}: \widetilde{X}_{U} \rightarrow e \ln _{Y_{U}}^{n}\left(X_{U}\right)$ existes, then $g_{V}: \widetilde{X}_{V} \longrightarrow \operatorname{eln}_{Y_{V}}^{n}\left(X_{V}\right)$ exists and there is a unique isomorphism $h_{V}^{U}:\left(e l_{M_{V}}^{n}\left(X_{U}\right)\right)_{V} \rightarrow e \ln _{Y_{V}}^{n}\left(X_{V}\right)$
with $h_{V}^{J} \cdot g_{0, V}=g_{V}$.

Proof. This is an immediate consequence of the definition of
elementary transformation and Lemma 1.6.

Now we procead with the proofs of Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. Uniqueness bas been proved in Lemma 1.6.

Let us cover s by affine open gubsets $\left\{v_{\lambda}\right\}_{\lambda \in \lambda}$ gatisfying the conditions in Lemma 1.4. By virtue of Lemma 1.4 there exists
$\boldsymbol{E}_{\lambda}: \widetilde{X}_{U_{\lambda}} \longrightarrow X_{\lambda}^{*}=\operatorname{eln}_{X_{U}}^{n}\left(X_{U}\right)$, hence $g_{\lambda \mu}: \tilde{X}_{U_{\lambda \mu}} \longrightarrow X_{\lambda \mu}=$
 exist (Lemma 1.7), where $U_{\lambda \mu}=U_{\lambda} \cap U_{\mu}, U_{\lambda \mu \nu}=U_{\lambda} \cap U_{\mu} \cap U_{\nu}$.

By virtue of leman 1.7 there is a unique isomorphism $h_{\mu}^{\lambda}: X_{\lambda,}^{1} U_{\lambda \mu}$ $\longrightarrow X_{\lambda \mu}^{\prime}$ and the conmutative diagram $(+)$ is obtained. Thus if $X_{\lambda,}^{\prime} U_{\lambda \mu}$ is identified with $X_{\mu,}^{\prime} U_{\lambda \mu}$ by the isomorphigm $p_{\mu}^{\lambda}=$ $\left(h_{\lambda}^{\mu}\right)^{-1} \cdot h_{\mu}^{\lambda}$, then we obtain a p^{N}-bundle x^{\prime} on S because $f_{\nu}^{\mu} \cdot \rho_{\mu}^{\lambda}$ $=\int_{2}^{\lambda}$ on $x_{\lambda, U_{\lambda, \mu}}$ by virtue of the diagram (+), Moreover, since
$h_{\mu}^{\lambda} \cdot g_{\lambda, U_{\mu \mu}}=g_{\lambda \mu}=h_{h}^{\mu} \cdot g_{\mu, U_{\lambda \mu}}, \quad$ we get amorphism $g: \widetilde{X}$
$\longrightarrow X^{\prime}$. In order to show that $X^{\prime} \cong P\left(E^{\prime}\right)$ for some vector bundle

E' on S, we have only to prove

that there exists a tautological linebundle L^{\prime} on X ' such that
$g^{*}\left(L^{\prime}\right) \stackrel{n}{2} f^{*}\left(O_{X}(1)\right) * o_{X}{ }^{\left(-E_{Y}\right)}$ for a tautological linebundle $o_{X}(1)$
on X, which completes our proof. By virtue of Lemma $1.4\left(g_{U_{\lambda}}\right)_{*}$
$\left(\left(f_{U_{\lambda}}\right) *\left(\left.O_{X}(1)\right|_{U_{\lambda}}\right) \& \hat{0}_{U_{\lambda}}\left(-\left.E_{Y}\right|_{U_{\lambda}}\right)\right)=L_{U_{\lambda}}^{+}$is an inversible sheaf on

Thus we know that $L^{\prime}=g_{*}\left(f^{*}\left(O_{X}(1)\right)\left(Q O_{X}\left(-E_{Y}\right)\right)\right.$ is an invertible sheaf on X^{\prime} such that $g^{*}\left(L^{\prime}\right)=f^{*}\left(O_{X}(1)\right)\left(20 \mathcal{X}_{X}^{\left(-E_{Y}\right)}\right.$. on the other hand, $\left.{ }^{\prime}{ }^{\dagger}\right|_{U_{\lambda}}$ is a tautological linebundle on $X^{\prime} J_{\lambda}$ by virtue of leman 1.L. Thus $\pi^{\prime} H^{\prime}\left(L^{1}\right)=E^{\prime}$ is a locally free sheaf on S and $P\left(E^{i}\right)=X^{\prime}$, whence I^{1} is a tautologicail linebundle.
q. e. d.

Proof of Theorem 1.3. (i) Let 0_{X}, (I) be a tautological linebundle on $X^{\prime}=\ln \eta^{n}(X)$. Then by virtue of Theorem $1.1 \quad g^{*}\left(O_{X},(1)\right)$ $\cong f^{*}\left(O_{X}(1)\right) O_{X}\left(-E_{Y}\right)$ for a tautological linebundie $O_{X}(1)$ on X, Thus

$$
\begin{aligned}
& E^{\prime}=\pi_{*}^{\prime}\left(O_{X}(1)\right) \geqslant \pi_{*}^{\prime} g_{*} g^{*}\left(O_{X}(1)\right) \geqslant \pi_{*} f_{*}\left(f *\left(O_{X}(1)\right) \otimes O_{X}\left(-F_{Y}\right)\right) \\
& \pi_{*}\left(O_{X}(1) \otimes f_{*}\left(\alpha_{X}\left(-E_{Y}\right)\right)\right) \approx \pi_{*}\left(O_{X}(1) \otimes I_{Y}\right)(\text { see Lemma } 1.5)
\end{aligned}
$$

Since $X^{2}=P\left(E^{\prime}\right)$, we know that $\pi_{*}\left(O_{X}(1) I_{Y}\right)$ is a locally free o_{i}-module and $P\left(\pi_{*}\left(O_{X}(1) \otimes I_{Y}\right) \geqslant e \operatorname{lm}_{Y}^{n}(X)\right.$. Let $I_{X_{T}}\left(o r, J_{Y}\right)$ be the ideal of X_{T} in $X\left(o r, Y\right.$ in X_{T}, resp.) Then we have an exact

$$
0 \longrightarrow I_{X_{T}} \otimes o_{X}(1) \longrightarrow I_{Y} \otimes o_{X}(1) \longrightarrow J_{Y} \otimes o_{X}(1) \rightarrow 0
$$

Since $I_{X_{T}}=\pi^{*}\left(I_{T}\right)$ and since I_{T} is a Cartier divisor on S,
$I_{X_{T}}{ }^{\otimes} O_{X}{ }^{(1)}$ is also a tautological linebundle on X, whence
$\mathrm{R}^{i} \pi_{*}\left(\mathrm{I}_{\mathrm{X}_{\mathrm{T}}} \otimes \mathrm{o}_{\mathrm{X}}(1)\right)=0,1>0$. On the other hand, the following
exact sequence

$$
0 \longrightarrow J_{\mathrm{Y}} \otimes 0_{\mathrm{X}}(1) \longrightarrow 0_{\mathrm{X}_{\mathrm{T}}}(1) \longrightarrow 0_{\mathrm{Y}} \otimes \mathrm{o}_{\mathrm{X}}(1) \longrightarrow 0
$$

gives rise to an exact sequence

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{T}} \longrightarrow \mathrm{~F} \longrightarrow \mathrm{R}^{1} \pi_{*}\left(\mathrm{~J}_{\mathrm{Y}} \otimes \mathrm{O}_{\mathrm{X}}(1)\right) \longrightarrow \mathrm{R}^{1} \pi_{*}\left(\mathrm{O}_{\mathrm{X}_{\mathrm{T}}}(1)\right) \longrightarrow \\
& \mathrm{R}^{1} \pi_{*}\left(\mathrm{O}_{\mathrm{Y}} \otimes \mathrm{O}_{\mathrm{X}}(1)\right) \longrightarrow \ldots \longrightarrow \mathrm{R}^{1-1} \pi_{\pi_{*}}\left(\mathrm{O}_{\mathrm{X}} \otimes \mathrm{O}_{\mathrm{X}}(1)\right) \longrightarrow \\
& \mathrm{R}^{1} \hbar_{*}\left(\omega_{\mathrm{Y}} \mathrm{O}_{\mathrm{X}}(1)\right) \longrightarrow \mathrm{R}^{\mathbf{i} \pi_{*}}\left(\mathrm{O}_{\mathrm{X}_{\mathrm{T}}}(1)\right) \longrightarrow \cdots,
\end{aligned}
$$

where $E=\pi_{*}\left(O_{\mathrm{X}}(1)\right), F=\pi_{*}\left(O_{\mathrm{Y}} \otimes O_{\mathrm{X}}(1)\right)$. since $\mathrm{P}\left(\mathrm{E}_{\mathrm{T}}\right)=\mathrm{X}_{\mathrm{T}}$,

```
P(F)=Y and since Y }\longrightarrow\mp@subsup{X}{T}{}\mathrm{ is a closed immersion, }\mp@subsup{E}{T}{}\longrightarrow
is a surjective map. }\mp@subsup{0}{\mp@subsup{X}{T}{}}{(1)}(\Omega,\mp@subsup{O}{Y}{}\otimes\mp@subsup{O}{X}{}(1)) is a tautological
```



```
=0(\mp@subsup{}{}{\forall}
first exact sequence implies }\mp@subsup{\textrm{R}}{}{\mathbf{i}}\mp@subsup{\pi}{*}{}(\mp@subsup{I}{Y}{}\otimes\mp@subsup{O}{X}{}(1))=0(\mp@subsup{|}{i}{}>0)
(ii) Every assertion is clear except for (Y' = P(F'), Let s
be a point of S and let U = Spec(A) be an affine neighborhood
of s such that E, E', F are free and that IT is principal in
```



```
te}\mp@subsup{e}{i}{}(0\leqi\leqn),\quad\mp@subsup{\alpha}{U}{(
|
natural map. This and Lemma l.4 imply P(F') = (',
```

 q. e. d.
 § 3. some properties of elementary transformations.
 Elementary transformations are compatible with base changes.

In fact .

Proposition 1.8. Let $\varphi: S^{\prime} \longrightarrow S$ be a morphism of locally noetherian schemes, let $\pi: X \longrightarrow S$ be the projective bundle associated with a vector bundle E of rank $N+1$, and let T, Y be clased subscheme of S, X satigfying the condition $\left(E_{n}^{0}\right)$. Assume that $\varphi^{*}\left(I_{T}\right)$ is also a Cartier divisor in S^{\prime} with the defining ideal for T in S. Then $\varphi^{-1}(T), Y_{S}$, satisfy the condition
 Proof. It is clear that $\varphi^{-1}(T), Y_{S^{\prime}}$ satisfy the condition $\left(E_{n}^{0}\right)$. Note that if a P^{N}-bundle $T^{\prime} ; X^{\prime} \longrightarrow S$ and a morphism g : $\stackrel{\sim}{\mathrm{X}} \rightarrow \mathrm{X}^{+}$exist and if there is an open covering $\underset{\lambda \in \Lambda}{V_{\lambda}} U_{\lambda}=S$ such that $\mathrm{EU}_{\lambda}: \tilde{X}_{\mathrm{U}_{\lambda}} \longrightarrow \mathrm{X}_{\mathrm{U}_{\lambda}}^{*}$ satisfies the conditions stated in Theorem 1.1 , then $X^{1} \cong \operatorname{elm}_{Y}^{n}(X)$ and $g \cdot f^{-1}=e l n_{Y}^{n}$ (see Theorem 1.I and its proof). Thus we may assume that $s=\operatorname{Spec}(A), S^{\prime}=\operatorname{spec}(B)$
and that X, Y satisfy the condition in Lemma 1.4. Then our
assertion is obvious by virtue of Lentad 1.4.
q. e. d.

Next, we assume that S is a regular scheme. Let us consider the following condition for a p^{N}-bundle $\pi: X \longrightarrow S$ and a closed subscheme Y of X;
$\left(E_{n}\right) \quad Y$ is a regular subschene of pure dimension $n \div d i m s-1$ $(0 \leq n \leq N-1)$ and $\bar{\pi}^{-1}(s)$ is a n-dimensional innear subvariety L_{s}^{n} of $P_{k(s)}^{N}=\pi^{-1}(s)$ for any $s \in T=\pi(Y)$, where T has the unique reduced structure and where $\overline{\bar{W}}: Y \longrightarrow T$ is the restriction of T to Y.

Then we know that Y is a P^{n}-bundle on T ($\{9]$ Lemma 1.7, Theorem 1.8) and T is a regular subscheme of S. Hence if Y satisfies the condition $\left(E_{n}\right)$, then Y, T satisfy the condition (E_{n}^{0}).

The remaining part of this section will be devoted to prove
that every P^{N}-bundle on a smooth quasi-projective k-variety with dimension smaller than 4 is obtained by an elementary transformation With center satisfying the condition ($\mathrm{E}_{\mathrm{N}-1}$) from the trivial bundle.

Proposition 1.9. Let $\pi: X \longrightarrow s$ be a p^{N}-bundle on a
smooth k-variety S and let H_{0}, \ldots, H_{N} be positive divisors on X such that $O_{X}\left(H_{1}\right)$ is a tautological linebundle for every i.

Assume that H_{0}, \ldots, H_{N} are transversal to each otber.at any point

Then $Y=H_{0} \cdot \cdots \cdot H_{N}$ satisfies the condition (E_{0}) and
$\theta \ln _{Y}^{0}(x) \approx P\left(L_{0} \oplus \ldots \Leftrightarrow L_{N}\right)$, where $\pi^{*}\left(L_{1}\right) \cong O_{X}\left(H_{c}\right) \otimes O_{X}\left(-H_{1}\right)$. In particular if $O_{X}\left(H_{0}\right) \geqslant O_{X}\left(H_{i}\right) \quad(1 \leq i \leq N)$, then $\operatorname{elm}_{Y}^{0}(X) \cong P_{k}^{N} \times S$. Proof. Since H_{0}, \ldots, H_{N} are transversal to each other at any point of $\bigcap_{1=0}^{N} H_{1}, Y$ is k-smooth and pure dimension (dim $S-1$). Moreover, since $O_{X}\left(\mathrm{H}_{i}\right)$ is a tautological linebundle and since $\operatorname{dim}\left(Y \cap \pi^{-1}(g)\right) \leq 0$, we gee that $\pi^{-1}(s)=L_{s}^{0}$ for every $s \in S$. Thus we know that Y satisfies the condition (E_{0}). Next let I_{Y} be the ideal shea .f of Y in O_{X}. Let us consider the Kosmarl complex K. defined by H_{0}, \ldots, H_{N};

$$
\begin{aligned}
& \mathrm{K}_{0}=\mathrm{o}_{\mathrm{X}} \\
& K_{1}=\bigoplus_{0 \leq x_{1}<\cdots<\alpha_{t} \leq N} o_{X}\left(-\left(H_{\alpha_{1}}+\ldots+H_{\sigma_{i}}\right)\right), \quad 1 \leq i \leq N+1 \\
& \mathrm{~K}_{\mathrm{j}}=0 \quad \mathrm{j}>\mathrm{N}+1
\end{aligned}
$$

and the derivation $d_{i}: K_{i} \longrightarrow \mathbf{K}_{1-1}$ is defined by

$$
\left(d_{1}\right)_{x}\left(\sum a_{\alpha_{1}}, \ldots, \alpha_{1}\right)=\sum_{0 \leqslant \alpha_{1}<\cdots<\alpha_{i} \leqslant N^{k} \leqslant \alpha_{i} \leqslant N} k^{\sum_{1}^{i}(-1)^{k-1}} a_{\alpha_{1}}, \ldots, \alpha_{i},
$$

where $x \in X, a_{\alpha_{1}}, \ldots, \alpha_{1} \in O_{X}\left(-\left(H_{1}+\ldots+H_{i}\right)\right)_{x}$ and $(-1)^{k-1} a_{\alpha_{1}}, \cdots, \alpha_{1}$ of the left hand side is regarded as an element of $O_{X}\left(-\left(H_{o_{1}}+\ldots+H_{\alpha_{k-1}}+H_{\alpha_{k+1}}+\ldots+H_{\alpha_{1}}\right)\right)_{x}$ by the natural inclusion $o_{x}\left(-\left(\mathrm{H}_{\alpha_{1}}+\ldots+\mathrm{H}_{\alpha_{1}}\right)\right)_{x} \hookrightarrow \mathrm{o}_{\mathrm{x}}\left(-\left(\mathrm{H}_{\alpha_{1}}+\ldots+\mathrm{H}_{\alpha_{k-1}}\right.\right.$ $\left.\left.+H_{\alpha_{k+1}}+\ldots+H_{\alpha_{1}}\right)\right)_{x_{k}}$. Then since H_{0}, \ldots, H_{N} are transversal to each other at any point of Y,

$$
0 \rightarrow K_{N+1} \longrightarrow K_{N} \rightarrow \ldots \ldots K_{\perp} \rightarrow I_{Y} \rightarrow 0
$$

is an exact sequence (E, C.A. Chap. III, 1.1.4) ${ }^{5}$. Hence,

$$
\begin{aligned}
& \left.0 \rightarrow \mathrm{~K}_{\mathrm{N}+1}{ }^{\otimes} \mathrm{OXX}_{\mathrm{X}} \mathrm{O}_{0}\left(\mathrm{H}_{0}\right) \longrightarrow \mathrm{K}_{\mathrm{N}} \otimes_{\mathrm{OXX}_{\mathrm{X}}} \mathrm{O}_{\mathrm{K}}\right) \longrightarrow \ldots \\
& \longrightarrow \mathrm{K}_{1} \otimes_{\mathrm{o}_{\mathrm{X}}} \mathrm{O}_{\mathrm{X}}\left(\mathrm{H}_{0}\right) \longrightarrow \mathrm{I}_{\mathrm{Y}} \otimes_{\mathrm{O}_{\mathrm{X}}} \mathrm{O}_{\mathrm{X}}\left(\mathrm{H}_{\mathrm{O}}\right) \longrightarrow 0
\end{aligned}
$$

is also an exact sequence. Put $M_{i}=\operatorname{Ker}\left(d_{i}\left(\otimes_{O_{X}} O_{X}\left(H_{0}\right)\right)=\right.$ $\mathrm{I}_{\mathrm{m}}\left(\mathrm{d}_{\mathrm{i}+1} \otimes_{\mathrm{O}_{\mathrm{X}}} \mathrm{O}_{\mathrm{X}}\left(\mathrm{H}_{0}\right)\right)$, then we have the following exact sequences ;

$$
\begin{aligned}
& \left.a_{N}\right) 0 \rightarrow O_{X}\left(-\left(\mathrm{H}_{1}+\ldots+H_{N}\right)\right)=K_{N+1} \otimes_{O_{X}} \mathrm{O}_{\mathrm{X}}\left(\mathrm{H}_{0}\right) \rightarrow \mathrm{K}_{\mathrm{N}} \otimes_{\mathrm{O}_{\mathrm{X}}} \mathrm{o}_{\mathrm{X}}\left(\mathrm{H}_{\mathrm{O}}\right) \rightarrow \mathrm{M}_{\mathrm{N}-1} \rightarrow 0 \\
& \left.{ }^{8}{ }_{N+1}\right) \cdot 0 \rightarrow \mathrm{u}_{\mathrm{N}-1} \rightarrow \mathrm{~K}_{\mathrm{N}-1} \mathrm{Q}_{\mathrm{X}} \mathrm{O}_{\mathrm{X}}\left(\mathrm{H}_{0}\right) \rightarrow \mathrm{M}_{\mathrm{N}-2} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& o_{X}\left(H_{0}\right) \cong o_{X}\left(-(i-1) H_{0}\right) \otimes_{O_{X}} \pi *\left(L_{x_{1}} \otimes \ldots \otimes L_{\alpha_{i}}\right) \text {, we obtain } \\
& \pi_{*}\left(K_{i} \otimes_{O_{X}} O_{X}\left(H_{0}\right)\right) \cong \underset{0 \leq \alpha_{i}<\cdots\left\langle d_{i} \leq N\right.}{\Theta} \pi_{*}\left(O_{X}\left(-(i-1) H_{0}\right)\right) \otimes_{O_{X}}\left(L_{x_{1}} \otimes \ldots \otimes L \alpha_{i}\right)=0, \\
& 2 \leq 1 \leq N+1,
\end{aligned}
$$

$$
\begin{aligned}
& 1 \leqslant j, \quad 1 \leqslant i \leqslant N+1 .
\end{aligned}
$$

Thus the exact sequence (a_{N}) implies that $\pi_{*}\left(M_{N-1}\right)=R^{j} \pi_{*}\left(M_{N-1}\right)=0$.
Assume that $\pi_{*}\left(M_{i}\right)=R^{j} \Gamma_{r_{*}}\left(M_{i}\right)=0(i>1)$, then the exact sequence (a_{i}) implies that $\pi_{*}\left(\mathrm{M}_{i-1}\right)=\mathrm{R}^{\mathrm{j}} \mathrm{u}_{*}\left(\mathrm{M}_{\mathrm{i}-1}\right)=0 . \quad$ By induction on i, therefore, we see that $\pi_{*}\left(M_{1}\right)=R^{1} \bar{m}_{*}\left(M_{1}\right)=0$. Hence by virtue of the exact sequence (a_{1}) we obtain that $\mathrm{L}_{0} \oplus \ldots \oplus \mathrm{~L}_{\mathrm{N}} \cong$.

$\pi_{X}\left(I_{Y} \otimes O_{X}\left(H_{0}\right)\right)$. This and Theorem 1.3 assert that elm ${ }_{Y}^{0}(X) \cong$ $P\left(\mathrm{I}_{0} \oplus \ldots \oplus \mathrm{I}_{\mathrm{N}}\right)$.

q. e. A.

By virtu: of the above proposition we have only to find H_{0}, \ldots, H_{N} satisfying the conditions in Proposition 1.9. in order to prove what we have been aiming,

Lemma 1.10. Let $\pi: X \rightarrow S$ be a P^{N}-bundle on a quasiprojective k-variety S and let $1: X \longrightarrow P_{k}^{t}$ be an immersion such that $i^{*}\left(0_{\mathbf{P}_{\mathbf{k}}(1)}\right)$ is a tautological inebundle on X, \quad If H_{0}, \ldots, H_{N} are general hyperplanes of P_{k}^{t} and if dim $S \leq 3$, then $\operatorname{dim}\left(\left(\underset{i=0}{N}{\underset{i}{n}}_{N}^{H_{1}}\right) \cap \tau^{-1}(s)\right)$ ≤ 0 for every $s \in S$.

Proof. Since $i^{*}\left(O_{P_{k}}(1)\right)$ is a tautological linebundle, $\left(\underset{i=0}{N} H_{i}\right) \cap \pi^{-1}(s)$ is a linear subspace of $\pi^{-1}(s)$ for every $s \in s$ and hyperplanes H_{0}, \ldots, H_{N} of $\mathrm{P}_{\mathrm{k}}^{\mathrm{t}}$. Thus we have only to prove that
 H_{0}, \ldots, H_{N} of P_{k}^{t}, Let Grass $\hat{\beta}_{\beta}^{\alpha}$ be the Grassmannian of the
β-dimensional linear subvariety of P_{k}^{α}. Put $T=\left\{\left(L_{1}, L_{2}\right) \in \operatorname{Grass}_{1}^{t}\right.$ X Grass $\left._{\mathrm{t}-\mathrm{N}-1} \mid \mathrm{L}_{1} \subset \mathrm{~L}_{2}\right\}$ and let $\mathrm{p}_{1}: \Gamma \longrightarrow$ Grass $_{1}^{\mathrm{t}}, \mathrm{p}_{2}: \Gamma \longrightarrow$ Gxass $_{t-N-1}^{t}$, be natural projections, then Γ is an algebraic variety and p_{1}, p_{2} are morphisms. We have $\operatorname{dim}\left(p_{1}^{-1}(x)\right)=(N+1)(t-N-2)$ for any $x \in$ Grass $_{1}^{t}$. On the other hand, $E=\pi_{*}\left(i *\left(O_{P_{k}^{t}}(1)\right)\right.$ is generated by a finite subset $\left\{u_{0}, \ldots, u_{t}\right\}$ of its global. seotions because so is $i *\left(0_{\mathbf{P}_{\mathbf{k}}}(\mathbf{l})\right)$. The surfective homonorphism $\varphi: \mathrm{O}_{\mathrm{S}}^{\mathrm{t}+1} \longrightarrow \mathrm{C}$ determined by u_{0}, \ldots, u_{t} defines a morphism 6)
$\alpha: s \rightarrow$ Grass $_{\mathrm{N}^{*}}^{t} \quad \alpha$ is nothing but the map defined by
$s \longrightarrow 1\left(\pi^{-1}(s)\right) \in \operatorname{Grass}_{N}^{t}$. Let $F=\left\{L_{1} \in \operatorname{Grass}_{1}^{t} \mid L_{1} \subset L_{2}\right.$ for some $\left.L_{2} \in \alpha(S)\right\}$, then F is a locally closed subset of Grass ${ }_{1}^{t}$ and there is a natural morpfism $q: F \longrightarrow \alpha(s)$. Since $q^{-1}(s)=$ / Grass $_{1}^{N}$ for any $s \in S, \quad \operatorname{dim} F=\operatorname{dim} S+\operatorname{dim}\left(G r a s s_{1}^{N}\right)$

q. e. d.

Lemma 1.11. If $\pi: X \rightarrow S$ be a $p^{N}-$ bundle on a quasiprojective smooth k-variety S, then there is a tautologicel linebundle on X which is very ample over spec (k).

Proof. By virtue of Lemma 1.2 there is a tautological
limebundle $O_{X}(1)$ on X and the assumption implies that there is a very ample invertible sheaf L on S. Since $O_{X}(1)$ is π-very ample, $O_{X}(1)\left(\otimes \pi *\left(L^{(1)}\right)\right.$ is very ample over $\operatorname{spec}(k)$ for any $n \geq n_{0}$ (E.G.A. Chap.II, 4.4.10, (ii)).

$$
\begin{aligned}
& =\operatorname{dim} S+2(N-1) . \text { Thus if } \operatorname{dim} S \leqslant 3 \text {, then } \operatorname{dim}\left(p_{i}^{-1}(F)\right)=\operatorname{dim} S \\
& +2(N-1)+(N+1)(t-N-2)=\operatorname{dim} s+(N+1)(t-N)-4= \\
& \left.\operatorname{dim} s+\operatorname{dim}\left(G_{r a s s}^{t-N-1}\right)^{t}\right)-4<\operatorname{dim}\left(G r a s s_{t-N-1}^{t}\right) \text {, whence } p_{2}\left(p_{1}^{-1}(F)\right) C_{F}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } H_{0}, \ldots, H_{N} \in G r a s s_{t-\lambda}^{t} \text {, then } \overbrace{i=0}^{N} H_{i} \text { contains no line of } \\
& \pi^{-1}(s) \text { for any } s \in S \text {. }
\end{aligned}
$$

Now we come to the following theorem which extends a well
known theorem : Every plobundle on a complete non-singular curve C (that is, a geometrically mied surface) is obtained from the direct product $P^{1} \times C$ by succesive elementary transformations.

Theorem 1, 12. Let $\pi: X \rightarrow S$ be a P^{N}-bundle on a smooth quasi-projective k-variety S with dimS ≤ 3. Then there is a $k-$ subscheare Y of $p_{K}^{N} \times s$ satisfying the condition (E_{N-1}) such that $X \approx e \operatorname{lm}_{Y}^{\text {fit }}\left(P_{k}^{N} \times 3\right)$. Moreover, if dims $=2$ or 3 , we can choose such a Y as an irreducible subscheme.

Proof. By virtue of Lemma 1. 11 there is an immersion $i: X$ $\Longleftrightarrow P_{k}^{t}$ such that $i^{*}\left(O_{\mathrm{P}_{\mathrm{K}}}(1)\right)$ is a tautological linebundle on X (E.G.A. (hup.IT, 4.4.7). If H_{0}, \ldots, H_{N} are sufficiently general hyperplane sections of X in P_{k}^{t}, then $Y^{\prime}=H_{0} \ldots \ldots=H_{N}$ satisfies the condition $\left(R_{0}\right)$ by virtue of Proposition 1.9 and Lemma 1. 10. By virtue of Proposition 1.9 we have that
 desired subscheme (see Theorem 1.1, Corollary 1.1.1). If
dim $5=2$ or 3 , then $\operatorname{dim} Y^{\prime} \geq 1$. Thus $w e$ can choose such a Y^{\prime} as an irreducible subscheme. Then the subscheme Y determined by the Y as above is irreducible.
q. e. d.

Remark. 1.13. It seens that Theorem 1.12 is false in the case where dim S is greater than 3 (see Theorem 2.19). But we may
present the following problem : Is every $P^{N}-$ bundle on a smooth quasi-projective k-variety s obtained from the direct product
$\mathbf{P}_{k}^{N} \times s$ by succesive elementary transformations?

Chapter II. Regular vector bundles.

From now on we shall use the following notation unless otherwise stated :

S : a smooth projective variety over k with dimension greater
than 1^{7}
P_{S}^{N} : the direct product $P_{k}^{N} \underset{k}{X} \quad S$;
π : the projection $P_{S}^{N} \longrightarrow S$;
z : a hyperplane of P_{k}^{N};
H_{0} : the subvariety $Z \underset{k}{X}$ of P_{S}^{N};
Y : an irreducible subscheme of P_{S}^{N} satisfying the condition ($\mathrm{F}_{\mathrm{N}-1}$) i

T : the subscheme $\pi(Y)$ of S with reduced structure ;
$\mathrm{P}_{\mathrm{T}}^{\mathrm{N}}$: the direct product $\mathrm{P}_{\mathrm{k}}^{\mathrm{N}} \mathrm{X}_{\mathrm{k}} \mathrm{T}$ which is regarded as a subscheme of $\mathbf{P}_{\mathbf{S}}^{\mathbf{N}}$
H_{Y} : the divisor $H_{0}+P_{T}^{N}$ on P_{S}^{N}
I_{Y} : the ideal sheaf of Y in P_{S}^{N}
$f_{Y}: \widetilde{X}(Y) \rightarrow P_{S}^{N}:$ monoidal transformation with center Y;

$$
\begin{aligned}
\widetilde{X}_{T}= & f_{Y}^{-1}\left[P_{T}^{N}\right], \quad E_{Y}=f_{Y}^{-1}(Y) \text { (i.e. exceptional variety of } f_{Y} \text {); } \\
E_{Y}: & \widetilde{X}_{Y}(Y) \rightarrow X(Y): \text { the contraction with center } \vec{X}_{T} \text { whose } \\
& \text { contractability is garanteed by Theorem } 1.1 ;
\end{aligned}
$$

$\pi_{X}: X(Y) \rightarrow S:$ the projection of \mathbf{P}^{N}-boundle $X(Y)$;
H_{Y}^{\prime} : the transform of H_{o} by $\ln \sum_{Y}^{N-1}\left(=E_{Y} f_{Y}^{-1}\right.$)

In the above situation we may assume that H_{0} does not contain Y.

\$ 1. Definition of regular vector bundlea.

By virtue of Theorem 1.3 we know that $\mathrm{B}(\mathrm{Y})=\pi_{*}\left(\mathrm{I}_{\mathrm{Y}} \mathrm{BN}_{\mathrm{P}_{\mathrm{S}}}\left(\mathrm{H}_{\mathrm{Y}}\right)\right.$) is a locally free 0_{S} module of rank $N+1$. Thus it seems that the following definition is adequate.

Definition. A locally free O_{S}-module which is 1somorphic to $E(Y)$ is called a regular vector bumdle (defined by Y).

Of course a subscheme which defines a regular vector bundle may
not be unique (see $\$ 2$ of this chapter).

Lemma 2.1. Let $P_{1}: X_{i} \rightarrow S \quad(i=1,2)$ be P^{N}-bundles on s, let T, Y_{1} (or, T, Y_{2}) be subvarieties of S, X_{1} (or, S, X_{2}, resp.) satisfying the condition (E_{n}) (or, (E_{N-n-1}), resp.) with $X_{2}=\operatorname{elm}_{Y_{1}}{ }^{n}\left(X_{1}\right), \operatorname{elm}_{Y_{2}}^{N-n-1}=\left(e l \underline{m}_{Y_{i}}^{n_{1}}\right)^{-1}$ and let $f_{i} ; \tilde{X} \longrightarrow$ X_{i} be the monoidal transformations of X_{i} with center Y_{i}. Assume that C_{1} is a positive divisor on X_{1} such that $O_{X_{1}}\left(C_{1}\right)$ is a tautological 1 inebundle on x_{1}. put $c_{2}=\operatorname{elm}_{y_{1}}^{n}\left[c_{1}\right]$.

> (i) $c_{1} \ngtr Y_{1}$ if and only if $c_{2}>Y_{2}$. $f_{2}^{-1}\left(C_{2}\right)=f_{2}^{-1}\left[c_{2}\right]+f_{2}^{-1}\left(\mathrm{Y}_{2}\right)$.
> (ii) $f_{1}^{-1}\left(\mathrm{P}_{1}^{-1}(T)\right)=f_{1}^{-1}\left[P_{1}^{-1}(T)\right]+f_{1}^{-1}\left(Y_{1}\right)$.

Proof. Let x be a point of T and let $v=\operatorname{Spec}(A)$ be an affine open neighborhood of x in s such that $x_{1, U}=$ $\operatorname{proj}\left(A\left[7_{0, \ldots,}\right\}_{N}\right]$) and that the ideal of $T \cap U$ (or, $X_{1, U}$ $\cap Y_{1}$) is generated by $t \in A \quad\left(o r, t, \gamma_{n+1}, \ldots,\right\}_{N}$, resp. $)$ Then $x_{2, U}=\operatorname{Proj}\left(A\left[7_{0}^{\prime}, \ldots, \gamma_{N}^{\prime}\right]\right), \eta_{i}^{+}=\gamma_{i} \quad(0 \leq i \leq n)$, $t\left\{_{i}^{\prime}=7_{i}(n+1 \leqslant i \leqslant N)\right.$ and the defining ideal for Y is generated by $t, 7_{1}^{\prime}, \ldots, 7_{n}^{2}$ by virtue of Lemma 1.4. We may assume that
$c_{1} \cap x_{1,0}$ is defined by $\sum_{i=0}^{N} a_{i} T_{1}=0, a_{i} \in A . \quad c_{1} \cap X_{1, v}$
$\nmid Y_{1} \cap X_{1, v}$ if and only if $a_{1} \notin t A$ for some $0 \leq 1 \leq n$. Thus
if $C_{1} \cap X_{1, U} \ngtr Y_{1} \cap X_{1, U}$, then $C_{2} \cap X_{2, U}$ is defined by
$\sum_{i=0}^{n} a_{i} Y_{i}^{\prime}+t \sum_{j=n+1}^{N} a_{j} Y_{j}^{\prime}$. Hence $c_{2} \cap X_{2, U} \supset Y_{2, U}$. Conversely assume
that $\mathrm{C}_{2} \cap \mathrm{X}_{2 \mathrm{U}} \supset \mathrm{Y}_{2} \cap \mathrm{X}_{2, U^{\circ}}$ We may assume that $\mathrm{C}_{2} \cap \mathrm{X}_{2, \mathrm{v}}$ is defined by $\left.\sum_{i=0}^{N} b_{i}\right\rangle_{1}^{\prime}=0 . \quad\left(b_{i} \in A, \quad\right.$ if $\quad 0 \leq i \leq n, \quad b_{i}=t b_{i}{ }^{\prime}, \quad b_{i}^{\prime} \leqslant A$
if $n+1 \leq i \leq N$). Since c_{2} is the proper transform of c_{1} by
$\operatorname{elm}_{Y}^{n}, \quad c_{2}^{-P}{ }_{2}^{-1}(T) \neq 0$, whence $b_{i} \notin t A$ for some $0 \leqslant i \leqslant n$. Then $c_{1} \cap X_{1, v}$ is defined by $\sum_{i=0}^{n} b_{i} \eta_{i}+\sum_{j=n+1}^{N} b_{j} \eta_{j}=0$ and $b_{i} \notin t A$ for some $0 \leq i \leq n$. Thus $c_{1} \cap X_{1, U} \ngtr Y_{1} \cap X_{1, U}$. Since X_{i} is irreducibe, $C_{i} \supset Y_{i}$
if and only if $C_{i} \cap X_{i, U} \supset Y_{i} \cap X_{i, U}$. Thus $c_{1} \ngtr X_{1}$ if and
only if $C_{2} \supset Y_{2} . \quad f_{2}^{-1}\left(\mathrm{C}_{2}\right)=f_{2}^{-1}\left[c_{2}\right]+f_{2}^{-1}\left(Y_{2}\right)$ is clear because

$$
\sum_{i=0}^{N} b_{i} \eta_{i}^{\prime} / \eta_{j}^{\prime} \in I_{j}-I_{j}^{2} \text { for } I_{j}=\left(t, \eta_{0}^{\prime} / \eta_{j}^{\prime}, \ldots, \eta_{n}^{\prime} \eta_{j}^{\prime}\right) A\left[\eta_{0}^{\prime} / \eta_{j}^{\prime} \ldots\right.
$$

$\left.\eta_{N}^{\prime} \eta_{j}^{\prime}\right], \quad 0 \leqslant j \leqslant N$ (cf. Proof of Lemma 1.4). Thus we get (i).

Lemma 2.2. If $E(Y)$ is the regular vector bundle defined by Y , then we have $\mathrm{E}(\mathrm{Y}) \xlongequal{=}\left(T_{\mathrm{Y}}\right)_{*}\left(\mathrm{O}_{\mathrm{X}(\mathrm{Y})}{ }^{\left(\mathrm{H}^{\prime}\right.}{ }_{\mathrm{Y}}\right)$).

Proof. Put $f_{Y}^{-1}\left(H_{0}\right)=\tilde{H}$, then $g_{Y}^{-1}\left(H_{Y}^{\prime}\right)=\tilde{H}+\bar{X}_{T}$ by
virtue of the above lemma. Thus $f_{Y}^{*}\left(O_{P_{S}}\left(H_{S}\right) \Leftrightarrow O_{P_{S}^{N}}^{N}\left(P_{T}^{N}\right)\right) \cong$ $\sigma_{X}(\tilde{H}) \otimes \sigma_{X}\left(\bar{X}_{T}\right) \otimes \sigma_{X}\left(E_{Y}\right) \cong\left(g_{Y}\right) *\left(o_{X(Y)}\left(H_{Y}\right)\right) \otimes \sigma_{X}\left(E_{Y}\right)$. We therefore obtain $\left(\pi_{\mathrm{Y}}\right)^{*}\left(\mathrm{O}_{\mathrm{X}(\mathrm{Y})}\left(\mathrm{H}_{\mathrm{Y}}^{\prime}\right)\right) \cong\left(\pi_{\mathrm{Y}}\right)_{*}\left(\mathrm{~g}_{\mathrm{Y}}\right)_{*}\left(\mathrm{~g}_{\mathrm{Y}}\right) *\left(\mathrm{O}_{\mathrm{X}(\mathrm{Y})}\left(\mathrm{H}_{\mathrm{Y}}\right)\right)$ $\pi_{*}\left(f_{Y}\right) *\left(f_{Y} *\left(0_{P_{S}^{N}}\left(H_{Y}\right)\right) \sigma_{\tilde{X}}\left(-E_{Y}\right)\right) \cong \pi_{*}\left(I_{X} \otimes o_{P}^{N}\left(H_{Y}\right)\right) \cong E(Y)$ (ove
q. e. d.

The following is a corollary to Theorem 1.12.

Proposition 2.3. Assume that the dimension of S is equal to 2 or 3. Buery very ample vector bundie ${ }^{9)}$ of rank $N+1$ ($\mathrm{N} \geq 1$) is regular and therefore, for any vector bundle E of rank $N+1$ $(N \geq 1)$ on S, there exists a linebundle L on S such that $B \geqslant L$ is a regular vector bundle.

Proof. Put $X=P(E)$ and let $O_{X}(1)$ be the tautological linebundle
of E. Since $0_{X}(1)$ is very ample by our assumption, the proof of

Theorem 1.12 shows that there is an isomorphism $j: X \longrightarrow$
$\operatorname{eln}_{Y}^{\mathrm{N}} \mathrm{Y}^{-1}\left(\mathrm{P}_{\mathrm{K}}^{\mathrm{N}} \times \mathrm{S}\right)$ for the same Y obtained from $O_{X}(1)$ as in the proof. Moreover, $\left(\operatorname{elm}_{Y}^{N-1}\right)^{-1}\left[J\left(\mathrm{H}_{i}\right)\right]=Z_{i} \times S$ for a hyperplane Z_{i} of p_{k}^{n}, where H_{i} is the same as In the proof of Theorem 1.12 . Thus we obtain our assertion by virtue of Lemma 2.2 q. e. d.
§ 2. Families of regular vector bundles.

In this section we shall construct a moduli of a subfamily of regular vector bundles.

Lemma 2 4. Let X be factorial variety over k and let W be a positive divisor on P_{X}^{N} such that $0_{P_{X}^{N}}^{(N)} \theta_{X} \mathrm{O}_{X}\left(x_{0}\right)$
 $\mathrm{O}_{\mathrm{P}_{X}}\left({ }^{(H)} \geqslant O_{P_{X}}^{N(n(Z \times X))} \otimes p_{2}^{*}\left(O_{X}(D)\right)\right.$ for some positive divisor D on X, where $P_{2}: P_{X}^{N} \rightarrow X$ is the projection.

Proof Invariance of Euler-Poincare characteristic of a

$$
\begin{aligned}
& \text { proper flat family implies that } 0_{P_{X}^{N}}^{(W)} \theta_{O_{X}}^{k(x)}=0_{O_{N}^{N}}(r) \text { for every } \\
& x \in X \text {. Then by virtue of the seesaw theoren }(12] \$ 54)
\end{aligned}
$$

Inebundle L on X. On the other hand, the Kinneth formula
inplies that $H^{0}\left(P_{X}^{N},{ }_{P_{X}}^{N}(W)\right) \approx H^{0}\left(P_{k}^{N}, O_{P_{k}}^{N}(r)\right) \otimes H^{0}(X, L)$.
Since W is a positive divisor, $\quad \operatorname{ding}_{k} H^{0}\left(P_{X}^{N}, O_{P_{X}^{N}}^{N}(W)\right)>0$, whence $\operatorname{dim}_{k} H^{0}\left(P_{k^{N}}^{N} O_{P_{k}^{N}}(r)\right)>0, \quad \operatorname{dim}_{k} H^{O}(X, L)>0$. Thus we get that $r \geq 0$ and $L \cong 0_{X}(D)$ for some positive divisor D on X.
q.e.d.

Now a regular vector bundie E of $\operatorname{rank} N+1(N \geq 1)$ is completely determined by a subvariety Y of P_{S}^{N} satisfying the condition (E_{N-1}). Then $T=\pi(Y)$ with reduced structure is a smooth subvariety of S of codimension 1 ($\{9$; Theorem 1,8, E.G.A. Chap. IV 6.8.3) and Y can be regarded as a positive divisor on P_{r}^{N}, Furthermore, since Y_{t} is a hyperplane of $P_{k(t)}^{N}$ for every $t \in T$,
 a positive divisor D of T. Thus Y is a member of a complete linear system on P_{T}^{N} of type $\left|Z \times T+\left(\pi_{T}\right)^{-1}(D)\right|$ which contains no fibre of $\mathbf{P}_{\mathbf{T}} \mathbf{N}$. We have therefore the following principle

Principle 2.5. To give a regular vector bunde of rank $\mathrm{N}+1$ ($\mathrm{N} \geq I$) on S is equivalent to give a member of a complete linear system of the type $\left|Z \times T+\left(\pi_{T}\right)^{-1}(D)\right|$ on P_{T}^{N} which contains no fibre of P_{T}^{N}, where T is a suitable smooth subvariety of S of codimension 1 and D is a positive divisor on T.

Put Pic ${ }^{+}(T)=\left\{D \in \operatorname{Pic}(T) \mid H^{0}\left(T, O_{T}(D)\right) \neq 0\right\}$. From now on $R^{T}(S, T, D)^{10)}$ denotes the set of isomorphism classes of regular vector bundles of rank r on S which are determined by nembers of $\left|\mathrm{Z} \times \mathrm{T}+\left(\mathrm{T}_{\mathrm{T}}\right)^{-1}(\mathrm{D})\right|$ for $\mathrm{D} \in \mathrm{Pic}{ }^{+}(\mathrm{T})$.

By virtue of Kinneth formula
$H^{0}\left(P_{T}^{N}, O_{P_{T}}^{N}\left(Z \times T+\left(K_{T}\right)^{-1}(D)\right)\right) \approx H^{0}\left(P_{k}^{N},{ }_{P}^{N} N_{k}^{N}(1)\right) \overbrace{k}^{0}\left(T_{1} O_{T}(D)\right)=$

Thus a member Y of $\left|z \times T+\left(T_{T}\right)^{\boldsymbol{- 1}}(D)\right|$ is defined by $s_{0} 7_{0}+\ldots+s_{N} \psi_{N}=0$ for some $s_{i} H^{0}\left(T, O_{T}(D)\right) . \quad Y$ contains a fibre $\Pi^{-1}(t) \quad(t \in T)$ if and only if $s_{0}(t)=\ldots=s_{N}(t)=0$. Hence Principles 2.5 can be said in other word as follows:

Principle 2.6. To give a regular vector bundle contained In $\mathrm{R}^{\mathrm{N}+\mathrm{I}}(\mathrm{S}, \mathrm{T}, \mathrm{D})(\mathrm{N} \geq 1)$ is equivalent to give an element $\left(s_{0}, \ldots, s_{N}\right) \neq 0$ of $H^{0}\left(T, O_{T}(D)\right) \times \ldots \times H^{0}\left(T, O_{T}(D)\right)$ such that every $s_{0}(t), \ldots, s_{N}(t)$ is not zero for any $t \in T$.

Now let us construct a large family of regular vector bundles.

Lemma 2.7. The set $\mathbf{H}^{\mathbf{r}}(T)$ which consists of subschenes of $\mathbf{P}_{\mathbf{T}}^{\mathbf{r - 1}}$ satisfying the condition of Principle 2.5 forms an open subset of $\mathrm{Hilb}_{\mathrm{P}}^{\mathrm{T}} \mathrm{r} / \mathrm{k}$.

Proof. Since P_{T}^{r-1} is projective and non-singular, ${ }^{D i v} \mathrm{P}_{\mathrm{T}}^{\mathrm{r}} \mathrm{l} / \mathrm{k}$ is open and closed in $H_{11 b_{P}} \mathrm{~T}_{\mathrm{T}} / \mathrm{k}$ ([6] Proposition 4.1, Corollary 4.4, [!] Theorem 2.1). Hence Div $P_{T} \mathbf{r - 1} / k$ is a union of some connected components of Hill $_{P_{T}} \mathbf{T - 1} / k$. On the other hand,
 a union of sone connected components of $\operatorname{Div}_{\mathbf{p}_{T}} \mathbf{r - 1} / k$. Moreover, $R^{r}(T)$ consists of the members of \underline{D} which contains no fibre of P_{T}^{r-1}. Let W be the subscheme of $P_{T}^{T-1} X \underset{D}{D}$ induced from the universal family of subschenes on $P_{T}^{r-1} \times H_{i l b} \mathbf{p}_{T} \mathbf{r - 1} / \mathrm{K}$ by the natural inclusion
$P_{T}^{r-1} \underset{K}{X} \leq P_{T}^{r-1} X_{k}$ Hill P_{T}^{r-1} / k. Look at the following commutative diagram

Since p^{\prime} is proper, the set $R^{\prime}=\{x \in T \times D\} \quad$ dim $p^{\prime-1}(x)=r-1$, i.e. W contains the fibre $\left.p^{-1}(x) \equiv P_{k(x)}^{r-1}\right\}$ is closed in $T X D$ (E.G.A. Chap. IV, 13.1.3). Since $R^{r}(T)=D-q^{\left(R^{\prime}\right)}$ and q is proper, $R^{r}(T)$ is an open subset of D. Thus $R^{r}(T)$ is an open subset of ${ }^{\mathrm{H} \ddagger \mathrm{lb}} \mathrm{P}_{\mathrm{T}}^{\mathrm{r}-1} / \mathrm{k}$.

Lemma 2.8. Let $\pi: X \rightarrow S, Y, T$ be the same as in Theorem 1.1.
and let $j: S^{\prime} \rightarrow s$ be a morphism such that $j^{-1}(T)$ is also a Cartier divisor on $5^{\prime}, \quad$ Then canonically $j^{*}\left(\pi_{*}\left(I_{Y}\left(\otimes o_{X}(1)\right)\right) \cong\right.$ $\left(\pi_{S^{\prime}}\right)_{*}\left(I_{Y} X_{X^{\prime}}\left(i^{*} 0_{X}(1)\right)\right.$ for a tautological linebundle $O_{X}(1)$ and充氏iming I_{Y} of Y in X, where $i: X_{S^{+}} \longrightarrow X$ is the natural morph1sen induced by j.

Proof, Put $E=\pi_{*}\left(0_{X}(1)\right), \quad F=\pi_{*}\left(0_{Y} * 0_{X}(1)\right), \quad E^{\prime}=$
$\left(\pi_{S^{\prime}}\right)_{*}\left(i *\left(O_{X}(1)\right)\right), \quad F^{\dagger}=\left(\pi_{S^{\prime}}\right)_{*}\left(O_{X_{S}} \nabla_{i}{ }^{*}\left(O_{X}(1)\right)\right), \quad$ Then Ker $\varphi=$ $\pi_{*}\left(I_{Y} \otimes o_{X}(1)\right), \quad \operatorname{Ker} \varphi^{\prime}=\left(\pi_{S^{\prime}}\right)_{*}\left(I_{Y} O_{X_{S}} \otimes 1^{*} 0_{X}(1)\right)$ for the canonical morphisms $\varphi^{\prime}: E \rightarrow F, \quad \varphi^{\prime}: E^{\prime} \rightarrow F^{\prime} \quad$ (see Theorem 1.3 , Proposition 1.8). Consider the following exact commutative diagram;

Since a local equation t for T at $f\left(s^{\prime}\right) \in S$ is a non-zero

 $j\left(s^{+}\right)=s . \quad$ Thus α_{3} is an isomorphism because $\delta \cdot\left(\alpha_{3}\right)_{5}=\gamma+\beta$. Similary α_{2} is an isomorphisin. Therefore α_{1} is an isomorphism by virtue of the five lemma.
q.e.d.

Theorem 2.9. Let S be a non-singular projective variety
over k, let T be a non-singular subvariety of S of codimension 1 and let $R^{r}(T)$ be the open subscheme of $\operatorname{Hilb}_{P_{T}} r-1 / k$ defined in Lemma 2.7.

Then there are a vector bundle $P^{r}(T)$ of rank r on $S \quad \times R^{r}(T)$
 $P(T) x \not \mathscr{\varphi}_{T}^{*}(x)$ for any k-rational point x of $R^{r}(T)$

Proof. Let W be the subscheme of $p_{T}^{r-1} X_{k} R^{r}(T)=P_{k}^{r-1} X_{k}\left(T X_{k}^{r}(T)\right)$
 Since T is a cartier divisor on S, so is $T \underset{K}{X} R^{r}(T)$ on $S \quad \underset{K}{ } R^{r}(T)$.

 satisfy the condition $\left(\mathrm{E}_{r-2}^{0}\right)([q]$ Theorem 1,8$)$. Now put $\mathrm{p}^{\boldsymbol{r}}(\mathrm{T})=$ $P_{*}\left(I_{W} \otimes O_{X}\left(H_{0}\right)\right)$, where I_{W} is the defining ideal for W and H_{o} is the Cartier divisor $Z \times\left(S X_{K} R^{r}(T)\right)$ on $P_{S}^{T-1}{\underset{S}{R}}^{r}(T)$. Then $P^{r}(T)$ is a vector bundle of rank r on $S \times R^{r}(T)$ by virtue of Theorem 1.3 If x is a k-rational point of $R^{r}(T)$, then $\left(\left.\alpha_{x}\right|_{P_{T}}{ }^{r-\lambda}\right)^{-1}(W)=w_{x}$ is contained in $\left|Z \times T+\left(\pi_{T}\right)^{-1}(D)\right|$ for some $D \& P i c{ }^{+}(T)$ and contains no fibre of P_{T}^{T-1}, where $\alpha_{X}: P_{T}^{r-1} \rightarrow P_{S}^{r-1} \times R^{r}(T)$ is the morphism induced by $x \rightarrow \mathbf{R}^{\mathbf{r}}$ (T). Thus for the natural morphism
$\beta_{x}: S \rightarrow S \times R^{r}(T), \quad\left(\beta_{x}\right) *\left(P^{T}(T)\right)$ is contained in $R^{r}(S, T, D)$ by virtue of Lemma 2.8. Hence if one defineds $\mathcal{H}_{T}^{T}(x)=$ the regular vector bundle defined by W_{x} for $x \in R^{r}(T)(k)$, then clearly $\mathcal{F}^{r} \quad T$, $\mathbf{P}^{\mathbf{r}}(\mathrm{T})$ fulfill our requirement. q.e.d.

Our next aira is to study conditions for two regular vector bundles to be isomorphic to each other, The following lema is a key in the sequel.

Lemma 2.10. Let Z_{0}, \ldots, Z_{N} be lineaxly independent hyperplanes of P_{k}^{N} and put $H_{i}^{\prime}=\operatorname{elm} \dot{M}_{Y}\left(H_{i}\right)$ for $H_{i}=Z_{i} \times T$ and a subscheme Y of p_{S}^{N} satisfying the condition $\left(E_{n}^{0}\right)$. Then $Y^{\prime}=\bigcap_{0}^{N} H^{*}{ }_{i}$ for the center Y^{\prime} of $\left(\operatorname{eln} \mathbf{r}^{n}\right)^{-1}$ that is, the ideal $Y^{\text {t }}$ is generated by those of $\mathrm{H}^{\prime}{ }_{1}$

Proof. Since the property is local with respect to S and since
$H_{0, S}, \ldots, H_{N, S}$ form a basis of hyperplanes of $P_{S, S}^{N}=P_{k(s)}^{N}$ for any $s \in s$, we may assume that $\left.s=\operatorname{spec}(A), \quad p_{s}^{N}=\operatorname{Proj}\left(A\left[7_{0}, \ldots,\right\}_{N}\right]\right)$,
the homogeneous ideal defining Y is generated by $t(\in A), T_{n+1}, \ldots, 7_{N}$ and that H_{i} is defined by $\eta_{1}=0$, Then by virtue of Lemma 1.4
$\operatorname{elm} m_{Y}^{n}\left(P_{S}^{N}\right)=\operatorname{Prof}\left(A\left[\eta_{0}^{\prime}, \ldots, \eta_{N}^{\prime}\right]\right) \quad \eta_{i}=\eta_{i}(0 \leqslant 1 \leqslant n), \quad t \eta_{i}^{\prime}=\eta_{i}$ $(n+1 \leq i \leq N)$ and the homogeneous ideal defining H_{i}^{\prime} is generated by $\left.\quad T_{i}^{\prime}(0 \leq 1 \leq n), \quad t\right\}_{i}^{\prime}(n+1 \leq i \leq N)$, Thus in the affine open set $U_{i}^{\prime}=\left\{T_{i}^{\prime}=0\right\}$ the ideal defining $\bigcap_{j=0}^{N} H_{j}^{\prime}$ is generated by $1(0 \leq i \leq n) ; t, T_{0}^{\prime} \eta_{i}, \cdots, \gamma_{n}^{\prime} \eta_{i}^{\prime}(n+1 \leq i \leq N) . \quad$ on the other hand, the ideal defining Y^{\top} in U_{i}^{\prime} is generated by the same element because the homogeneous ideal of Y is generated by $\boldsymbol{F}_{0}^{\prime}, \ldots, \boldsymbol{7}_{n}^{\prime \prime} t$.
q.e.d.

For a non-singular subvariety T of codimension 1 of S put $A_{T}=\left\{D \mid D \in P i c^{+}(T), \quad H^{0}\left(T, O_{T}\left(T^{2}-D\right)\right)=0\right\}$.

Lemma 2.11. Let H_{0}, \ldots, H_{N} be as in the above lemma and put $H_{i}^{\prime}=\operatorname{eing}_{Y}^{N-1}\left(H_{1}\right)$ for Y satisfying the condition(E_{N-1}). Let T be the subvariety $\pi(Y)$ (with reduced structure) of S (then T is non-singular and codimension 1$)$. Assume that $Y \&\left|Z \times T+\left(\mathbb{W}_{T}\right)^{-1}(D)\right|$
in)
with a DEA, then $H_{0}^{\prime}, \ldots, H_{N}^{*}$ form a basis of the complete
linear system $\left|H_{0}^{\prime}\right|$ on $X(Y)=e \ln _{Y}^{N-1}\left(P_{S}^{N}\right)$.

Proof. It is clear that $H_{0}^{+}, \ldots, H_{N}^{\prime}$ are independent. Let L be the linear system spanned by $H_{0}^{\prime}, \ldots, H_{N}^{\prime}$. Assume that $L \underset{\neq \mathbf{H}_{0}^{\prime}}{\mathbf{C}}$ and we shall show a contradiction. Take a general member H^{\prime} of $\left|H_{0}^{\prime}\right|$ such that H^{\prime} is irreducible and $H^{\prime} \nsubseteq \mathrm{L}$ (sfnce at least one of $\mathrm{H}_{0}^{\prime}, \ldots, \mathrm{H}_{\mathrm{N}}^{\prime}$ is irreductble, such an H^{\prime} exists). In the first place assune that $H^{\prime}>\mathrm{Y}^{\prime}$, then $\mathrm{E}_{\mathrm{Y}}^{-1}\left[\mathrm{H}^{\prime}\right]+\bar{X}_{T} \sim \mathrm{~g}_{\mathrm{Y}}^{-1}\left[\mathrm{H}_{0}^{\prime}\right]+\bar{X}_{T} \sim \mathrm{f}_{\mathrm{Y}}^{-1}\left(\mathrm{H}_{0}+\mathrm{P}_{\mathrm{T}}^{\mathrm{N}}\right)$

- $\mathbf{E}_{\mathbf{Y}}$ by virtue of Lemma 2.1. Thus $\mathbf{H}=\mathrm{f}_{\mathbf{Y}}\left[\mathrm{E}_{\mathrm{Y}}^{-1}\left[\mathrm{H}^{\cdot}\right]\right] \sim \mathrm{H}_{0}$. Since H_{0}, \ldots, H_{N} form a basis of $\left|H_{0}\right|, H=Z \times T$ for some byperplane Z of P_{k}^{N} and H^{\prime} is the total transform of H. Thus $H^{\prime} \in L_{1}$ which is impossible. Next assume that $H^{*} \nmid \mathrm{X}^{\prime}$. By a similar argument as above we know that $H \sim H_{0}+P_{T}^{N}$ and by virtue of Lemma $2.1 \quad H \supset Y$.

Thus $O_{P_{T}} N(A) \approx \pi^{*}\left(O_{T}\left(T^{2}-D\right)\right)$, whence $H^{0}\left(P_{T}, \pi^{H}\left(O_{T}\left(T^{2}-D\right)\right)\right)=$
 On the other hand, $H^{0}\left(P_{T}^{N}, \quad \pi^{*}\left(O_{T}\left(T^{2}-D\right)\right)\right)=H^{0}\left(T, \pi_{*} \pi^{*}\left(O_{T}\left(T^{2}-D\right)\right) \approx\right.$ $H^{0}\left(T, O_{T}\left(T^{2}-D\right)\right)$. But this is contradictory to the fact that $D \in A_{T}$.
q.a.d.

Corallary 2.11.1. If $E \in R^{F}(S, T, D)$, then $\operatorname{dim}_{k} H^{0}(S, E) \geq r$.
Moreover if $D \in A_{T}$, then $\operatorname{dim}_{k} H^{0}(S, E)=r$,
Proof. Our assertion is clear if one notes $H^{0}(S, E)=H^{0}(P(E)$,
$a_{P(E)}(1)$.
q.e.d.

Note that $A_{S}\left(P_{S}^{r \rightarrow 1}\right)=P G L(r-1)$ and that if a subscheme Y of P_{S}^{N} satisfying the condition (E_{N-1}), then so does Y^{σ} for every $0 \in \operatorname{PGL}(r-1)$. This enables us to show that the next proposition follows from the above two lemmas.

Proposition 2.12. Let $E_{i}(i=1,2)$ be a regular vector bundle of $\operatorname{rank} \quad r$ on S defined by Y : and let $Y_{l} \in\left|Z \times T+\left(T_{T}\right)^{-1}(D)\right|$ for $D \in A_{T}$ (notation is as above). Then E_{1} is isomorphic to E_{2} if and only if $Y_{1}=Y_{2}^{*}$ for some $\sigma \in P G L(r-1)$.

Proof. It is clear that if $Y_{1} \neq Y_{2}^{\sigma}$, then $E_{1} \cong E_{2}$ Conversely,
assuage that there is an isomorphism $1: E_{2} \sim E_{1}$. $\quad 1$ induces an

for the tautological line bundle $\mathrm{o}_{\mathrm{X}_{\mathrm{i}}}(1)$ of E_{i}. since $\mathrm{Y}_{\mathrm{l}} \in$
$\left|z \times T+\left(\pi_{T}\right)^{-1}(D)\right|$ for $D \in A_{T}, \quad \operatorname{dim}_{k} H^{0}\left(X_{2}, 0_{X_{2}}(1)\right)=\operatorname{dim}_{k} H^{0}\left(X_{1}, \quad o_{X_{1}}(1)\right)$
$=\mathbf{r}$ by virtue of Lemma 2.11 and Lemma 2.2. This and Lemma 2.10
 therefore $f\left(Y_{1}{ }^{\prime}\right)=Y_{2}^{\prime} . \quad$ Fix isomorphisms $\tau_{i}: P_{S}^{r-1} \rightarrow \operatorname{elm}_{Y}^{0}\left(X_{1}\right)$ and put $\tau_{i}\left(Y_{i}\right)=Y_{i}{ }_{i}$. Then it is easy to see that j induces an isomorphism $\alpha: \operatorname{elm}_{Y_{2}}^{0}\left(X_{1}\right) \rightarrow \operatorname{eln}_{Y_{2}}^{0}\left(X_{2}\right)$ such that $\alpha\left(Y_{1}^{\prime \prime}\right)=Y_{2}^{n}$. Hence we get a desired automorphism $\tau_{2}^{-1} \alpha \tau_{1}$ of $P_{S}^{r-1} \quad$ q.e.d.

Theorem 2.13 Let s be a non-singular projective variety
over k.
(1) If $E_{i} \in R^{r}\left(S, T_{i}, D_{i}\right)(i=1,2), \quad D_{1} \in A_{T_{1}}$ and $T_{1} \neq T_{2}$,
then $E_{1} \frac{1}{\text { 衣 }} \quad E_{2}$.
(ii) If T is a non-singular subvariety of S of codimension 1 ,
then fut $S_{S}\left(P_{S}^{r-1}\right)=\operatorname{PGL}(r-1)$ acts on $R^{r}(T)$. The set $R_{0}^{r}(T)=$ $\left\{Y \in R^{r}(T)|Y \in| Z \times T+\left(\pi_{T}\right)^{-1}(D) \mid\right.$ for sone $\left.D \in A_{T}\right\}$ forms a PGL(r-1)-stable open subset of $H^{r}(T)$.
 it holds that $\left(\left.\varphi_{T}^{r}\right|_{R_{0}^{r}(T)} ^{r}\right)\left(x_{1}\right)=\left(\left.\varphi_{T}^{r_{T}}\right|_{R_{0}(T)}\right)\left(x_{2}\right)$ if and only if $x_{1}=$
x_{2}^{σ} for some $\sigma \in \operatorname{pgL}(r-1)$.

Proof. (i) Assume that E_{1} is defined by Y_{1} and $E_{1} \approx E_{2}$, then $Y_{1}=Y_{2}^{\sigma}$ for some $\sigma \in P G L(r-1)$ by virtue of Proposition 2.12 . Since σ sends $P_{T_{1}}^{r-1}$ to itself and $\pi\left(Y_{i}\right)=T_{i}$, which is a contradiction. Thus $E_{1} \frac{E_{2}}{}$.
(iit) Each element σ of $\operatorname{PGL}(r-1)$ sends P_{T}^{r-1} to itself and $Y \sim Y$ in p_{T}^{r-1}. Thus if $Y \in R_{0}^{r}(T)$, then $Y^{\sigma} \in R_{0}^{r}(T)$, that is. $\mathbf{r}_{0}^{\mathbf{r}}(T)$ is $\operatorname{PGL}(\mathbf{r}-1)$ - E table. Let Φ be the canonical morphism Div $v_{1} / k \longrightarrow \operatorname{Pic}(T)$ and let τ be the morphism of Pic(T) to itself defined es follows ; $\operatorname{Pic}(T) \rightarrow D \rightarrow T^{2}-D \in \operatorname{Pic}(T)$. Then $A_{T}=$
 because Φ is projective ([6] Corollary 4.4). On the other hand, there is a canonical isomorphism $j: P i c\left(P_{T}^{r-1}\right) \rightarrow \mathbb{Z} \times P$ ic (T) and $f \cdot \Psi$ sends $\mathrm{R}^{\mathbf{r}}(\mathrm{T})$ to $\{1\} \times P i c(T)$ for the canonical morphism $\bar{\Psi}:$ $\operatorname{Div}_{T} r-1 / k^{-} \rightarrow \operatorname{Pic}\left(P_{T}^{r-1}\right)$. This map $\left.f \cdot \underline{\Phi_{R}}\right|_{(T)}$ is defined as follows;

$$
V_{D} \in \operatorname{Pic}(T), \quad\left|\mathrm{Z} \times \mathrm{T}+\left(\mathrm{T}_{\mathrm{T}}\right)^{-1}(\mathrm{D})\right| \rightarrow \mathrm{Y} \rightarrow \mathrm{D} \in \mathrm{Pic}(\mathrm{~T})
$$

Thus $R_{0}^{r}(T)=(J \cdot \Psi)^{-1}\left(A_{T}\right) \cap R^{r}(T)$ which is an open subset of $\mathbf{R}^{\mathbf{r}}(\mathbf{T})$.
(iii) is a direct corollary of Proposition 2.12. q.e.d.

Theorem 2.14. Let S be a non-singular projective variety over k, T, non-singular subvariety of codimension 1 and let $D \in A_{T}$ (2) Then there is a subset ${S R^{\prime}}^{\mathbf{r}}(S, T, D)$ of $R^{\mathbf{r}}(S, T, D)$ which carries the structure of an open set of Grass ${ }_{r-1}^{n}(K)$, where $n: 1=$ $\operatorname{dim} H^{0}\left(T, O_{T}(D)\right)$. Horeover, if $r=2, \operatorname{cond}^{\text {ond }} D \neq 0$ $\mathrm{R}^{2}(\mathrm{~B}, \mathrm{~T}, \mathrm{D})$.

Proof. Fix a basis a_{0}, \ldots, a_{n} of $H^{0}\left(T, O_{T}(D)\right)$. If
$\left(s_{0}, \cdots, a_{r-1}\right)(\neq 0)$ is an element of $H^{0}\left(T, O_{T}(D)\right) \times \ldots \times H^{0}\left(T, O_{T}(D)\right)$
and $s_{i}=\sum \alpha_{i j} a_{j}\left(\alpha_{i j} \in k\right)$, then $\left(s_{0}, \ldots, s_{r-1}\right)$ or the
$r x(x+1)$-matrix ($\alpha_{i j}$) defines a member of $\left|Z \times T+\left(\pi \pi_{T}\right)^{-1}(D)\right|$. For each $\left(\beta_{i j}\right) \in G L(r, k)$, the action $\left(\alpha_{i j}\right) \rightarrow\left(\beta_{i j}\right)\left(\alpha_{i f}\right)$ induces the action of $\operatorname{PGL}(x-1)$ on $\left|Z \times T+\left(\pi_{T}\right)^{-1}(D)\right|$ which is the sarae action defined before Proposition 2.12. Let V be the subset of $H^{0}\left(T, O_{T}(D)\right) \times \ldots \times H^{0}\left(T, O_{T}(D)\right)$ which consists of element ($\left.s_{0}, \ldots, s_{r-1}\right)$
such that s_{0}, \ldots, s_{r-1} are independent over k and let w^{\prime} be the subset of $\left|Z \times T+\left(\pi_{T}\right)^{-1}(D)\right|$ determined by U (U may be empty). Then U (or, U^{\prime}) is GL(r)-stable (or, PGL(r-1)-stable, resp.) and $U / G L(r)$ is in bijective correspendence with U'/PGL(r-1). Furthermore It is clear that $U / G L(r)=$ Grass $_{r-1}^{n}$. Consider the following morphism ψ of $T X U$ to the T-dimensional affine space. A^{T} over $k ; T X$ $\left(t, s_{0}, \ldots, s_{r-1}\right) \rightarrow\left(s_{0}(t), \ldots, s_{r-1}(t)\right) \in A^{r}$. Then the set $F=$ $\left\{\left(s_{0}, \ldots, s_{r-1}\right) \in U \mid s_{0}(t)=\ldots=s_{r-1}(t)=0\right\}$ is $p\left(\psi^{-1}(0)\right)$ for the projection $P: T \times U \rightarrow U$. Since T is projective, F is closed in U and it is GL(r)-stable. Thus (U-F)/GL(r) is an open set of Grass ${ }_{r-1}^{n}$. By virtue of Principle 2.6 and Proposition 2.12 we see that ((U-F)/GL(r) is in bijective correspondence with a subset ${S R^{r}(S, T, D) ?}_{\frac{1}{2 r}(S, T, D)}^{\text {Now, if }}$ $r=2$ and s_{0}, s_{1} are dependent ($s_{0} \neq 0$), then $s_{1}=\alpha_{s_{0}}$ for some $\alpha \in k$, whence $s_{1}(t)=0$ for any $t \in T$ with $s_{0}(t)=0$. Thus such a (s_{0}, g_{1}) defines no element of $R^{2}(s, T, D)$. We know therefore $S R^{2}(S, T, D)=R^{2}(S, T, D)$ if $D \neq 0$. q.e.d.

Remark 2.15. $S R^{r}(S, T, D)$ may be empty. We raise a problem:

Does there exist a D for fixed S, T such that $S R^{r}(S, T, D) \neq \varnothing$?

We know that if $r \geq d i m s$, then such a D exists and that

```
    sup (dim SR 
D\inAT
```

Proof. Take a very ample divisor D on T such that
$\operatorname{dim}_{k} H^{0}\left(T, O_{T}\left(T^{2}-D\right)\right)=0$ and $d m_{k} H^{0}\left(T, O_{T}(D)\right) \geq r$. Since $r \geq d i m s$ and D is very ample, ${ }^{s} 0, \cdots, s_{r-1}$ are independent and each of $s_{0}(t), \ldots, s_{r-l}(t)$ is not zero for any $t \leqslant T$ if s_{0}, \ldots, s_{r-1} are sufficiently general elements of $H^{0}\left(T, a_{2}(D)\right.$. Then $\left(s_{0}, \ldots, s_{r-1}\right)$ defines an element of $\mathrm{SR}^{\mathbf{r}}(\mathrm{S}, \mathrm{T}, \mathrm{D})$ and if $\operatorname{dim}_{\mathrm{k}} \mathrm{H}^{0}\left(\mathrm{~T}, \mathrm{O}_{\mathrm{T}}(\mathrm{D})\right)=\mathrm{n}+1$, then $\operatorname{dim} \mathrm{SR}^{\mathbf{r}}(\mathrm{S}, \mathrm{T}, \mathrm{D})=\operatorname{dim} \operatorname{Grass}_{\mathrm{r}-\mathrm{l}}^{\mathrm{n}}=\mathrm{r}(\mathrm{n}+1-\mathrm{r})$. Thus $\mathrm{SR}^{\boldsymbol{r}}(\mathrm{S}, \mathrm{T}, \mathrm{D})$ $\neq \phi$ and $\sup _{\mathrm{D} \in \mathrm{A}_{\mathrm{T}}}\left(\operatorname{dim} \mathrm{SR}^{\mathrm{r}}(\mathrm{S}, \mathrm{T}, \mathrm{D})\right)=\infty$.

Remark 2.16. i) $\quad R^{\mathbf{r}}(\mathrm{S}, \mathrm{T}, 0)=\left\{0_{\mathrm{S}}{ }^{\oplus} \cdots \oplus \mathrm{O}_{\mathrm{S}} \oplus \mathrm{O}_{\mathrm{S}}(\mathrm{T})\right\}$
(ii) $\quad \mathrm{R}^{2}(\mathrm{~S}, \mathrm{~T}, \mathrm{D}) \neq \varnothing$ for some $\mathrm{D} \neq 0$ if and only if there exists a morphism \mathbf{f} of T to a curve c.

Proof. (i) is a direct conclusion of Lema 1.4 and Lemma 2.2. (ii) If $R^{2}(S, T, D) \neq \varnothing$, then there exist two sections s_{0}, s_{1} of $H^{0}\left(T, Q_{T}(D)\right)$ such that both $s_{0}(t), s_{1}(t)$ are not zero for any
$t \in T . \quad$ Thus $T \rightarrow t \rightarrow\left(s_{0}(t), s_{1}(t)\right) \in p^{1}$ is a morphism.

Conversely assume that there exists a morphism $f: T \rightarrow C$ (we may
assume that C is non-singular because so is T). Take a
very ample divisor A on C. Then $H^{0}\left(T, f *\left(O_{C}(A)\right)\right)$ contains two gections s_{0}, s_{1} such that both $s_{0}(t)$ and $s_{j}(t)$ are not zero for any $t \in T$. By virtue of Principle 2.6, we know therefore $R^{2}\left(S, T, f^{-1}(A)\right)$ $\neq \varnothing$.
q.e.d.

The above proof show that if $R^{2}(S, T, D) \neq \varnothing$ for some D, then sup $\left(\operatorname{din} \mathrm{SR}^{2}(\mathrm{~S}, \mathrm{~T}, \mathrm{D})\right)=\infty$ and $\mathrm{D}^{2}=0$. $D \in A_{T}$

Example 2.17. i) $\quad R^{2}\left(P^{3}, T, D\right)=\varnothing$ for any $D \neq 0$ if T is a
plane.

$$
R^{2}\left(P^{3}, Q, D\right) \neq \sigma \text { for some } D \text { if } Q \text { is } a
$$

quadratic surface because $Q \approx P^{\mathbf{1}} \times P^{1}$.
ii) $\quad R^{2}\left(P^{r}, T, D\right)=\phi \quad(r \geq 4)$ for any T and $D \neq 0$. For if there
exists a morphism f of T to a curve C, then $\operatorname{dim} f^{-1}(p)=r-2$ for any $p \in C$, which is a contradiction because $\operatorname{dim}\left(f^{-1}(p) \cap f^{-1}\left(p^{\prime}\right)\right)$ ≥ 0 and therefore $f^{-1}(p) \cap f^{-1}\left(p^{\prime}\right) \neq \varnothing$. Thus every regular vector bundle of rank 2 on $\mathrm{P}^{r}(r 24)$ is isomorphic to $O_{P} r \otimes a_{P} r(T)$ for some
non-singular subvariety T of codimension 1.
iii) If there exists a morphism of S to a curve, then $R^{2}(S, T, D)$
$\neq \varnothing$ for any T not contained in any fibre of the morph1sm and for
some D.
§ 3. Chern classes of regular vector bundles.

In this section we shall calculate Chern classes of regular vector
bundles.

Lema 2.18. Let E be a vector bundle of rank $r(z 2)$ on S
and let $O_{X}{ }^{(1)}$ be the tautological line bundle of E for $X=P(E)$. If H_{1}, \ldots, H_{r} are divisors on X such that $O_{X}\left(H_{1}\right) \cong O_{X}(1)$ for every 1 and that they intersect properly, then $p_{k}\left(H_{1} \ldots H_{r}\right)=c_{1}(E)$ for the natural projection $p: X \rightarrow s$.

$+p^{*}\left(c_{2}(E)\right) \cdot H_{1} \ldots \cdot H_{r-2}+\ldots+(-1)^{r-1} p_{p} *\left(c_{r-1}(E)\right) \cdot H_{1}+(-1)^{r} p^{*}\left(c_{r}(E)\right)$
$=0$. Operating p_{*} on the polynomial, one gets $p_{*}\left(H_{1} \ldots \ldots H_{r}\right)=$ $p_{*}\left(p^{*}\left(c_{2}(E)\right) \cdot H_{1} \ldots{ }^{*} H_{r-1}\right)=c_{1}(E)$ because $p_{*}\left(H_{1} \ldots H_{r-1}\right)=1$,
$p_{*}\left(H_{1} \ldots H_{i}\right)=0$ for $i<r-1 . \quad$ q.e.d.

Lemma 2.2, Lemma 2.10 and Lemma 2.18 yield

Corollary 2.18.1. If $E \in R^{r}(S, T, D)$, then $o_{1}(E)=T$,

However a more general result is given by the following theorem.

Theorem 2.19. If $E \in R^{r}(S, T, D)$, then
$\operatorname{ch}(E)=r+\sum_{i=1}^{\infty} \frac{T^{t}}{1!}+\sum_{m, n=1}^{\infty} \frac{(-1)^{n} T^{m-1} \cdot 1_{*}\left(D^{n}\right)}{m!n^{\prime}}$,
where ch(E) is the Chern character ($[2]$ pll2) and $i: T \rightarrow S$ is of
the inciusion.

$$
\text { Proof Assume that } E \text { is defined by } Y \in \left\lvert\, Z \times T+\frac{\pi^{-1}}{T}\right. \text { (D) } \mid \text {. }
$$

The following exact sequence

$$
0 \rightarrow I_{Y} \otimes 0_{P}{ }_{S}-1\left(H_{Y}\right) \rightarrow 0_{P_{S}}-1\left(H_{Y}\right) \rightarrow 0_{Y} \otimes 0_{P} r-1\left(H_{Y}\right) \longrightarrow 0
$$

Yields an exact sequence

$$
0 \longmapsto E \rightarrow 0_{G}(T)^{\oplus Y} \xrightarrow{\longrightarrow} \pi_{*}\left(0_{Y}()_{P} \mathrm{O}_{S}-1\left(H_{Y}\right)\right) \rightarrow 0
$$

because $E \cong \pi_{*}\left(I_{Y} \otimes 0_{P}^{r-1}\left(H_{Y}\right)\right), \quad R^{2} \pi_{*}\left(I_{Y} \otimes o_{P} r-1\left(H_{Y}\right)\right)=0 \quad$ by virtue of the definition of regular vector bundle and Theorem 1.3. If oue puts
 of Grothendieck for the morphism $i: T \rightarrow S$ we have
(1) $\quad \operatorname{cn}(E)=\operatorname{ch}\left(O_{S}(T)^{(T)} r\right)-\operatorname{ch}\left(\pi_{*}\left(O_{Y}\left(\sigma_{P}^{T-1}\left(H_{Y}\right)\right)\right)\right.$

$$
\begin{aligned}
& =r \operatorname{cb}\left(O_{S}(T)\right)-\operatorname{ch}\left(i_{*}(\pi \mid Y)_{*}\left(O_{Y}\right) o_{S}^{r-1}\left(H_{Y}\right)\right) \\
& =r \operatorname{ch}\left(O_{S}(T)\right)-i_{*}\left(\operatorname{ch}(F) * \operatorname{td}\left(N_{T / S}\right)^{-1}\right)
\end{aligned}
$$

where $N_{T / S}$ is the normal bundle of T in S and $t d$ is the Todd class. On the other hand, for the ideal J_{Y} of Y in P_{T}^{T-1} the following exact sequence

$$
0 \rightarrow J_{Y} \otimes 0_{P} r-1\left(H_{Y}\right) \rightarrow 0_{P} r-1 \& 0_{P} r-1\left(H_{Y}\right) \longrightarrow 0_{Y} \Leftrightarrow{\underset{P}{S}}_{r-1}\left(H_{Y}\right) \rightarrow 0
$$

provides an exact sequence

$$
0 \longrightarrow\left(\pi_{T}\right)_{*}\left(J_{Y} \otimes o_{P} r-1\left(H_{Y}\right)\right) \rightarrow 0_{T}\left(T^{2}\right)^{9 r} \longrightarrow F \rightarrow R^{\prime}\left(\pi_{T}\right)_{*}\left(J_{Y} \mathcal{O}_{P}{o_{S}}_{r-1}\left(H_{Y}\right)\right)
$$

$\equiv\left(\pi_{T}\right) *\left(0_{T}\left(T^{2}-D\right)\right), \quad$ we know $R^{1}\left(\pi_{T}\right)_{*}\left(J_{Y} * a_{P_{S}} r-1\left(H_{Y}\right)\right)=0$. Thus
the above exact sequence implies
(2) $\quad \operatorname{ch}(F)=r\left(\operatorname{ch}\left(O_{T}\left(T^{2}\right)\right)-\operatorname{ch}\left(O_{T}\left(T^{2}\right) \infty O_{T}(-D)\right)\right.$

$$
\begin{aligned}
& =\operatorname{ch}\left(O_{T}\left(T^{2}\right)\right)\left(r-\operatorname{ch}\left(0_{T}(-D)\right)\right) \\
& =\left(\sum_{\alpha=0}^{\infty} \frac{T^{\dagger} \alpha}{\alpha!}\right)\left(r-1-\sum_{n=1}^{\infty} \frac{(-1)^{n} D^{n}}{n!}\right)
\end{aligned}
$$

where $T^{\prime}=T^{2}$ in T. As to $\operatorname{td}\left(N_{T / S}\right)^{-1}$ we get
(3) $\quad \operatorname{td}\left(N_{T / S}\right)^{-1}=\left(\frac{T^{\prime}}{1-e^{-T^{\prime}}}\right)^{-1}=\sum_{\beta=1}^{\infty} \frac{(-1)^{\beta-1} T^{\prime} \beta-1}{\beta!}$

The above (2), (3) yield
(4) $\quad \operatorname{ch}(\mathrm{F}) \cdot \operatorname{td}\left(\mathrm{N}_{\mathrm{T} / \mathrm{S}}\right)^{-1}$

$\left.\left(\sum_{x+\beta=m} \frac{(-1)^{\beta-1}}{\alpha!\beta!}\right)\right)$
$\alpha \geq 0, \beta \geq 1$
(3)

Since $\sum_{a+b=c} \frac{(-1)^{b-1}}{a!b!}=\frac{1}{c!}$, (4) reduces to the following ; $a \geq 0, b \geq 1$
(4) $\operatorname{ch}(F) \cdot \operatorname{td}\left(N_{T} / S\right)^{-1}=(r-1) \sum_{l=1}^{\infty} \frac{T^{i n-1}}{1!}-\sum_{\substack{m=1 \\ n=1}}^{\infty} \frac{(-1)^{n} T^{r^{m-1}} D^{n}}{m!n!}$ By virtue of (1),(4)'
(5) $\quad \operatorname{cb}(E)=x \sum_{i=0}^{\infty} \frac{T^{l}}{l!}-i_{*}\left((r-1) \sum_{l=1}^{\infty} \frac{T^{1} l-1}{l!}-\sum_{\substack{m=1 \\ n=1}}^{\infty} \frac{(-1)^{n} T^{\prime} 1^{m-1} D^{n}}{n!}\right)$

Since $i_{*}\left(T^{l}\right)=T^{l+1}$, and $i_{*}\left(T^{m-1} D^{n}\right)=r^{m-1} i_{*}\left(D^{n}\right)$
$\operatorname{ch}(E)=\mathbf{r}+\sum_{\ell=1}^{\infty} \frac{T}{l!}+\sum_{m=1}^{\infty} \frac{(-1)^{n} T^{m-1} i_{*}\left(D^{n}\right)}{m!n!} \quad$ q.e.d.
Corollary 2.19.1. If $\underset{E \in R}{ }{ }^{r}(\mathrm{~S}, \mathrm{~T}, \mathrm{~A})$, then $\mathrm{c}_{1}(\mathrm{E})=\mathrm{T}, \quad \mathrm{c}_{2}(\mathrm{E})=\mathrm{D}$
$c_{3}(E)=i_{*}\left(D^{2}\right)$ in $A(S) \otimes_{Z} Q$, where $A(S)$ is the Chow ring of s.
proof. Note that $c h(E)=r+c_{1}(E) \div \frac{1}{2}\left(c_{1}(E)^{2}-c_{2}(E)\right)+\cdots$
$\frac{1}{6}\left(c_{1}(E)^{3}-3 c_{1}(E) c_{2}(E)+3 c_{3}(E)\right)+$ higher term. Then our assertion is an immediate corollary of Theorem 2.19.

If $r=2$, then $c_{3}(E)=0$ and so the above corollary implies that $1_{*}\left(D^{2}\right)=0$, but fortunately Remark 2.16 implies that if $R^{2}(S, T, D)$ $\neq \phi$ then $\mathrm{D}^{2}=0$.

Remark 2.20. Corollary 2.18.1 asserts that if $E \in R^{r}(S, T, D)$,
then $c_{1}(E)=T$ in $A(S)$. Thus we have the following problem ;
For $E \in \mathbb{R}^{\mathbf{r}}(\mathrm{S}, \mathrm{T}, \mathrm{D}), \quad \mathrm{c}_{2}(\mathrm{E})=\mathrm{D}, \quad \mathrm{c}_{3}(\mathrm{E})=\mathrm{I}_{*}\left(\mathrm{D}^{2}\right) \quad$ in $\mathrm{A}(\mathrm{S})$?

Chapter III. Simple vector bundles.

In this chapter we maintain the notation in the preceding chapter.
§1. Simple regular vector bundles.

Let E be a vector bundle on a scheme X, then End $(E)=$

How $\mathrm{O}_{\mathrm{X}}(\mathrm{E}, \mathrm{E})$ containg O_{X} as scalar muitiplicationg. Thus

End $(E)=$ Hom $_{\mathrm{O}}(E, E)$ naturally contains $\Gamma\left(X, O_{X}\right)$.

Definition. A vector bundle E on a scheme X is called
gimple if $\operatorname{End}(\mathrm{F})=\Gamma\left(\mathrm{X}, \mathrm{O}_{\mathrm{X}}\right)$.

Our aim of this section is to show that $S R^{r}(S, T, D)$ in

Theorem 2. 14 consists of all simple vector bundles in $R^{r}(S, T, D)$.

Lemma 3.1. Let X be a complete variety over k and let E be a vector bundle of rank r on X.
(1) Auty (B) is a connected linear group and dim Auty ${ }_{X}$ (E) $=$ dim_{k} End(E).
(ii) E is indecomposable if and only if rank (i.e. dimension of a maximal torus) of $A u t_{X}(E)=1$.

```
            Proof. If X}=\mp@subsup{\bigcup}{i\inI}{|}\mp@subsup{\textrm{O}}{1}{}\mathrm{ is a sufficiently fine open covering of
X, then E|}\mp@subsup{|}{i}{}\mathrm{ is free for any i, and an element }\sigma\in\operatorname{End(E) is
```



```
\sigmai}\mp@subsup{A}{1j}{}=\mp@subsup{A}{ij}{}\mp@subsup{\sigma}{j}{\prime}\mathrm{ for the transition matrix A Aij of E in Ui}\cap\mp@subsup{U}{i}{\prime}
```



```
Indeterminate }x\mathrm{ and the unit matrix I, we see that det( }\mp@subsup{\sigma}{1}{\prime
= det( }\mp@subsup{\sigma}{j}{\prime-xI})\mathrm{ in }\mp@subsup{U}{i}{}\cap\mp@subsup{U}{j}{}\mathrm{ for any i, j. Thus there exists a
polynomial }F(x)\ink[x] with F(x)=\operatorname{det}(\mp@subsup{\sigma}{i}{}-xI) for any 1,
because X is a complete variety over k. Hence every eigenvalue of
\sigma
on element of k. Take a free basis eq, ..., en of End(E) with
```



```
and only if det }\sigma\not=0\mathrm{ . The above argument implies that det }\sigma\mathrm{ is a
polynonial of }\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{n}{}\mathrm{ over }k\mathrm{ , and if }\alpha\mathrm{ is not an
```



```
is contained in Aut (E). Thus Aut (E) is an open dense subset
in Fad(E), which implies that Aut (E) is a connected linear
```

```
group (ii) is easy, if one takes Lemma 6, Lemma 7 of [i] and the
above argument into account.
```

 q.e. d.
 Corollary 3.1.1. A vector bundle \(E\) on a complete variety
 over k is simple if and only if $A u t_{X}(E)=G_{m}=k *$.
Proof. If E is simple, then End $(E)=\Gamma\left(X, O_{X}\right)=k$ which
acts on E as scajar multiplications. Thus Aut $X^{(E)}=G_{m}$ *
Conversely assume $A u t_{X}(E)=G_{i n}$. Then by virtue of Lemma 3.1
dian ${ }^{\text {End }}(E)=1$, whence $\operatorname{End}(E)=k=\Gamma\left(X, O_{X}\right)$.

For a vector bundle E on a scheme put $\Delta(E)=\left\{\frac{L}{\mathcal{L}}\right.$ is the isomorphism class of a linebundle L with $E \geqslant S \geqslant L\}$. Then we get the following exact sequence of groups ([5] Corollary to Proposition 2);

$$
e \rightarrow A u t_{X}(E) / \Gamma\left(X, O_{X}^{*}\right) \longrightarrow A u t_{X}(P(E)) \rightarrow \Delta(E) \rightarrow e
$$

If X is a complete variety over k, then $T\left(X, O_{X}^{*}\right)=G_{m}$ if X is complete and nornal, then $\triangle(E)$ is a finite group, because
$E \cong E \phi L$ implies $L^{\otimes(\text { rank } E)} \cong O_{X}$ and therefore $\Delta(E)$ is contained
in (rankE) - torsion part of $P i c^{\circ}(X)$ which is an abelian variety.

Thus under these assumptions $A u t_{X}(E) / G_{n}=A u t_{X}^{0}(P(E))$, where $A u t_{X}^{0}(P(E))$
is the connected component of Aut $X_{X}(B)$. Therefore we get

Corollary 3.1.2. A vector bundle E on a complete normal
variety X over k is simple if and only if $A u t_{X}^{0}(P(E))=e$.

In order to investigate whether a regular vector bundle s on S is simple or not, let us study $A u t_{S}^{0}(P(E))$.

Lemme 3.2. If E is a regular vector bundle on S of rank r defined by Y and if $\operatorname{dim}_{K^{\prime}} H^{0}(G, E)=r$ (cf. Cororally 2.11.1), then $A u t_{S}^{0}(P(E)) \cong\left\{\sigma \mid \sigma \in P G L(r-1)=A u t_{G}\left(P_{S}^{r-1}\right), \quad Y^{\sigma}=Y\right\}$. Proof. The assumption $\operatorname{dim}_{k^{\prime}} \mathrm{H}^{\mathrm{O}}(5, \mathrm{E})=\mathrm{r}$ implies that $H_{1}^{\prime}, \ldots, H_{r}^{\prime}$ form a basis of $\left|H_{j}^{\prime}\right|$, where $H_{i}^{s}=\theta \operatorname{lm}_{Y}\left(H_{i}\right), \quad H_{i}=z_{i} \times S$ for independent hyperplanes Z_{1}, \ldots, Z_{r} of p_{k}^{r-1}. Since $\sigma \in A u t_{S}(P(E))$ is contained in $A u t_{S}^{O}(P(E))=A u t_{S}(E) / G_{m}$ if and only if $\sigma^{*}\left(O_{P(E)}(1)\right) \approx O_{P(E)}(1)$ for the tautological linebundie $0_{P(E)}(1)$ of E and since $O_{P(E)}\left(H_{i}^{\prime}\right) \cong O_{P(E)}$ (1), we have
 center Y^{1} of $\left(e l_{Y} \mathbf{r}^{-2}\right)^{-1}$ by virtue of Lemma 2.10. Thus $Y^{\prime}{ }^{\sigma}=Y^{\prime}$. Now we claim

Lemma 3.3. Let $\pi: X \rightarrow S$ be a p^{N}-bundle and let T, Y be gubschemes S, X satisfying the condition ($\mathrm{E}_{\mathbf{r}}^{\mathbf{0}}$). If σ nAut $S_{S}(X)$ satisfies $Y^{\sigma}=Y$, then σ induces a unique element σ^{1} of Auth $_{S}\left(X^{\prime}\right)$ with $X^{\prime}=e \ln _{Y}^{n}(X)$ such that $Y^{\prime \sigma^{\prime}}=Y^{\text {t }}$ with the center Y of $\left(e l m_{Y}^{n}\right)^{-1}$ and $\sigma^{*}\left|X^{\prime}(S-T)=\sigma\right| X_{(S-T)}$ by the natural
identification $X_{(S-T)}^{\prime}=X_{(S-T)} \cdot$
Proof. Cover X by a system of affine open sets $\left\{U_{X}\right\}$ such that $\left.X_{U_{\alpha}}=\operatorname{Proj}\left(A\left[\eta_{0}, \ldots,\right\}_{N}\right]\right)$ and $Y_{U_{X}}$ is defined by the ideal $\left(t \in A, \gamma_{n+1}, \ldots, 7_{N}\right)$. Let $\gamma_{i}^{\sigma}=\sum_{j=0}^{N} a_{i j} \gamma_{j}, a_{1 j} \in A$, then the condition $Y^{\sigma}=Y$ implies $a_{i j}=t a_{i j}^{\prime}, a_{i j}^{\dagger} \in A$ for $n+1 \leq 1 \leq N, 0 \leq j \leq n$. By virtue of Lemma 1.4 el $n_{X_{0_{\alpha}}}^{n}\left(X_{U_{\alpha}}\right)=$ $\operatorname{Proj}\left(A\left[\eta_{0}^{\prime}, \ldots, \eta_{N}^{\prime}\right]\right), \eta_{i}=\eta_{i}(0 \leq i \leq n), \quad \eta_{i}=t \eta_{i}^{\prime}(n+1 \leq 1 \leq N)$.

Thus $7_{i}^{\prime \sigma}=\sum_{j=0}^{n} a_{i j} \eta_{j}^{\prime}+\sum_{j=n+1}^{N} a_{i j} \eta_{j}(0 \leq i \leq n), \quad \eta_{i}^{\sigma}=\sum_{j=0}^{n} a_{i j} \eta_{j}^{*}$ $+\sum_{j=n+1}^{N} a_{i j} \eta_{j}^{\prime}(n+1 \leqslant i \leqslant N)$. Hence σ induces a morphis:a $\sigma^{\prime} U_{U_{\alpha}}$

Moreover $\sigma_{\mathrm{U}_{\alpha}}^{2}$ coincides with $\sigma_{\mathrm{U}_{\beta}}^{\prime}$ in an open dense subset $\mathrm{X}_{(S-T)}^{\prime}$
Thus σ induces an element σ^{*} of $A u t_{S}\left(X^{\prime}\right)$. It is obvious that
ofis a desired automorphism. If σ_{1}^{2}, σ_{2}^{\prime} are automorphisras
of x^{\prime} induced by σ, then $\sigma^{\prime}=\sigma_{2}^{\prime}$ in an open dense subset,
Whence $\sigma_{1}^{*}=\sigma_{2}^{*}$.
Now we shall come back to the proof of Lemak 3.2. By virtue
of Lemma 3.3, 5 induces an element of the group $G(Y)=\{T \in P G L(r-1)\}$
$\left.Y^{T}=Y\right\}$. Thus we have a homomorphism $\varphi: \operatorname{Aut}^{0}(\mathrm{P}(\mathrm{E}) \mathrm{P} \longrightarrow \mathrm{G}(\mathrm{Y})$. We
get also a homomorphism $\psi: G(Y) \longrightarrow \mathrm{Aut}_{S}^{0}(P(E))$ because $\mathcal{T} \in$
Aut ${ }_{S}^{0}(P(E))$ induced by $T \in G(Y)$ sends $H_{i}^{\text {i }}$ (o an element
of $\backslash \mathrm{H}_{1}^{\prime} \backslash$, which means $5^{*}\left(O_{P(E)}(1)\right) \approx O_{P(E)}(1) .$.

q.e. d.

Now we come to a main theorem of this section.

Theorem 3.4. Let S be non-singular projective variety over k, let T be a non-singular subvariety of S of codimension one and let $D \in A_{T}$.
(i) $\mathrm{SR}^{\mathbf{r}}(\mathrm{S}, \mathrm{T}, \mathrm{D})$ in Theorem 2.14 consists of all simple vector bundles in $R^{r}(S, T, D)$.
(ii) If $E \in \mathbf{R}^{r}(S, T, D)$ is defined by $\left(s_{1}, \ldots, s_{r}\right) \in$ $H^{0}(S, T, D) \times \ldots \times H^{0}\left(T, O_{T}(D)\right)(c f$. Principle 2.6) and if the dimension of the vector subspace of $H^{\mathbf{0}}\left(T, O_{T}(D)\right)$ generated by s_{1}, \ldots, s_{r} is r^{4}, then $E \approx O_{S}^{\Leftrightarrow\left(r-r^{*}\right)} \in E^{\prime}$ for sone $\mathrm{E}^{\prime} \epsilon \mathrm{SR}^{\mathrm{r}^{\prime}}(\mathrm{S}, \mathrm{T}, \mathrm{D})$.

Proof. Assume that E is defined by $\left(s_{1}, \ldots, s_{r}\right) \in$ $H^{0}\left(T, O_{T}(D)\right) \times \ldots \times H^{0}\left(T, O_{T}(D)\right)$. In the first place note that $D \in A_{T}$ implies $\operatorname{dim}_{\mathbf{K}} \mathrm{H}^{0}(S, F)=r$ by virtue of Lemua 2.11, and therefore by virtue of Lemma $3.2 \quad A u t_{S}^{0}(P(E)) \cong G(Y)=\{\sigma\{\sigma \in$ $\left.\operatorname{PGL}\left(x^{-1}\right)=A t_{S}\left(P_{S}^{r-1}\right), Y^{\sigma}=Y\right\}$ for the subscheme Y of $P_{T}^{Y^{-1}}$
! Y_{t} is a Fifpinptane of $\Psi_{k(t)}$ for any $t \in 1$, we can defence $a \operatorname{map} 1 \rightarrow t \longrightarrow$,
whose ideal in P_{T}^{r-1} is generated by $s_{1} \eta_{1}+\ldots+s_{r} \eta_{r}$, where $7_{1}, \ldots, \eta_{r}$ form a system of homogeneous coordinates of P_{S}^{r-1} (cf. Principle 2.5 and Principle 2.6), Since every $s_{1}(6), \ldots$, $s_{r}(t)$ is not zero for any $t \in T$, the rational map $\varphi: T \rightarrow t \longrightarrow$ ($\left.s_{1}(t), \ldots, s_{r}(t)\right) 6 P \cong P_{k}^{r-1}$ is a morphism. On the other hand, since ${ }_{Y_{i}} \in P$, where P is regarded as the dual space of P_{k}^{r-1}. This map is nothing but φ. Moreover the action of $\operatorname{PGL}(r-1)=$ $\operatorname{Aut}_{S}\left(P_{S}^{r-1}\right)=A u t_{k}\left(P_{k}^{r-1}\right)$ on $P_{S}^{r-1}=P_{k}^{r-1} \underset{k}{X} S$ induces that on the dual space P of P_{k}^{r-1} through contragradient linear trans \hat{V}^{f} formations. Thus the condition $Y^{\sigma}=Y$ for $\sigma \in \operatorname{PGL}(x-1)$ is equivalent to $x^{\sigma}=x$ for any $x \in \varphi(T)$ by the above action. This implies $G(x)=\left\{\left.\sigma\right|_{\sigma \in \operatorname{PGL}(r-1),} x^{\sigma=}=x\right.$ for any $\left.x \in \varphi(T)\right\}$. Assume $\mathrm{E} \in \mathrm{SR}^{r}(S, T, D)$, that is, s_{1}, \ldots, s_{r} are linearly independent in $H^{0}\left(T, O_{T}(D)\right)$, then $\varphi(T)$ is contained in no hyperplane of P, whence there exist linearly independent k-rational points $x_{1}, \ldots, x_{1-1}, x_{i+1}, \ldots, x_{r}$, then $\bigcup_{i=1}^{L_{i}} L_{i} \not \mathscr{P}(T)$ because L_{i} $\neq \varphi(T), 1 \leq Z_{i} \leq r$. Thus there exists a k-rational point x_{r+1}
$\left\{x_{1}, \cdots, x_{r} \operatorname{in} \varphi(T)\right.$. Let L_{i} be the linear subspace in P generated by,

```
In}\varphi(T)=\mp@subsup{\bigcup}{i=1}{M}\mp@subsup{L}{i}{
1inearly independent in P. We know therefore G(Y)={e} because
```



```
then B is simple. Now we have only to prove (11) because a simple
vector bundle is indecomposable (see Lemma 3.1, (ii)). It is easy,
```



```
decomposable. In fact if E E R (S,T, D) - SR
s
hyperplane H of P. Thus G(Y) }{{\sigma\inPGL(r-1)| \mp@subsup{x}{}{\sigma}=x fo
```



```
2 2, which asserts that B is decomposable by virtue of Lemma 3.1.
(1) is therefore proved. Next let us proceed to the proof of (1i).
We may assume that sr",',.+, s_ are linearly independent for
r'=r- r'. Since }\varphi(T) is contained in a linear subspace o
dimension r' - 1 of P and none of those of dimension r* - 2,
there are k-rational points }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{r}{
\varphi(\mp@subsup{x}{1}{}),\ldots, \varphi(\mp@subsup{x}{1}{}) are linearly independent in P. Put
```

$$
\xi_{i}=\sum_{j=1}^{r} s_{j}\left(x_{i}\right) 7_{j}\left(1 \leq i \leq r^{\prime}\right), \text { then } q_{1}, \ldots, 7_{r^{\prime \prime}}, \xi_{1}, \ldots, \xi_{r^{t}}
$$

are linearly independent over k because \quad rank $\left(s_{i}\left(x_{j}\right)\right)=r$ and
$\mathbf{s}_{1}, \ldots, s_{r^{\prime \prime}}$ depend on $s_{r}+1, \ldots, s_{r}$. Thus we can adopt
$7_{1}, \ldots, 7_{r^{11}}, \xi_{1}, \ldots, \xi_{r^{\prime}}$ as a homogeneous coordinate of $\mathbf{p}_{\mathbf{S}}^{\mathbf{r - 1}}$. Moreover Y is defined by $\mathrm{si}_{1} \xi_{1}+\ldots+\mathrm{s}_{\mathbf{r}}^{\prime}, \xi_{r},=0$ for some linearly independent $s_{1}^{\prime}, \ldots, s_{\mathbf{r}^{\prime}}^{\prime} \in H^{0}\left(T, O_{T}(D)\right)$ because $\mathbf{s}_{\mathbf{r}^{4}+1}, \ldots, \mathbf{s}_{\mathbf{r}}$ are linearly independent. There are therefore an afine open covering $\left\{U_{\lambda}=\operatorname{spec}\left(A_{\lambda}\right)\right\}_{\lambda \in \Lambda} \quad$ of S and a correspondence

$$
\begin{aligned}
& \left.\Lambda \rightarrow \lambda \longrightarrow \lambda\left(r^{\prime}-1\right)\right\} \subset\left\{1, \ldots, r^{\prime}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\zeta_{\lambda}\right], T \cap U_{\lambda}=\operatorname{spec}\left(A_{\lambda} / t_{\lambda} A_{\lambda}\right) \text { for some } t_{\lambda} \in A_{\lambda}, \\
& \xi_{\lambda}={ }_{0}^{(\lambda)} \xi_{1}+\ldots+a_{r^{\prime}}^{(\lambda)} \xi_{r^{\prime}} \text { for some } a_{1}^{(\alpha)}, \ldots, a_{r^{\prime}}^{(\lambda)} \in A_{n} \text { and }
\end{aligned}
$$

that the ideal of Y_{U} in $P_{S} \quad \mathbf{r}, \mathbf{U}_{\lambda}$ is generated by t_{λ}, Z_{λ}. Then

$$
X_{U}^{1}=\ln _{Y_{U}}^{r-2}\left(P_{S}^{r-1}\right)=\operatorname{Proj}\left(A,[\}_{\lambda}, \ldots,\right\}_{r^{\prime \prime}}, \xi_{\lambda(1)}, \ldots \ldots
$$

$\left.3_{\lambda\left(x^{\prime}-1 .\right)} \zeta_{\lambda}^{\prime}\right\rceil$ for $t_{\lambda} \zeta_{\lambda}^{\prime}=3_{\lambda}$ by virtue of Lemma 1.4. By the construction the ideals $I_{U_{\lambda}}, J_{U_{\lambda}}$ generated by $\left\{भ_{1}, \ldots, \mathcal{f}_{r^{\prime \prime}}\right\}$ $\left\{\xi_{\lambda(1)}, \ldots, \quad 3_{\lambda\left(r^{\prime}-1\right)} \zeta_{\lambda}\right\} \quad$ respectively define global
ideals, that is, there are ideals I, J in O_{X} for $X^{\prime}=\operatorname{lnf}_{Y}^{T-2}$ $\mathbf{P}_{\mathrm{S}}^{\mathrm{r}-1}$, with $\mathrm{IO}_{\mathrm{X}_{\mathrm{U}_{\lambda}}}=\mathrm{I}_{\mathrm{U}_{\lambda}}, \quad 30_{\mathrm{X}_{\mathrm{U}_{\lambda}}}=J_{\mathrm{U}_{\lambda}} \quad$ for any $\quad \lambda \in \lambda, \quad \mathrm{I}, \mathrm{J}$ define projective subbundle P_{1}, P_{2} of $X^{\prime}=P(E)$ such that. $P_{1} \cap P_{2}=\phi, \operatorname{dim} P_{1, s}+\operatorname{dim} P_{2, s}=r-2$, for any $s \in s$. Thus \mathcal{E} is isomorphic to $E_{1} \oplus E_{2}$ for $E_{1}=\pi_{*}^{1}\left(O_{P_{1}} \otimes O_{X}(1)\right), E_{2}=$ $\left.\pi_{*}^{\prime}{ }^{\left(O_{P_{2}}\right.}{ }^{\otimes} O_{X},(1)\right)$, where $\pi^{\prime}: X^{*} \longrightarrow S$ ts the structure morphism and O_{X}, (I) is the tautological linebundle of E. Since $7_{1}, \ldots, 7_{r}$ form a basis of E_{2} on U_{λ} for any $\lambda \in \Lambda$, E_{2} is isomorphic to $\mathrm{O}_{\mathrm{S}} \mathrm{gr}^{\prime \prime}$. On the other hand, since $\mathrm{B}_{\mathrm{K}}(1)$. ..., $\xi_{\lambda\left(r^{\prime}-1\right)}$, S_{λ}^{e} form a local basis of E_{1} on U_{λ}, E_{1} is a regular vector bundle defined by $\left(s_{1}^{\prime}, \ldots, s_{r^{\prime}}^{\prime}\right) \in H^{0}\left(T, o_{T}(D)\right) \times \cdots$ $H^{\circ}\left(T, O_{T}(D)\right)$ by virtue of Lemma 1.4 and Leman 2.2. E_{1} is contained in $S R^{\prime \prime}(S, T, D)$ because $S_{1}^{\prime}, \ldots, S_{r^{\prime}}^{\prime}$ are linearly independent.
q. e. d.

In [3] A. Grothendieck proved that every vector bundle on p_{k}^{1} is the direct sum of linebundles. In the same paper he posed a question whether this property characterizes P_{k}^{1} in the category

```
of projective variety over k. Van de Ven and J. Simonis solved
```

this problen in the non-singular case (see [17]). The above theorem
provides an answer of this problem in a stronger form.

Corollary 3.4.1. Let S be a non-singular projective variety
over k of demension n. If r is an integer greater than
$\max (n-1,1)$ and if $S+p_{k}^{l}$, then there is a simple vector
bundle of rank r on S.
Proof. If $n \geq 2$, then this is a direct corollary to Theorem
3.4 and Remark 2.15. It is well known that there is a stable vector
bundle on g if $n=1$ and $s_{f}^{\prime t} p_{k}^{1}$ (for example a nontrivial
extension E of L by O_{S} is stable for a linebundle L of
degree 1). And every stable vector bundle is simple ([14]).
q. e. d.

Remark 3.5. Our proof of Theorem 3.4 shows that without the assumption $D \in A_{T}$ (ii) is true if one defines $S R^{r}(S, T, D)$ as the set which congists of all elements in $\mathrm{H}^{\mathbf{r}}(\mathrm{S}, \mathrm{T}, \mathrm{D})$ defined
by Inearly independent (s_{1}, \ldots, s_{r}). (i) is not necessarily true withont the condition $D \in A_{T}$. But it would not be best to assume the condition because there is a simple regular vector bundle not satisfying the condition (see next section).

Example 3.6. For an ineducible conic c^{2} in P^{2} and a point $P \in C^{2}$ the unique element of $S R^{2}\left(P^{2}, C, P\right)=R^{2}\left(P^{2}, C^{2}, P \xi\right.$ is $0_{p} 2^{(1)} \oplus 0_{p_{2}}(1)$. Every element of $\mathrm{sR}^{2}\left(\mathrm{p}^{2}, \mathrm{c}^{2}, 2 \mathrm{P}\right)=\mathrm{R}^{2}\left(\mathrm{P}^{2}, \mathrm{c}^{2}, 2 \mathrm{p}\right)$ is indecomposable but not simple.

Proof. Assume that $E \in R^{2}\left(P^{2}, c^{2}, P\right)$ is defined by $\left(s_{1}, s_{2}\right)$
 divisor p_{i} on c^{2}. Take a point $Q \in c^{2}$ which is different from P_{1}, P_{2} and two ines $\sum_{j=0}^{2} a_{j}^{(j)} X_{j}=0(i=1,2)$ Then the subvariety v of $p_{p}^{1}=X$ defined by $\left.\left(\sum_{j=0}^{2} a_{j}^{(1)} x_{j}\right)\right\}_{1}+\left(\sum_{j=0}^{2} a_{j}^{(2)} x_{j}\right) / h_{2}$ $=0$ with a system of homogeneous coordinates 7_{1}, 7_{2} of x is non-singular and contains the subvariety Y of $P_{C 2}^{l}$ defined by ${ }^{s}{ }_{1} 7_{1}+s_{2} 7_{2}=0$. It is easy to check that proper transform of v by $\operatorname{elr} \mathrm{Y}_{\mathrm{Y}}^{0}$ is a section of $\theta \ln _{Y}^{0}(X)=P(\mathrm{E})$. Thus B is an
extengion of two linebundles. On the other hand, every extension of two linebundles is trivial on P^{2} because $H^{2}\left(P^{2}, L\right)=0$ for any linebundie L on P^{2}. E is therefore decomposable. Moreover
$c_{1}(\mathrm{E})=2, c_{2}(\mathrm{E})=1$ by virtue of Corollary 2.19.1. Thus $\mathrm{E} \equiv$ $O_{F} 2^{(1) \oplus O_{P} 2^{(1)} . ~ s i n c e ~} c_{1}(E)=2, c_{2}(E)=2$ for $E \in R^{2}\left(P^{2}\right.$, $\left.c^{2}, 2 \mathrm{P}\right)$ by virtue of Corollary $2.19 .1, E$ is indecomposable. That E is not simple will be proved in the next section (see

Example 3.11).
q. e. d.
§2. Simple regular vector bundles of rank 2.

In the rank 2 case we can study more fully simple regular vector
bundles. A distinguished fact on a vector bundle E of rank 2 is
$P(E) \cong P(E)$ with the dual vector bundle E^{V} of E. In fact

Lemma 3.7. If E is a vector bundle of rank 2 on a scheme
X, then $E^{V} \geq E\left(S \operatorname{det} E V^{V}\right.$

Proof. Let $A_{i j}$ be transition matrices of E, then those
of E are $t_{A_{i j}}^{-1}=$ the contragradient of $A_{i j}$. Then the isomoxphism f:E det $\mathrm{E}^{\vee} \rightarrow \mathrm{E}^{\wedge}$ can be given by the following matrix identity ;

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot A_{i j} \cdot\left(\operatorname{det} A_{i j}\right) \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)={ }^{t_{A_{i j}}^{-1}} \cdot
$$

The following lemma is due to Schwarzenberger ([/8] Theorem 1).

Lemma 3.8, Let E be a vector bundle of rank 2 on a nongingular projective variety X over k. Then the following two conditions are equivalent to each other
(1) E is not simple.
(ii) There is a linebundle L on X such that for $E^{\prime}=E$ © L

$$
\operatorname{dim}_{k} H^{0}\left(X, E^{\prime}\right)>0, \quad \operatorname{dim}_{k} H^{0}\left(X, E^{\prime}\right)>0 .
$$

Now assume that $E \in R^{2}(S, T, D)$ is defined by Y. Then the tautological linebundle of E on $P(E)=\operatorname{oln}_{Y}^{0}\left(P_{S}^{1}\right)=X(Y)$ is $O_{X(Y)}{ }^{\left(H_{Y}^{\prime}\right)}$ in the notation of chapter II (see Lemama 2.2), and det ${ }^{\mathrm{V}} \approx \mathrm{O}_{\mathrm{S}}(-\mathrm{T})$ by virtue of Corollary 2.18.1. Applying the above lemma E is not simple if and only if

$$
\begin{aligned}
& \operatorname{dim}_{K} H^{0}\left(X(Y) \cdot o_{X(Y)}\left(H_{Y}^{Y}+\pi_{Y}^{-1}\left(D_{0}\right)\right)\right)>0, \\
& \operatorname{dim}_{H^{H}} H^{0}\left(X(Y), o_{X(Y)}\left(H_{Y}^{\prime}-\pi_{Y}^{-4}\left(T+D_{0}\right)\right)>0\right.
\end{aligned}
$$

for some divisor D_{0} on S because $H^{0}\left(S, E \& O_{S}\left(D_{0}\right)\right)=H^{0}(X(X)$,
$\left.\left.O_{X(Y)}{ }_{Y}^{\left(H_{Y}^{1}\right.}+\pi_{Y}^{-1}\left(D_{0}\right)\right)\right), H^{0}\left(S,\left(E め O_{S}\left(D_{0}\right)\right)\right)=H^{0}\left(X(Y), O_{X(Y)}\right.$
$\left(H_{Y}-\pi_{Y}^{-1}\left(T+D_{0}\right)\right)$ by virtue of Lemma 3.7. Thus E is not simple if and only if there are positive divisors $A_{\mathcal{L}}^{\prime}$, A_{2}^{\prime} with $A_{1}^{\prime}-\pi_{Y}^{-1}(T)$ $\neq A_{2}-\pi_{Y}^{-1}(T) \neq 0$ and non-negative integers r_{1}, r_{2} such
that

$$
A_{1}^{\prime}+x_{1} K_{Y}^{-1}(T) \sim H_{Y}^{\prime}+\pi_{Y}^{-1}\left(D_{0}\right), \quad A_{2}^{\prime}+r_{2}^{\pi_{Y}^{-1}}(T) \sim H_{Y}^{\prime}-\pi_{Y}^{-1}\left(T+D_{0}\right)
$$

We may assume that $D_{0} t^{T}$ and replace T by a suitable T^{\prime} such that $T^{\prime} \phi T, T \sim T^{\mathbf{t}}$, because S is projective, Put

$$
A_{i}=f_{Y}\left[E_{Y}^{-1}\left[A_{i}^{t}\right]\right] \text { and } \tilde{H}=f_{Y}^{-1}\left[H_{0}\right]
$$

(a) Assume that A_{1}^{e} contains the center Y^{1} of $\left(e l \|_{Y}^{0}\right)^{-1}$: since $g_{Y}^{-1}\left[A_{i}^{\prime}\right]+\bar{X}_{T}+r_{1}\left(\pi_{Y} \cdot g_{Y}\right)^{-l}\left(T^{r}\right) \sim \tilde{H}+\bar{X}_{T}+\left(\pi_{Y} \cdot g_{Y}\right)^{-1}\left(D_{0}\right)$ and $f_{Y}^{-1}\left(H_{0}+\mathbf{p}_{\mathbf{T}}\right)=\stackrel{\sim}{H}+\bar{X}_{T}+E_{Y}$ by virtue of Lemana 2.1, we get

$$
f_{Y}^{-1}\left(H_{0}+P_{T}^{1}\right) \sim g_{Y}^{-1}\left[A_{1}\right]+\bar{X}_{T}+r_{1}\left(\pi f_{Y}\right)^{-1}\left(T^{r}\right)-\left(\pi \cdot f_{Y}\right)^{-1}\left(D_{0}\right)+E_{Y}
$$

(note $\left.\pi \cdot f_{Y}=\pi_{Y} \cdot g_{Y}\right)$. on the other hand, $f_{Y}^{-1}\left(A_{I}+P_{T}^{1}+r_{1} \pi^{-1}\right.$
$\left.\left(T^{\prime}\right)-\pi^{-1}\left(D_{0}\right)\right)=g_{Y}^{-1}\left[A_{i}\right]+\bar{X}_{T}+E_{Y}+r_{1}\left(\pi f_{Y}\right)^{-1}\left(T^{\prime}\right)-\left(\pi \cdot f_{Y}\right)^{-1}\left(D_{0}\right)$
by virtue of Lemma 2.1. Thus $f_{Y}^{-1}\left(\mathrm{H}_{0}+\mathrm{P}_{\mathrm{T}}^{1}\right) \sim \mathrm{P}_{\mathrm{Y}}^{-1}\left(\mathrm{~A}_{\mathbf{1}}+\mathrm{P}_{\mathrm{T}}^{\mathbf{1}}+\mathrm{r}_{1} \pi^{-1}\left(\mathrm{~T}^{+}\right)\right.$

- $\left.\pi^{-1}\left(D_{0}\right)\right)$, which implies $A_{1} \sim H_{0}-r_{1} P_{T}^{1}+\pi^{-1}\left(D_{0}\right)$. since $A_{1}>0$, there is a positive divisor D_{1} with $D_{1} \sim D_{0}-r_{1} T$.
(b) Assume that $A_{2}^{\prime} \supset Y^{\dagger}$: By a similar argument as above we
have $A_{2} \sim H_{0}-r_{2} P_{T}^{1}-\pi^{-1}\left(T+D_{0}\right)=E_{0}-\left(r_{2}+1\right) P_{T}^{1}-\pi^{-1}\left(D_{0}\right)$,
whence there is a positive divisor D_{2} with $D_{2} \sim-\left(r_{2}+1\right) T-D_{0}$. (a') Assume that $A_{i}^{\prime} ゆ \mathrm{~F}^{\prime}$: since $\mathrm{g}_{\mathrm{Y}}^{-1}\left[A_{\mathrm{i}}\right]+\mathrm{r}_{\mathrm{I}}\left(\pi_{\mathrm{Y}} \cdot \mathrm{g}_{\mathrm{X}}\right)^{-1}\left(\mathrm{~T}^{\prime}\right)$
$\sim \tilde{H}+\bar{X}_{T}+\left(\pi_{Y} \cdot g_{Y}\right)^{-1}\left(D_{0}\right)$ and $f_{Y}^{-1}\left(A_{1}+r_{1} \pi^{-1}\left(T^{+}\right)-\pi^{-1}\left(D_{0}\right)\right)=$
 2.1, we have $f_{Y}^{-1}\left(\mathrm{H}_{0}+P_{T}^{1}\right) \sim f_{T}^{-1}\left(A_{1}+r_{1} \pi^{-1}\left(T^{\prime}\right)-\pi^{-1}\left(D_{0}\right)\right)$. Thus $A_{1} \sim H_{0}-\left(r_{1}-1\right) P_{T}^{1}+\pi^{-1}\left(D_{0}\right)$. since $A_{1}>0$, there is a positive divisor D_{1}^{\prime} with $D_{1}^{\prime} \sim D_{0}-\left(r_{1}-1\right) T$.
(b') Assume $A_{2}^{\prime} \ngtr Y^{\prime}$: By a similar argument as above we have $A_{2} \sim H_{0}-r_{2} P_{T}^{P}+P_{T}^{1}-\pi^{-1}\left(T+D_{0}\right)=H_{0}-r_{2} P_{T}^{I}-\pi^{-1}\left(D_{0}\right)$, whence there is a positive divisor. D_{2}^{\prime} with $\mathrm{D}_{2}^{\prime} \sim-\mathrm{r}_{2}{ }^{\mathrm{T}}-\mathrm{D}_{0}$.

We should therefore consider the following cases.
(1) The case where (a) and (b) are satisfied; Since - ($r_{1}+$ $\left.r_{2}+1\right) T \sim D_{1}+D_{2}>0, \quad r_{1}+r_{2}+1>0, T \neq 0$ and since S is projective, we have a contradiction.
(2) The case where (a) and (b') are satisfied: Since
$-\left(r_{1}+r_{2}\right) T \sim D_{1}+D_{2}^{\dagger}>0$, and r_{1}, r_{2} are non-negative integers, we get $r_{1}=r_{2}=0$, whence $D_{0} \sim 0$. Thus $A_{2} \sim H_{0}$, and by virtue of Lemma 2.1. $A_{2} \supset Y$. Hence $Y=P \times T \subset P_{T}^{1}$ for some point $P \in P^{1}$, which implies $E \in R^{2}(S, T, 0)$. Therefore $E \cong O_{S} \notin O_{S}(T)$ and this is not simple.
(3) The case where (a^{1}) and (b) are satisfied ; Since $-\left(r_{1}+r_{2}\right)$ $T \sim D_{1}^{\prime}+D_{2}>0$ and r_{1}, r_{2} are non-negative integers, we get $r_{1}=r_{2}=0, \quad D_{0}+T \sim D_{1}^{\prime}>0, \quad-\left(D_{0}+T\right) \sim D_{2}>0$, whence $\quad D_{0} \sim-T$. Thus $A_{1} \sim H_{0}$ and by virtue of Lemma $2.1 \quad A_{1} \supset Y$. Hence E $\mathrm{O}_{\mathrm{S}} \mathrm{P} \mathrm{O}_{\mathrm{S}}(\mathrm{T})$ and E is not simple.
(4) The case where (a°) and (b^{+}) are satisfied : Since
(1- $\left.r_{1}-r_{2}\right) T \sim D_{1}^{\prime}+D_{2}^{\prime}>0$, we get $1-r_{1}-r_{2} \geqslant 0$. If 日ither
r_{1} or r_{2} is equal to l, then by a similar argament as above we
have $E \cong O_{S} \oplus O_{S}(T)$. Suppose $r_{1}=r_{2}=0$, then $D_{2}^{\prime} \sim-D_{0}$, whence $D_{1}^{\prime} \sim T-D_{2}^{\prime}$. Thus there are pogitive divisors $D_{1}^{\prime}, D_{2}^{\prime}$ on S and A_{1}, A_{2} on P_{S}^{1} such that $D_{1}^{\prime}+D_{2}^{\prime} \sim T, A_{1} \sim H_{0}+\pi^{-1}\left(D_{1}^{\prime}\right), A_{2} \sim$ $H_{0}+\pi^{-1}\left(D_{2}^{\prime}\right)$ and both A_{1} and A_{2} contain Y. Conversely if these conditions are satisfied, then the calculation in (a^{\prime}), (b^{+})
shows that $A_{i}^{\prime} \sim H_{Y}^{\prime}+\pi_{Y}^{-1}\left(D_{0}\right), A_{2}^{\prime} \sim H_{Y}^{\prime}-\pi_{Y}^{-1}\left(T+D_{0}\right)$ for $A_{i}^{\prime}=$ $\operatorname{elm}_{Y}^{0}\left[A_{i}\right]$ and $D_{0}=D_{1}^{\prime}-T$.

Consequently we have

Lemma 3.9. Let $\mathrm{R} \in \mathrm{R}^{2}(\mathrm{~S}, \mathrm{~T}, \mathrm{D})$ be defined by Y. E is not simple if and only if there are positive divisors D_{1}, D_{2} on S and A_{1}, A_{2} on P_{S}^{1} such that $D_{1}+D_{2} \sim T, A_{1} \sim H_{0}+\pi^{-1}\left(D_{1}\right)$, $A_{2} \sim H_{0}+\pi^{-1}\left(D_{2}\right)$ and that both A_{1} and A_{2} contain $Y . \quad$.

Proof. Note that if $D=0$, that $1 s, E \cong O_{S} \oplus O_{S}(T)$, then the above conditions are satisfied by $D_{1}=0, \quad D_{2}=T, \quad A_{1}=H_{0}, \quad A_{2}=$ $H_{0}+\pi^{-1}(T)$. Then our assertion is clear by virtue of the argument before this lemma.
q. e. d.

Theorem 3.10. Assume that $E \in R^{2}(S, T, D)$ is defined by

$$
\begin{aligned}
& \left(s, g^{*}\right) \in H^{0}\left(T, O_{T}(D)\right) \times H^{0}\left(T, O_{T}(D)\right) \text { (cf. Principle 2.6), E is } \\
& \text { not simple if and only if there are positive divisors } C_{1}, C_{1}^{+}, C_{2}, C_{2}^{\prime}
\end{aligned}
$$

such that $C_{1}+C_{2} \dot{\sim}, C_{1} \sim C_{i}^{i}(i=1,2)$ and that $C_{i} \cdot T=$

$$
|s|+B_{i}, C_{i} \cdot T=\left|s^{*}\right|+B_{i}(1=1,2) \text { for positive divisors } B_{i}
$$

\therefore on T, where $|s|$ (or, $\left|s^{1}\right|$) is the divisor defined by $s=0$ (or,

$$
\mathrm{s}^{\prime}=0, \text { resp. }
$$

proof. V is defined by $Y: s \overline{7}_{0}+s: \overline{7}_{1}=0$, where $\overline{7}_{0}, \bar{\zeta}_{1}$ are a homogeneous coordinate of P_{T}^{1} induced from o homogeneous coordinate $7_{0,} 7_{1}$ of P_{S}^{1}. Assume that E is not simple, then there are $D_{1}, D_{2}, A_{1}, A_{2}$ satisfying the conditions in Lemma 3.9
with the same Y as above. A_{i} is defined by $s_{10} 7_{0}+s_{i 1} \gamma_{1}=0$
for $s_{i j} \notin H^{0}\left(S, O_{S}\left(D_{i}\right)\right)$. Let ${\overline{G_{1 j}}}$ be the element of $H^{0}\left(T, O_{T}\left(D_{i} \cdot T\right)\right)$
induced from $s_{1 j}$. Then $A_{i} \supset Y$ implies $\bar{s}_{10} \overline{7}_{0}+\bar{s}_{11} \overline{7}_{1}=$
$a_{i}\left(s \overline{7}_{0}+s^{\circ} \overline{7}_{1}\right)$ for some $a_{i} \in H^{0}\left(T, O_{T}\left(D_{i} \cdot T-D\right)\right)$. Thus if one
puts $\left|s_{10}\right|=C_{i},\left|s_{11}\right|=C_{i}$, then $C_{i}, T=|s|+B_{i}, \quad G_{i} \cdot T=$
$\left|g^{\prime}\right|+B_{i}\left(B_{i}=\left|a_{i}\right|\right)$. Since $C_{1} \sim G_{i} \sim D_{i}$, we know $T \sim C_{1}+C_{2}$.

By virtue of Remark 2,16 E is not simple if $p=0$. Thus we may assume that $D \neq 0$.

Conversely assume that $C_{1}, C_{1}^{\prime}, C_{2}, C_{2}$ exist. The conditions $C_{i} \cdot T=|s|+B_{i}, G_{i} \cdot T=\left|s^{*}\right|+B_{i}$ assert that there are $g_{i j} \in H^{0}\left(S, O_{S}\left(G_{i}\right)\right)(j=0, l)$ and $a_{i} \in H^{0}\left(T, O_{T}\left(B_{1}\right)\right)$ such that $\left|s_{i 0}\right|=C_{i}, \quad\left|s_{11}\right|=c_{i}, \quad\left|a_{i}\right|=s_{i}$ and that $z_{i 0} \overline{7}_{0}+\bar{s}_{i 1} \bar{T}_{1}=$ $a_{i}\left(s \bar{\gamma}_{0}+s \bar{\gamma}_{1}\right)$. Let A_{i} be the positive divisor on P_{S}^{1} defined by $s_{i 0} 70+s_{i 1} 71=0$, then $A_{i} \supset Y$. Thus $D_{i}=C_{i}, A_{i}$ satisfy the conditions in Lemma 3.9, which fmplies that E is not simple. q.e. d.
(D*ロ)
Corollary 3.10.1. $E \in R^{2}(S, T, D)^{2}$ is simple if $K^{0}\left(T, O_{T}\right.$ $\left.\left(T^{2}-2 D\right)\right)=0$.

$$
\text { and } 0+0
$$

Proot. If E is not simple, then there are positive divisors C_{1}, C_{2} such that $C_{i} \cdot T \sim D+B_{i}, B_{i}>0$ on T and $C_{1}+C_{2} \sim T$ (see Theorem 3.10). Thus $\left.T^{2}-2 D \sim\left(C_{1}+C_{2}\right) \cdot T\right)-2 D \sim B_{1}+B_{2}>$
0. We have therefore $H^{0}\left(T, O_{T}\left(T^{2}-20\right)\right) \neq 0$.
q. e. d.

Example 3.11. Let $G^{\text {h }}$ be a non-singular curve of degree
n in P^{2}. Every element of $R^{2}\left(P^{2}, C^{2}, 2 p\right)$ is indecomposable
and not simple. Every element of $R^{2}\left(P^{2}, C^{3}, P_{1}+P_{2}+P_{3}\right)$ is not simple if and only if P_{1}, P_{2}, P_{3} are collinear.

Proof. Assume that $E \in R^{2}\left(P^{2}, C^{2}, 2 P\right)$ is defined by (s_{1}, s_{2}) $H^{0}\left(C^{2}, O_{G 2}(2 P)\right) \times H^{0}\left(G^{2}, O_{C}{ }^{2(2 P)}\right)$. Put $\left|s_{1}\right|=P_{i 1}+P_{i 2} . \quad$ Take the line ℓ_{1} going through $P_{i 1}$ and $P_{i 2}$ (if $P_{i 1}=P_{i 2}, \boldsymbol{l}_{1}$ touches to C^{2} at $\left.P_{i 1}\right)$. Then $l_{1}=C_{1}=C_{2}, \ell_{2}=C_{1}^{\prime}=C_{2}^{\prime}$ satisfy the conditions for s_{1}, s_{2} in Theorem 3.10. Let us show the latter part. Note that P_{1}, P_{2}, P_{3} are collinear if and only if Q_{1}, Q_{2}, Q_{3} are collinear for any element $Q_{1}+Q_{2}+Q_{3}$ of $\left|P_{1}+P_{2}+P_{3}\right|$. Assume that $E \& R^{2}\left(P^{2}, C^{3}, P_{1}+P_{2}+P_{3}\right)$ is defined by $\left(s_{1}, s_{2}\right) \in H^{0}\left(\mathcal{C}^{3}, O_{C^{3}}\left(P_{1}+P_{2}+P_{3}\right)\right) \times H^{0} G^{3}, O_{C}{ }^{3}$ $\left.\left(P_{1}+P_{2}+P_{3}\right)\right)$ with $\left|s_{i}\right|={ }_{j}^{3}{ }_{=1}^{3} Q_{i j}$. If E is not simple, then one of C_{i} in Theorem 3.10 is a line, whence $Q_{i 1}, Q_{i 2}, Q_{i 3}$ are collinear. Assume P_{1}, P_{2}, P_{3} collinear, then $Q_{i 1}, Q_{i 2}, Q_{i 3}$ ares collinear. Then $l_{1}=C_{1}, l_{2}=C_{1}, 2 l_{2}=C_{2}, 2 l_{2}=C_{2}^{\prime}$ satisfy the conditions of Theorem 3.10, whence G is not simple.
q. e. d.

Take a line l_{i} going through $\theta_{i 1}, \theta_{i 2}, \theta_{i 3}$.

As a matter of fact if P_{1}, P_{2}, P_{3} are not collinear, then every element of $R^{2}\left(P^{2}, C^{3}, P_{1}+P_{2}+P_{3}\right)$ is isomorphic to the tangent bundle of P^{2} (see Example 4.8).

Example 3.12. Let T be a non-singular surfaces of degree 4 of P^{3} which contains a line l and let $\left\{H_{\lambda}\right\}_{\lambda \in P 1}$ be the linear pencil which consist of hyperplanes of P^{3} containing l. Then . $\boldsymbol{H}_{\lambda} \cdot T=\ell+C_{\lambda}, \quad C_{\lambda} \cdot G_{\mu}=0$ because $P_{A}\left(C_{\lambda}\right)=1, \quad K_{T} \sim 0$ with a canonical divisor K_{T} of T. Thus $R^{2}\left(P^{3}, T, 2 G_{\lambda}\right) \neq \phi$ by virtue of Remark 2.16. Let us show that every element of $R^{2}\left(P^{3}, T, 2 C_{\lambda}\right)$ is indecomposable and not simple.

Proof. Since $\quad C_{\lambda}{ }^{2}=0,\left|V_{\lambda}\right|=\left\{D_{\lambda \mu}={ }^{\prime} C_{\lambda}+C_{\mu}\right\}_{\lambda, \mu} \in P^{1}$. Assume that. $B \in R^{2}\left(P^{3}, T, 2 O_{\lambda}\right)$ is defined by $\left(s_{1}, s_{2}\right) \in H^{0}\left(T, O_{T}\left(2 C_{\lambda}\right)\right) X$ ${ }^{H^{0}}\left(T, O_{T}\left(2 C_{\lambda}\right)\right)$ with $\left\{s_{1}\right\}=D_{\lambda_{1} \mu_{i}}$. Then $G_{j}=H_{\lambda_{1}}+H_{\mu_{1}}, C_{j}=H_{\rangle_{2}}+H_{\mu_{2}}(j=$ 1, 2). satisfy the conditions in Theorem 3.10. Thus E is not simple. Since $c_{1}(E)=T, \quad c_{2}(E)=2 c_{\lambda}, \quad \operatorname{deg} c_{1}(E)=4$ and deg $c_{2}(E)=6$, whence E is indecomposable.
q. e. d.

As an application of the above theorem we shall give another proof of a theoren of Schwarenwerger ([if) Theorem 8).

Theorem 3.13. Let S be a non-aingular projective surface over k, c_{1} a divisor on s and $l_{e t} c_{2}$ be an integer. For $\mathbf{r}>1$, there exists a non-simple vector bundle of rank r on S with Chern classes c_{1}, c_{2}.

In order to prove the theorem we need a lemme.

Lemma 3.1.4. Let H be a very ample divisor on a non-singular projective surface 5 and let x_{1}, \ldots, x_{n} be matually distinct points on S. There exists a positive integer a_{0} such that for any $a \geq a_{0}$ there is a non-singular irreducible member of itan \mid going throagh all of x_{1}, \ldots, x_{n}.

Proof, Let $f: S^{*} \rightarrow S$ be the blowing up with centexs x_{1}, \ldots, x_{n} and let E_{1} be the exceptional curve $f^{-1}\left(x_{1}\right)$. Then $O_{S^{+}}\left(-\left(E_{1}+\ldots+E_{n}\right)\right.$ is f-very ample (B, G. A. Chap. II, 8.1.7). Since H is very ample, there exists a positive integer a_{0} such
that $O_{S^{i}}\left(-\left(E_{1}+\ldots+E_{n}\right)\right) \otimes f^{*}\left(O_{S}(H)^{\otimes n}\right)=O_{S^{\prime}}\left({ }^{\left(a f^{-1}(H)-\left(E_{1}+\ldots+E_{n}\right)\right)}\right.$ is very ample for any $a \geq a_{0}$ (\mathcal{L}. G. A. Chap. II, 4.4.10). Then a general member H^{\prime} of $\left|\mathrm{af}^{-1}(\mathrm{H})-\left(\mathrm{E}_{1}+\ldots+\mathrm{E}_{\mathrm{n}}\right)\right|$ is non-singular irreducible. Since $\left(H^{\prime}, E_{1}\right)=\left(a f^{-1}(H)-\left(E_{1}+\ldots+E_{n}\right), E_{1}\right)=1$, $f\left(H^{\prime}\right)$ goes through all X_{i} with multiplicity 1. Thus $f\left(H^{*}\right)$ is non-singular irreducible because $S^{2}-{\underset{i}{U}}_{\underline{n}}^{n} E_{i}$ is isomorphic to $s-\left\{x_{1}, \ldots, x_{n}\right\}$. Clearly $f\left(H^{\prime}\right) \sim a H, f\left(B^{\prime}\right)$ is therefore a desired menter of $|\mathrm{aH}|$.
q. e. d.

Proof of Theorem 3.13. For $r>2$ and vector bundle E of
 we have onl.y to prove the theorem in the case of $\mathbf{r}=2$. Let H be a very ample divisor on S with $(H, H)=h$ and let n be a nonnagative integer. Take integers α, β such that $\alpha \geq 0,0 \leq \beta<h$, $n=\alpha h+\beta$. Let $H_{i}(1 \leq i \leq 4)$ be general menbers in $|\mathrm{H}|$ such that $H_{1} \cdot H_{2}=\sum_{1=1}^{h} x_{i}, H_{3} \cdot H_{4}=\sum_{j=1}^{h} y_{i}$ with mutually distinet
points $x_{I}, \ldots, x_{h}, y_{1}, \ldots, y_{h}$. Then by virtue of Lemma 3.14 there exists a positive integer such that for any $a \geq a_{0}$ there is a non-singular irreducible member of $\mid \mathrm{aH} \|$ going through all of $x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{h-\beta}$. Take such a member H^{\prime} for $a=2 r-1 \geq$ $\max \left(a_{0}, 4 \alpha+3\right)$ with an even integer r. We may assume that H^{t} goes through none of $y_{h-\beta+1}, \ldots, y_{h}$. If $H_{i} \cdot H^{+}=\sum_{i=1}^{h} x_{i}+{\underset{k=1}{(2 r-2) h} z_{i k}, ~}_{z_{i k}}$ $(i=1,2), H_{i} \cdot H^{\prime}=\sum_{j=1}^{h-1} y_{j}+\sum_{k=1}^{(2 r-2) h+\rho} w_{i k}(i=3,4)$, then $A_{1}=$
 and $z_{1 k_{1}} \neq z_{2 k_{2}}\left(1 \leq k_{1}, k_{2} \leq(2 r-2) h\right), w_{1 h_{1}} \neq w_{2} \mathbf{g}_{2}\left(1 \leq \hat{P}_{1}\right.$, $l_{2} \leq(2 \mathrm{r}-2) \mathrm{n}+\beta$). Take another general members H_{5}, H_{6} in $|\mathrm{H}|$ such that $A_{1}^{\prime}=H_{5} \cdot H^{\prime}$ and $A_{2}^{\prime}=H_{6} \cdot H^{\prime}$ contain no common point, and put $D_{1}=\propto A_{i}^{\prime}+\left(\frac{x}{2}-\alpha-1\right) A_{1}+B_{1}(i=1,2)$. Then D_{1} and D_{2} contain no common point and $D_{1} \sim D_{2}$, whence $R^{2}\left(S, H^{*}, D_{1}\right) \neq \varnothing$. The element E of $K^{2}\left(G, H^{\prime}, D_{1}\right)$ defined by $\left(s_{1}, s_{2}\right) \leftarrow H^{0}\left(H^{\prime}, O_{H^{\prime}}\left(D_{1}\right)\right) \times H^{0}\left(H^{t}, O_{H^{\prime}}\left(D_{2}\right)\right)$ with $\left|s_{1}\right|=D_{1}$ $(i=1,2)$ is not simple because $C_{1}=\alpha H_{5}+\left(\frac{r}{2}-\alpha-1\right) H_{1}+H_{3}$, $c_{1}^{\prime}=\alpha H_{6}+\left(\frac{r}{2}-\alpha-1\right) H_{2}+H_{4}, C_{2}=(\alpha+r-1) H_{5}+\left(\frac{r}{2}-\alpha-1\right) H_{1}+H_{3}$,

```
G1}=\alpha\mp@subsup{H}{6}{}+(r-1)\mp@subsup{H}{5}{}+(\frac{r}{2}-\alpha-1)\mp@subsup{H}{2}{}+\mp@subsup{H}{4}{}\mathrm{ obviously satisfy the
conditions of Theorem 3.10. On the other hand, ccl(E') = (2x - 1)H,
c}\mp@subsup{2}{}{(\mp@subsup{E}{}{\prime})}=\alpha(2r-1)h+(\frac{x}{2}-\alpha-1)(2x-2)h+(2r-2)h+\beta
r'h - rh + < h + \beta by virtue of Corollary 2.18.1 and Corollary 2.19.1.
```



```
\alphah}+\beta=n\mathrm{ . Therefore if H is'very ample divisor on S and if
n is a non-negative integer, thea there is a non-simple vector
bundle E of rank 2 on S with col(E)=H, c
c}\mp@subsup{1}{1}{\prime},\mp@subsup{c}{2}{}\mathrm{ , take a very ample divisor H" and a positive integer t
```



```
H") = m>0 (these conditions are satisfied if one takes sufficiently
large r for a very ample divisor H"). As for these H, n there
```



```
=n by virtue of the above argument. Then ccil
c
vector bundle.
```

 q. e. d.
 Chapter IV. Some special cases.

In this chapter we shall study some special vector bundies on gone special algebraic varleties, along the line developed in the preceding three chapters.
\oint 1. Tangent bundie of $\mathbf{P}_{\mathbf{k}}$.

Let T_{X} be the tangent bundle of a non-singular variety X over k. Then we have

Theorem 4.1. Let H be an arbitrary hyperplane of P_{k}. Then $R^{n}\left(P_{k}^{n}, H, H^{2}\right)$ consists only of one element $T_{P_{k}}{ }^{(-1)}$. Proof. Let P be the dual space of P_{k}^{n}, then $\pi: X=$ $\mathbf{P}_{\mathbf{k}}^{\times} \mathbf{P}_{\mathbf{k}}^{\mathbf{n}} \longrightarrow \mathbf{P}_{\mathbf{k}}^{\mathbf{n}}$ is the trivial $P^{\mathbf{n}}$ mundle on $\mathrm{P}_{\mathbf{k}}^{\mathbf{n}}$. On the other band, the P^{n-1} bundle $\pi^{\prime}: Y=P\left(T_{P_{k}}\right) \longrightarrow p_{k}^{n}$ may be regarded as the bundle whose fibre $\pi^{1-1}(x)$ at x is ($n-1$-dimensional projective space consisting of all hyperplanes in P_{k}^{n} going throigh x. Thus Y is naturally a subbundle of X. Take linearly independent points x_{1}, \ldots, x_{n} in H. The set consisting of all hyperplanes
going through x_{i} (for each fixed i) forms a hyperplane z_{i} in F. Put $H_{i}=Z_{i} X_{k} P_{k}^{n}$. Let us consider $H_{1} \ldots \ldots H_{n} \cdot Y$ in Y. since $\pi^{1-1}(y) \cap H_{i}=\left\{\right.$ hyperplanes of P_{k}^{n} going through x_{i} and $\left.y\right\}$, $\pi^{-1}(y) \cap\left(\bigcap_{i=1}^{n} H_{i}\right)$ is not empty if and only if y is contained in H; and if $y \in H$, then $\mathbb{T}^{-1}(y) \cap\left({\underset{i}{n})_{1}^{n}}_{H_{i}}\right)$ is the point corresponding
 such that H is defined by $x_{0}=0$ and let $\uparrow 0, \ldots, \eta_{n}$ be the Aystam of homogeneous coordinate of P induced froa X_{0}, \ldots, X_{n}. Let U_{i} be the affine open set of p_{k}^{n} defined by $X_{i} \neq 0$ and put $\xi_{j}^{i}=$ x_{i} / X_{j}. We may assume that z_{i} is defined by $7_{i}=0$. On the other hand, $Y_{U_{i}}$ is defined by $\sum_{j=0}^{n} T_{j} 3_{i}^{j}=0$ in $X_{U_{i}}$. Thus H_{1}, \ldots, H_{n}, y are transversal to each other at any point of (${ }_{i}^{n}{ }_{=0}^{H_{i}}$) \mathbf{Y} and $H^{\prime}=H_{1} \cdots H_{n} \cdot Y$ is defined by the ideal generated by $\xi_{1}^{0}, 7_{1}, \ldots, 7_{n}$, By virtue of Proposition 1.9 we know therefore $\operatorname{elm}_{H}^{0},(X) \geqslant P_{k}^{n-1} \underset{k}{x} P_{k}^{n}$. Let $H^{\prime \prime}$ be the center of $\left(e l m_{H}^{0}\right)^{-1}$, then $H^{\prime \prime} \subset P_{k}^{n-1} X_{k} H$. Since the regular vector bundle E defined by $H^{\prime \prime}$ is 1somorphic to $T_{P_{k}^{n}}(r)$ and since $c_{1}(E)=H$, we have $E \cong T_{P_{k}}^{n(-1)}$.

```
Moreover, since \(c_{2}(E)=c_{2}\left(T_{P_{n}}(-1)\right)=H^{2}, \quad T_{P_{k}}{ }^{( }{ }^{(-1)}\) is contained in
\(R^{n}\left(P_{K}^{n}, H, H^{2}\right)\). Conversely, if \(E \in R^{n}\left(P_{k}^{n}, H, H^{2}\right)\) is defined by
\(\left(s_{1}, \ldots, s_{n}\right) \in H^{0}\left(H, O_{H}\left(H^{2}\right)\right) \times \ldots \times H^{0}\left(H, O_{H}\left(H^{2}\right)\right)\), then \(s_{1}, \ldots, s_{n}\)
are linearly independent because if \(s_{1}+\ldots, s_{n}\) are linearly dependent,
\(s_{1}(x)=\cdots=s_{n}(x)=0\) for some \(x \in H\). Thus \(S R^{n}\left(P_{k}^{n}, H, H^{2}\right)=\)
\(\mathrm{R}^{\mathrm{n}}\left(\mathrm{P}_{\mathrm{k}}^{\mathrm{n}}, \mathrm{H}, \mathrm{H}^{2}\right)\) when one defines \(\mathrm{SR}^{\mathrm{n}}\left(\mathrm{P}_{\mathrm{K}}^{\mathrm{n}}, \mathrm{H}, \mathrm{H}^{2}\right)\) as in Remark 3.5.
On the other hand, there is a surjective map Grass \(_{\mathrm{n}-1}^{\mathrm{n}-1}(\mathrm{k}) \longrightarrow\)
\(S R^{n}\left(P_{k}^{n}, H, H^{2}\right)\) (see the proof of Theorem 2.14). Since Grass \({ }_{n-1}^{n-1}(k)\)
hag only one point, \(\operatorname{SR}^{n}\left(P_{k}^{n}, H, H^{2}\right)=R^{n}\left(P_{k}^{n}, H, H^{2}\right)\) consists of one
element \(T_{p_{k}}(-1)\) only.
```

q. e. d.

It goes without saying that the above result has something to do with the fact that $T_{P_{k}^{n}}(-1)$ is a homogeneous vector bundle on the homogeneous space $\mathbf{P}_{\mathbf{k}}^{\mathbf{n}}$. Furthermore, this theorem shows that the sufficient condition for a regular vector bundle to be simple stated in Theorem 3.4 is not best possible (Note $H^{2} \frac{1}{4} A_{H}$).

As a corollary to the above proof we have the following, which

Corollary 4.1.1. There is an exact sequence

Proof. Since $O_{X}\left(H_{i}\right)$ is the tautological linebundle of $O_{P_{k}^{n}} \varphi^{(n+1)}$ on $x=P\left(O_{P_{K}^{n}}^{\oplus(n+1)}\right), O_{X}\left(H_{i}\right) \otimes O_{Y}$ is the tautological line bundle of $T_{P_{k}^{n}}(-1)$ on $Y=P\left(T_{P_{k}^{n}}\right)$ by virtue of Lemma 2.2 and the above proof and since Y is a subbundle of X, we have a surjective homomorphism $\varphi: \pi_{*}\left(\mathrm{O}_{\mathrm{X}}\left(\mathrm{H}_{1}\right)\right)=0_{\mathrm{P}_{k}^{n}} \operatorname{H(n+1)} \longrightarrow$ $\pi_{*}^{i}\left(O_{X}\left(H_{i}\right) O_{Y}\right)=T_{P_{k}^{n}}(-1)$. On the other hand, Ker $\varphi \cong$ $\left({ }^{n+1} o_{P_{k}}(\oplus(n+1)) \otimes\left(\stackrel{n}{N}_{T_{P_{k}^{n}}(-1)}\right)^{-1} \cong o_{P_{k}^{n}}(-1)\right.$.
q. e. d.
§ 2. Vector bundles on $\mathrm{P}_{\mathrm{k}}^{2}$.

We shall begin with an easy lemma.

Lemna 4.2. If G is a simple vector bundle of rank 2 on P_{k}^{2} and if $\operatorname{deg} E \geq-3$, then $H^{2}\left(P_{k}^{2}, E\right)=0$.

Proof. Assume that $H^{2}\left(P_{k}^{2}, E\right) \neq 0$. By the Serre duality, $d 1 m_{k} H^{2}\left(P_{k}^{2}, E\right)=d i m_{k} H^{0}\left(P_{k}^{2}, E\left(O_{P_{k}^{2}}^{2(-3))}>0\right.\right.$. since $d i m_{k} H^{0}\left(P_{k}^{2}, E\right)$
 hand, since $H^{0}\left(P_{k}^{2}, ~ E V O_{P_{k}^{2}}(-3)\right)=H^{0}\left(P_{k}^{2}, E \otimes(\operatorname{det} B) \otimes O_{P_{k}^{2}}(-3)\right) \neq 0$ and since $\operatorname{deg}\left((\operatorname{det} E) \otimes o_{P_{k}^{2}}(-3)\right) \geq 0$ by our assumption $\operatorname{deg} E \geq-3$, we have $\mathrm{H}^{0}\left(\mathrm{P}_{\mathrm{K}}^{2}, \mathrm{E}\right) \neq 0$. Thus E is not simple by wirtue of Lemna 3.8. This is contrary to the assumption that E is simple.

> q. e. d.

Let E be a vector bundle of rank 2 with Chern classes $c_{1}(E), c_{2}(E)$ on a non-singular projective surface S. Define an Integer $\Delta(E)$ to be $c_{2}(E)^{2}-4 c_{2}(B)$. $-\Delta(E)$ is the eecond Chern class of End(E), hence it plays an important role in the theory of simple vector bundles. The following lemma is essentially due to Schwarzenberger ($[18 \mathrm{~J}$ Theorem 10).

Lemma 4.3. Let E, S be as above and let X be a canonical divisor of S. If $|K|$ 丰 ϕ and $\Delta(E) \geq-(4 \mathrm{~Pa}(S)+1)$, then E
is not simple.

Proof. Since End(E) is self-dual, $\operatorname{dim}_{k} H^{2}(S$, End (E) $)=$ dimik H^{0} (B, Eng(E) $\otimes O(K)$) by the Serre duality. On the other hand, the assumption $|-K| \neq \phi \quad$ implies $\quad \operatorname{dim}_{K} H^{0}\left(S\right.$, End $\left.(E) \otimes O_{S}(K)\right) \leq \operatorname{din}_{K} H^{0}$ $(S$, End $(E))$. Thus $X(E n d(E))=\Sigma(-1)^{i} \operatorname{din}_{k} H^{i}(S$, End $(E)) \leq 2$ dim $_{k} H^{0}$ (S, Fnd(E)). Besides the Riemann-hoch theorem provides equalities $X(E \operatorname{End}(E))=\Delta(E)+\frac{-1}{3}\left(K^{2}+c_{2}(S)\right)$ and $p_{a}(S)+1=\frac{1}{12}\left(K^{2}+c_{2}(S)\right)$ ($\mathrm{O}_{2}(\mathrm{~S})$ is the second Chern class of S). We obtain therefore $2 \operatorname{dim}_{k^{H}}{ }^{0}(S, \operatorname{End}(E))<\Delta(E)+4\left(1+\mathrm{Pa}_{a}(S)\right)>2$, which 1s our assertion,
q. e. d.

Let us cousider sors special cases.

Corollary 4.3.1, Let E, S be as above.
(i) If S is a rational ruled surface or P_{k}^{2} and if $\Delta(E) \geq-1$
then E is not simple.
(ii) If S is an abelian surface and if $\Delta(E) \geq 3$, then E is not simple.
(ii)' If S is an abelian surface, the characteristic of
$k \neq 2$ and if $\Delta(E) \geq 1$, then E is not simple.
(ifi) If $K \sim 0$, dim $k^{11}\left(S, O_{S}\right)=0$ (for example $K 3$ surfaces over C_{2} a non-singular surface of degree 4 in P_{k}^{3} and if
$\Delta(B) \geq-5$, then E is not simple.

Proof. (i) Let S be a rational ruled surface with minimal
section D. Assume (D, D) $=-n$, then $-2 D-(n+2)$ is a canonical divisor on s, where ℓ is a fibre ($=$ a generator of S). Thus we have $|\mathcal{K}| \neq \phi$. Let. $S=P_{k}^{2}$ and let C be a cubic curve, then - is a canonical divisor, whence $|-K| \neq \phi$. In any case $p_{a}(S)=0$. Then (i) follows from the above lemma. (ii) If S is an abelian surface, then $K \sim 0, \quad p_{a}(S)=-1$. Thus we obtain (ii). As for (ii)' see [1 Corollary to Theorem 2. (iii) In this case $k \sim 0, p_{a}(S)=1$, whence our assertion is obvious by vertue of Lemma 4.3.

Example 4.4. (i) If S is a general non-singular surface of degree 4 in P_{k}^{3} which contains a line in P_{k}^{3}, then there is a simple vector bundle E of rank 2 on S with $\Delta(E)=-2 r$ for any $\quad r \geq 3$.
(ii) If S is a general surface of degree 4 in P_{C}^{3}, then $\Delta(E) \leftrightarrows 0$ (4) for any vector bundle E of rank 2 on S and there is a simple vector bundle E of rank 2 on S with $\Delta(E)=-4 r$ for any r

Proof. (i) Take $H_{\lambda}, C_{\lambda}, \lambda \in P^{1}$ as in Example 3.12. Then C_{λ} is an elliptic curve for a general $\lambda \in P^{1}$ and $\left(C_{\lambda}, C_{\lambda}\right)=$ 0 , $\left(X, \mathcal{X}=-2\right.$. If one takes points $P_{2}, \ldots, \dot{F}_{r}$ on $C \lambda$ and Q_{1}, \ldots, Q_{s} on l for arbitrary $r(\geq 2)$, and $s(\geq 1)$, then $i_{i=1}^{\left[P_{i}\right.}$ and $\sum_{j=1}^{S} Q_{j}$ are divisors free from base points. Thus $R^{2}(S$. $\left.C_{\lambda}, \sum_{i=1}^{\mathbf{N}} \boldsymbol{P}_{i}\right) \neq \phi, \quad R^{2}\left(S, l, \sum_{j=1}^{S} Q_{i}\right) \neq \phi$ and every element in $R^{2}(S$, $\left.C_{\lambda}, \sum_{i=1}^{r} P_{i}\right), R^{2}\left(S, V_{j=1}^{g} Q_{j}\right)$ is simple by virtue of Corollary
3.10.1. Since $\Delta\left(E_{r}\right)=-4 r, \Delta\left(E_{g}\right)=-2 \rightarrow 4 s$ for $E_{r} \in R^{2}(S, C$,

(i1) Note that if S is a general surface of degree 4 in P^{3},
then Ple (S) $\cong \mathrm{Z}$ whose generator is the class of hyperplane section ([1] Lectare (3) . Thus $D^{2} \equiv 0$ (4) for any divisor D on S, which shows the former assertion. In order to prove the latter, take a general hyperplane section C. Then C is a non-singular plane curve of degree 4. Hence there is a positive divisor A_{r} of degree r free fron base point on C for any $r \geq 3$. Thus $R^{2}\left(S, C, A_{r}\right) \neq$中. Every element E_{r} of $R^{2}\left(S, C, A_{T}\right)$ is simple by virtue of Corollary 3.10 .1 and $\Delta\left(E_{r}\right)=-4(r-1)$ because of $(C, C)=4$.
q. e. d.

Nov let us come back to vector bundles on $P_{k^{*}}^{2}$ The following lemala is very interest when one takes Corollary 4.3.1, (i) into account.

Lemma 4.5. If E is a simple vector bundle of rank 2 on P_{k}^{2}, then $\Delta(E) \neq-4$.

Proof. We assume that E is a simple vector bundle of rank 2 on P_{k}^{2} with $\Delta(E)=-4$ and shall show a contradiction. By the
assumption $\Delta(E)=-4$ where is a linebundle L such that $c_{1}(E D)$ $=0, c_{2}\left(B(\mathcal{L})=-1\right.$, whence we may assume $c_{1}(E)=0, \quad c_{2}(E)=1$. The Riemann-Roch theorem asserts for a vector bundle E ' of rank 2 on P_{k}^{2} :

$$
X\left(E^{\prime}\right)=\sum_{i=0}^{2}(-1)^{i} \operatorname{din}_{k} H^{i}\left(P_{k}^{2}, E^{\dagger}\right)=2+\frac{3 c_{1}\left(E^{+}\right)}{2}+\frac{c_{1}\left(E^{\prime}\right)^{2}-2 c_{2}^{\left(E^{\prime}\right)}}{2}
$$

Applying this to E we have $X(B)=1$. On the other hand, Lemma 4.2 implies $H^{2}\left(P_{k}^{2}, E\right)=0$. Thus we obtain $H^{0}\left(P_{k}^{2}, E\right) \neq 0$. Moreover, since $E^{\boldsymbol{V}} \cong E \otimes(\text { det } E)^{V} \cong E$, we know $H^{0}\left(P_{k}^{2}, E^{V}\right)$ \& 0 . By virtue of Lemma 3.8 this is a contradiction.
q. e. d.

We have an interesting corollary.

Corollary 4.5.1. Let C be a non-singular curve of degree n in P_{k}^{2} and $D=\sum_{i=1}^{\mathbf{P}} P_{i}$ be a positive divisor on C such that $|D|$ is free from base point.
i) If $n(=2 m)$ is even and $r \leq m^{2}+1$, then there is a positive divisor C^{\prime} of degree m in P_{k}^{2} such that $C \cdot C^{\prime}-D>0$.
ii) If $n(=2 m+1)$ is odd and $r \leq m^{2}+m$, then there is a poaitive divisor C^{\prime} of degree im in P_{k}^{2} such that $C \cdot C^{\prime}-D>0$.

Proof i) since $|D|$ is free from base point, there is $D^{4} \in|D|$ which contains none of P_{i}. Let $E \in R^{2}\left(P_{k}^{2}, C, D\right)$ be defined by $\left(s, s^{\prime}\right) \in H^{0}\left(C, O_{C}(D)\right) \times H^{0}\left(C, O_{C}(D)\right)$ with $|s l=D, \quad| s^{\prime \prime} \mid=D^{+}$. On the other hand, since $\Delta(E)=c^{2}-4 r \geq 4 m^{2}-4\left(m^{2}+1\right)=-4$, 4 (A (E), we know that E is not simple by virtue of Corollary 4.3.1 and Lema 4.5. Appling Theoren 3.10 to E, we obtain positive divisors C_{1}, C_{2} such that $G_{1}+C_{2} \sim C, C_{1}, C-D \geqslant O_{,}$ $C_{2} \cdot \mathrm{C}-\mathrm{D}>0$. since either C_{1} or C_{2} has a degree not greater than n, (i) is proved.
i5) Similar argument as above is available in this case too.
q.e.d.

Now we come to a theoren of Schwarzenberger ([19] Theoren 8)
18)

Theorem 4.6. Let n, m be integers, There is a vector
bundle B of rank 2 on P_{k}^{2} with $c_{1}(E)=n_{1} \quad c_{2}(E) \geqslant \pi$ if and
only if $n^{2}-4 n<0$, $\neq 4$.

Proof. We have proved that if $\Delta(E) \geq 0$ or $\Delta(E)=-4$, then E is not simple (Corollary 4.3.1, Lemna 4.5). Let us show the "if" part of the theorem. Take a point P on a line C^{l} and a point P ' on an irreducible conic C^{2}. Since, C^{1} and C^{2} are rational curves, $\mathrm{R}^{2}\left(\mathrm{P}_{\mathrm{k}}^{2}, \mathrm{C}^{1}, \mathrm{r}^{\mathrm{P}}\right) \neq \phi, \mathrm{R}^{2}\left(\mathrm{P}_{\mathrm{k}}^{2}, \mathrm{C}^{2}, \mathrm{sP} \mathrm{P}^{1}\right) \neq \phi \quad$ for any $\quad \mathrm{r} \geqslant 0, \mathrm{~s}>0$. If $E_{r} \in R^{2}\left(P_{k}^{2}, C 1, x P\right), E_{s}^{\prime} \in R^{2}\left(P_{k}^{2}, C^{2}, s \bar{F}^{\prime}\right)$, then E_{r}, E_{G}^{\prime} are simple for any $r \geq 1, s \geq 3$ by virtue of Corollary 3.10.1. Put $r=m+\left(\frac{1-n^{2}}{4}\right)$ if n is odd and put $s=m+1-\frac{n^{2}}{4}$ if n is even. The condition $n^{2}-4 m<0$, $\neq-4$ implies $x \geq 1$, $s \geq 3$. Take E_{r} or E_{s}^{\prime} and put $E=E_{r} \otimes O_{P_{k}}{ }^{\left(\frac{n-1}{2}\right)}$ or $E_{s}^{\prime} \otimes O_{P_{K}^{2}}\left(\frac{n}{2}-1\right)$ according as n is odd or even. Then $c_{1}(E)=n, \quad c_{2}(E)=m$.

$$
\text { q. e. } d \text {. }
$$

The following theorem is due to F. Takemoto [20], which can

Theorem 4.7. If E is a simple vector bundle of rank 2 on P_{k}^{2} with $\Delta(E)=-3$, then $E \cong T_{P_{k}}(n)$.

Proof. By the assumption $\Delta(E)=-3$ there is a linebundle L such that $c_{1}(E \otimes L)=1, \quad c_{2}(E X L)=1$. Hence we may assurse that $c_{1}(E)=1$ and $c_{2}(E)=1$. We know by virtue of the Riemann-Roch theorem and Lemma 4.2 that $X(E)=3, \quad X(E(-1))=0, \quad H^{2}\left(\mathrm{P}_{\mathrm{k}}^{2}, \mathrm{E}\right)=$ $H^{2}\left(P_{k}^{2}, E(-1)\right)=0$. Thus $\operatorname{dim}_{k} H^{0}\left(P_{k}^{2}, E\right) \geq 3$ and $H^{0}\left(P_{k}^{2}, E(-1)\right)=0$ because $E^{V}=E(-1)$. Congequently we have $H^{1}\left(P_{k}^{2}, E(-1)\right)=0$. Let $O_{X}(1)$ be the tautological linebundle of E on the P^{1}-bundle $\pi: X=P(E) \longrightarrow P_{k}^{2} . \quad$ Leray's spectral sequence $E_{2}^{p, q}=M P\left(P_{k}^{2}\right.$,
 $H^{1}\left(X, O_{X}(1) \otimes \pi K_{P_{k}}^{(-1))}\right)=0$ because $E_{2}^{1,0}=E_{2}^{1,0}=0$. Let $\quad \ell$ be a line in $\mathrm{P}_{\mathrm{k}}^{\mathbf{2}}$.

$$
\left.0 \longrightarrow o_{x}(1) \theta \pi^{*} o_{p_{k}^{2}}(-1)\right) \rightarrow 0_{X}(1) \longrightarrow o_{X}(1) \theta_{\pi^{-1}(Q)} \rightarrow 0
$$

is an exact sequence, which yields another exact sequence

$$
\begin{aligned}
& \text { II } \\
& 0=H^{0}\left(P_{k}^{2}, B(-1)\right) \quad H^{0}\left(P_{k}^{2}, E\right) \\
& H^{0}\left(\pi^{-1}(l), o_{x}(1) \otimes o_{\pi^{-1}(l)}\right) \rightarrow H^{1}\left(x, o_{x}(1) \otimes \pi^{*} o_{P_{k}^{2}}(-1)\right)=0 .
\end{aligned}
$$

Therefore $H^{0}\left(x, o_{x}(1)\right)=H^{0}\left(\pi^{-1}(Q), o_{x}(1) \otimes 0_{\pi^{1}(1)}\right)$. since $\pi^{-1}(l)$ is a rational ruled surface, this isomorphism implies that $\left|o_{X}(1)\right|$ has no fixed fibre (a fixed fibre of $\left|o_{X}(1)\right|$ is that of $\left|0_{\mathrm{z}}(1) \ominus \mathrm{N}^{2}(\mathrm{Q})\right|$, which can not occur). If D is a fixed component of $\left|o_{X}(1)\right|$, then $o_{X}(D)$ is a tautological linebundle and D contains no fibre, whence D is a section of $\pi: X \longrightarrow \mathbb{P}_{k}^{2}$. Then E is decomposable, which is impossible because B is simple. Thus $\left|\sigma_{X}(1)\right|$ has no fixed component. Hence if D_{1}, D_{2} are general members of $\left|O_{X}(1)\right|$, they are irreducible and have no comon fibre (note that $\mathrm{O}_{\mathrm{X}}\left(\mathrm{D}_{\mathrm{i}}\right)$ is a tautological linebundle on X). Let $I_{D_{i}}$ be the defining ideal of D_{i} in X and let J be the Ideal generated by $I_{D_{1}}$ and $I_{D_{2}}$. Then the exact sequence

$$
0 \longrightarrow \mathrm{I}_{\mathrm{D}_{\mathrm{i}}} \longrightarrow \mathrm{~J} \longrightarrow \mathrm{~J} / \mathrm{I}_{\mathrm{D}_{1}} \longrightarrow 0
$$

ylelds an isonorphism $\pi_{*}(J) \cong \pi_{*}\left(J / I_{D_{i}}\right)$ of ideals of $O_{p_{k}}^{2}$
because $\pi_{*}\left(I_{D_{i}}\right) \approx \pi_{*}\left(O_{X}(-1)\right)=0, \quad R^{1} \pi_{*}\left(I_{D_{i}}\right) \approx R^{1} \pi_{*}\left(O_{X}(-1)\right)=0$.

Since $J / I_{D_{i}}$ are locally principal $O_{D_{i}}$-ideal and $D_{i, U_{i}} \cong U_{i}$ for some open covering $U_{1} U U_{2}$ of $p_{k}^{2}, \pi_{*}(J)$ is locally principal. This and $c_{1}(B)=1$ imply that $\pi_{*}(J)$ defines a line . Thus $D_{1} \cdot D_{2}=C$ is irreducible and $\pi(C)$ is non-singular because $D_{i} U_{i} \xlongequal{2} U_{i}, U_{1} \cup U_{2}=p_{k}^{2}, C$ therefore satisfies the condition $\left(E_{0}\right)$ and elm $C_{C}^{0}(X)=P_{k}^{1} \times P_{k}^{2}$ by virtue of Proposition 1.9. Thus E is regular and $E \in R^{2}\left(P_{k}^{2}, Q\right.$, $\left.P\right)$ for a point $P \in Q$ because $c_{2}(E)=1$. Then $E \xlongequal{=} \mathbf{T}_{\mathbf{P}_{\mathbf{k}}}{ }^{(-1)}$ by virtue of Theorem 4.1.
q.e. d.

Example 4.8. As was shown in Example 3.11, $E \in \mathrm{R}^{2}\left(\mathrm{P}_{\mathbf{k}}^{2}, \mathrm{C}^{3}\right.$, $Q_{1}+Q_{2}+Q_{3}$) is simple if and only if Q_{1}, Q_{2}, Q_{3} are not collinear. On the other hand, if $E \in R^{2}\left(P_{k}^{2}, C^{3}, Q_{1}+Q_{2}+Q_{3}\right)$, then $c_{1}(E)=3$, $c_{2}(E)=3$ and therefore $\Delta(E)=-3$. Thus $R^{2}\left(P_{k}^{2}, \dot{c}^{3}, Q_{1}+Q_{2}+Q_{3}\right)$
consists only of one element $T_{P_{2}}$ if Q_{1}, Q_{2}, Q_{3} are not collinear.
Let E be a vector bundle of rank T on P_{k}^{n} and let $j: P_{k}^{1}$
$\longrightarrow P_{k}^{n}$ be an embedding such that $J\left(P_{k}^{l}\right)$ is a line of P_{k}^{n}. By
a famous theorem of Grethendieck we get $j *(E) \geq O_{P_{k}^{1}}\left(a_{1}\right) \omega *+\omega_{p_{k}}\left(a_{r}\right)$ $\left(a_{1} \geq a_{2} \geq \ldots \geq a_{r}\right)$. Let us consider the map $\quad \alpha_{E}: f\left(P_{k}^{1}\right) \longrightarrow$ $\left(a_{1}, \ldots, a_{r}\right)$ of $\operatorname{Grass}_{n}^{1}(k)$ to $f^{(\rightarrow r}$.

Lemma 4.9. There is a non-empty open set $U(E)$ of Orass $_{1}^{n}$
such that $\alpha_{E}(x)$ is a constant for every $x \in U(E)(k)$ and if $\alpha_{E}(y)=\alpha_{E}\left(x_{0}\right)$ for an $x_{0} \in U(E)(k)$, then $y \in U(E)(k)$.

Proof. Let G be the universal quotient bundle on $X=$ Grass $_{1}^{n}$
and let $p: O_{X}^{(P(n+1)} \longrightarrow G$ be the canonical surjective homorarphism. Then we have the following diagram :

Then $P(G), f, g=f^{+}+i$ are ncthing but the graph of the incidence correspondence between P_{k}^{n} and $G r a s s_{1}^{n}$ and the natural projections
respectively. Put $E^{\prime}(m)=g^{*}\left(E(m)\right.$. Since f is flat and $E^{\prime}(m)$ is locally free $O_{P(E)}$-module, $x \longrightarrow \operatorname{dir}_{k}(x)^{H^{0}\left(f^{-1}(x) ; E^{\prime}\left(H_{x}\right)\right.}$ is upper seni-continuous on X. Since X is a noetherian space, $\operatorname{dim}_{k}(x)^{H^{0}}\left(f^{-1}(x), E^{\prime}(m) x\right)$ is bounded. Thus $b_{1}=\inf _{x \in X}($ the first terma of $\left.\alpha_{E}(x)\right)>-\infty . \quad$ Put $U_{1}=\left\{x \in X \mid \operatorname{dim}_{k}(x)^{H^{0}\left(f^{-1}(x), E^{\prime}\left(-b_{1}-1\right)\right.}{ }_{x}\right)=$ 0\}. Then U_{1} is a non-empty open set of X by virtue of above argument. Similary $b_{2}=\inf _{x \in U_{1}}$ (the gecond tern of $\left.\alpha_{E}(x)\right)>-\infty$ and $U_{2}=\left\{x \in U_{1} \mid d_{i m}(x)^{H^{0}\left(f^{-1}(x), E^{\prime}\left(-b_{2}-1\right)\right.} x^{\prime}=b_{1}-b_{2}\right\}$ is a non μ empty open set of U_{2}, Inductively we get U_{r} and U_{r} is the desired open set of Grassin
q. e. d.

Definition (Schwarzenberger). A line contained in Grass $\mathbf{1}^{\mathbf{n}}$ -
$U(E)$ is cailed an exceptional line of E.

Van de Ven showed that if $U(B)=\operatorname{Grass}_{1}^{n}, \quad E \quad$ is rank 2 and if the characteristic of k is 0 , then $E \equiv O_{P_{k}^{n}}\left(a_{1}\right) \oplus O_{P_{k}^{n}}\left(a_{2}\right)$ or $T_{p_{k}}{ }^{(a)}$ (see $\left.[21]\right)$.

Theorem 4.10 (Schwarzengerger [18]). Let E be a non-simple vector bundle of rank 2 on P_{k}^{2}. The exceptional lines of E form a finite number of linear penciles. If E has no exceptional line, then B is decomposable.

Proof. Since the set of exceptional lines of $E \otimes L$ is nothing but that of B, we may assume that E is regular (Proposition
2.3). If E is defined by (s, s^{\prime}) of $H^{0}\left(C^{n}, O_{C^{n}}(D)\right) \times H^{0}\left(C^{n}\right.$, $O_{G^{n}}{ }^{(D))}$ (CD : non-singular curve of degree n in P_{k}^{2}), there are $u, v \in H^{0}\left(P_{k}^{2}, O_{P_{k}}(m)\right)\left(m \leq\left[\frac{n}{2}\right]\right)$ such that u, v induce sa, sta on $\bar{C}^{n}\left(a \in H^{0}\left(C^{n}, O_{P_{k}} 2^{(m)} \otimes O_{C^{n}}{ }^{(-D)))}\right.\right.$ because E is not simple
 induced from homogeneous coordinate ζ_{0}, ζ_{1} of $\mathrm{P}_{\mathrm{P}_{\mathrm{k}}}^{1}$. Then E is defined by $Y: s \bar{\eta}_{0}+s \bar{\eta}_{1}=0$. Let A be the positive divisor on $P_{k}^{1} \times P_{k}^{2}$ defined by $u \eta_{0}+v \eta_{1}=0$, then $A>Y$. if A is reducible, then there are an irreducible component A_{1} and a positive divisor C with $\operatorname{deg} C \leq m<n$ such that $A=A_{1}+P_{C}^{1}$. Since $\operatorname{deg} C<n$ and Y is irreducible, $Y \subset A_{1}$. Thus we may
\{Since the eelf-intersection number of $B_{l}^{\prime}=A^{\prime} \cdot \pi^{-}(x)$ is inge penitent
assume that A is irreducible. Hence $\quad \ln _{H_{Y}}^{0}[A]=A^{\prime}$ contains
only a finite number of fibres $\pi^{-1}\left(x_{1}\right), \ldots, \pi^{-1}\left(x_{1}\right)$ of
$T_{\mathrm{V}}: X=P(E)=\ln _{\mathrm{Y}}^{0}\left(\mathrm{P}_{\mathrm{k}}^{1} \times \mathrm{P}_{\mathrm{k}}^{2}\right) \longrightarrow \mathrm{P}_{\mathrm{k}}^{2}$. Take a general line ${X_{0}}$ in
p_{k}^{2}, then $p_{\ell_{0}}^{1}+A=B_{\ell_{0}}$ is a section with $\left(B_{\ell_{0}}, B_{l_{0}}\right)=2 m \leq n$ and $P_{\mathbf{Q}_{0}}^{1} \cdot Y=P_{I}+\ldots+P_{n}$. By virtue of Proposition 1.8 we have
 then $\left(B_{H_{0}}^{\prime}, B_{Q_{0}}^{\prime}\right)=2 m-n=-b \leq 0$. Thus B_{0}^{\prime} is a minimal section of $\pi_{0}^{-1}\left(Q_{0}\right)$. $\sqrt[V]{ }$ of the choice of a line l in $P_{k}^{2}, A^{\prime} \cdot N^{-1}\left(Q_{0}\right)=B_{l_{0}}^{\prime}$ and since $B_{q}^{\prime}=B_{l}^{\prime \prime}+$ fibres ($B_{t}^{\prime \prime}:$ section), we get $\left(B_{i}^{\prime \prime}, B_{p}^{\prime \prime}\right)=-b_{l} \leq-b_{\text {, }}$ whence B_{i}^{\prime} is a minimal section of $\pi^{-1}(\mathbb{l})$ and $\pi^{-1}(l) \cong F_{b}=\operatorname{Proj}($ $o_{P_{k}} \oplus O_{p_{k}}\left(b_{p}\right)$. Since if $\quad \alpha_{E}(l)=\left(a_{1}, a_{2}\right)$, then $a_{1}+a_{2}=n$, $a_{1}-a_{2}=b_{Q}$ and since $B_{q} \ddagger B_{i}^{\prime \prime}$ if and only if Q contains one of x_{1}, \ldots, x_{r}, we have the set of exceptional Ines of $E=\underbrace{r}_{1=1}$ \{lines containing $\left.x_{i}\right\}$. Therefore the first assertion is proved. If E has no exceptional line, then $r=0$ and therefore A^{*} is a section of $P(E)$. Thus $E 1_{s}$ an extension of line bundles.

Since $H^{1}\left(P_{K}^{2}, L\right)=0$ for any line bundle L, E is decomposable.

We shall finish this section with some examples of exceptional

1ines.

Example 4.11. Schwarzenberger conjectured in ! 18 that if a vector bunde E of rank 2 on P_{k}^{2} is simple, then the set of exceptional lines of E does not form a finite number of linear pencils. But his conjecture is disproved. In fact let C^{3} be a non-singular cubic in $\mathrm{P}_{\mathrm{k}}^{2}$, let $\int_{0}, \mathcal{X}_{1}$ be lines in $\mathrm{P}_{\mathrm{k}}^{2}$ whose intersection is not on C^{3} and let $Y_{i} \cdot C_{3}=P_{i 1}+P_{i 2}+P_{i 3}$. Let s_{i} be an element of $H^{0}\left(P_{k}^{2}, o_{P_{k}^{2}}(1)\right)$ with $\left|s_{i}\right|=l_{i}$ and Let \bar{s}_{i} be the element of $H^{0}\left(C^{3}, o_{p_{k}}(1) \otimes o_{C^{3}}\right)$ induced from s_{i}. Then the regular vecter bundle E defined by $\left(s_{1}{ }^{2}, \tilde{s}_{2}^{2}\right)$ is simple and the set of exceptional lines forms a linear pencil.

Proof. Take $\bar{\gamma}_{0}, \bar{\gamma}_{1}, \zeta_{0}, \gamma_{1}$ as in the proof of Theorem
4.10. Then the positive divisor A defined by $s_{0}^{2} \eta_{0}+s_{1}^{2} \eta_{1}=0$ contains $Y: \vec{s}_{0}^{2} \overline{7}_{0}+\vec{s}_{1}^{2} \vec{h}_{1}=0$, and $A^{\prime}=\operatorname{elm}[A]$ contains only one fibre $\pi^{-1}(x)$ with $x=l_{0} \cdot l_{1}$ and $\pi: P(E) \longrightarrow P_{k}^{2}$, if Q is a line not containing x, it is easy to see that A^{+}. ($\pi^{-1}(\hat{X})$
$=B_{\ell}$ is a section of $\pi^{-1}(Q)$ and $\left(B_{\ell}, B_{q}\right)=1$. Since n is the miniaum of self-intersection numbers of sections of $F_{n}=$ Proj ($O_{P_{k}} \oplus 0_{P_{k}^{1}}(n)$ with non-negative self-intersection number, we know $\pi^{-1}(q) \equiv F_{1}$. On the ther hand, if ℓ^{\prime} is a ilne containg x, then $A^{\prime} \cdot \pi^{-1}\left(\ell^{\prime}\right)=B_{j^{\prime}}^{\prime}+2 \pi^{-1}(x), B_{l}^{\prime} \quad i_{5}$ a section of $\pi^{-1}\left(l^{2}\right)$ and $\left(B_{l}^{\prime}, B_{l}^{\prime}\right)+4=\left(B_{q}, B_{n}\right)=1$. Thus $N^{-1}\left(q^{\prime}\right) \cong F_{3}$. We see therefore that the get of exceptional lines of E is the linear pencil formed by lines containing x. Since $E \in R^{2}\left(P_{k}^{2}, C^{3}, 2\left(P_{01}+P_{02}+P_{03}\right)\right.$, E is simple by virtue of Corollary 3.10.1.

Proofs of the following examples are similar as above.

Example 4.12. 1) Let $\left(t\right.$ be a line in P_{k}^{2}, let P be a point on Q and let $E \in R^{2}\left(P_{k}^{2}, Q, n P\right)$. If $n=1$, then $E S T_{P_{k}^{2}}{ }^{(-1)}$ and therefore B has no exceptional line. If $n>1$, then E has only one exceptional line X.
ii) Let Cen n be a non-gingular curve in \mathbf{P}_{k}^{2} of degree π.

Let D_{0}, D_{1} be general conics in P_{k}^{2} and let $D_{i} \cdot C^{2}=\sum_{j=1}^{4} P_{i j}$.

If s_{0}, s_{1} are element of $H^{0}\left(C^{2}, O_{P_{k}}(2) \otimes O_{C}\right)$ with $\left|s_{i}\right|=$ $\sum_{j=1}^{4} P_{i j}$, then the set of exceptional lines of the regular vector bundle of rank 2 defined by $\left(s_{0}, s_{1}\right)$ can not form a finite number of linear pencils.
iii) Let $E \in R^{2}\left(P_{k}^{2}, G^{3}, P_{1}+P_{2}+P_{3}\right)$. If P_{1}, P_{2}, P_{3} is not collineax, then $E \cong T_{P_{k}}^{2}$ (Example 4.8) and therefore E has no exceptional line. If P_{1}, P_{2}, P_{3} is collinear and if E is defined by $\left(s_{0}, s_{1}\right) \in H^{0}\left(C^{3}, o_{p_{k}}(1) Q o_{C^{3}}\right) \times H^{0}\left(C^{3}, o_{P^{2}}(1) \otimes_{C^{3}}\right)$ with $\left|s_{i}\right|=\sum_{j=1}^{3} Q_{i j}$, then the set of exceptional lines of B is the linear pencil formed by lines containing the point P_{E} which is the common point of lines $Q_{i}(i=0,1)$ going through $Q_{i 1}, Q_{i 2}, Q_{i 3}$, Thus if $P_{E^{\prime}}, \neq P_{E^{\prime}}$, then E 㕿 E^{\prime}. conversely it is easy to see that if $P_{E}=P_{E^{\prime}}$ then $E \cong E^{\prime}$. Thus $R^{2}\left(P_{k}^{2}, C^{3}, P_{1}+P_{2}+P_{3}\right)$ is in bijective correspondence with $P_{k}^{2}-C^{3}$ if P_{1}, P_{2}, P_{3} are collinear.
§ 3. Vector bundles on rational ruled surfaces.

A rational ruled surface over k is isomorphic to $\bar{\pi}_{\mathbf{n}}: \mathbf{F}_{\mathbf{n}}=$ $\operatorname{Proj}\left(O_{p_{k}} \oplus O_{P_{k}}(n)\right) \longrightarrow P_{k}^{1}$ for gome non-negative integer n. There
is a section M on F_{n} with $(M, M)=-n$. If $n>0$, then M is the unique irreducible curve with negative self-intersection number (see $[13]$), M is called a minimal section of F_{n}. Let N be a fibre (= a generator) of n_{n}. By virtue of the seesaw theorem, every divisor D on F_{n} is linearly equivalent to $a M+b N$, where $a=(D, N), b=(D, M)+a n$. On the other hand, $-2 M-(n+2) N$ is a canonical divisor of F_{n}.

Lemua 4.13. Let F be a vector bundle of rank 2 on F_{n} if $C_{1}(B)=a M+b N$ for $a \geq-2, b \geq-(n+2)$ and if B is sinple, then $H^{2}\left(F_{n}, E\right)=0$.

Proof, If one notes that $-2 \mathrm{M}-(\mathrm{n}+2) \mathrm{N}$ is a canonical divisor on F_{n}, the proof is similar to that of Lemma 4.2.

Lemma 4.14. If E is a simple vector bundle of rank 2 on F_{n} With $c_{1}(E)=a M+b N, c_{2}(E)=c$, then one of the following conditions is satisfied :
(1) Both a and b are even and $2 a b-a^{2} n-4 c=-4 r(r \geq 2)$.
(2) Both a and b are odd and $2 a b-a^{2} n-4 c=-n+2-4 r$
(4) a is odd, f is even and $2 a b-a^{2} n \sim 4 c=-n-4 r \quad(r 21)$

$$
(r \geq 1 \text { if } n=0 ; \quad r \geq 2 \text { if } n=0)
$$

(3) a is even, b is odd and $2 a b-a^{2} n-4 c=-4 r \quad(r \geq 1)$

Proof. In the first place, note that $c_{1}(E)=a M+b N, c_{2}(E)$
$=c \quad$ imply $\Delta(E)=2 a b-a^{2} n-4 c$. The Riemann-Roch theorem asserts the following equality for a vector bundle of E ' of rank 2 on F_{n};

$$
\chi\left(E^{\prime}\right)=2+\left((2 M+(n+2) N) c_{1}\left(E^{\prime}\right)+\left(c_{1}\left(E^{\prime}\right)^{2}-2 c_{2}\left(E^{\prime}\right)\right)\right) / 2
$$

1) Assume that both a and b are even, then $c_{1}(E)$

Thus we nay assume that $c_{1}(E)=0$ and $c_{2}(E)=c$. For such an E we have $X(E)=2-c$, on the other hand, $H^{2}\left(F_{n}, E\right)=0$ by virtue of Lemma 4.13. Thus $\operatorname{dim}_{k} H^{0}\left(F_{n}, E\right) \geq 2-c$. Since $E^{V} \cong$ E and E is simple, we have $H^{0}\left(F_{n}, E\right)=0$, Hence $c \geq 2$, which implies $\Delta(E)=-4 c=-4 r(r \geq 2)$.
2) Assume that both a and b are odd. By a similar reason as above we may assume that $c_{1}(E)=M+N, \quad c_{2}(E)=c$. Since $c_{1}\left(E^{V}\right)=-(M+N), \quad c_{2}\left(\mathbb{E}^{V}\right)=c$, we have $X\left(E^{\vee}\right)=1-c, \quad H^{2}\left(F_{n}\right.$,
$E V=0$, whence $\operatorname{dim}_{k} H^{0}\left(F_{n}, E^{V}\right) \geq 1-c$. On the other hand, since $H^{0}\left(F_{n}, E^{V}\right)=H^{0}\left(F_{n}, E \otimes O_{F_{n}}(-M-N)\right)$ is a linear subspace of $H^{0}\left(F_{n}, E\right)$ and since E is simple, we have $H^{0}\left(F_{n}, B^{V}\right)=0$. Tbus we get $c \geq 1$, vhich implies $\Delta(E)=(M+N)^{2}-4 c=-n+2-4 c=-n+2-4 r$ $(r \geq 1)$. Moreover, in the case where $n=0$ and $\Delta(E)=-2$, consider $E_{1}=E \geqslant O_{F_{n}}(-M)$ and $E_{2}=E \geqslant O_{F_{n}}(-N) . \quad$ Then $E_{1}{ }^{\prime}=E_{2}$, $c_{1}\left(E_{1}\right)=N-M, \quad c_{1}\left(E_{2}\right)=M-N \quad$ and $\quad c_{2}\left(E_{1}\right)=c_{2}\left(E_{1}\right)=0$. Thus $X\left(E_{1}\right)=X\left(E_{2}\right)=1$ and $H^{2}\left(F_{n}, B_{1}\right)=H^{2}\left(F_{n}, E_{2}\right)=0$. Therefore $\operatorname{dim}_{k} H^{0}\left(F_{n}, E_{1}\right)>0, \operatorname{dim}_{k} H^{0}\left(F_{n}, B_{1}^{V}\right)=\operatorname{dim}_{k} H^{0}\left(F_{n}, E_{2}\right)>0$, which in imposible. Hence if $n=0$, then $\Delta(E)=-4 x+2(x \geq 2)$.
3) Assume that a is even and b is odd. Then we may assume that $c_{1}(E)=N, \quad c_{2}(E)=c$. Since $\Delta(E)=-4 c$ and since $\Delta(E) \leq-1$ by virtue of Corollary 4.3.1, (i), we have $\Delta(E)=-4 r$ $(r \geq 1)$.
4) Finally assume that a is odd and b is even. Then we may assume that $c_{1}(E)=M, \quad c_{2}(E)=c$. Since $c_{1}\left(E^{V}\right)=-M$, $c_{2}\left(E^{V}\right)=c$, we have $X\left(E^{V}\right)=1-c, H^{2}\left(F_{n}, E^{V}\right)=0$, whence
$\operatorname{din}_{K} H^{0}\left(F_{n}, E^{\vee}\right) \geq 1-c$. On the other hand, since $\operatorname{dim}_{k} H^{0}\left(F_{n}, E^{V}\right)$ $\leq \operatorname{dim}_{k} H^{0}\left(F_{n}, E\right)$ and E is simple, we have $H^{0}\left(F_{n}, E^{V}\right)=0$. Thus $\quad 0 \geq 1$, which implies that $\Delta(E)=M^{2}-4 c=-n-4 r(r \geq 1)$. q. e. d.

Each of the conditions of the above lemma is sufficient for the existence of a vector bundle E of rank 2 on F_{n} with $c_{1}(E)$ $=a \mathrm{~N}+\mathrm{bN}, \quad \mathrm{c}_{2}(\mathrm{E})=\mathrm{c} . \quad$ In fact,
16)

Theorem 4,15. There is a vector bundle E of rank 2 on F_{n} with $c_{1}(E)=a M+b N, \quad c_{2}(E)=c$ if and only if one of the conditions (1), (2), (3), (4) of Lemma 4, 14 is satisfied.

Proof. By virtue of Lemma 4.14 we have only to prove the "df" part.

1) Assume that the condition (1) is satisfied. Take a general
nember C of $|2 M+(2 n+2) N|$, then C is a non-singular curve
because $2(2 n+2) N$ is very ample. Let $P_{1}, \ldots, P_{n+2+r}(r \geq 2)$
be sufficiently general points on C and put $D_{r}={ }_{i=1}^{n+2+r_{i}}{ }_{i}$. Since
the genus of C is $n+1$ and D_{r} is general, dim $\left|D_{r}\right|=r-1 \geq 1$ and $\left|D_{r}\right|$ is free fron base point. Let $E_{r} \in R^{2}\left(F_{n}, C, D_{r}\right)$ be defined by $\left(s_{0}, s_{1}\right) \in H^{0}\left(C, O_{C}\left(D_{r}\right)\right) \times H^{0}\left(C, O_{C}\left(D_{r}\right)\right)$ with $\left|s_{0}\right|=$ D_{r} Assume that E_{r} is not simple, then there are positive divisors C_{1}, C_{2} on F_{n} such that $C_{1}+C_{2} \sim C \sim 2 N+2(n+1) N$ and $C_{1} \cdot C$ $-D_{r}>0$ (see Theorem 3.10). c_{i} is linearly equivalent to $a_{i}{ }^{M}+$ $b_{1} \mathrm{~N}$ with $a_{i} \geq 0, b_{1} \geq 0, a_{1}+a_{2}=2, b_{1}+b_{2}=2 n+2$. If one of a_{1}, for instance a_{1}, is 0 , then $b_{1} \geq n+2+r$ because $C_{1}=N_{1}+\ldots+N_{b_{1}}$ for some fibres $N_{1}, \ldots, N_{b_{1}}$ of F_{n} and C_{1} goes through P_{1}, \ldots, P_{n+2+r}. Thus. $C_{2}=2 M+N_{1}+\ldots+N_{b_{2}}^{\prime}$ for sone fibres $N_{1}^{\prime}, \ldots, N_{b_{2}}^{\prime}$ because $\quad 2 N+b_{2} N=2 M+$ fibres if $b_{2}<n$. Then C_{2} cannot go through P_{1}, \ldots, P_{n+2+r}. We may assume therefore that $C_{1} \sim M+b_{1} N, b_{1} \leq n+1$. Since $\operatorname{deg}\left(C_{1}, C\right)$ $=2 b_{1}+2$, we have dim $\left|C_{1} \cdot c\right| \leq n+3$ by virtue of the Riemann-Roch theorem on C and Clifford's theorem (which asserts that if D is a spedial divisor of degree n on a curve, then $2 d i m \mid D \backslash \leq n$). Thus C_{1} cannot go through P_{1}, \ldots, P_{n+2+r} if P_{1}, \ldots, P_{n+2+r} ais.
```
sufficiently general with r }\geq2\mathrm{ . This is a contradiction,
Therefore E E is simple. On the other hand, }\Delta(\mp@subsup{E}{r}{})=-4r\mathrm{ . Thus
E = Erm O O
    2) Assurae that the condition (2) is satisfied. Take a general
member C of |M+mN|, where m = N or n+1 according as n is
odd or not. Then C is a non-singular curve because C is a
section of Fn. For a general positive divisor }\mp@subsup{D}{r}{}\mathrm{ of degree
r+(m-1)/2 (r\geq1), construct a vector bundle E Er & R
as in the proof(1)above. Assume that Eq is not simple, then there
are positive divisors C C1, C
+mN and Cig
C
because C2 goes through every point of Supp(D (). Thus b b S S
(m+1)/2-r, whence M+ b N = M + fibres if n'车0. Thus if
n}\not=0,\mp@subsup{C}{1}{}\mathrm{ camnot go through every points of Supp(D) because
b
Is simple if n }=0,r\geql. On the other hand, if n=0, the
```

$(C, C)=2$ and therefore E_{r} is simple for any $r \geq 2$ by virtue of Corollary 3.10.1. Since $\Delta\left(E_{r}\right)=-n+2-4 r, E_{r} \otimes 0_{F_{n}}((a-1 / 2) M+$ ($\mathrm{b}-\mathrm{m} / 2$) N$)=\mathrm{E}$ is the desired vector bundle.
3) Ascume that the condition (3) is satisfied. Let P be a point on N, then $R^{2}\left(F_{n}, N, r P\right) \neq \phi \quad$ for any $r \geq 1$ because N is a non-singalar rational curve. Since $(N, N)=0$, an element E_{r} of $R^{2}\left(F_{n}, N, r P\right)$ is simple by virtue of Corollary 3.10.1. Thus $E=E_{\mathbf{r}} \otimes O_{\mathrm{F}_{\mathbf{n}}}((\mathrm{a} / 2) \mathrm{M}+(\mathrm{b}-1 / 2) \mathrm{N})$ is the desired vector bundle.
4) Assume that the condition (4) is satisfied. Let P be a point of M, then $R^{2}\left(r_{n}, M, r P\right) \neq \phi$ for any $r \geq 1$ because M is a non-singular rational curve. Since $(M, M) \approx-n \leq 0$, and element E_{r} of $R^{\mathbf{2}}\left(F_{n}, M, r P\right)$ is simple by virtue of Corollary 3.10.1. Thus $E=E_{r} O_{F_{n}}((a-1 / 2) M+(b / 2) N)$ is the desired vector bundle.
q. e. d.

As an example let us consider the family of siaple vector
bundles of rank 2 with $\triangle(B)=-4$ on F_{n}.

Theorem 4.16. Let $S(n, a, b)$ be the set of isomorphisid
classes of simple vector bundles E of rank 2 on F_{n} with $c_{1}(E)$
$=a M+b N, \quad \Delta(E)=-4$. If (I) a is even, b is odd and $n \neq 0$ or
17)
(2) one of a and b is odd, the other is even and $n=0$, then
there 1 s a bijective map $\varphi_{n, a, b}: p^{1}(k) \longrightarrow S(n, a, b)$. Moreover, there is a vector bundle $\tilde{\mathrm{S}}(\mathrm{a}, \mathrm{b})$ on $\mathrm{F}_{0 \times P^{1}}$ such that $\widetilde{\mathrm{S}}(\mathrm{a}, \mathrm{b})_{\mathrm{x}}$ $=\varphi_{0, a, b}(x)$ for any $x \in P^{l}(k)$.

Proof. First of all, note that if n, a, b satisfy the above conditions then $s(n, a, b) \notin \phi$ by virtue of Theorem 4.15. Since $F_{0}=P^{1} \times P^{1}$ and since $M=P^{1} \times Q, N=R \times p^{l}$ for some $Q, f \in P^{1}$, we may assume that a is even and b is odd even if $n=0$. Take an $E^{*} \Leftrightarrow S(n, a, b)$ and let us consider $E=E^{\prime} \Leftrightarrow O_{F_{n}}$ $(-(a / 2) M-(b-1 / 2) N)$. Then $c_{1}(E)=N$ and $c_{2}(E)=1$. Since $X(E)$ $=2, X\left(E^{V}\right)=0, H^{2}\left(F_{n}+E\right)=H^{2}\left(F_{n}, E^{V}\right)=0$, we have $\operatorname{din}_{k} H^{0}\left(F_{n}, E\right)$
≥ 2 and therefore $H^{0}\left(F_{n}, E \otimes O_{F_{n}}(-N)\right)=H^{0}\left(F_{n}, E^{V}\right)=0, \quad H^{1}\left(F_{n}\right.$, $\left.E * O_{F_{n}}(-N)\right)=H^{l}\left(F_{n}, E^{N}\right)=0$. By a similar argument as in the proof of Theorem 4.7 we have $H^{0}\left(X, O_{X}(1)\right) \cong H^{0}\left(\pi^{-1}(N), O_{X}(1) \otimes\right.$
$0 \pi^{-1}(N)$ with the tautolozical linebundle $O_{X}(1)$ of E on
$\pi: X=P(E) \longrightarrow F_{n}$. Since $\pi^{-1}(N)$ is a rational ruled surface and since the fibre N is chosen arbitrarily in the above argument, the above isomorphism implies that $\left|O_{X}(1)\right|$ has no fixed fibre.

Thus if D is the fixed component of $\left|O_{X}(1)\right|$, then D is a section of $\pi: X \longrightarrow F_{n}$, whence E is an extension of linebundles;

$$
\mathbf{0} \longrightarrow \mathbf{o}_{\mathbf{F}_{\mathbf{n}}}(a \mathrm{M}+\mathrm{bN}) \longrightarrow \mathbf{E} \longrightarrow \mathrm{o}_{\mathbf{F}_{\mathbf{n}}}\left(\mathrm{a}^{\prime} \mathrm{M}+\mathrm{b}^{\prime} \mathrm{N}\right) \longrightarrow 0 .
$$

Since $c_{1}(E)=\left(a+a^{\prime}\right) M+\left(b+b^{\prime}\right) N=N, \quad c_{2}(E)=-a a^{\prime} n+a b^{\prime}+b^{\prime} b$ $=1$, we obtain $a=1, a^{\prime}=-1, b=n / 2, b^{\prime}=1-n / 2$ or $a=-1$ $a^{\prime}=1, b=1-n / 2, b^{\prime}=n / 2$. Thus n is even, lf $a=1$, then $n=0$ because $H^{0}\left(F_{n}, O_{F_{n}}(a M+(b-1) N) \subseteq H^{0}\left(F_{n}, E \geqslant O_{T_{n}}(-N)\right)=0\right.$. Since $H^{1}\left(F_{0}, O_{F_{0}}(\mathbb{X}-N)\right)=0$ by virtue of the Riemann-Roch theorem, the above extension splits in this case, and we obtained a contradiction. If $a=-1$, then $n=0$ also because $H^{0}\left(F_{n}, O_{F_{n}}\left(a^{\prime} M+\left(b^{\prime}-1\right) N\right)\right) \leq$ $H^{s}\left(F_{n}, O_{F_{n}}(a M+(b-1) N)\right)$ and because $\operatorname{dir}_{k} H^{0}\left(F_{n}, O_{F_{n}}\left(a^{\prime} M+\left(b^{\prime}-1\right) N\right)\right)$ $=n / 2, \quad \operatorname{dim}_{k} H^{\mathbf{l}}\left(F_{n}, O_{F_{n}}(a M+(b-1) N)\right)=0$. On the other hand, since
the exact sequence

$$
0 \longrightarrow \mathrm{O}_{\mathrm{F}}(\mathrm{~N}-\mathrm{M}) \longrightarrow \mathrm{E} \longrightarrow \mathrm{O}_{\mathrm{F}_{0}}(\mathrm{M}) \longrightarrow 0
$$

provides $\operatorname{dim}_{k} H^{0}\left(X, O_{X}(1)\right)=\operatorname{dim}_{k} H^{0}\left(F_{0}, E\right)=2$ and since $O_{X}(1)=$ O_{X} (D) © $T^{*}(L)$ for some linebundle L on F_{0}, we have $O_{X}(1) \cong$ $o_{X}\left(D+\pi^{-1}(M)\right)$ or $o_{X}\left(D+\pi^{-1}(N)\right)$. But, in any case, $\pi\left(D_{1} \cdot D_{2}\right)$ FN for D_{1}, D_{2} with $O_{X}(1) \cong O_{X}\left(D_{1}\right)$ because $\pi\left(D_{1} \cdot D\right) \sim H$. This contradicts the fact that $c_{1}(E)=N$. We see therefore that $\left|O_{X}(1)\right|$ has no fixed component. Then by a similar argument as in the proof of Thearem 4.7, for any gaeneral members, D_{1}, D_{2} in $\left|O_{X}(1)\right|$, we see that $D_{1} \cdot D_{2}=Y$ is a non-singular curve satisfying the condition $\left(E_{0}\right)$ such that $\pi(Y)=$ (a fibre N_{1} of $\left.F_{n}\right)$. Thus $e l_{n_{i}^{\prime}}^{0}(P(E)) \leftrightharpoons P_{k}^{1} \times F_{n} \quad$ and $E \in R^{2}\left(F_{n}, N_{1}, P\right)$ for a point $P \in N_{1}$, Conversely every element of $R^{2}\left(F_{n}, N_{1}, P\right)$ is simple because $\left(N_{1}, N_{1}\right)=0$. Since $\operatorname{dim}_{k} H^{0}\left(N_{1}, O_{N_{1}}(P)\right)=2$, $R^{2}\left(F_{n}, N_{1} ; P\right)$ consists only of one element by virtue of Theorem 2.14. Moreover, if N_{1}, N_{2} are mutually distinct fibres of F_{n},
then $E_{1} \neq E_{2}$ for $E_{i} \in R^{2}\left(F_{n}, N_{1}, P_{i}\right) \quad(i=1,2)$ by virtue of Theorem 2.13. Thus there is a bijective map $\dot{\psi}:\left\{\begin{array}{l}\text { fibres of } \\ n_{n}\end{array}\right\}$ $\longrightarrow S(n, 0,1)$. Since F_{n} is a rational ruled surface, there is a canonical bifective map $\psi: \mathbf{P}^{\mathbf{l}}(\mathrm{k}) \longrightarrow\left\{\right.$ fibres of $\left.\mathrm{F}_{\mathrm{n}}\right\}$.

Therefore obtain a bljective map $\varphi_{\mathrm{n}, \mathrm{o,1}}=4 \cdot \psi+: \mathrm{p}^{1}(\mathrm{k}) \longrightarrow$
$s(n, 0,1)$. Since $s(n, a, b)=\left\{B \otimes O_{F_{n}}((a / 2) M+(b-1 / 2) N)\right\} E \in$
$\mathcal{S}(n, 0,1)\}$, we obtain a bijective map $\varphi_{n, a, b}: P^{1}(k) \longrightarrow S(n, a, b)$. In order to phove the last assertion, consider $Z=P_{k}^{1} \times P_{k}^{1} \times P_{k}^{1}$
 Let Y be the subvariety defined by $z_{0}^{(1)} z_{0}^{(2)}+z_{1}^{(1)} z_{1}^{(2)}=0$ and 1et $f: Z \longrightarrow P_{k}^{1} \times F_{0} \times P_{k}^{1}=P_{k}^{1} \times P_{k}^{1} \times P_{k}^{1} \times P_{k}^{1}$ be the closed 1mmersion defined by $f((x, y, z))=(x, y, z, z)$. Then $f(Y)=Y^{\prime}$ is a subvariety of P^{1}-bundle $\mathrm{P}_{\mathrm{k}}^{1} \times \mathrm{F}_{0} \times \mathrm{P}_{\mathrm{k}}^{1} \longrightarrow \mathrm{~F}_{\mathrm{O}} \times \mathrm{P}_{\mathrm{k}}^{1}$ satisfying the condition $\left(E_{0}\right)$. Let $\widetilde{S}(0,1)$ be the regular vector bundle on $F_{0} \times P^{1}$ defined by Y^{\prime}, then it is clear that for any even integer a and odd integer $b, \tilde{S}(a, b)=\widetilde{s}(0,1) \otimes p^{*} 0_{F_{0}}(a / M M+(b-1 / \mathcal{q})$ is the desired vector bundle with the natural profection

$$
\mathrm{P}: \mathrm{F}_{0} \times \mathrm{P}_{\mathbf{k}}^{1} \longrightarrow \mathrm{~F}_{0} .
$$

q. e. d.

References

[1] M.F. Atigah, On the Kruli-Schmidt theorem with application to sheaves, Bull. Soc. Math, France, 84(1956).
[2] A. Borel and J. - P. Serre, Le théorène de Riemann-Roch, Bull. Soc. Hath. France, 86(1958).
[E.G.A.] A. Grothendieck and J. Dieudonné, Elements de Géométrie algébrique, Chaps II, III, IV, Publ. Math. I.H.E.S..
[3] A. Grothendieck, Sur la classification des fibres bolomorphes sux la sphère de Riemenn, Amer. J. Math., 79(1957).
[4] A. Grothendieck, sur quelques points d'algèbre bomologique, Tôhoku Math. J., IX(1957).
[5] A. Grothenđieck, Géométrie formelle et gémétrie algébrique, Séminaire Bourbaki, t.11, 1958/59 n 182.
[6] A. Grothendieck, Technique de descente et théorèmes d'existence en géométriè algébrique V, Séminaire Bourbak1, t. 14, 1961/62, $n^{\circ} 232$.
[7] A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique VI, Séminaire Bourbaki, t.14, 1961/62 $n^{\circ} 236$.
[8] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann, of Math., 79(1964).
[9] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90(1968),
[10] S.L. Kleiman, Geometry of grasgmannians and applications to splitting bundles and smoothing cycles, Publ. Math. I. F.E.S., $n^{\circ} 36$.
[11] D, Mumford, Lectures on curves on an algebraic surfaces, Annals of Math. Studies, No. 59, Princeton Univ. Press.
[12] D. Mumford, Abelian varieties, Oxford Univ. Press, (1970).
[13] M. Nagata, On rational surfaces I, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. : 32(1962).
[14] M.S. Narasimhan and C.S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann, of Math., 82(1965).
[15] T. Oda, Vector bundles on an elliptic curve, Nagoya Math. J., 43(1971).
[16] T. Oda, Vector bundles on abelian surfaces, Inventiones Math., 13(1971).
[17] J. Simonts, A class of indecomposable algebraic vector bundles, Math. Ann., 192(1971).
[18] R.L.E. Schwarzenberger, Vector bundles on algebraic surfaces, Proc. London Math. Soc., (3) 11(1961).
[10] R.L.E. Schwarzenberger, Vector bundies on the projective plane, ibid.
[20] F. Takemoto, Stable vector bundles on algebralc surfaces, to appear in Nagoya Math. J.,
[21] A. Van de Ven, On uniform vector bundles, Math. Ann., 195(1972),

Footnotes,

1) In fact $g_{k}\left(0_{\hat{X}}\right)=O_{X}$, and so $g_{*}\left(I_{\bar{X}_{T}}\right)$ is an ideal of O_{X},
(see Lemima 1.5.).
2) Let $\pi: X \longrightarrow S$ be the profective bundie $P(E)$ associated with a vector bundle E of rank $N+1(N \geq 1)$. A linebundle L on X is, by abuse of language, called a tautologicel linebundle when L is the tatutological linebundle of a vector bundle E^{\prime} with $P\left(E^{\prime}\right)=X$. In the case where S is reduced, i is a tautological linebundie if and oniy if $L_{s}=L Q_{S} k(s)$ is the linobundie associated with the hyperplane of $\pi^{-1}(s)$ $=P_{k}^{N}(s)$ for any $s \in S$. If L_{1}, L_{2} are tautological linebundies on X, then there is a linebundle M on S such that $L_{1}=L_{2} 8^{-1}(M)$.
3) The direct proof of this fact is easy. But geometric

Interpratation of this (i.e. the relation between Theorem 1.1 and Theorem 1.3) ia very important.
4) For an affine acheme $Z=\operatorname{Spec}(B)$ and $b \in B, Z(b)$

```
denotes Spec(Bb
    5) Note that locally this complex K. is isomorphic to the
usual Koszul comples defined by }\mp@subsup{h}{0}{};\ldots,.4,\mp@subsup{h}{N}{}\mathrm{ with a local equation
```



```
contains a unit element, then }\mp@subsup{H}{i}{}(\mp@subsup{K}{*}{}(\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{\mathbf{r}}{\prime})QM)=0(\mp@subsup{V}{i}{}>0
for evexy A-module M.
    6) As a matter of fact }\mathcal{X}\mathrm{ is an immersion.
    7) If dim S = 1, then the theory in the sequal is trivial
because we assume that }Y\mathrm{ is irreducible (cf. Remark 2,16)
    8) Of course, }\mp@subsup{C}{1}{}\supset\mp@subsup{Y}{1}{}\mathrm{ means that the support of }\mp@subsup{C}{1}{
contains }\mp@subsup{Y}{1,}{*
    9) Very ample in the sense of Suminiro:A vector bundie E
on S is called very ample if the tautological linebundle of E
on P(E) Is very ample in the sense of Grothendieck. H. Sumibiro
proved the following; (i) For any vector bundle }\Sigma\mathrm{ there is a
linebundle L such that FS L is very ample if S is projective
```


10) In the next section we shall shov that $c_{1}(E)=T$,
$c_{2}(E)=D$ for $E \in R^{r}(S, T, D)$.
11) This means that f_{0}, \ldots, f_{N} form a basis of $H^{0}(X(Y)$,
$\left.O_{X(Y)}\left(H_{0}^{i}\right)\right)$ if $\left(f_{i}\right)=H_{i}^{*}-H_{0}^{\prime}$.
12) In the next chapter we shall show that $S R^{r}(S, T, D)$
consists of all sinple vector bundles in $R^{r}(S . T . D)$.

$(-1 / c:)(1-1)^{c}=0$.
14) For divisors D_{1}, D_{2} on a non-singular surface, $\left(D_{1}, D_{2}\right)$ denotes the intersection number of D_{1}, D_{2}.
15) In [\{] Schwarzenberger says that there is a simple vector bunale E of $\operatorname{rank} 2$ with $c_{1}(E)=n, \quad c_{2}(E)=m$ if $n^{2}-4 m<0$. But this is not true as we have shown. His error comes from an incorrect statement (b) in the proof of his Theorem 7.
16) In [19] Schwarzenberger says without proof that for any a, b, c with $a b-2 c<0$ there is a simple vector bundle E of rank 2 on F_{0} with $c_{1}(E)=a M+b N, \quad c_{2}(B)=c$. But this is not
true (see the above conditions (1), (2)).
17) A simple vector bundle g with $\Delta(E)=-4$ which does
not satisfy these conditions exists only on F_{2} (see Theorem 4.15).

[^0]: quasi-projective variety is a successive extension of 1 inebundles

 If one performs monoidal transformations on the base variety. Thus every vector bundle on a smooth quasi-projective variety is obtained by "extension + descent ". But the descent problem is very difficult. In fact the answer to the descent problem is known only in the case Where the base space is a surface (Schwarzenberger [18]). Schwarzenberger's answer was very powerful in his theory of almost decomposable (i.e. non-simple) vector bundles. But he needed another method in order to construct simple vector bundles on p^{2}.
 (2) Schwarzenberger - Oda ([14], [/5]). If $f: X \rightarrow X$ is
 a flat and finite morphism, then $f_{*}(L)$ is a vector bundle (locally free sheaf) on X for any linebundle L on X^{\top}. Using this fact, Schwarzenberger studied simple vector bundles on some algebraic
 surfaces ([19]). T. Dda studied f_{*} (L) in the case where f is an isogeny of abelian varieties. This method faces the following problem: What morphism and linebundle does a given vector bundle come from ? This is also difficult.

