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Introduction:- In the theory of algebraic vector bundles,
it geems to the writer that it 1g very important to have a nice answer
to the problem to ‘''conatruct a lot of vector bundles on high dimensional
algebraic variety.” It is, of course, dezirable that the structure
of a vecior bundle ia saasily known from 1ts construction, A main
purpose of this paper 1ls to look for an angwer to the ahove problem,

Ag for our problem, two angswars are Mnown:

(1) Schwarzenberger - Hironaka - Kleiman ({J%], [8], LA >,

For a vector bundle E on a smooth gquasi-projective variety X
over an Infinite field there 1s a monoldal transformation f : X'—3X
with smooth center such that t*(E) contains a sublinebundle, This
was proved by Schwarzenberger in the case where X 1is a surface, by
Hironaka in the characteristic 0O cage and by XKlaelman in the general

casa, The above fact impllies that every vector bundle on a smooth



quasi-projective variety is a successive extension of linebundles
if one performs monoldal transformations on the base varlety. Thus
every vector bundle on a smooth quasi-projective variety is obtained hy
“"gxtension + descent ™. But the descent problem is very difficult.
In fact the anawer to the descent problem iz known only in the case
where the base space is a surface (Schwarzenberger [|3] ).
Schwarzenherger’'s answer was very powerful in his theory of almost
decomposable (i.e, non-simple} vector bundles. But he needed
another method in order to construct simple vector bundles on Pz.
(2} Schwarzenberger - Oda (Ui], /€] . If £: X—X is
a £lat and finite morphism, then f#(L) is a vector bundle (locally
free sheaf) on X for any linebundle L on X', Ugzing this fact,
Schwarzenberger studied simple vector bundles on some algebraic
surfaces( [I5] ). T. Oda studied £,(L) jip the case where f is
an isogeny of abellan varieties, This wmethod faces the following problem:
What morphism and linebundle does a gpiven vector bundle come from ?

This is also difficult,



Ia general and in these treatment too, "base change'" gives
rise to some difficulties ., Our starting point ig to find a method
to construct vector bundles without "bgsa change", There 1z known
a hlce model, that is, the theory of elementary transformation of
ruled surfaces, and we shall generalize elementary transformations
of ruled surfaces to those of PH—bundles on a locally nostherian
schama, An interestiing result 1s that every PNubundle on a non=gingular
quagi-projective variety 8 over an algebralcally closed field X with
dim 8 £ 3 is cobtained by an elementary transformation from the direct

product PN

k‘x 8, This result leads us to the concept of regular vector

bundles. Some blg families of vector bunles are constructed in
Chapter II. The family of regular Yector bundles containg a large
subfamily of simple vector bundles (see Chapter III, §1) This fact
implies that if 8§ 1i1s a noh-singular projective v;riety over k and

if S'¥ Pl then there 1s a simple vector bundle on S (Corollary 3, 4, 1)

In the rank 2 case, we have a very clear criterion that a regular vector



bunidle i= simple (Theorem 3.10). Using this criterion we can cover
almost all results of Schwarzenberger without the theory of woduli

of non-simple vector bundles and we get further result.

¥otation and convention. Throughout this paper k denotes an

algebraically clogad fleld and &)l wvarietig are reduced and irreducible

alpebraic schemes over k. We use the terms "vector bundles” and
"locally free sheaves" interchangeablly. For & monoidal transformation
f ; X'—X with center ¥ and a subscheme 2 of X, f-l(z) denotes
the fotal transform of 7 and f'JLz] denotes the proper (Strict)

transform of Z. 1f X and Y are smooth and if n:E'nini

(Dy:irreducible) is a divisor on X', then f{D) denotes

Eni f'(Dis, where f' is the restriction of £ to X' - f_l(Y)-

D4 £t
In the case where a birational map g : xl—:pxz is a composition

-1
fz" 1.’1 of monoldal transformations with non-singular centers

£ XX, f X'.»X,, for a divisor D on ¥, &0

-1 -1
denotes fz[fl (D)] and g[DY denctes f.?.[fl [_D]]. For & Cartier



divigsor D on a scheme X, OX(D) denctes the invertible sheal
defined by D, If L. is a linebundle on a non-singular projective
variety X, then | L | denotes the complete linear system [ D]

for a divisor D on X with Ox(D}QEIh For an algebrailc k-scheme
X, X(k) denotes the set of k-rational points of X, If E 1is

a locally free OS-module (=a vector bundle on 5), then P(E)

denotag ProJ(SO (E)), where 84 (E} 1s the Os-symetric algebra of E,
5 5
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Chapter 1, Elementary transformations of PN-bundles.

5 1., Definition of elementary transformations.

let 8 be a locally noetherian gscheme and let 7 : X—38
be the projective bundle P(E) associated with a vector bundle E
of rank N+ 1 (N> 1}, Let T and Y be clesed subschemes of B8
and X respectively, satisfying the following conditiom;

(EE) The ideal Iy which defines T 1g locally principal
whose penerator is non-zero divisor in every local ring of 8§, that
ig, Iy 13 a Cartler divisor en 8. Y 1is a c¢losed subscheme of
Xp and W'TIY :t ¥Y——>= T induces a Pn-bundle on T (0 & n £ N=1)
such that (1$le)-1(t) iz a linear subspace of ‘ﬁ?l(t) for
any t € T. Roughly speaking “‘I‘[Y : Y—>FT is a subbundle of
1ET : Bp—2 T,

Now conslder the monoidal transformation £ : ‘i—)!{ with
center Y and put fhlile ='i}. £ = Ey. In this situastion

we have the following theorem, whose proof will be given in the



next section.

Theorem 1.1. There exist a Phubundle +' : X'~—3%5 which 1s the
projective bundle P(E') associated with a vector bundle E' and an
S-morphism g : ¥ ~—3 X' such that the closed shschene Y' of X'
defined by the ideal g (IKT)l) with the defining ideal Ig. for X
in X and T satisfies the condition (E,E'_n_l), and that g¥(L)ax £*{O0y (1)) D
Oy (-By) for some tautological linebundle L on X' and the tautologieal
line bundle Ox(l) cn X of E?) g 1s the monoldal transfoyrmation
with center Y¥'., Moreover, such (X', g) is unique, that is, Lif there
exigts another IV, g") satisfying the above conditions, then thera
i=s a unique bundle isomorphism h ; X' w3 X" with h.g = g'.

The above theorem snables uz to peneralize slementary transformations
of ruled surfaces to those of PN-bundles, Namely :

Definiticon, Under the above notation the birational map gofﬁl

is called the elementary transformation of X with center Y and we

denote it by ele“ :+ we denota X' by elm;,l()n.

1, . »n

Corollary 1.1,1, elmy; {elmf(x)) = X,



¥e note that our treatment can be applied to PNFbundles if 8
is faetorial, that is, every local ring of 8§ is a unique factorization

domain, because of the fellowing fact :

Lemma 1.2, (A, Grothendieck [4}) If | :X—> S5 is a
P"-bundle (in Zariski topology) on a factorial scheme 8§, then there

is a vector bundle E om 8 such that P(E}= X.

Proof, Bince § 1s a direct sum of irreducible subschemes,
we may assume that § 1is irreducible., The exact sequence of

group schemes on 8

e — Gy g —»GL(n+l, 8)—> PGL(N, 8) —e
provides the exact sequence of ¢ohomologies

Hi(s, GLONHL, 8))— HI(S, PGLN, 8)) -3 HZ(S, o;)

*
Thus we have only to prove Hz(s, Os) = 0, In order to gsee this,

consider the exact sequehce of sheaveg

* *
0 —p 0y —% K, —> Dy —> 0,
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whare K; is the sheaf of non-zerc rational functlons of S5 and

Dg 1s the sheaf of Cartier divisors om 5, Since every loeal

ring of 8 is a U,F.D., Dy is tgomorphic to the sheaf of Weil
divigsors on 8. Thus Dg 1s a flabby sheaf (because every Weil
divigor on an open set is extensgible to that on the whole sgpace).

On the other hand, K; igz also f£labby becauss !{g iz a constant gheaf.
Therefore the above sequence can be regarded as & part of a flabby
resolution of 0;, whence MH2(s, 0;) = 0, q. @. d.

Sheaf theoretic interpretation of elementary transformations is

stated ag follows,

Theorsm 1.3. Let E be s locally fres [?'S-mudule of rank
N+l and let T, Y be closed subschemes of 8, X = P(E) satistying
the condition (E;).

(1) Denote by Ty the ideal defining Y and by o0yx(1) =
tautclogical. line-bundle on X , then E' = TD*(IY & ox(1)) is

a locally free Og-module, P(E'}Z: el%n(x) and Rii\;*(IY b Ox(l.))
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=0 (i} 0), where To: X—2 8 1is the natural projection,
(1133} Since (Topfyd4( Op ® 0;(1)) is a locally free
Op-module of rank n+l, (1) can be said in other words ; 1f F 1is
a quotient bundle of Ej = E %SDT of rank n+l, then Ker ¢ = E' |is
2 locally free Og-module of rank N+l, where ¢ : E—5 Ep—> F
ia the natural homomorphism, And we have the following exact commitative

diagram ;

o
I
g
v
w
]
-
Lo

[ ]
H
Jr
°o—FP—>W—W —o
'y ‘
-
-
3
o

Moreover, the locally free Opfodule F' of rank N-n defines
closad subschene Y' of P(E'} in Theorem 1,1 and the step
obteining E', F' corresponds to the inverse of elm:;1 (see

Corollary 1.1.1 and note that FP(E} = P(E® I ).
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% 2. Proof of Theorem 1.1 and Theorem 1.3.

In this section the notation of the preceding section is
preserved,

The following is a key lemma,

lemsa 1.4, Assume that $ = Spec(A), % = Proj(A [T, vves Ty))
and that the defining ideals IT’ I for T and Y in A and
A [70, et 1N] respectively are generated by t €A and t,
7n+1’ eves 7N* respectively, Then elm? exists and elm${X) =
Proj(ﬂ [‘Ia. etet 7!:;“. where ‘Ti = 7:'._ (0 21 € n), lfj =% 73
(nt+l £ j £N),

Proof. Put 3@ = ‘1"'/[« , §’2= ?‘;/(; (0L, * £ N) end

~

pat X' =ProjA {75, ..oy 73], Let f:X— X be the

monoidal transformation of X with center ¥, than

" 8 N
x = (YU U;‘}U(U vV U un
o= ¥

bRaEw T=wt}
e EL R p
ey N
. c N
where U; - SPBG(A i%ur Yy iﬁ [ a‘ft, Y gu/t 3 =

nel N
Spac(ﬁ[?ﬁ.:, et }:, .iq/t‘f “nay 3'¥ft])l
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e

N
U£=SPEG(A [3:: anny 2:“ ’ t/-;?r ’ ‘a"ﬁ'/!{’ t weny 1”’/%3‘] ) =

EP'BC(A [:;;, [ ‘3:’ 32 ¥ t.v/?;@ y ?Stl:r'l 5 sk 2:] )'r

U‘,;,: Bpec (A S_?;, cerns "‘[,;‘1) ( Evvu-tthlng is considered in

TEVYE (S L P

Moreover, wa have

von U= U0 ) = U 308

U, O U=l VIR Wl V6738 -3,

I o

;8 C g
UﬂP N U£:= Uf( 2:”39 )y = Us‘.( ‘gu;' -.‘)gt )

< o
U Uy =0, 030 = U Syt
= P ¥ - o g
ATY=T,C 3, -3 D=0 T - 30
Y ¥
UYL A UpE U0 3 = unL 30
™

On the other handjfor the monoidal transformation g : X' —5 X

with center ¥' = Proj(ﬁ[‘y: P sy T;l/(t, 7;! amay ’?;)) we

have an affine open covering ?{'" =( G V;)U(o,_g!&“ V: )U[ 0 V:)
< d=s

Ve Wltll'&":-.h't
where
L I~
Vi = Spec(ﬁ[‘g‘“;:, T }1/"' T sees 3‘/1; ) =

specch [ 30 1os 3y Bgs e 2D S UL
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& + ' ® ] t t
v@=3p9¢(ﬁi‘§'ﬁ“‘ TYYE ] 1';1 i; r t/‘;;‘ » ‘% ¢ 7 es e d %:])

o

= Bpec(A | g:\’ e 3:, thy E LA VO 1)

P
= Uy »

3] 9 * w
vﬁ =SPBC(A[-‘;.:I y asatp 3':]) =Spe¢(A [‘1_' + wnwntp gﬁ ¥ 3“ /tl

eer Fap)y =
Furthermore, wa have

Vo n V= V}f‘i“:l =U:}(3¥)=U:}n Uy

f

V{-n V; =V1'((1'”.'r/t~'§r)-U"( ;,a, gf* )-U‘;.nup

¢

o / f ’ ¢
o vt . = ] o M _ 0 (¢4
Vpﬁvd;_\fp(%?? _‘.'t)'q) U(Ea'ip)_uunud"
Vi 0 VIS O Szl =0 A vy
t i
Viavis Vw3 sutage 38
1r 1 'df T i;
Ve 0 v = Wp0E, ) =Tl £Try=u, 0 U
o Al
Thus we obtain X = X'. It ip easy to see that g,(0y) = Oy,
(see Levma 1.5) Wow let us prove g*(IgT) = ly,. In order
N y
to phow thig let us congidar the affine‘covering X' =‘_U Hi, Wi =
[N -]

o -
Spec(ﬁ-[ﬁ'z Y rued 3":_‘) and put W} = g 1(‘&';_). Then we have

WS oyt =0 (0% a%n)
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=V vH=wud u) ey 2N

dxg LT}
Since U“,‘n_f,r ={t/t = D}=4’, we know UL N g(FfT) =¢’ y 0L £ n),
Furthermore since the ideal of U'{.nir {er, U} M _x"T) ig generated
by t (or, t/': ' T » YEEP.), H (‘i'u'.r,-:ﬂIfT) is ganeratm: by t,
. . ALl lv-c-:{-c't L s 1-5
n
‘g.a' ry oreas 3:7 as H (w: Og) ~moduley, whernce g*(IgT Iys.
Finally we must show that for a tautological linebundle L on X there
is a tautological linebundle L' on X' with g*(L') = £*(L) %E}Oi’(-EY).
Agsume that there are tautological linebundles L; on X end I..:'L on
X' with gLy < r*(0)) D OY(-Ey). then L =L) @ {F*M) for some
linebundle M on § and therefore g*(Li_ @ WEMI= g*(Li) @ g* R EAD
= (L)) D OF(-Ey) @ P k0D = £4(L; & WHM) ® 0 (-Ey) = (LD
Oy (-Ey), which implies that L ® w*W) = L' is a desired linebundle,
Thus we may assume that L is an invertible sheaf with 1/ 3'3 as a
generator in W, = Spec(A L’s’: 3“1) Then a generator of
o P T oasey q . gener: ro
T BOF(-By) dn Wy =VE=T0< « £ m) is t/3) = 1/ 97,

= N =
the one in V'.f U.;{n+1£ ¥ £ R is 1.¢"-5\'!r 1/-3';5 and the one

.
in Vi=Uy (0&x S€n, nHld T & R) 1is XV%,E = 1/3'N, whence
¥



o~
the one in W! = g-l(w;) is 1/32"- Thug if L' 4is an invertible
sheaf on X' whose generator in Wi is l/‘gi“, then g¥(L*) = f*(L)

@0%"(-]?.1.). It is ¢lear that L' is a taztolegical linebundle,
q- 3. dv
Ag a corollary to the sbove proof, we have

Lemma 1,5, If Ey; is the Cartier divisor £*(Iy). then

£, (0g(~ rEy)) = I;,'.. £, (0Of(zEy)) = 0y for any r 2 0.
Proof, We have only to prove H0(£'1(Ugr), Oi'("rEY)) = {t, 31:#1’
s 307AL0, L ) ane wOcwd, oper ) = (3D L,
N - 0 N
‘ﬁa] for U,g-—Spec(At’ig, . ?5“]), 0 & o £MN under the same
situation as in Levma 1.4. If F & QCAX( ‘3:, cewy %:) is contained
i.'l.'.l Hu(f-l(Uﬂ )" OSE{TEY))’ thB‘l.'.I trF = A [ﬁ}’ axrab ‘E?t §ﬁ+1)’t' [ E XN ]
N P.r 0 N n+l N
zﬂft]’ ( gﬁ,) F Eﬁ[.iq’ nasy 3@1 t/%: ] %q/’%ﬁ 1 wweu? i,./%g]
for n+1$(5 f‘- N. Thus Féﬁtiigp rto-l %E}nﬂ[ﬁ: YRR ﬂ]gg
o
= A [?,f, ceny ?E}. Conversely it is clear that A[’ﬁf, camy 3;1:]

QHOEf']'(“Ua )s OY(r Ey)), Since OF(-r Ey) 1is & ideal of Og, and

since £ _(0y) = O, by the above proof, £ (0g(-r E;))¢ 0y, F &



o ¥ LD | [v'3 -] ( [ 4 )3 K T EY on

12 FAve A[30, .. 30, W, L el raahTe Al

35. t/-gi ' ?—{:1 cans ’ﬁ/;ﬁ] (4l < (5 < N}, Thus we obtalin

"'53 s
=1 _ +1 N 0O N
B0 W ), Oopkr By)d = <ty 3T, L, 3R e 30)
Lemma 1,6, If P'-bundle Wy : X;—»S(i =1, 2) eand morphisms
g ° ¥—> X; satisfy the conditions stated is Theorem 1.1, then
there exigts a unligque lsomorphism h : Kl.....—;rxz such that h » £,
- 22.
Proof., Let L4 (i =1, 2) be a tantological linebundle on Xj
with g¥(Ly) s £%(0, (1)) ® Ox(-E,). Then since gi{Lll = gE(Lz), we

-

hava Lz"‘.—:(ﬂzi*(gi(l.l)}. Put Ej

g% (L) = (m), (8T (L) = (T, (L)) = B (of Lemma 1.5). Since P(Ep
=Xgs P(E;) = X;, this iscmorphism yields an isomorphism h : X, —%
X, with h¥(Ly) = L;, Thus we get an isomorphism h : X; - X, with
h + gy = gz (B, G, A. Chap. II, 4.2.3). Uniqueness ¢learly follows

from the construction,

q., e, d.



Lemma 1,7, If U> V are open subschemes of & and if
X, v : % 1) (Xy) exist
gy ¢ XU-———-?B]JHYUCXU) extstz, then gy : Xy—>e va v} exists
and thevre iz a unique isomorphism hg : (elm?U(XU))V -_aelmi_lvixv)

with hvu * gU,V = gy
Proof, This ia an immediate consequence of the definition of
elemsntary transformation and Lemma 1.8,
Now we proc¢ead with the proofs of Theorem 1.1 and Theorem 1.2,
Proof of Theorem l.l. Unlqueness bas heeh proved in Lemma },6,

Lat us cover S by affine open subsets {U,\l gatisfying the

ae
conditiong in Lemma 1.4, By virtue of Lemma 1,4 there exists

Fd

g, * XU}‘-—---? X:\ = el!n;l_U (Xy ), hence g"!‘" : XU*PH J{t:”ll =

T1

(XU,‘H.). ghpl’:xuyﬁyqx‘?‘}“" - e Uhj““(xu“f""')

n
eltqﬁi,IJ N

el

exist (Lemma 1.7), where U"F'= U, N UF ) U,\.,_‘w =U, n U,ﬂ' n U,

By virtue of Lemma 1.7 thers is a umigue isomorphism h* : x

P U
PRy x."r‘” and the commutative diagram (+) is cbtained. Thus
if X' is identified with X' by the isomorphism i”“:
X 'U"‘P F:U -\}A *
- Y
. y then we obtain a undle on ecause .
(h:) 1 hy 4 th btai PN-bundle X* 5 b LN
R o
= f * on X by wvirtue of the diagram (+), Moreover, sincae

w >,U Pt

18
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~
X

1]
=
¥E

L)
- = . we got 2 morphisnm g :
h/h EL,U,‘P_ gh:"\ g}HU;_p > € P

—= ', In order to show that X' = P(E'} for some vector bundle

E'* on 8, we have only to prove

(+)

that there exists a tautological linebundla L' on X' such that
g¥ (L) = T%(0y (1)) @ Oy (-Ey) for a tautological linebundle Oy (1)

onn X, which completes our proof. By virtus of Lemma 1.4 (311,)*

(U )+ Og (D]y) @ O%}‘:-EYlU)\)) =1y s an ioversible sheaf on

s L
Xy, such that (gUk)*(LU})"-':(fU)\)*mxu)]U}‘)GDDfU)("ET\U}\) .
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Thus we know that L' = g*(f*(ﬂxtl)}t@ 03(-Ey)) 1is an invertible sheaf
on X' pguch that g*(L*) = f*{ox(l}}an 0y (-Ey). On the other hand,

I-"'IU_, Iz & tautological linsbundle on X'y by virtue of Lemmz 1.4.

Thus w'y{L') = B' is & lecally free gheaf on S and P(E') = X!,

whence L' is & tautologlcal linebundle,

1"1- &, d-

Proof of Theorem 1.3, (i) Let O,,(1) be a tantelogical
linebundle on X' = eln@(x). Then by virtue of Theorem 1.1 g*{Oy, (1))

= f*(Ox(l)}'S)Di“(—EY) for a tautological linebundle Oy(l) on X, Thus

E' = %4 (0ge (1)) WLE,8% 0y, (1)) = W2, (£F(0, (1)) @ OF(-By))

T £ (O0g (1) & £, (OF(-Bp))) = T, g (1) D 1y) (see Leuma 1,5)

S8ince X' = P(E'), we know that T-.,‘.-'*(Ox(l} ® Iy) 1is a locally free
n
- =~
OB‘ module and P(E*(Ox(l) & IY}) _._.ele(X}. Let IXT(or, Jy) be
the ideal of Xq in X(or, Y in x’l" resp.) Then we have an exact

Baience



0 —5 I, ® 0y(1) —> Iy ® 0x(1) —>Jy D0 ~—> O,

S8ince IKT = y¥{Ip) and since Iy 1is & Cartier divisor on S,
IxT@) 0y (1) 1is also a tautological linebundle on X, whence
ri Wy lly, ® Ox(1)) =0, 1> 0. On the other hand, the following

exact sequence
0—3 Jy® Og (1}—> Oy (1) —> Oy WO (L) —> 0

Elves rise to an exact sequence

B —3 F—> Rlw, Uy ® 03(1)) —> B (0 (1)) —

RLF, 0y @ 0x (1)) —> 40y —> Rl g (@ 0, () —>

Ry, Uy ® 0g (1) — Rig, 0 (1)) s ...,

where E = T, 0x(1)), F = W, {0y ®0y(1)). Since P(Ep) = Xy,

21
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P(F) = Y and since Y 3 Xp is & cloged immersion, BEp——> F
is a surjective map. OXT(D (v, Oy ® 03(1)) 1is a tautological
linebundle on Xp{&., Y, resp.), hence RiTi;*(OxT{l)) = Riﬁ*(ﬂg & 0y (1))

= 0f v

i>0). Tms RiR,(y® 0x(1) =0 ¢ Yi > 0), Hence the
first exact gequence implies R1 T lly @ 05 (1)) = 0 ( ¥i > o).

(ii) Every assertion is clear except for Y' = P(F'), let =
be a point of & and let U = Spec(A)} be an affine neighborhcod
of s such that E, E', F are free and that I; is prineipal in
Us If egs +oor eN(&v s €4 444 €y, resp.) form a basis of
Ey(tV, B}, resp.), we may assume that P (eg)s +ees Y(e) form a
basis of F and the map meEI‘]*—? EU is given by Df\;(ei) =
te; (05 1 £m), A yle}) = e, (n+l& 1 ZN), Then Ypleiigds «ves
Byley) form a basis of F', where % : E'—> F' 1is the

naturel map, This and Lemma :.4 imply P(F') = ¥,

qo Q. d.-.

§ 3, Bome properties of elementary transformations.
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Elementary transformations are compatible with base changes,
In fact .

Proposition 1.8, Let ¢ : 8'——> 8 be a morphism of lecally
noetherian schemes, let 5 : X—= 8 be the projective bundle
assocliated with a vector bundle E of rank N+1, and let T, Y
be closed subscheme of 3, X satlsfying the condition (Eg).
Agsume that ¢*(Ip) 4is also a Cartier divigsor in 8' with the

defining ideal for T in 8., Then CP-l(T), ¥ satisfy the condition

gr

(ED)  for PN-bundle g :xs,——';s- and {am‘;m)s.; am‘é‘sl(xs.).
Proof. It iz clear that '-P-l(‘l‘), Yy+ =satisfy the condition

(Eg). Note that if a PM-bundle ' § X'ew—>»8 and a morphism g 3

?{'-—-—}I' exist and if there is an open covering Akt:‘!\u}“ = 8 such

that £y, :F}EU;——:,;XG; satisfies the conditionsg stated in

Theorem 1.1, them X'&: elu;(x) and g« 1= almffl. (see Theorem 1,1

and its proof), Thus we may assume that S = Spec{A), 8' = Spec(B)

and that X, ¥ satisfy the condition in Lemma 1,4, Then our

agsgertion is obvious by virtue of Lemma 1.4,

C[. e, db



Next, we assume that 8 1s a repular scheme. ILet us cousider
the following condition for a PH-bundle T : X—=28 and a closed
subscheme Y of X

(B,) Y 1s a regular subscheme of pure dimension n + dim S-)
(04 n £NK¥-1) and ’ﬁ']‘(s) is a n-dimensicnal linear subvariety
LI; of PE(S) = wl(s) for any s ¢ T = (Y}, where T has the
unique reduced structure end where T : Y —> T is the restriction
of % to Y.

Then we know that Y igz a PP-bundle on T ({9 Lemma 1.7,
Theorem 1.8) and T i1s a regular subscheme of S, Hence if Y
satisfies the condition (E,), then Y, T satisfy the condition (ED),

The remaining part of this section will be devoted to prove
that every PN-bundle on & smooth quasi-projective k-variety with
dimension smaller than 4 is cbtained by an elementary transformation
with center satisfying the condition (EN_I) from the trivial

bhundle.

Proposition 1,2, let K : X—> B be a P"—bundle on oa
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gmooth K-variety 8 and let Hg, ...; Hy be positive divisors om

X such that Oy(Hy) is a tautological linebundle for every i,

Aszsume that Hpos cees Hy are transversal to each other.at any point

N N -
of 11':“.0 H; and that dim (( 1‘;10 H)nT™ 1(3)) £ 0 for every s €3,

Then Y =Mz + ++- + Hy satisfies the condition (Ep> and
olml(x) = P(lg ® ... @®1Ly), where TH(Li) 3 Og(HY) ® Op(-Hy). In
paticular if Oy (Hg}= Oyx(H;} (1 = i £ N), then elmg(x) 2 PY % S.

Proof. Since HD' PRI HN are transversal to each other at

N

any point of 1f="l° Hy; Y is k-gmooth and pure dimension (dim 3 - 1.
Moreover, since Ox(H;) is a tautological linebundle and since
dim (¥ ‘n‘."l(s)) £ 0, we gee that Tol(s) = Lg for every s € 3,
Thus we know that Y satisfies the conditionm (EO)' Next let Iy

ke the ideal sheaf of Y in 01{‘ Lzt us congider the Kossml

complex K. defined by I-IO, PP HN :

KEg = Oy

Ky = P Ox(=(Hy, + .ou + Hyy)), 1 £ig N1
0L Koo Cor, Ly

szo J > Nl
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and the derivation d; : K3 —> Ky_; is defined by

L
(di}x( E amlg anay uri) = E kgl(—l)k_l adl, "R di!
04N o 4oty < A b Lol Qa4 N
where x & X, Bntlj Y Q.’i & ox(-(H 1 + ..+ +H i))x and

(-1)k-1 8g s sess 4 OF the left hand side is regarded as an
element of Oyl-(Hy, + ouo + Hy o +Hy o F oov + Hy)), by the
natural inclusion Og(=(Hy, + ... + Hog )y T OX('(H"‘l toaes tHy
+ H‘k+1 toae ¥ H«inx- Then since H,, ..., Hy are transversal

to each other at any point of Y,
Q> Kml—)' KN-—-—} tee e —F Kl—} IY —_ 0

is an exact .sequence_(E.&.!\, Chap,IiI, 1.1.4)5). Hence,

Q—3 K}H‘l Qoxoxfﬁo) — Ky @010}(&[0)% e

—> Ky QOXOX(HO)-—-:? Iy ®0xox(ﬂﬁ).-3> o

is also an exact sequence, Put M; = Ker (dj @)Oxﬂxfﬂg)) =

Im{d; ;1 @ Ox(Hg)). then we have the following exact sequences ;

Ox
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) 0 OgC=(Hy+o . o HIg YKy, QOKOX(HD) —> By &) O0x(Hp) —> Mgy —> 0

&y ) 0— M; > Ky ﬁ%xox(nu) - I, %FXOX(HD)—? 0

*
Since Og(—(Bayt...tHy,)) @oxoxm{,) 2 Oy (=iHg) %xm (L ® + o By, ) %x

Og () = 0x(-(1-1H> B RH(Ly @ ... ®Ly;); we obtain

Ox

™ Ky ®onxmon:_:. S T, (Og (~(i-1)H)} %X(Lxlfa v ®Lay) = 0O,
UL RSN LR

2 £1% N+1,

T ) |, 0x (gD = LD Ay

Rim Ky B, 0x(Hg)) = @  RnOy(~i-1Ey) B Ga - Lep) =0,
% Dot <o <ot & 1

1£3, 1% i €31,

Thus the exact sequence (ay) implies that R, (Mg;) = RJT\};(MN_]-) =4q0,
Aggume that T, , M;) = RJE*(Mi) =0 {i > 1), then the exact sequence
(a;) iwplies that = (d;_,} = Rj-l:n(}ii_l} = Q. By induction on 1,
therefore, we see that W, Of;) = RI‘E&(M]_} = 0. Hence by virtue of

the exact sequence (aj) we obtain that Ly® ... B Ly = -
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Ty(ly ® Oy (o)), This and Theorem 1.3 assert that elm J(X) =

PL,@ ... DLy,

qr e, do

By virtae of the above proposition we have eonly to find
Hoe +vs» By satisfying the conditions in Proposition 1,9. in

order to prove what we have been aiming,

Lemma 1,10, Iet i X—-—> § be a PN—bundle on & guasi-
projective k=variaty 53 and let 1 : X «— Pf{ be an immersion such
that i*(opl,{;u)) is a tautological iinmebundle on X, If Hg, ..., Hy
are general hyperplanes of P]E and 1f dimn S < 3, then .dim((ia)ﬁi) r\‘n:-l(s})

£0 for every s ¢ 8.

Proof, 8ince i*(OPt(l)) is a tautological linebundle,
k
N -1 -1
(irjol{i) N ™ (8) is e linear subspace of T "(8) for every s & §

avay H of Pt. Thus we have only to prove that

and hyperplanes H W %

0’
-1
no line in T "{g) ig contained in Rﬂi for general hyperplanes
i=0

t o
HO’ seay Hy of Py. Let GrassG be the Grassmannian of the
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f&—dimensio:tal linear gubvariety of PI::’ Put Y :{le, Ly) & Grass{
X Grass; _y_, L, & La} and let py :T'---—) Grass{. Pop 2 [T ——

G:;:'ailec.'st » be natural projections, then T is an algebraic variety

t=N-1

and P,» b, are morphisms. We have dim(pzl(x)) = (N + 1)(t — N - 2)
for any x & Grass]. On the other hend, E = TO,(i*(0,¢(1)) is
K

generated by a finite subsast sLuﬂ, amay ut} of its glohal

sections because §5¢ 1s 1*¥{0_+{1)). The surjective homomorphism

Py
t+1
P . Og —>E detemilned by ugs ..., ugy defines a wmorphism
§)
of : 8 —> Grass®., o is nothing but the map defined by

N

=1 t - t
8 ——3 1('W (s)) € Grass;. Let F =i, ¢ Grassi|L,C L, tor
gsome L, € of (S)‘E, then F 1is a locally c¢losed subset of Grassi
and there is a natural morphism q : F —> oL (8}, Since q-lfs) =

Grassti forany € 8, dimF = dim 5 + him{Grass]:E)

Foe Grass{ Grass:_ﬂ_l

q
2 '—E—? U(S)C-—)Grass;é



= dimn S + 2(N - 1). Thus if dim S£ 3, then dim(p;]'(F)) = dim $
+ 2N « 1)+ (N+ 13{(t =N =2) =dim 5 + (N + 1){(t - N} = 4 =

: =1
dim 8 + dim(Grass%_H_l) - 4{d1m(GrassE_N_l), whence p,{(p7+(F)) %

N
t P t _ -1
Grass¢ o ;- Therefore if 1:01{1 & (Grassg . o polp;y (F}})

N
, then (1 H; contains no line of

t
for HO’ aswt HNGGr‘asst_l i=0

Tr_.l(s) for any a & 8.

q. e, d.
1

1

Lemma 1,11, If 3! X —3 8 be a PN-bundle on a quasi-
projective smooth k-variety 8, then there is a tautelogicel
linebundle on X which is very ample over Spec(k).

Proof. By wirtue of Lemma 1.2 there is a tautological
Linghundle Oxﬁl) on X and the assumption implies that theve is
8 very ample invertible sheaf L on S. Since 0,(1) 1is
W -very ample, Ox(1) & T;*(L@J My s very ample over Spec(k) for

any n > n, (E.G.A, Chap.1I, 4.4.10, (ii)},

qq 2. dc



Now we come to the following theorem which extends a well
known thecrem : Every plobundle on a complete non~-sinpular curve
C (that is, a geometrically ruled surface) is cbtained from the

direct product Ply ¢ by succedgive elementary trangformations.,

Theorem 1, 12, Let v : X —» 8 be a PNebundle on a smooth
quagi-projective k-variety 8 with dimS € 3, Then there ig a
k=-gubscheme Y of PE % 8 satisfying the condition (Ey_;} such
that X = e “""'{:':’ir X 8). Morveovar, if dims = 2 or 3, we can chooge
such a ¥ 4as an lrredacible subschems.

Proof, By virtue of Lemma 1. 11 there is an immerglon 1 : X
L__;Pﬁ such that i*ﬁqPﬁ(l)) is » tautological linebyndle on
X CE.G.A, (.hf.u, 4.4.7. If Hgs ..., Hy are sufficiently
peneral hyperplana sections of X in 13""'s then ¥' =THge ... -HN
satisfles the condition (E,) by virtue of Proposition 1.9 and Lemma

1, 1o, Ey virtue of Proposition 1,9 we have that

0 -~ -
e].mY, (E PEY 8. Lot Y be the center of (eln{;',) 1, then Y is a

desired subscheme {see Theorem 1.1, Corollary 1,1.1). If

51



dim 5§ = 2 or 3, then dim Y' 2 1. Thus we can choose such a ¥Y' as
an irreducible subscheme, Then the subscheme Y determined by
the Y' as above is irreducible.

q. e, d.

Rewark. 1,13, It seems that Theorem 1.12 ig falge imn the
cage where dim § is greater than 3 (see Theorem 2.19). But we may
present the following problem : Is every PN-bundle on a smooth
quasi-projective k-variety & obtained from the direct product

PE % 8 by succesive elementary transformations?

52
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Chapter 1I, Repgular vector bundles.
From now on we ghall use the following notation unless otherwise

stated ;

8 :.a smooth projective varlety over k with dimension greater

7)
than 1

P_ : the direct product Pl:: i 5 ;

™ : the projection Pg—-?S H
N
Z : a hyperplane of Py i

N
HO : the subwvarlety =2 L(S of PS i

N
Y : an irreducible subscheme of PS satisfying the condition (E'N_l)

T ¢t the subscheme W (¥) of 8 with reduced structure ;

N
PT : the direct product P: Y-k T which iz regarded azs a subscheme of

N
P »
s

N N
+
the divisor HD PT on PS

e

IY : the ideal sheaf of Y in P:

L N
X(Y)-—)PS : monoldal transformation with center Y

'_Jh



_ ,~=1I.N _ =1 .
= rY [PT—] . EY = fY (Y) (i.e. exceptional variety of fY) H

o ——
EY : X(Y¥)—>3(Y) : the contraction with center XT whose

contractabillty 1ls garanteed by Theorem 1.1 ;

™ X(¥)—»B : the projection of PN-boundle X(Y) ;

N=-1 ~1
1 " -
H', : the transform of HO by elm, { gy Iy )

In the above situation we may assume that HD does not contain Y,

Iy

X(Y)—> P {-—-—"P — v

Ey ‘n:l T ‘/!'-r

X(Y) Xy § > T
3 1. Definition of regular vector bundles.
By virtue of Theorem 1.3 we know that E(Y) = ﬂ*(IYQO H(HY))

PS
i= a locally free Os-module of rank N + 1, Thus it seems that the

following definition is adequate,

4 -module which is l1somorphic to

Definition. A locally free g

ECY) is called a regular vector bundle (defined by Y).
Of course a subscheme which defineg a regular vector bundle may

not be unigue (see § 2 of this chapter),



Lemma 2.1. Let I’*1 3 Xi—j-s (i=1 ,2) ©be PN—bundles oh

8, 1let T , ¥ {or, T, Y,) be subvarieties of S, Kl (or, 8,

1 2

Kz, resp.} satisfying the condition (En) {or, (EN-n-lj , Te€8p.)

N-n-1

n
with )12.—, elmylixl) ’ ele2

= (eln';)‘land let fi : ?{'—;
]

Xi be the monoidal transformations of Xi with center Yi. Assune

that ¢, 18 a positive divisor on X such that 0O (Cl) is a

1 1 X
n
tautological linebundle on X . Put C, = emYl [cl‘_,].
i Y if and only if ® h
(1) cl‘b 1 and only if C,DY, . In this case

-1 -
I, (€ =1, 1[("2] + I, Oy

1
(Yl) .

-1, -1 -1, -1 -
(1) £,7@, 7 =2, [pl m]+ £

Proof. et x be a point of T and let U = Specl{A) bde
an affine open neigutrvﬁnoL of % in 8 such that X u =
. ¥

Proj (A [‘To,..., f,]> 2nd that the ideal of TAU (or, X b

NY) 1s generated by t&A (or, t'7n+1' cavs fygs TEERL)

Then %y y = Proj (A [_Jro ?ﬁ]), 73 = f(i (0 £4i% n),

PR L

¥
t‘{i =7, (0414 1£N) and the defining ideal for Y is generated

¥ ]
by t, 71.--., Tn by virtue of Lemma 1.4, We may assume that
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N

: = A, C X
cln xl,U ig defined by igoai?i 0,a, & 1 N 1,0

Lien, T
bflnxl’u if and only if a & t A for some 0£i¢nm, Thus

if Cln Xl,U-b Ylﬁxl,l.l’ then Czn}:z’U 1g defined by

E a ‘f +t 2 a ?’ Hence C _nX_ DY . Conversely assume
1] u
e 1 SR I 2Nz 02 g,
X Y nX . We may assume that C X iz defined
that Con®y u2 2" 5 ¥ 2™ %2,1

N
oy Ebi‘{i’=o. (b, e A, 4f 0£i%n, b =tb', b'ca

if n+tsi&N), Since Cz is the proper transform of C_ by

1

n _ -1 P
BIIIY, Cz Pz (T) '}t' D, whence bi% tA for some O0%i<n, Then

n R
+ t =
C,N X ;; 1s defined by I b, 7, EbJ ?j 0 and b,4tA for some
i=o Fntl
Zicn, X X, .. 4
04itn. Thus C N l‘U'ijlﬂ 1,5 Since ¥, 1is irreducibe, € O
if and only if C,AX, DY NX, ,.  Thus clfp Y, if and

-1 -1 -1
= +
only if Cz“.} Y2. 1’2 (Cz) fz [Czl :E2 (Yz) is clear because

N
£b, 7;/73“3-1? for 1,= (b, To/Pe T/TY ) AW'D/?:]. .-

1=0

7&/73] , O0%j4N (cf. Proof of Lemma 1.4), Thus we get (i).

Proof of (ii} is similar tc the ahaowve, Qs ©. d.

i
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Lemna 2. 2. I1f E{Y)} 1is the regular vector bundle defined by

Y, then we have E(Y) = GEYJ*(D

X(Y}(H Y)}'

Proof. Put £3¢@ )=TH, then gl _)=H+X. b
root. ut iy Mo ’ By Yy X by

N
* ]
virtue of the above lemma. Thus fY((} N(H& ® 0 N(PT)) =

PS PS

oi-ﬂi) @ UE(XT)G) oif(EY)g (gY)*KUK(Y)(H'T))@) °§(EY)' We therefore

¢ o 1
obtaln  (R),0, o (D) B 6D, (), (g I¥C0, o (')

W*(fi}*(fy*(OPN(HY)) Q oz (-E)) =W, IO %g‘*‘y”%’ EC(Y) (o LommalsS).
38
q. e. d.

The following 1s a corollary to Theorem 1.12,

Propogition 2,3, Assume that the dimension of § i= equal to
2 or 3, Every very ample vector bundleg) of rank N+ 1 (N Z1)
iz regular and therefore, for any vector bundle E of rank N + 1
(N21) on S, there exists a linebundle L on 8 such that
E® L is a regular vector bundle.

Proof, Put X = P(E} and let Ux(l.'l' be the tautological linebundle

of E, Bince Ox(l) is very ample by our asgumption, the proof of



Theorem ]1.12 shows that there is an isomorphism j : X —%
N-1, N
ele (Pk)! 8) for the same Y obtained fron ox(l) as in the
N-1, -1 .
proof. Moraover, (ale ) [J(Hi}-i:zi x8 for a hyperplane

zi of P;, whare Hi is the same as in the proef of Theorem 1.12.

-Thus we obtain gur assertion by virtue of Lemma 2.2 q. e. d,

§ 2. Families of regular vector bundles.
In this section we shall construct a meduli of a subfamily of
regular vecter bundles,
Lemma 2 4. Let X be & factorial variety over k and let

W be a positive divisor on p:: such that O (W) ® k(xy)
Py X
OPN (r) for some xDE- X. Then we have that r 2 0 and
k(%)

o N('ﬁ)’.—‘: GPN(!I(Z A D N ) p;(Ox(D)) for some positive divisor

PX X

N
D on X, where P, i Px--;}{ is the projection.

Proof Invariance of Euler-Poincaré characteristic of a

proper flat family implies that O W ®D k()= 0 y (r2  for every

PX X Pk{x)

x&X. Then by virtue of the seesaw theorem (\12] ps4 )
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we ¥mow that 0 N(W} =0 H(r(z % x}}®pz*(L) for some

Py Py

linebundle . on X. ©On the other hand, the Xiinneth formula

N N 0
implies that el 0 en= 12,0 (r}}?ﬂ X,L).
z | k' N
| 4 P
X k
S8ince W ie a positive divisor, dimkHO(Pi,O N{W)) > 0, whence
PX
0. . H a
dimkH (Pk,ﬁ N(r}) > a, dimkH (X,L)> 0. Thus we get that
P
.4

rZ0 and L = OX(D) for some pogitive divisor D on X,
g.e.d.

Now a repular vector bundle E of rank N +1 (N2 \) is
completely determined by a subvariesty Y of PI; gatisfying the
condition (Eﬂ-l)' Then T =%n{Y) with reduced structure is a smooth
subvariety of 3 of codimension 1 ([%’) Theorem 1,8, E.G.A., Chap. IV

6.8,3) and Y can be regarded as a positive divisor on P,T,,

N

Furthermore, since Y ix a hyperplane of Pk(t)

t tor avery te T,

we Jnow by the above lemma that O N(Y)“:" 0 N(Z ~TYD (T‘:T*(OT(D)} for
F
T T

a positive diviser D of T. Thus Y is a member of a conplete

N

T of type I ZxT + (TCT)_]'(D) | which containg

linear system on P

N
no £ibre of PT. We have therefore the following principle



Principle 2.5. To give a regular vector bundle of rank N *+ 1
(NZ21) on 8 1is equivalent to give a member of a complete linear

system of the type \ ZLT+ (Er)-l([})\ on P}Ti which contains

N
no fibre of PT?‘ where T ig a suitable smooth subvariety of B8

of codimension 1 and D is a pogitive divisor on T,

Put Pic' (T) =Enap1.:('r> | HOCT,OT(D}} o ] From

)

now on Rr(s, T, D}llc|I denctes the set of isomorphism classes

of regular vector bundles of rank r on & which are determined by
-1 +
menbers of | Z X T + 6L) (D)| for DePic (T).
By virtue of Kiinneth formula

0, N -1 0, N 0, _
H (PT,OPN(Z‘K T + (‘ﬁr) (p))) == H (Pk,oPN(n) ?H (r,o,r(n)) =
T k

7%, 0,00, .. @10, o m).
Thus a2 memlehn Y of {Z X T + (ltr)"l(ml is defined by

¢ E'(T,0.(D)). Y contains

+ + =
3070 EN?N 0 for some s,

a fibre ‘p;"ﬂ;) (te T} if and only if so(t) = L= BH(t) = 0,

Hence Principles 2.5 can be said in other word as follows:

40



Principle 2.6. To give a regular vector bundle econtained
in RNﬂ'(S,T,D) (N Z1) is equivalent to give an element
(By, ooy 5y ¥0 of HO(T,QT(D)))f... % HO(T,DT(D)) such that
every 50(1:}, cers sN(t) i= not zero for any t & T,

Now let us construct a larpge family of regular vector hundles.

Lasma 2.7. The set R (T) which conslsts of subschemes of

P;-l satisfying the condition of Prineliple 2.5 forms an open subset

of Hilh_r-1 .
"PT /K

Proof. Since P;-l ie projective and non—singular, DivPr-1 /K
T

1s open and closed in Hilh,rel, ([&) Proposition 4,1, Corollary 4.4,
T

['!] Theorem 2.1). Hence Divpr-lfk is a union of sowe connected
T

components of Hilbpr-l 7k On the other hand,
T

D= {D eDivyr-1, | o1 ), =or11), Yte T}y isalso
Pp /K OPT t ka(ﬂ

a union of scme connected components of D:lvpr-l /i Moreover, Rr(T)
T

1

congigts of the membars of D which contains no fibre of P;- . Let

¥ be the subscheme of P;'-l X D, induced from the universal family

of subschemes on P;-l)l;. Hilbyr-1, Dby the natural inclusion
T

41
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r-1

r-1
'-'é b < P Xk Hilb P:, 1, Look at the following
commutat ive diagram
r-1 w
PRX L /‘77 D
W
p
-
R -
T XD

Since p' 18 proper, the set R’ = {x €T x _I_)_‘ dim p’ “x) = r-1,

r—1

Kx) iz closed in T X D_

i.e. W containg the fibrs p_]'(x)’r.-.-.‘a P
(E.G.A. Chap, IV, 13.1.3 ), Since R'(T)=D - q(R'} and ¢ is proper,
R* (T} is an open subset of D. Thus RY(T) is an open subset of

Hilb P;-]'/ Kk ®

Lemma 2.8, et T : X—58, ¥;T me the same as in Theorem 1.1,
and let j: 8'—3 S be a morphism such that j “(T) is al=o a
#*
Cartier divisor oit 8', Then cancitically j (TF*{IYG? Ox(l)}) =

*
(Ws. )*(IYOXS(;& i Oxil)) for a tautologlcal linebundle Ox(].) and

. ¥

the idea](.j IY of ¥ in X, where 1 : xs,--;x iz the natural

morphism induced by J.
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Proof. Put E =T (0,(1)), F=To (0o, ®o, (1)), E =
(T, 2, 0i%0,A0),  F' = (o, )*(DYS'@i*(oxu))), Then Kerlf=
W ully @0, (1)), Ker @' = (g, )*(IYOKS.{E! 1#0,(1)) for the
canonical morphisms ¥ : E—»F, %' : E'~—> F' (see Theorem 1.3,

Proposition 1.8). Consider the following exact commutative dlagram;

*
T W1, ® oxu))_LL, 3 % 7 a0

N %y J/ %3
0 =V, )*(IYO}'(S@ i*cx(l)) » E' > F* >0

Since a local egquation t for T at J(s')& 8 is a non-zero

L)
S.S =
divisor of 03',3‘ Tar 1 ms,s“’tus,s, Ogs " =10 a.t{d therefore Ll’
is injective On the other hand 4 §*F) H,-ﬁ 1200y , (0,®0 (1)) ) Br(s")
: ' s s’ Y X 8 k(ss
b8 n% (0, @ 1%0, (1)) ,} ™. F' , for any s' & j L(T)
—_— g1 ,sl , QYS' w g' — sl ¥y =8 ’

jls') = s, Thus Gs is an isomorphism because E.(aB.SF T8,

Similary & iz an iscemorphism. Therafore o is an isomorphism

2 1

by virtue of the five lemma. g.e.d.
Theorem 2.8, ILet 5 be a non-singular projective variety
over Kk, let T be a non-singular sutwariety of 8 of codimension 1

and 1et R'(T) be the open subscheme of Hilhr-1, defined in Lemma 2,7,
T



Then there are a vector bundle Pr('l‘) of rank » on S 31(; Rr(T)

and a surjective map f : BT (1 (k) —> Il R'

(5,T7,D} such that
D € Pic(T)

P(T)x&rfi’,:(x) forany k-rational point x of R (T)

r-1 r r-1 r
b = X
Proof. Let W be the subscheme of PT L R {T} = Pk k(T)I’& R (1))

induced frem the universal family of subschemes on P,;:”]' 3]& Bilb l:_:---1",];.
T

Since T is a Cartier divisor on §, so s T % R (T on 8 X R (T) .

r-1 r r -1
. x b3
With the natural projection p : Pg B (m—s X R (D, (pTer(T)lw) ()
- Pr_z r r-1
= "k{y) (vHGrT}{}R {TY)}. Thus the sybscheme W 1in Pkp { (s )lé Hr(T))

satisfy the condition (E:E_z) ( {§)Theorem 1, 8), Now put p Ty =

P*(IHQOK(HG)) , where IW is the defining ideal for W and HO iz the
o T-1 r r

Cartier divisor £ ¥(S 3 R {T)) on PS § R {T). Then P (T) is

a vector bundle of rank r on Ser(T} by virtue of Theorem 1.3

If x is a k-rational point of R'(T), then {chlpr-l)_lﬂﬂ =W
T

is contained in lsz + (RT)_]' (D}] for some D&Pic (T) and
l"-]_
containe no fibre of P

r-1 r-1 T <
T 1 where D:x : PT -—)PS AR (T) i=s

the morphism induced by x-—-}Rr(T) . Thus for the natural morphism
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: 8=y S XRT(T), (B I*(PT(T)) is contained in R (s,T,D) by
x X

virtue of Lemma 2.8. Hence if one defineds £f;(:sl:) = the regular
vector bundle defined by Wx for x & Rr(T}(k), then clearly (f ::,
P'(T) fulfill our requirement, q.e.d.
Our next aim iz to study conditions for two regular vector hundles
to be isomorphlc to each other, The following lemma is a key in the sequel,

Lemma 2,10, Let Zu' e g ZN be linearly independent hyperplanes

N . - 1 =
of Pk and put H 1= elm Y(Hi) for Hi Zi)( T and a subscheme Y
N

N 0 [ ] — L ]
of P satisfying the condition (E ). Then ¥ :'Qo H', for

the center Y' of (almlrl)-],' that is, the lideal Y' is generated by those

n
of Hi'

Proof. Bince the property 1s local with respect te S and slnce

N — N
Hn's Y reny HN,s form a hagis of hyperplanes of PS, g = Pk(s)
N
for any s €& S, wa may agssume that S = Spec(al}, PS = Proj(Af_’fO, e ‘hﬂ),

the homogeneous ideal defining Y 1is generated by t(€A), T ... ... .7y

and that Hi is defined by 11 = 0. Then by virtue of Lewmma 1.4
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N _ T 1 _ . —
e =rroya LT, ..., )0 yp= 4, zizw, vhy= Y,

(n+l £14 N) and the bomogensous ideal defining H; is generated

1
by Ty @%i€n), ¢t 'Ti (n+l £ i £ N), Thus in the affine

t

1
open get I.I;_ = {71 = 03 the ideal defining 51 OH:'] is generated by
1 (04i%n);t, 1. T/4 (or1 &1 2H) On the other
—— —_— H ? 0/"‘ .i, Ty n 71 — - -

hand, the ldeal defining ¥' iu U; is generated by the smame element
L] L)
because the homogeneous ideal of Y is generated by TO s maan ?n’ t.
g.e.d.

For a non-singular subvariety T of codimension 1 of § put

¢v |peribery, nOr, 0,r%0)) = 0 }

4;
I

Lemma 2,11, Lat Hu’ seuy HN be az in the ahove lemma and put

A |
H1 eim,, (Hi) for Y sgatisfying the candition(EN_l). Iet T De
the subvariety T{AY) (with reduced gtructure) of § (then T is

non-gingular and codimension 1). Assume that YelzxT + (W hem}

19]

1 + >
witha D e Al" then HO' “ary HN form a basis of the completa

- N-1, N
linear system | Hl'nlon A(Y) = elm, (Ps}.
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Proof. It is clear that H'U, arny H;ﬂ are independent. Let L

be the linear system spanned by HB, vees Hl:l . Assume that L% Ha

and we shall show & contradiction. Take a general member H'of !H"al
such that HK' is irreducible and H' 3;— L {since at least ohe of

Hl

ottt H is irreducible, such an B’ exists). In the first place

-1 — -1 — -1 N
assune that H'™ Y', then g (a7 + X~ iy [_H;)l XL P
- ol K
- E, by virtue of Lemma 2.1. Thus H = IY[gY i }]wHO. Since

Hyr +vey By form a basis of IH

o' H=Z X T tfor some hyperplane 2

ol

of P:[; and RB' 1s the totgl transform of H, Thus H' & L, which
is impoasible ., Next assume that H"}p ¥, By a smimilar argument as

above we lmow that H~ HG + Pg and by virtue of Lewmma 2.1 HZ Y

Thus H-P,T, =Y +A A>0 and GN(Y +A)% QN(EXT + wlr2yy,
T T

2 H
Thus OP:(A)‘;')'I;*(OT(T D)), whemce RO(, w*(o (T7D))) =

HO(PI;. UPN(A)) %0 because %:(Y) o OP;-I.(E; T)® m*(qr(D)).

T

On the other hand, HU(PY *(0_(T2D))) = BT, ™, wor(o (T%D))) =
' T* ™ qr ' * T qr

HO(T,QTCTE—D)). But this iz contradictory to the fact that D & AT

g.e.d.
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r 4]
Corallary 2.11.1. If E &R (8,T,D), then dimkH (g, E)= r.

Moreover 1f D & AT’ then dimkﬁo(s, E) = r,

Proof. Our assertion is clear if one notes HU(S, E) = HO(P (E),

O gy (100 q.e.d.

Note that ﬁuts(Pg.l) == PGL(r-1) and that if a subscheme ¥

- .
of P satisfying the condition (EN- }, then so doss ¥ for every

5 1

o & PGL(r-1). This enables us to show that the next proposition
follows from the above two lemmas.

Proposition 2,12, 1lLet Ei (i =1, 2} be a regular vector bundle

of rank r on 5§ defined hy Y : and let Ylé ZXT + ¢ 'Ti-T)_l{D)

for D€ AT (notation 1s as above). Then El is isomorphic to E2

o
if and only if Yl = Yz for some T E€PGL(r-1),

Proof, It 1z eclear that if leY:, then El"‘é Ez. Conversely,

e

aggume that thare ig an isomorphism 1 : Ez_y El. i induces an

: = o= = * 2
isomorphism § : X, P(E,) =X, =P(E) such that j(oxz(l))—&xlil)

for the tautological linetumdle 0, (1} of E,. Since Yl &
i
lzxT+ (r:,r)'ltn)[ for D e dim HY(X_, 0, (1)) = dim HO(X., 0.{1))
p"r' k 2t X k 1’

2 %



49

= r by virtue of Leuma 2.11 and Lemma 2,2, This and Lemma 2.10

imply that ¥'.= 1 B 4o tne center of (o1’ 5L, We have
I €Y Ty,
&fog, (1] i
. r-1 LH
therefore j(Y) =Y¥Y',. Fix isomorphisms <T,: PS —,}d?.llllYi (X, and
put ‘ti(Yi) =Y. Thenr it i1s easy to see that J induces an isomorphism
0 Q
o« : 31“1{1'“‘1)“"'91"'?5(32} such that IIEY:‘L') = YE, Henea wo get &
desired automorphism T ' o of prt e.d
P 2 %0 s - a.e.¢.
Theorem 2.132 Let S be & non-singular projective variety
oveyx k.
() 1f E R (s, T,» D) (1=1,2), D € A and T %T,,
1
then E, & E,.
(11) If T 1is a non-singular subvariety of B of codimension 1,
r-l r r
then AutS(PS } = PGL(r-1) actz on R (T), The set RO(T) =
zY & R (T) I YE|ZX T + ('u:r}_l(D)l for some D € ATi forms a
PGL{r-1)=-atable open subset of Rr(T) .
(411) For the surective map ‘-P;IR;(TJ : RE(T)""‘-'—?'D R (s,T,D)
€

it holds that (-:p;

i,_) if and only if X =

T ( }:( r )(x
ROCT)) xl CFT‘R;(T}



x;' for some T & PGL(r-1).

rroof. (i) Assume that Ei iz defined by Yi and El’E E2,

then Yl = Y:- for some oePGL{r-1) by virtue of Proposition 2.12.

1 to itself and W) =T,, which isa

r—
Since <& sends PT 3*

1
contradidim, Thus El?%- E,-

(i) Each element o of PGL{r-1) sends p,;"l to itself and
Y~ ¥ inpl”'. Thus if Ye R(T), then YeR (D), that is,
Rp(T) 1s PGL(r-l1)-#table. Let & be the canonical morphism
D:I.vT/k —3>Pia(T) and let T be the morphism of Pic(T) to itself
defined as follows ; Pic(T)> D;_;Tzﬂ DepPic(T). Then AT =
Pic(T) - ‘CFI( 3 (Dw‘r_{l'_:”' Thus A 1s an open subset of Pic(T)
bocause § 18 projective ([4) Corollary 4.4). On the other hand,
there 18 a cancnical isomorphism j ; Pic(P,::'l)—%Zx Pic(T} and
Jop sends Rr(T) to {1}; Pic(T) for the canonical morphism & :
1

r—
B:L% r-1 ——aPic(PT

; 7k }. This map J'Qer(T) is deflned as

follows ;

Vpe Pie(T), ZXT + (T:,r}"l(D) | YD & Pie{T).

50



Thus R;(T) = (J.g,_)—l(ﬂ\r) [ Rr(T) which iz an open subget of
R'(T) .
(iii) i a direct corollary of Proposition 2.12. g.e.d.

Theorem 2.14. Let & be a non-singular projective variety

ke

over Kk, T a non-singular subvariety of codimensien 1 and let DF_-AT-

12)

Then there is a subset SRr(S,T,D) of Rr(S,‘I',D) which carries

the structure of an open set of Grass: l(K) , where n .1 =

tem b PEO
'\a—-
dimk HO(T, OT(D)). Moreover, 1f r = 2 then SR?‘(S,T,D) =

2
R (8,T,D).

Proof. Fix a basis Bas rema B of I-IO(T,I DT(D)). 1f

51

0 LE
(8gy vy 8, 1)(£0) 15 an element of H (T, 0D - -.X (T, 04(D))

and 8, = 4. .4, o,

i 3% £k), then (su, sy sr-l} or the

J

-1
vx {my1)-Matrix (txidj defines a member of |z:«'r + (rr,T) (D)l . For

each (ﬁiJJGGL(r s k), the smction (X, }'“”513”“1 ) 1induces

J 3

the action of PGL(r-1) on |zx'r + (‘rqr}_l(D) I which 1s tha same
action defined before Proposition 2.12, Let U be the subset of

0 O .
H (T, DT (DY)X...xH (T ,OT(D}) which consists of element (EU pee g Br—l)
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such that =

R Y are independent over k and let U' be the

gsubgset of |Z X T + (TQT)hl(D) determined by U (U may be empty).
Then U f{or, U') ig GL{r)-stable (or, PGL(r-1}-stable, resp.}
and U/GL(r) is in bijective correspendence with U'/PGL(r-1). Furthermore

it is clear that U/GL(r) = Grass: Consider the following morphism

=1"

r
Y} of TXU to the r-dimensional affine space A over ¥k ; TX U

r —_
(t, s vy sr_l)-—-; (sott), Peey sr_ltt}} €A, Then the get F =

nl

= — — -1
{ (so, - sr_l)éU\sﬂ(t) = L. = sr_l(t} =0 5 ig p{ & " (0)) for
the projection p : TXxU—U, Since T is projective, F is closed in

U and it is GL(r)-stable, Thusz (U-F}/GL{r} is an open set of Grass:_l

By virtue of Principle 2.6 and Proposition 2.12 we see that ((U-F)/GL(r }k)

4 R7LS,T.D)

is in bijective correspondence with a subset SRr{S,T,D). Now, i1f

r=2 and s5_, =

s the = o
o' By Bre dapendent (so-lk 0} B s, s, for some

0
« & k, whance sl(t) = 0 for any t & T with 50(1:) = 0, Thus such
a (sD, sl) defines no element of Rz(S,T,D}. We know thevefore

sr?(s,T,D) = R%(5,T,D) "‘ D%0, q.e.4d.

Remark 2.13. SRr(S,T,D} may be empty. We raise a problem :



23

Does there exist a D for fixed 8, T such that SRr(S,T,D) £p ?
We know that if r > dim 3, then such a D exists and that

sup (dim SRr(S,T,DJ) =09,
I)EAT

Proof, Take a very ample divisor D on T such that
0 2 — ]
di.nkl{ (T, QT(T =D} = 0 and d:lmkﬂ (T,UT(D}) ra Since r 2 dim S

and D ig very ample, are independent and each of

301 L) sr_l

so(t), cans sr_l(t) is not zeroc for any t< T if s

--o.s

0’ r-1

are sufficiently general elements of HDCT, QT(D)J. Then (so, ceay sr_l)

defines an element of SR'(S,T,D) and if dim M (T,0.(D)) = n + 1,
then dim SRY(8,T,D) = dim Grass:_l =rtn+1-1r), Thus SR (8,T,D)
$ 6 and gup (dim SR¥(s,T,D)) = &0 |
3

Remark 2.16. i) R (8,T,0) = {03@ @os@osf‘n}

(i) R2(S,T,D) X p for some D ¥ 0 if and only if there exists
amorphism f of T to a curve .

Preoof. (i) is a direct conclusion of Lenma 1.4 and Lemma 2,2.

(ii) It Rz(s,T,D) ¥ ¢, then there exist two sections s _, s

G 1

0
of H (T, Qr(D)) such that both so(t), sl(t) are not zero for any



t ¢« T. Thug T % t-—> (so(t), sl(t}} epl 154 morphisn:l.

Conversely assume that there exists a morphism f : T—>C  {(we may
assume that C€ is non-singular because so is T). Take a
vary ample divisor A on C, Then HD(T, f*(nc(A))) contains two

sections = 8 such that both so(t) and sl(t) are not zero for

o’
any te€ T, By virtue of Principle 2.8, we know therafore R2{S,T,f—1(A))
* g, q.e.d.

The above proof show that if R2(S,T,D) ¥ § for some D, then

gup (dim SRECS,T,D}) =M and n% 0,

De Al‘

Example 2.17, i) RE(PS,T,D) =p forany DX Q if T is a

2.3

plane, RP,qD)* P for some D if Q e a
quadyatic surface becauss Q%5 4 x Pt

ity Rz(Pr,T,D} =9 {(rz® forany T and D % 0. For if there
oxists a morphism f of T to a curve C, then dim f_l'(p} = r-2

-1 =1, ., )

for mhy p & C, which is a contradfiction because dim{f “(p)Af “(p')

2 0 and therefore f-l(p} N ful(p') ¥ p. Thus every regular vector

bundle of rank 2 on P° (rz4) is isomorphic to Opr&) OPr(T) for some
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non-singular subvariety T of codimension 1.
2
1ii) If there exists a morphism of § to a curve, then R (5,T,D)
$£ $ for any T mnot contained in any fibre of the morphism and for

gome D,

§ 3. Chern classes of regular vector bundles.
In this gection we shall calculate Chern classes of regular vector
bundles.
Lemma 2,18, Let E be a vector bundle of rank r {Z2)on 8

sod let 0,(1} be the tautological line bundie of E for X = P(E).

o
If Hl' ey Hr are divisors on X such that Dx(Hi) .._DXCI) for every

1 and that they intersect properly, then P‘I.'(Hl Hr) = cl{E) far
the natural projection p : X~»8,

Proof. Consider the Chern polynomial H.» ... -Hr—p*( l';l (E})-Hl- oo H

1 r=1

=] r
+ p*(ﬂz(E))'Hf «2.*H + ...t (=1) p*(cr_liE))n H1 + (-1) p*(cr{E))

r=2

= 0, Operating p, on the polynomial, one gets p*(ch .. .4Hr) =

p*(p*ﬁﬂl-(E)) «H,»...,*H_ 1= cl(E) because p*(Hl-...'Hr ) =1,

i r=1
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p (. ..cB} =0 for i<r - L. q.e.d.
Lemma 2.2, Lemma 2.10 and Lemma 2,18 yield

Corollary 2,18.1. If EGR (S,T,D), then 0 ¢B) = T,

However a more general result is given by. the following theorem.

Theorem 2.19, If EGR"(8,T,D), then

1 n
- im(D )

+

th{E} = »r +
\=3 1! m,n=1 m' n'

P

where ch(E} 1is the Chern character , ({27} pll2} anéd i : T—>8 is

*E

the inclusion,

-1

Proof Assume that E is defimed by Y& lz xT + . )| .

The followlng exact sequence
0— L@ QP;—I(HY) —_ OP;—HHY) —> 0, Y 0,71 (H,) —»0
¥lelds an exact gequence
E a®__y w0, ® H,))—> 0
0= B =20 ——= RGP G —
~ _ U - =
because E = |\.*(IY® OP; I(HY)), R TB*(IY@) OP; 1(HY)) 0 by virtue
of the definition of regular vector bundle and Theorem 1.3. If one puts
F = (TE‘Y} (0,® o r-l(EY)), then by virtue of the Riemamm-Roch theorem
* -y P

2
of Grothendieck for the morphism 1 : T—~—> 8 wa have
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S
(1) ch(E) ch(OSCT) 3 - eh( Tt*(DYﬁb Qpr-l (HY)))

]

il
L §

. r-1
b0 (T) - b (i, (T {¥) (0, ® ;7 (B,

=1
GhlO(T)) - 1,(eh(F) « talhy )™,

]|
H

where N,];/s is the normal bundle ¢of T in & and td 1is the Todd
class., On the other hand, for the ideal JY aof ¥ in PT the
following exact sequence
0 =3 JYﬁ) OP;'—-I (HY)-..; %;-1@ OP;-llZHY) —> Oy D OP;-I(HY)—; o
provides an axact seguance
00— (R, )T, ® OP;—IIHY))——}GT(Tz)Gr__} F >R} (0,0, @ OP;—HHY)}.
Sincs Jy © Gr-1 () = Gr-l (Zx T - (Vo) L D)) ® pr-1(2 XT + ¢ w )"ty

F (R0 T%D)),  we know R'(W )5, ® Gr-l (Bp) = 0. Thus

the above exact sequence implies

(2)  ch(F) r(ch(qr(Tz)) - ch(ﬂT(T2)®0T<—n))

ch(OT(Tz))(r - chig (D))

&b & " no._n
=( 3 —"Ly(ra-3 L1200, ,
=0 «; n=1 n!
where T' = 12 in T. As to td('ﬂT )-1 we get

/s



L) {-I)B_l ' &-l
=) <2

(3) tdam_, Y = (—————
L ( 1 -89 B=1 p.

/s

The above (2),(3) yield

(4)  oh(F).tadN, y~L

4

z

vo . B-1,,0-1 o _qyPin-l T,m+ﬁ-1 p?
(r-u( Pt 1.% e

a=o ** CE / =0 al! B!n!
B=1 P=1
n=1
.. f-1 it | & _
ey ot (;}} = | (n'u‘n | § 1
Q=1 =4 L n=1 m=1
020, B2l
_1yf1
( ¥ (-1) ))
xf=n wl Bl
o«zo, P21
12
(=171 1 .
Since I ~w — = —7¢ , (4) reduces to the following ;
a+b=¢c a’) bl '
a9, b>1l
-1 ba ym-1on
- o0 ' -
(4> eh(F). £dlip, ) ey S—g— - 3 17T
=1 ’ m=1 m' n!
n<l ‘
By virtue of (1)},{4)}'
» 9 w k-1 % n o m-1lmn
(6) b=z ¥ —b -if-l) T—— -3 2L D
! * * = R‘ — 1 t
=0 t=1 *. m=1 m' n?
n=1
L+1 1

since 1,rt) =1 " ana @™ M =1"T 0N
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iy o m-1 n
Ch(E) =r + L~—1— 4 % (—1)“1" 1,07
t=1 g! m=1 m. nl q.e-ﬂ.

n=l
Corollary 2.18.1. 1f E &R (8,T,A), then ¢ (E) =T, ¢,(E) =D

cst) = i*(ng) in A(s}quq, where A(S} 1is the Chow ring of 8.

Proof. Note that ch(E) = r + c, (E) _;,.1£(c1 (Ey? - e, (E)) + -

'%(cl (E)a— 3c1(E}c2(E) + 3c3(E)} + higher term. Then ocur assertion
iz an immedlate corollary of Theorem 2.19.
It v=2, then GS(E} = 0 and so the above corpllary implies that
1*(D2} = 0, but fortunately Remark 2.16 implies that 1if RZ(S,T,D)
:Ifgi then D2= 0.
Remark 2.20. Corollary 2.18.1 asserts that if E e R (S,T,D),
then cl(E) =T in A{S). Thus we have the following problem ;

For EER (3,10}, c,(B) =D, o8 = L, (0) 1in A(S) ?



Chapter III. Simple vector bundles,

In this chapter we maintain the notation 1n:the preceding chapter.

§ 1. Simple regular vector bundles,

Let E be a vector bundle on a scheme X, then ZEnd(E) =
Homy, (B, E) contalns Oy &s scalar multiplications, Thus
End{(E) = Homgx(E, E) naturally contains T (X, Og),

Definition, A vector bundle E on a scheme X is called
gimple if End(B) = 1", 0,).

Our aim of this section is to ghow that SRT(S, T, D) in

Theoren 2., 14 consists of all simple vector bundles in RT{8, T, D).

Lemma 3.1, Let X be a complete variety over k and let E
be a vector bundle of rank r on X.

(1) Aute(E) is a connected linear group and dim Auty(E) =
dim  End(E),

(ii) E 4s indecomposable if and only if rank (i,e. dimension

of a maximal torus) of Auty(E) = 1.

60
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Proof, If X = i%&ui is a gufficiently fine open covering of
X, then EIUi igs free for any i, &nd an element o € End(E) 1is
represented by jLGJi \i eI, oy € M{r, "(Uj, Ox)) such that

Y Aij = A:lj G'j for the transition matrix Aij of E in Uy UJ.
S8ince (O - xI) Aij = Aij(q;] -~z in Uy Uy with an
Indeterminate x &and the unit matrix I, we see that det(agy - xI)
= det( L x1} in U; N Uy for any i, ], Thus there exlsts a
polynomial F(x) & k(x| with F(x) = det(<y - %I} for any 1
bacause X 1is & complete varlety over k. Hence every eigenvalue of
qi is independent of 1, contailned in k and det<S = detgy 1s
an element of k, Take a free basis e;: ..., e, of End(E} with
e = ddg, U= &je) + ... + o0, 1s contained in Auty(E) 1if

and only if det ' ¥ 0. The above argument implies that det ¥ is a
polynomial of of 17 =3 O, over k, and if ® is not an
elgenvalue of , then © - oley = (o] - Yeq + Moep + 400 + Do,

is contained in Au‘tx(E)- Thus Aut,(E) is an open dense subset

in End(E); which implies that Au’rx(E) iz a comnected linear
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group (i1) is easy, if one takes Lemma 6, Lemma 7 of [} and the
above argument into account,

q, e. d,

Corollary 3.1.1. A vector hundle E on a complete variety
over k is simple if and only if Autg(E) = Gy = k¥.

Proof. 1f E 1is simple, then End(E) = ["(X, Oy} =k which
acts on E as sealar multiplications. Thus Autx(E) = Gp.
Conversely assume Auty(E) = Gp. Then by virtue of Lemma 3.1
dlm End(E) = 1, whence End(E}) =k = T, og).

For a vector bundle E on a scheme put & (E) ={'f. | T is the
igomorphism clags of a linebundle L with E 2= 2 ® L}. Then we
get the following exact sequence of groups ([§] Corollary to

Proposition 2);
e —» Auty(E)/ \'(X,00) — Auty, (P(E)) — AE)—> e

If X iz m complete variety over k, then TVT(X, 0’7‘;) =G, If X

¥

is complete and normal, then A(E) is a finite group, because
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E=E@L implies 100y o and therefore A (B) 1is contained
in (rankE) - torsion part of Pic’(%)} which is an abelian variety.
Thus uwnder these assumptions Auty(E)/G, = Auﬁg(P{E)), where AutgtP(E))

is the connected compowent of Autx(P(E)). Therefore we get

Corollary 3.1.2. A vector bundle E on a complete normal
variety X over Kk is simple if and only if AutE(P(E}) = a,
In order to investigate whether a yvegular vector bundle E on

8 1ig simple or not, let us study Autg(P(E)).

Lemma 3,2, 1f E 1is a regular vector bundle on S8 of rank

r (cf, Cororally 2,11.1},

r defined by Y and it aimu’(s, £)

r=1

then Autg(P(E)) = { | 06PGL(r - 1) = Auty (P

W Y=y,
Proof, The assunption dimkHD(E, E} = » implies that
-

Hi, wosy H; form a basgis of |Hi], whare Hi = almy, (Hy), Ei =Z; X 8

for independent hyperplanes Zl’ P Zr of P;hl. Since

O € Autg(P(E)) 1s contained in AutQ(P(E)) = Autg(E)/G 1if and
only if g*GDP(E)(l)}Ea DP(E}(l) for the tautolopical linebundie

fy o
QP{E)(I) of B and gince OP(E}(Hi)‘='O

P(E}fl)' we have



(o g & A3 (FCED
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r
n M n ') 1 a a :
{i D, H)) = =) Hi. On the other hand, M H! coincides with the

r-2 -1 .
conter Y' of (e:ld'nY ) by virtue of Lemma 2.10. Thus ¥y o=y,

Now we claim

lemma 3,3, Let W : X —» S be a Pl-bundle and let T, Y
be gubschemes 3, X satigfying thse condition (Eg). if 5
E?.&uts(}{) gatigfies Yc= Y, then T induces a unique element !

of Auts(x') with X' = alm;;(x) such that Y'Y = ¥* with the center

Y' of (elm;l)-l and o lXES-T) = G"UQS_T) by the natural

identification K(S-—T) X(s -H-

Proof, Cover X by a systew of affine open sets -TU.,L} such

that Xy = Proj(A Mos eees 1D ana v, is cetined by the

Ux
T N
ide&l (t e A: ?m]-: (KRR ) ? N). I.-Bt 7]‘_ - jgoaij 7J’ aij 6' A-:
5 = . - 1 1 o
then the condition ¥ Y implies “ij =t ai;]' aij A for

s < & i £ n _
n+ 1L>1 N, 0 <N, By virtue of Lemma 1.4 aleu,,.(xU“) =
Proya {70, s TP 71 = 100 €1 gm, fEtymnsisn,

¥ _ 1T - o 1 t
Thus i _0 1.17 j:n+]_ &i.]?j (©<15n, ?1 - jgoaij 7.‘1

N
+ I a + “ ). . '
jom+l 13?3 (n+l £ 1 £ N). Hence ¢ induces a morphism Uy



of Xﬁ to itself, q-;J“ is an sutomorphisa of XI'J because if
M-

i LI * = 1 . ' =1 .
T 1is the inverse of ¢, then TU“ Q-Uu Tie T o dxl:ld

L L ] ¥
Moreover G'Ud colncides with -:S'Up in an open dense subset X(S-T)
1 ] — [} 1 - ]
NXyp of X'yp =Xy AU ! which implies o p 1 X'y G“(*l x,ﬁf‘

¥
because the set {_x ex;‘(,, \ x YUy = xu-fl-‘?l is cloged in XYy g -
Thus & induces an element o' of Autg(X'), It is obvicus that

¢ 1ie a deslred sutomorphism. If q,-i, o ! are autowmorphisms

2
of X* induced by & , then C:ri = q"z in an open dense subset,
whence q—-i = q-&.

Now we shall come back to the proof of Lemma 3,2, By virtue
of Lemma 3.3, < induces an element of the group G(Y) = {'Ee PGL{r~1} l
Yt = Y]. Thus we have a homomorphism (P ; Autg(P{Efi) —> G(Y), We
get alsc a homomorphism ¢ : G(Y).— Autg(P(E)) because T €
AutJ(P(E)) induced by T& G(Y) sends Hi to an element
of lﬂif, which meaus W*(OP(E) (1)) = OP(E){i Y.. Clearly

P ¢ =id, Y.P=id. Thus Mtd(PE)) = 6.

q. e, d.

&5



NHow we come to a wmain theorem of this ssction.

Theorem 3.4. Lat 5 be a non-singular projective varisty ovar
kE;, let T be a nen-singular subvariefty of 5 of codimension one
and let D € Ap,

(1) SE{S, T, D)} in Theorem 2.14 consists of all simple vector
hundlesin RY(S, T, D},

(11) It E ¢ R¥(8, T, D) is defined by (sy, ..., sp) €
B%s, T, P) x ... x H¥NT, Op(D)) (cf. Principle 2.6) and if the
dimension of the vector subspace of HY(T, Op (D)) gemerated by

o"g (r-r") B B'  for some

it

31} P Sr iz r" them E
r'
E' & SR (8, T, D).
Procf, Assume that E is defined by (851 vaes sr)&’
H%T, 0p(D)) % ... %X BOCT, Op(D)). In the first place note that
bé& AT implies dimkHO(S, E) = r by virtue of Lemma 2,11, aund

therefore by virtue of Lemma 3,2 AutS(P(E))C—: G(Y) =£ & t ¥ e

PGL{x~1) = Aui:S (P;-l). ¥ =y 1 for the subscheme Y of P.f."'l



LY, as o F’ﬁ'l“'"l"v‘“‘“"‘*rk&} fovomg TEL, we G defore Govnap | 7T -—))6?

whoge idea] in P.;-l is penerated by 34 ?1 t ... + 8, 71., where
Tyt »e++ 7. form a system of homogeneous coordinates of Pg'l
(cf. Principle 2.5 and Principle 2.6), Since every s;(t), ...»

\ s,{t) 1s not zero for any t €T, the rational map L:73t-—"

\ (sl(t'.'. eens 8,(8)) & P= P;-l is a morphism. On the other hand,

BQ’ Y, & P, where P is regarded as the dual space of P]’:']'.

This map is nothing but (¢ . Moreover the action of PGL(r-1) =

r=1, _ r=1 r-1 _ r-1 . .
Autg(Pg ) = Autk(Pk )} on Py = X § induces that on the
- )
dual space P of P; 1 through contragradient linear trans formations.

Thus the condition Y ° =Y for % € PGL{r-1) iz equivalent to
x¥ = x for any x € P (T) by the above action. This implies
GYY= {0 Io—r-PGL(r—l). x9S =x forany xe Y (T)}. Assume

B € SRr(S, T: D)! that iS| 91. R EI‘ aras linearly 1nd.9pand-ent
in HNT, 0p(D)), then (0 (T) is contained in no hyperplane of

P, whence there exis{ linearly indepemndent k-rational points

I
xlg sant x.i_l, xi+1, sres Xpp then ik—)le- ‘.p(F(T) because Li

'-‘P {p (T), 1¢% < r, Thus there exigts a k-rational point %4y

Xty Xy e (T, g L: de f LM&.\-M“[”‘“ w P ?mtbk%}



in M - ik_ElLi. Then any r points in E Xis emes xﬁ.]_} are
linearly independent in P. We know therefore G(¥) =§e} because
o & G(Y) fixes every Xys wn+3 Xppj. Hence 1f E € SRY(Z, T, D),
then E is simple, Now we have only to prove {i1) because a simple
vector bundle is indecompesable {(see Lemma 3,1, {ii)), It is easy,
however, that every vector bundle in RY(S, T, D) - SRF(8, T, D) is
decomposable. In fact if E & RY(S, T, D)} - SRF(S, T, D), then

81+ ssss By are dependent, which means (@ (T) CH for some
hyperplane H of P. Thus G(¥) D{ o ¢ PGL(r - D] x° = x for
any X & H ED G,. Hence rank of Autg(B) = rank of Autg{P(E)) +1
2 2, which asserts that E is decomposable by virtue of Lemma 3.1,
{1) 1is therefore proved. Next let us proceed to the proof of {ii),

¥e may assume that are linearly independent for

Sr_l"_lp 'YrE) sr
™ = r - r'. Since Y (T) is contained in a linear subspace of
dimension »' - 1 of P and none of those of dimensiom r* - 2,

there are k-rational points x3, «.., X, such that

P (x3)s eser P(xP are linearly independent in P, Put

8
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r
‘;i: jE].SJ(x"} 7;" {1& 15 r'}, then ‘rl' vaws 71-": 3: — ; 1

1? r

are linearly independent over k because rank(si(xj)) = r' and

B]s eves Spm depend On Syniqy ...y 2. Thus we can adopt

71, aesy 71.1., ‘31, anmy §rr as a homopgeneoius coordinate of

P;'-l. Moreover Y 1s defined by si "!‘.1 + ... s;, %r' =0 for

some linearly Independent s8j+ ...s s;, e g, Orp (D)) because

Bptiy}sr «=.s B, &re linearly independent. Thers are thereiore an

afine open covering 103«: Spec(A ) }:’.EJ\ of 5 and a correspondence

Ash —m AW, woos A =DY C {1, vy 0 §

-1
guch that P;.UA'= Projm)\{?l" YY) ?rm %Mn. ey g?\(r‘—l)’

3,0 TN Uy =SpeciAn/t, A, ) for some t, € A,,

1%}

(¥
§h= 8y 31+ - +ar. Eru for some at:}[: saey a“:.’ &-A;‘ and

that the ideal of Yy = in Pg,y, is generated by tx,3,. Then

2}‘(1’;:1!;*) = PrOj(A)‘[L{I’ eawy ‘?rltl %Mlj’ TEE]

1 — Ir=
X, T elmy,
3oy §H) ) for tx %1 =3, by virtue of Lemma l.4. By

the construction the ideals Iy ‘]U} generated by {’fl, e h ‘?rn}
8

{ 3)«1) P oesmy 5;\(1,, -1)" 'S;\ \I respectively define global
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ideals, that is, there are ideals I, J in OX' for X' = elm,:,'-z

P;-l) wlth onU,k = IU}_ ' J%) = JU,.‘ for any 3%, € ,\, « I, d
define projective subbundle Pl' P2 of X' = P{E) =such that
Pl Fa Pz = fJ ' dimPl,s + dim Pz.s = r=2, forany s & 5. Thus
E is 1somorphiec to E]_@ E, for E; = 'W;:(Op1® Ox, (1)), E:2 =
T2 ©Op, ® 0y, (1)), where T : X'—3 S is the structure morphism
and Oy, (1) 1s the tautological limebundie of E, Since

?l’ sned ‘]r" form a basis of E, on U, for any )\ef\ : Eg

@rll

is lgomorphic to 0O . O©On the other hand, since ;")\(1)' saa
3’)\{1"-1)’ '$; form a local bagis of El on U, , By is a regular
vector bundle defined by (8], ...y 8],) € nor, Op(DIIX +» + X

uO(T, Op{(D)) by virtue of Lewmz 1.4 and Lemma 2,2, E; 1is contained

are linearly independent.

in SRT'(8, T, D) because si. reed s},,

q. e. d.

In {37} A. Grothendieck proved that every vector bhundle on

Pl:cL ia the direct sum of linebundles. In the same paper he posed a

1
question whether this property characterizes P, in the category
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of projective variety over k. Van de Ven and J. Simonisg solved
this problem in the non-gingular case (see [17] ). The msbove theorem

provides an enswar of thls problem in a stronger form.

Corollary 3.4.1. Let § bhe a non-singular projective variety
over X of demension n, If r is an integer greater than
max{n - 1, 1) and if Sk Pl]i' then there iz s simple vector
bundle of rank r on 8,

Proof. If n2 2, then this is a direct corollary to Theorem
2.4 and Remark 2.15. It is well known that there is a stable vector
bundle on 8 1f n =1 end 83 Pl (for example a nontrivial

extension E of L by ©O i= =stable for a linebundle L of

]
degree 1). And every stable vector bundle is simple (L/41 ),

4. a. d,

Remark 3.5. Our proof of Theorem 3.4 showzs that without
the assumption D € Ap (ii) is true if one defines SRT(S, T, D}

8z the set which congists of all elements in Rr(s, T, D) defined
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by linearly independent (s;, ..., sp). (i) 1is not necessarily
true without the condition D € Ap. But 1t would not be best to
agsuma the conditlon because there is a simple regular vector

bundle not satlgfying the condition (see next section).

Example 3.6, For an ineducible conic ¢2 in P2 and 2 point
P & ¢2 the unique element of SR2(PZ, c, P) = 822, ¢?, Py is
Opa(l) B 0,p(1). Every element of SR2(P2, €2, 22) = R2(P2, €2, 22)
is indecomposable but not simpla.
Proof. Assume that E € R2(P2, 2, P) 1s defined by (g5, 8,)
HY(Cc2, 0.2(P)) % BO(c2, On2(P)). s; corresponds to one point

divisor P, on C2, Take a point Q & c2 which is different __ .

i ———
, GEL gt @.P)
from P,, P, and two lines 35{,“;1)“5 =0 (i =1,2)¢ Then the
_ 2 (1) 2 (2
subvariety V of P},g = X defined by (jEDaJ x5 § + (Jgoaj x50,

= ¢ with 8 system of homogeneous ccordinates ‘7 1! 72 of X is

non—-singular and contains the subvarlety ¥ of Pé'z defined by

8y '71 + 8y 72 = 0. It i=s easy to check that proper transform of

¥V by al‘m? is a section of el:n.?(x) = P(E)Y., Thus E is an



extenslon of two linebundles., On the other hand, every extension of
two linebundles 1s trivial on P2 becanse HL(P2, L) = 0 for amy
linebundle L on Pz. E 1is therefore decomposable, Moreover

¢y (E} = 2, e5(E} =1 by virtue of Corollary 2.19.1, Thus E =
0,2(1) ®0,5(1). Since c3(B) = 2, cp(E) =2 for E € R2(PZ,

cZ, 2P) by virtue of Corollary 2,19.1, E is indecomposable.

That E ig not simple will be proved 'in the next section (see

Example 3,11).

q- a. do

§ 2, 8imple regular vector bundles of rank 2,
In the rank 2 camse we can study more fully simple regular vector
bundles, A distinguished fact on a vector bundle E of rank 2 is

P{é'sl-.:. P(E) with the dual vector bundle Ev of E. In fact

Lemma 3.7. If E is a vector bundle of rank 2 on a scheme

V
X, then E'= E @ det E,

Proof, Let ‘o‘ij be transition matrices of E, then those

75
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of E are tA;; = the contragradient of Aij . Then the isomoyphism

£ : E @ det E'—% EY can be given by the following matrix identity ;

- A- - (tht ﬁi )" = A = L]
-1 o ij J 1 0 13

q. e, d.
The following lemma is dus to Schwarzenberger ({/?] Theorem 1).

Lemma 3.8, Let E be a vector bundle of rank 2 on a nomn-
gingular projective variety X over k., Then the following two
conditions are equivalent to each other

(1) E is not simple.

{ii) There ig a linebundle L on X guch that for E' =E® L

dim¥9x, E*)> 0, dim@%(X, E') > 0.

Now assume that B ¢ R2(S, T, D) 1is defined by Y. Then the
tautological linebundle ¢f E on P(E) = alm:(P;) = X(¥) 1is
Oxfyjiﬂé) in the notation of chapter 1I (see Lemma 2,2}, and
det évék 0g{-T) by virtue of Corollary 2.18.1. Applying the above

lemmz E ig not simple if and only if
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di.mkﬂﬂ(x(‘f). Oxw)(l{{, + TC;,]'(DO))) > 0,

AmHOK (V) , Oy yy (B - Wy(T + D)) > 0

for some divisor D, on S because 1%, E® 0g5(Dg)) = Oy,
-1 0 ¥, = 40

DX(Y)(H;' -+ TBY (Dﬂ'}))’ H (Sr {(E ® DS(DU))) = H (X(Y), OX{Y)

(H.:, - 'B;l('r + Dg))) by virtue of Lemma 3.7, Thus E is not simple

. -1
if and only if there are positive divisors Aif AL, with ﬁ-i - TCY(T>

*0. A'z - R;l(‘l‘)ﬁr 0 and non-negative integers vy, rp such

that

=1

Al 4 rchY

4 M~ 1 + W0, A7+ W@ ~ By - B g,

We may assume that Do'jy'l‘ and replace T by a suitable T

such that T'P T, T~ T', because 8 is projective. Put

Ay = 2y(ep [a11] ana ¥ = £ [me).

1

(a) Assume that A! contains the center Y' of (elmg)* :

1
Since g;]'[h;:] + Xp + ry ( Wy » gY)_l(T'}Nﬂﬁ +_)ET + Ry - gY)“]'(DD)

~~ -
and r{rlmn + P,}.-} =H + Xp + E, by virtue of Lesmma 2.1, we get

£ Gy + P~ g W) + X+ (m g tany - (R gty + B,



- 1 -
(note To. fy = Ty - gy). On the otber hand, £ (A, + Py + r, R

1 - I -1 -1
) - THDE) = gy (A} + %y + By + r(mAITHTY - () 71Dy
by virtue of Lemma 2,1, Thus fy (Hy + Po) ~ £5l(A, + PE + r T-I(T‘)
y o1 Yy B0 T SpS v Ay VWL T A T T
- —1(00)), which implies A;~ Hp - rlP; +-W—1(D0). Since A;> O,
therse is a positive divisor Dl with Dy~ Dy - r;T.
(b) Assume that ALD Y' : By a similar argument as above we
have Ay~ Hg - rgP) - wWT + D) = Hy - (ry + DPE - WDy
2~ Hp 2Pp - T o) =Hp - (rp T — W (Dg)s
whence there is a positive diviger D, with Dy~ - (rg + 1) T - Dy,
(a') Apsume that A;_'b ¥' : Since ggl{_ai} + T (M gy)"l(T')
~E 4T, + (T » g 1Dy and fgl(A; + 1y Wo(T) - ™I D) =
cHar) + By + 1 (R LT - (e )7 i £ -
gy 1 EY T} :E..? - (K- .} DG) by virtue of Lemma
-1 - " ~
2.1, ve hava f3 (g + PD) ~ 177, + v, W) - Wlpp). Thus
1 -
Ay ~ Hy - (r; = 1) Py + ¢ (Dg). Since Ay 7 0, there is a positive
Qivisor Di with I&iﬂv D0 - {r; - BT,

')y Assume A.'?"b ¥' : By a similar argument as ebove we have

An~ Ry - rzP% + P% - T{'J'(T + Do) = Hy ~ rzl"% - E-lfnn}, vhence there

i=z a posltive divisen. I:t'2 with D§ ~ = roT = Dy

76



We ghould therefore consider the following cases.

(1) The case where (a} and (b} are satisfied : Since - (r; +
rot 1T~ Dy 't Dy » 0, v + ¥y + 1>0, T .3;: 0 and since 8 1is
projective, we have a contradiction.

{(2) The cage where (a) and (b') are zgatisfied : BSince

-(rl + r2)T ~ b+ Dé;? 0, and ry, r; are non-negative integers, we
get Ty} = rg = 6, whence Dy~~~ 0, Thus Ap~ Hy, and by virtus of
Lemma 2.1, A, > Y, HKemce Y = Px T C.P% for soue peoint P& Pl,
which implies E & R2(S, T, 0). Therefore E & Og@O0g(T) and
thig is mot simpls.

{3) The case where (a') and (b) are satisfied : Since - (ry + ry)
Trv Di + DB> ¢ and r;, rp are non-negative integers, we get
ry=ryg =0, Dyt T~ Di‘;p 0, =-(Dg+ T} ~ Dy > 0, whence Dy~ -T.

Thus A;~ Hg and by virtus of Lemma 2.1 A; >Y. Hence E

Ds& OS(T) and E is not gimple,

(4) The case where (a') and (b')} are satisfled : Since

-1y -7Tx)T~ D] +D) >0, we got 1 =1r) - vy 20, If olther
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ry or rs; is equal to 1, then by a similar argument as above we

have E EOS o Og (T). Suppose ry; = rs = @, then Dé ~ =Dgs whence

D)~ T-D,. Thus there are pogitive divisors D], D, on 5 and

A, A on Pé' such that D} + D} ~ T, Ay~ Hg+ W'I(Di), ﬁz'“

1’ "2 1
H0+ 1-1;.-1([)34) and both Al and A, contain Y. Couversely if these
conditions are satisfied, then the calculation fim {a'), (b')
-1 =1
t T L t - TF L] —_
shows that hl - H‘Y + T ¥ (Dc), A2 HY ¥ (T + Dﬁ) for Ai

elm,?[ﬂi'} and D, =D} - T.

Consgsequently we have

Lemma 3.9, Let B € R%(S, T, D} be defined by Y. E 1is not

gimple if and only if there are positive divisors Dy» D.'J.. on 8

1

g such that D, + Dy ~T, Ay~ Hy+ wlop,

and Al, Ay on P
=1
A3~ Hop+ & (Da) and that both A]_ and Az contain Y.

Proof, Note that if D = 0, that iz, E=0g QDS(T). then the

above conditions are satisfied by Dl = 0, D2 =T, Al = HD’

Ag =
Hy + 'I"F-]'(T). Then our assertion is clear by virtue of the

arpument before this lemma.
q . B, d. *
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Theorem 3,10. Aggume that E ¢ RE(S. T, D) is defined by

{8, 8%) € HO(T, Op(D)) x HO(T, 04(D)) (cf. Principle 2.6). E 1is
D=0 v
not simple if and only if there are posltive divisors Gl. ﬂ;_, 02, 0'2

J

such that €y +C,~ T, C; ~C! (1 =1, 2) and that OCg. T =
st +Byy 8] » T=|s*'l +B; (1 =1, 2) for pogitive divisors Bj
%~ on T, whare [s\| {or, \s'}) ig the divisor defined by s = 0 (or,

8" = 0, Tesp.).

-

// Proof, B 1s defined by Y : 3_7.0 + s' ?1 = 0, where 70._5

are a homogeneous coordinate of P% induced from a homogeneous
coordinate 70’ 7, of PE]:‘, Agsume that E is not gimple, then

there are Dy, Dy, A, A, gatisfying the conditions in Lemma 3.9

1
with the same Y as above, A; is defined by 51070 + 5117 150
for s;; € HO(S, 0g(D))). Let T be the element of HO(T, Op(D;-T)
induced from s34+ Then A; 2 Y implies 3-1070 + 'é_il_fl =

a;(s 70 + 9"‘;1} for gome a; & nor, Op(Dy+T - B)}. Thus if one

. pats |{sjg} = Cy, {843\ = Cf, then C; + T=\|s\ +By, Cf - T=
'1 .
\ V8'f +By By = {ag}). Since G~ 6]~ D, we know T~ G +Cy,

\

Ea Mt“‘i' Rwark 2,16 E ““*‘W“"l&"!; p=o, Tfmywwkuuum«gujb#ﬂ.



Conversely aggume that 61. C]'_. Cz. Gé axist, The conditions

G; . T=\s\+ By, Gl . T =|s" | +B; assert that there are

853 &€ HOGS, 05(05)) (J =0, 1) and aje BT, Op(B;)) such that
18501 =C4, lsn1i= Cjs |a3;\ =8; and that Wio Jo+ 811731 =
ai(sTfﬂ + 8’ -‘Fl). Let A; be the positive divisor on Pé. defined
by sijqTo+s4171=0s then Ay DY, Thus Dy =€;, A; satisfy

the conditionsg in Lemma 3.9, which implies that E 15 not simplse,

q, 8. d,

(Do)
Corollary 3.10.1. E ¢ R2(S, T, D) is simple if HO(T, 0y

tmd O e O
——
Proof. 1£f E iz not simple, then there are positive divigors
Cys Oy such that Gy - T~D +B;, By > 0 on T and Gy + Gy ~T
{see Theorem 2,10), Thus T2 - 20--*(({31 + Cy) » T)- 2D~ By + By >

0. We have therefore HO(T, 0p¢T2 - 20)) £ 0.

qn a, d-

Example 3,11, Let G_ﬂl be B non—singulayr curve of degree

n in P2, Every element of R2Z(P2, g2, 2p) is indecomposable
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and not gimple. Every element of RZCPE, 03, P1+P2+P3} iz not
simple 1f and only if Py, Py, P, are coltlinear,
Proof. Asuume that E &R2(P2, 02, 2P) is defined by (s3, sp)

HOC?, 0p5(2P) x HOW2, 0.2(2P)). Put |eg\ = Py + Pyp. Take
the line £, going through Pi; and Pjp (1f Pyy = Pias £y
touches to G2 at P;y). Then f} =€y =8, f; =cy =¢ch satisty
the conditlons for s1r By in Theorem 3,10, Let us show the
latter part., Note that Py, Py, Ba are collinear if and only 1if
Q1 Qs Q3 are collinear for any element Qp + Qp + Q3 of
IEI + P2 + P3| . Assume that E & R2CP2. Ga, P, + 152 + P3) 1s

0.3 O3

defined by (s;, sg) &€H (€7, O_g(P, + P_ + P )} » HY (@Y, 0.3

| e3¥1 7T T2 T s ¢

3

P, + P, + PS)) with | s;} = jElQiJ' If E ig not simple, then
one of 0; in Theorem 3.10 is a line, whence Qjy, Q4o Qqy are
collinear. Assume P}, Tb, !5 collinear, them Qj3, Qjoy Qi3 G LSUL&;Mu
Then £1 = 51, &3 = ci, 213 = ¢2, 2fo = C%_ sq?isfy the conditions

of Theorem 3.10, whence E is not simple,

qv a. d-n

T‘Jﬁ o Q&m Qt Irrwa M Qu, Qi Qca,



82

As a matter of fact if Py, Py, Pg &re not collinear, then every
element of R*“?'lfP“",r {:3, P1 + 1'-'2 + P3) is isomorphic to the tangent
bundle of P2 {see Example 4.B).

Example 3,12, Let T be & non-singular surfaces of degree 4
of P3 which contains a line [ and let [ K »sep1 be the linear
pencil which consist of hyperplanes of P2 containing f. Then
H, » T= R+6,, .G,. G?“= 0 because pafC,) =1, XKy~ 0 with
& canonical divigsor Kp of T, Thus R2P3, T, 26,0 ¥¢ by
virtue of Remark 2.18, Let us show that every element of R2(PS, T, 2C,)
is indecomposable and not simple.

Proof. Since C,2=0, |20, = {D}},chﬁc}.,}}’hepl. Assume that.
E € R2(P3, T, 26,) 1s defined by (s, s9) & BOUT, 0p(2C,)) ¥
B¢, or(20,)) with [ag) = D}‘ip‘i; Then Gj = H_)l + H, , G}‘= Hy, + H_,r.u2'(j =
1, 2). satisfy the conditions in Theorem 3.10. Thus E is not simple,
Since ¢ (E) =T, cp(E) = 2C,, deg c3(E) = 4 and deg c(E) = 6,
whence E i indecomposable,

q. 2., d.



Ags au application of the above theorem we shall give another

T
proof of a theorem of Schwarénwerger ( \!{)} Theorem 8).

Theorem 3.13, Let 8 %he 2 non-aingular projective surface
over k, c¢3 a divisor on 8 and let ¢, be an integer. For
r > 1, there exists a non-sinple vector bundle of rank r on 3
with Chern classe ¢, Can

In order to prove the theorem we nead a lemma,

Lexma 3.14. Let H be a very ample divisor on a non-sinpgular
projective surface 5 and lat Xys wves ¥y be matyally distinet
points en 8§, There exigts a pogitive integer a, such that for
any a 7 ay there is a non-singular irreducible member of ,jaH |
golopg through all of xl, sevy Fpo

Proof, Let f : 8*—> & be the blowing up with centers
X1y =ass X, 8nd let Ei be the axceptional curve f"'l(xi'.'.l. Then
(ZISt (-(By + ... + B,}) 1s f-very ample (&, G, A, Chap, 1I, 8,1.7).

Since H 1is very ample, there exists a positive integer ag such

83
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that Og, (-(Ey + ... + Ep)) @ £¥(0500%%) = 0, (at™1am) ~ (By + ..0 + Eg))
ig very ample for any a2 ay (2. G. A, Chap. II, 4.4,10). Then
a general member H' of [af~l(H) - (B; + ... + Ey)| is non-singular
irreducible, Since (H', Eq} = (af™ (H) - (B; + ... + Ey), Ep) = 1,
f{H') goes through all x; with multiplicity 1. Thus f{H') is
n
non-gingular irreducible because S' = 1'1.__)1131 is isomorphic to
§ ={x +rus x| Clearly f(H')-~ e, £(8') 1s therefore a
dealred member of |aH|.

q. e. d.

Proof of Theorem 3.13. For r 7 2 and vector bundle E of

@ {r-2)

revk 2, ¢)(E) = ep{(0g Dr-2

@), caE = @ PR E). Thus

we have only to prove thea theorem in the case of r = 2., Let H be
a very ample divigor on 5 with (H, H) =h and let n be a non-
negative integer, Take integers o , f such that «z 0, © %3 < n,

n=goh+f . Let H;{1<1%4) Dbe general members in | H \ such

h
L y; with mitually distinet

h
that Hl * Hz - iglxi, H3 . H4 - j 1
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points xl, amay xh, Y14 sees Y- Then by virtue of Lemma 3,14
there exlsts a positive integer such that for any a 2 a, there

is a non-singular irreducible member of | aH| going through all of
Xys wees Epr P12 sce ?h-ﬁ . Take such a member H' for a = 2r-1 =

'\v.wx(ao, 44+ 3) with an even integer r. We may asgume that HY

h {(2r-2)h
goeg through none of Ypeptyr <c«7 Yhe If Hy - H' = iﬁlxi + kEI B4y,
h=p {2r-2)h+p
(1-:112)3 H'i. « HY = 351}':} + k_El wik (1 = 3, 4)’ then A-l =
(21‘52)}12&“ Ay = (21'-2}11321“ B, = (ErEB)IH-PWJ.ENBz - (erE)hH’w
k=1 k=1 =1 g=1 21

and 2y ¥ Zae, (1S kg, kp € (2r-2)h), wip ¥ wag (LS ¥y,

I, & (2r-2)n+P). Take another general members Hs, Hg in | H |
such that A{ =Hg « H' and A; =Hg + H' contain no common
point, and put Dy = & Al + (F-o -1 A +By (i=1, 2,
Then 1:'1 and IJ2 contain no commoa point and Dy~ Do, whence
r2(s, B*, D;) % ¢, The element E' of R2(8, H', D;) defined by
(57, 82) € HOW', O, (D)) k HOM', 0., (D)) with {sy} = Dy

(i1 =1, 2) 1is not simple because C; = o Hg + (-%—c:'— 1H, + Hg,

r
C} = WHg + (5 —-o(= 1M, +Hy, Cp = o+ r - DHg + (7 ~ o = DAy + Hy,
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5= o Hg+ (r - DHg + (5 - ol ~ DEy + Hy obviously satisfy the
conditions of Theorem 3,10. On the other hand, ¢,(E') = (2r - 1),
eg(E') = of(er - Dh+ (3 —of - 1) (2r-2)h + (2r - Dh +p =

r?h - th+ o h +(3 by virtue of Corollary 2.18.1 and Corollary 2.19.1.
Thus we obtain c,(E'® Og(-(r - 1)H}} = B, 02(3'® Og(-(r = 1LJA)) =
oh + B =n. Therefore if H 15\?1.1*&1*3' aeple divisor on § and if

n iz a non-negative integer, then thers iz a non-gimple vector
bundle E of rank 2 on § with c3(B) =H, c5(BE) =n, For a given
€1s Cp» take a +wvery ample divisor H"™ and a positive integer t
such that H = ¢; + 2rH" ie very ample and c5 + r3ar, ) + r{eq,
H") =n > 0 (these conditlons are satisfied if one takes sufficiently
large r for a very ample divisor H"). As for these H, n there
is a non-simple vector bundle E" of rank 2 with (B> =H, ep(EM)
=n by virtue of the above argument. Then ¢;(E"® Og(~xi")) = cp,
ey (E"® Og{-1H")) = c5. Thus E = E" @ 0g(-rH") gives a degired
vector bundle.

qn a, dc

&6
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Chapter IV, Soxme special cases.
In this chapter we shall study some spacial vector bundles on
gome speclal algebraic varleties, along the line developed in the

preceding three chapters,

§ 1. Tangent bundle of Py,
Let Ty be the tangent bundle of a non-singular variety X over

k., Then we have

Theorem 4,1, Let H be an arbitrary hyperplane of Py,
Then R“(P:, H, H2) consists only of one element TRE{-I).

Proof, Let P be the dual space of PE, thenm Ty : X =
P Py 5P is the trivial P'-bundle on P,. On the other hand,
the P ' pundle ™ 1Y = P(Tfﬁ)'_—? PE may be regarded as the
bundle whose fibre g'~l{x) at =x is (n-1)-dimensional projective
epace consisting of all bypsrplaneg in PE golng throigh x, Thus

Y 13 naturally a subbundle of X. Take linearly independent

points ¥j3, .,sy X; in H, The set consisting of all hyperplanes
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going through x; (for each fixed 1) forms a hyperplane 24 1n P,
Put H; = ziﬂ'ﬁ_IE PE. Let us congider Hj s-«ss Hy - Y in Y. Bince
-1 — n )
' ~{y} ~ Hj =\ hyperplanes of Py going through x; and ¥},
n
-1y ¢ iq_ﬂi) is not empty if and only if y is contained in

n
H: and if vy ¢H, then ) ¢ 1(;\11‘!1) ig the point corresponding

-4

to H, Now let X4, .44, Xk, bea homogensous coordinate of PE
such that H is defined by X, = 0 and let 7 4, ..., 7, be the ,aﬁad:;m‘
homogeneous coordinate of P induced from Xgy e.s X . Let Uy

be the affine open set of Py defined by X; ¥ 0 and put 3; =

Xy/Xy. We may assume that Z; 1is defined by 73;=0. On the

n
other hend, Yy, is definedby 2 753]=0 in Xy,. Thus H,

iy ]
»e-s By Y are transversal to each other at any peint of ( -C‘oﬂi)

Y and H' T Hy esess H, -+ Y 1s detined by the ldeal generated by
0
3'513 ? S waut ‘{n. By virtue of Proposition 1.9 we know therefore

eltu::, M= p;:']' 3}‘5: Pi. Let H" be the center of (elmg.}-l, then

H" C P;:-l)‘k H., §Since the regalar vector bundle E defined by H"

is isomorphic to TPE(ﬂ and since ¢y(E) = H, we have E ETPQ("”'



Moreover, since c,(E) = cz(TP

k

R2(PP, H, H2), Conversely, if E¢& R"(PJ, H, #2) ig defined by

(-1)) = Ez, TPn(—l) is contained in
k

(815 +ees 550 & HOQ, Og@2)% .. %80, op?), then sy, ..., sy

are linearly independent because if 874 .... s, are linearly dependent,
51{x) = +»+ = g (x) = 0 for gome x ¢ H, Thus SR“(PE, H, H®) =

R®(PY, H, H2) when one defines SEP(P!, H, H2) ag in Remark 3.5,

On the other hand, there 1s a surjective map Grassg:i(k) _

SRR (PL, H, B9} (see the proof of Theorsm 2.14). Since Gfrass:}:i(k)

bas only one point', SRO(PR, E, H?) = RO(PP, H, H?) consists of one

elepent TPIE:I(—D only.

qa . d-

It goes withont saying that the above result has sonmething to
do with the fact that T"i‘(—n iz a2 homogeneous wvector bundle on
the homogeneous space PP. Furthermore, this theorem shows that the
sufficlent condition for a regular vector bundle to be simple stated

in Theorem 3.4 is not best possible (Note Hzrk- Agl,

Az a corcllary to the above proof we have the following, which
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1s well known.

Corollary 4,1.1. There is an ex=ct sequence

_ . opﬂcl)ﬂnﬂ) Top — o.

Proof. Bince Oy(H;) 1is the tautological linebundle of

n+1) - &(n+1) .
Opﬁe( on X= P(GPE ¥, Og(H;) @ 0y 1is the tautological

line bundle of TPn(—l) on Y = P(Tpn) by virtue of Lemma 2.2 and
k k
the above proof and since Y 4is a subbundle of X, we have a

gurjectiva homomorphism U : T"'_*(Dxmi}) = OPnEu(lH].)
k

i

Top (Og (Hy) B0, = Typ(-1). On the other hand, Ker @
k

nitl . @&(ntl) n -1,
CA OPE 3B {\Tpn(-l)) 2= Opn(-1).

k k

q, &, d.
§ 2, Vector bundles on PE.
We shall begin with an easy lemma,

Lemma 4.2, If B is a simple vector bundle of rank 2 on

P2 and 12 deg E 2 -3, then H2(PZ, EY = 0.



9l

Proof., Assume that H2(P§, E) % 0, By the Serre duality,
_ 0 A/ 0¢p2
dtey E2(P2, E) = dim HO(PZ, ED opﬁn:-s)) > 0. Since dim HOPZ,
Op2 % o v,
2 aim BO(PE, B G 0,2(-3)), we have HP(PZ, E) 3 0, On the other
k
Ocp2. ¢ O(p2 A4
hand, since H(PZ, E® 0,2(-3)) = HUPZ, E @ (det B) @ 0,5(-3)) Yo
P k Py
v
and gince deg{(det E) ® DP2(-3)) 2 0 by our agsumption deg E 2 -3,
k
wa have HD(PE, E) ¥ 0, Thus E is not simple by wirtue of Lemma 3.8,

This is contrary to the agsumption that E 1is simple.

qo a, do

et E be a vector bundle of rank 2 with Chern clagses
¢3(E), ¢5(E) on a non—singular projective surface S. Define an
integer A(E) to be cy(E)2 - 4c5(B), .AE) 4is the esesoml
Chern clags of End{(E), hence it playz an important role in the
theory of simple vector bundles, The following lemma is egsentially

due to Schwarzenberger (Li3} Theorem 10).

Lemma 4.3, Iet E, § be 85 above and let K be & canonical

divisor of 5. If |K\%¢ and A(E) = - (4pa{S) + 1), then E



iz not simple.

Proot. Since End(E) is self-dual, dim H2(S, End(E)) = dim, H®
{8, End(E) & O(K)) by the Serre duality. On the cother hand, the
assumption |-K|%¢ implies dim A%(S, End(E) @ 0g(K)} % dimu®
(s, Ena(£)). Thus ¥ (End(®)) = 2(-1) dimal(s, Enda®y») £ 2 dima®
(6, Eud(E))., Besides the Riemann—Roch theorem provides equalities
X Ed(®)) = AR +502 + 0,(8)) and pa(8) + 1= 22 + cy(5))
(cg(8)} is the second Chem clasz of 8). We obtain therefore
2 dimHY(8, End(E)) = A(E) + 4(l + pa(S)) > 2, which 1z our assertion.

q. EQ d-v
Let us consider goms special cases,

Corollary 4.3.1, et E, &8 be as sbova,

(1) If 8 is a ratiomal ruled surface or PZ and if A(E) > -1
ther E is not simple.

(i1) If 8 is an abelian gurface and i1f A (E) =3, then E

is noet simple.

92



(ii)" If 8 1ig an abglian surface, the characteristic of
k¥ ¥2 and 1f A(B) 2.1, then E is not simple.

(11i) If K~ 0, dinkﬁ‘(s, O0g) = 0 (for example K3 surfaces
over £, a non-sinpular surface of degree 4 in BE) and if
N (E)2 =5, then E is not simple.

Proof, (i) Let 5 be a rational ruled surface with minimal
gection D. Assume (D, D) = -n, then -~2D - (n+2)l is a canonical
divigsor on S, where ~Q iz a fibre (= a generator of 8). Thus we
have | k| % ¢. let. 8 = Pﬁ and lat € be 8 cublec curve, then
-C 1ip a canonical diviser, whence |=X| $£¢ ., In any case
Pa{8) = 0, Then (i) follows from the above lemma,

(1i) If 8 1is an abelian surface, then X~ 0, pg{(8) = -1,
Thus we obtain (ii). As for (ii)' see [J& Corollary to Theorem 2,

(1ii) 1In this case X~ 0, pa(8) = 1, whence our assertion is

obvioug by vertue of Lemma 4.3.

. g, 2. d.



Example 4.4, (1Y If & 1is a general non-singular surface of
degree 4 in P& which contains a line Q in PE, then there is a
simple vector bundle E of rank 2 on 8§ with A(E) = -2r for
any r > 3.

(ii) If B 1s a gensral surface of degree 4 in Pg', then
A() = 0 (4) for any vector bundle E -uf rank 2 on & and there
ig a gimple vector bundle E of rank 2 on 8 with A(E) = —4r
for any r

Proof, (i} Take H, , €, , A& P! as in Example 3,12, Then

A
C, is an elliptic curve for a general X & Pl and €, .G 0=
0, ($.0)=~2. If one takes points ¥,, ..., P. on G, and
Q1s evesy Qg on Q for aybitrary r (= 2), and s (= 1), then
=
1'£ P, and jzlqj are divisors free from base points, Thus R2(S,
r 2 g

Cus i§1?1) ¥ ¢= R (S,Q 3 j§1Q13 #tl> and every element in R2(S,

¢, ,» 2P0, 828, , %a) is simple by virtue of Corollary
A=yt R

3.10.1. Since A(E;) = -4r, A(E)) = -2 ~4s for E, & R%(s, C,,

2 -]
igl?i), EgER s, , ;]Elqj)’ our asgertion is proved,



{ii1) Note that 1f 8§ is a general surface of degree 4 in Pg,
then Pfe(8) = Z whose generator is the class of hyperplane sectlion
(L) Lechoa W3 ). Thus D2x 0 (4) for any divisor D on 8,
which sghowa the former assertion, In order to prove the latter, take
» general hyperplane section C, Then € is a non-singular plane
curve of degree 4. Hence there is a positive divisor A, of degree
r free from base point on € for any r 2> 3. Thus r%(s, C, AL ¥
q: « Every element E,. of R2(3, €, A,) is simple by virtue of
Corollary 3.10.1 and A(E) = —4(r - 1) because of €, €y = 4,

q. e. d.

Now let us come back teo vector bundles con Pl%‘

The following
lema is very intersst when one takes Corecllary 4.3,1, (i) into

account,

Yomma 4,5. If E iz a simple vector bundle of rank 2 on

PE,

then A (B) % -4.
Proof., We assume that E ig a simple vector bundle of rank 2

on Pl,% with A(E) = -4 and shall show & contradiction. By the
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assumption A {(E) = =4 where is a linsbundle L such that cl{EtE) L}
= 0, c,(B®@ L) = -1, whence we may assume c3{(E} =0, c,(E) =1.
The Riemann-Roch theorem agserts for a vector bundle E' of rank

2.
2 on Pk.'

' f ‘¢ i3, &) = 2 4 3e,(E") . ©1(E")2 — 2645(E")
-x (E )—' ;=§."ﬂd1% H k’ E = 2 >

Applying this to E we have X (B) = 1., On the other hand, Lemma 4.2
implies E2(PE’E) = 0. Thus we obtain HD(PI%, E) ¥ 0, Moreover,

W
since EV...% E @{(det E} = E, we know HO(Plf, Ev) ¥ 0. By virtue

of Lemma 3.8 this is a contradiction,

q. e. d.

Wa have an interesting corollary.

Corollary 4.5.1. Let C be a non-singular curve of degree n
in P]f and D = élyi be a positive divisor en € such that | D |
is {ree from base point.

1} If n (= 2m) is even and r £ a? + 1, then there is a

positive divisor €' of degree m in Pl% such that € . £' - D30,

96
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1) If n (=2m + 1) is odd and r £ mZ + m, then there is a
poaitive divisor C' of degree m in P]f guch that ¢ . C* - DY 0.
Proof 1) Since [D] 1s free from base point, there iz D' & ip{
which contains mone of P;. Let E &R2(®2, C, D) be defined by
(ss 8') € HOC, 0g(D)) X HOE, 0p(D}) with {sl =D, ls*} =D,

On the other hand, since A (E) =C2 - 4r > 42 - 4(m? + 1)

-4,
4|A(E), we know that E is not simple by virtue of Corollary 4,3.1
and Lemma 4.5, Appling Thecorem 3,10 to E, we obtain p.ositive
divisors C,, ﬂ'z such that €y +C5~C, ¢, . C~-D> 0,
Cs . € ~-D >0, Since either €, or €, has a degree uot greater
than n; (i) is proved,

i1) BSimilar arpument as above 1s available in this case too,

d. 2. d.

Now we come to a theorem of Schwarzermberger ( [{%] Theorem 8)

15}
Theorem 4.6. let n, m be integers, There iz a vector

bundle E of rank 2 on P2 with cj(E} =10, ©0y(E) =m if and
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only if n? - 4m <0, -4,

Proof. We have proved that if A (E) 2 0 or O&(E) = -4, then
E 1s not sinmple (Corollary 4.3.1, Lemma 4.5}, Let us show the "“if™
part of the theorem. Take a point P on a line ¢l and a point _P"
on an irreducible conlc €2, Since ,0! and C2 are rational curves,
R2(p2, cL, ™% ¢, rR2(pg, C2, M) +¢ ftorany r> 0,5 > 0.
1t B,& R%(PZ, CL, P), g€ Rﬁcplf-, €2, sF'), then E,, EL are

gimple for any r> 1, 82> 3 by virtue of Corollary 3.10.1. Put

1 ~n2 ne

r=m+ ( 3 ) 4if n dis odd and put s=m+1——4- if n is

even, The condition nZ-dm < 0, ¥ -4 implies r= 1, s = 3. Take
E E' and put E = E,® 0,5 ) (2 -1

¢ ©or E. and pu = E, Plf 2 or EL @& Dpﬁ 3"
according as n 1is odd or even. Then c,(E} =n, c3(E) =mn,

e & dt

The following theorem is due to F, Takemoto [20] , which can

be proved along our line,
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Theorsm 4,7. If E ig a gimpls vector bundle of rank 2 on

p& with A(B) = -3, then EETPE(H).

Proof, By the assumption A(E) = ~3 there is a linebundle L
such that cj(E® L) = 1, c,(E®@ L) = 1, Hence we may assume that
¢1(E) =1 and cg5(E) = 1. We know by virtue of the Riemann-Roch
theorem and Lemma 4.2 thet K (B) =3, X(E¢-1) =0, 822, B) =

(g
H"’-(sz. E(~1}) = 0, Thus dim, H“(PE, E) =3 and 02, E¢-1) =0
becauge E '= E(~1). Consequently we have Ble2, B(-1)) = 0. Let
Oy (1} be the tautological linebundle of E on the Pl-bundle
w: 2 =PE)—> PI%. Leray's spectral sequence Eg’q = HP(PE,
Ri®, (03 (1)® OPE(-»D) =» E" = B, ox(1)®w*$PE(-1)) provides

29 _

X, ox(1) @ m’@PE(—l)))=O because Ep' = Ez’" = 0. Let |

ba & line in Plf'.

—>

0 — 0, (1) GPpa-1) — Ox (W —> B0y
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is an exact gequence, .which yields another exact sequence

0 —35 B, 0y (1) @pa-1) — BO&, o (1)—
k
t ||
o = BO®2, B(-1) HO(PZ, E)

HO( TN, 0 (D® © 1lex, 0 (1@ -1 = 0.
b. o i) — R DO T

Therefore HO(X, Oy (L)) = HO( T'::l('l). Oy (L)® 0 Y. B8ince

1
‘Tf,_l(g.) ias a rational ruled surface, this isomorphism implies that
IDx(l)[ hag no fixed fibre (a fixed fibre of |0x(1)l is that of
IOI(].)@ o__3 ] y which can not occur), If D is a fixed component
L7 (1) )

of on(l)\. then OX(D) ig a tautological linebundle and D
contains no fibre, whence D 1s a section of ¢ : X —5 P:. Then

E is decomposable, which 1s impossible because B 1s aimple.,

Thus lﬂx(l)l has no fixed component. Hence if D;, Dp are
geteral menbers of [Dxtl)[ » they are irreducible and have no

comuon fibre (note that Dx(Di) iz a tautological linebundle on XJ,.

Let IDi be the defining ideal of Dy imn X and let J be the

ideal generated by IDl and IDZ' Then the exact sequence



101

¢ —3 Ip, —> J—> I/Ip, —> 0O

yields an igomorphigm Yt (I} W*(J/IDi) of ideals of OPE
because W*(IDI)Q{ ox Oy (1)) = 0, Rl*ﬁ*ﬂni) = R, Oy (-1)) = O,
Since JfIDi are locally prinecipal ODi-ideal and Di'Ui“_:" U; for
some open Covering UlU U, of P%. W, (I is locally primcipal,
Thig and ¢;{(E) = 1 dimply that W, (J) defines a line +« Thus

D; » by =€ is irreducible and ) is non-singular because
Dy = Uy, U U Uy =P2, € therefore satisfies the condition

k

(Ey) and elmgm: PLX P2 by virtue of Proposition 1.8, Thus
E is= regular and E & Rz(Pg',Q : P) for a point P eQ because
cq(E) = 1. Then E '&TP%(—I) by virtue of Theorem 4,1,
q. e, d.
Example 4.8. As was shown in Example 3.11, E& R2(P2, €3,
Q1+Q2+Q3) is simple if and only if @ Qg Q3 are not collinear,

On the other hand, 1f E & R2(P2, C¥, Q)+Q,1Q,), then ¢, (B) = 3,

c,(E) = 3 and therefors A (E) = -3. Thus R3*(PZ, €3, Qu+Q,+ay)



consists only of one element Tpl% if Qy, Q3, Qg are not collinear.
let E be & vector bundle of yank r on Pp and let J : Py

—> P be an embedding such that J(Fy) is = line of Pp. By

a famous theorem of Grethendieck we get JH*(E)= OP%(al)Et -Hiﬁﬂp]i_(ar)

(a2 ap=x +++ Z&,). Lot us consider the map olg = ,:I{P::') —_—

(al' ‘e ar) of GI'EBS:I‘ (k} to T@r.

Lemma 4.9, There is @ non-empty open sat U(E) of I-'Iraz:s"]‘_

such that O(x) is a constant for every z € U(E)(k) and if
ooty) = dglxng for an xg € U(E) &), then y € UE)K),
Proof, Let G be the univarsal quotient bundle on X = Grass;l_
$(n+l)

and let p : O}E «— 3 he the canonical surjective homonorphism.

Then we have the following diagram :

1
P xx =Py~ 5p@)

Lo

n
Py 4

Themn P{G}, £, g = f'+i are ncthing but the graph of the incidence

correspondence between PE and Grass? and the natural projectiions

102
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respectively. Put E'(m) = g¥(E(m)). Since f 1is flat and BE'(m)
1s locally free O e -module, x - dim E%ET (), E'm),) s
‘uppar semi-continuoius om X, 8Since X 1is a noetherlan space,

dtmy (A£G, B m),) 1s bounded. Thus by = inf(the first tern
of olpx)) > ~w. Put Uy ={x e x| aim 101, B (01 =
0}. Then Ul is & non—empty open met of X by virtue of sbove
argunent., Similary by = i:lgl(the gecond term of o p(x))» - and
Uy =% € Uy} aim B0 L0, B (-b,-13,) =By - by} 1s & non-
empty open set of Usp, Inductively we get DU, and ;r ia the

degired open set of Grasag.

g. o.'d.

Definttion {(Schwarzenbarger). A line contained inm Gra.ssi -
U(E) 1is called an exceptional line of E.

Ven de Ven showed that if U(E) = Grass;, E is rank 2 and if
the characteristic of k is 0, then anplr:(al) EJOPn{az} or

-k

Tpzla)(see 127]),
k
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Theorem 4,10 {(3chwarzengarger '[Jsl ). Lat E bhe a non-sgimple
vactor bundle of rank 2 on PE. The exceptional lines of E form a
finite rmmber of linear penciles, If E has no exceptioaal line,
then E 1is decomposabls,

Proof, Since the set of exceptional lines of EQ@L is
nothing but that of E, we may assume that E is regular (Propositiocn
2.3), If E 1is defined by (s, s') of HO@H, 0,5, (D)) X noen,
Ocn(D}) €t : non-singular curve of degree mn in Pl%)’ thers are

1] 2 ( n L ]
u, v € H(P., sztm))(m < -2-) such that u, v induce sa, s'a
k
on C%(a e HOEN, 0,2 (m) & Ocn(-—D))) because E 1s not simple
k
B S
N 1
(Theorem 3,10}, Lat 70, 71 be homogenacus coordinate of Pcn
M ;l’l
induced from ‘Somogenems coordinate "['0, ?l of P;]E' Then E
iz defined by Y : s ?D + s'?l =0. Let A be the pogitive divigor

on Plx P2

L X P defined by u o+ v 73 =0, then ADY, If A 1s

reducible, theu there are an irreducible component A, and a
positive divisor C with deg C S m < n such that A = A, + Pé.

Since deg C <{n and Y 1z irreducible, Y C A;. Thus we may
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O .
aspume that A 1z irreducible. Hence aleLﬂ = A' contains

only a finite number of fibres T (X)), aaes (X)) of

Ww: X =P(E) = almg(P]i‘x P]%’) —> P2, Take a general line 9.0 in

B2, then Py + A =By 1sa section with By, By) =;m<n and

P;() Y =P+ L., F P,. By virtue of Proposltion 1.8 we have

TCJ-(RO) Eeln:.r_,lr vens PﬂfPto). Put elm{},l’ e, Phl[Bﬂo-,x = B-!Os

\. A
1 J—

| then (B! , B’ )=2n—-n=-b< 0. Thus B! ig a minimal section A. L),
! 1o o 1o

\i/of the choice of a line Q in Pﬁ, B' and since

o

H

A . )

Bi = BY + fibres (B'{ : saction}, we get (B, B‘Q‘

=b, £ -b, whence

L

Bij iz a minimal section of l({) and w1l = Fb!. = Proj(

OPl;:_@OP%('bl 3). Since if WNp(}) = (a; , ay), then a; + a; =m,
a) - 8z = b, and since B} ¥ By 1if and only if f contains - one

©f %y, eses ¥, we have the set of exceptional lines of E = {}
i=1

{lines containing xii. Therefore the first assertion is proved.

1f E has no exceptional line, then r = ¢ and therefore A*' is

g section of P(E). Thus E 15 an extension of line bundles.

Since HI(PE_,L) = 0 for any line bundle L, E is decomposable.

q' e, d.-c



We shall finish this section with some examples of exceptional

lines F]

Example 4.11. dchwarzenberger conjectured in 1 ¥) that if a
vector bundle E of rank 2 on Plf is simple, then the set of
exceptional lines of E does not form a finlte number of linear
pencils, But hie conjecture is disproved. In fact let C3 bpe a
non-singular cubie in P2, let 9,0, {1 be lines in Plf whose
intersection is not on C° and let 9i « C3 = Pj1 + Pio + Pyq.
let s; be an element of HD(P}%, OPE(D) with Is;l = Qi and

) induced from sy.

let &; be the element of HO(C3, ﬂp]gil)@) 03

Then the regular vecter bundle E defined by (5,7, ¥,2) is simple
and the get of exceptlonal lines forus a linear pencil, .

Proof, Take 70, ‘71, ‘TO’ 71 as in the proof of Theorem

n
=

4.10. Then the positive divisor A defined by s2 f, + 82 7,

containg Y : _5027}-0 + Elz ifl = 0, and A' = elug?[ﬂ] containg only

ome fibre Wl with x=0,.%; and w:PE®—» P2, 1f

@ 1s a line not containing x, it is easy to see that A" « (TC (%)

106
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=By is a section of vfl(ﬂ) and (B, By) =1, Since n is
the minimim of gelf-intersection numbers of gectiong of F, = Proj
GQE%QB OP%(n)) wlth non-negative self-intersection number, we know
i
wLl)= Fy. On the ther hand, 1 {’ 1s a line contsling x, then
A . Tt-l(i‘) = Bi, + 2 Wi, By is a section of ufl(Q') and
':, Bi) + 4 = (By, By) = 1. Thus ﬁl(g‘)g Fi. We see therefore
that the set of exceptlional lines of E is the linear pencil formed
by lines containing x, Since E € Rz(PE; ¢3, 2(Pyy + Ppg + Po3))s

E 1ig gimple by virtee of Corollary 3.10.1.

Prools of the following exXamples are similar as above.

Example 4.12. 1) Let { be a line in 22, let P be a point
on § and let E¢ Rz(PE,Q » NP, If n=1, then EZS TPI%(-I} and
therefore E has no exceptional line, If n > 1, then E has only
one exceptional line Q .

i1) Let C" be a non-gingular curve in PE of degree n.

4
Let Dg, D; be gemeral conics in P2 and let Dy - C2 = &Py
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If sg, 5y are element of HO(C?, 0,5(2)® 0.2) with |[sg) =
k

4
ElPij. then the set of exceptional lines of the regular vector

bundle of rank 2 defined by (sg, 31} can not form a finite number
of linear pencils.
iii) Let E ¢ chplf, €3, P 4P5iPy). If P, P,, P, is not

3

collinear, then E =Tp2 (Examplse 4.8) and therefore E has no
k

exceptional line. If P;, Pp, P5 ‘'ig collinear and if E ig defined
L
by (8g: sl)e n0¢c3, OPI%(DG) 003) »% 1%¢c3, opgu}@ ch) with
3
1841 = qui.j’ then the set of exceptional lines of E 1s the linear
j:
pencil formed by lines containing the point Pp which is the common
point of lines U; (i = 0, 1) going through Q;s Q5+ Ryg. Thus if
Pp- ¥ Pp, , then Ed E'. Conversely it is easy to ses that if

Py = Pg, then EZ E'. Thas chp}f, €3, Py +P4+P5)  is in bijective

correspondence with P2 - €3 1f P+ Py P, are collinear,

§ 3. Vector bundles on rational ruled surfaces,

A rational ruled surface over k ig isomorphic to Ty ! Fp =

Proj (OP]_GB Dpﬂ_(n}) —_ P]i' for gsome non-negative integer n. There
k
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iz a gection M on Fn with M, M) = -n. If n>0, then M is
the unique irreducible curve with negative self-intersection number
(see [[3] ). M is called a minimal section of F,. Let N be a
fibre (= & generator) of ¥,. By virtue of the seesaw theorem,

avary divisor D on Fn is linearly equivalent to aM + bN, where

a=«{, ¥¥Y, b= (D, M) + an, On the other hand, -24 - (n +2}N is

a ecanonical divisor of Fn'

Lesma 4,13, Let E be a vector bundle of rank 2 on F,. If
CJ_(E) =aM +bN for a Z -2, b2 «(n+t2) and if E 1is simple,
then H2(F,, E) = 0,

Procf, If one notes that -2 - (pt+2)N is a canonical divisor

on F_, the proof ig gimilar to that of Lemma 4,2,

n’

Lemma 4.14. I1f E iz a simple vector bundle of rank 2 on F
with c;(E} = aM + bN, c4(E) = ¢, then one of the following conditions
ig satisfied :

(1) Both a and b are even and 2ab - a%n - 4c = —4r (r 2> 2),

(2) Both a and b are odd and 23b - a2n - 4¢ = =n + 2 - 4r



(W) & ia odh, b is sutw omhk 20k -0 MomACS SWohy (V2

1 (r21 if n=0; r>2 if n = 0)
-"‘\\_)(3} a 1s even, b is odd end 2ab - aZn - 4¢c = -4 (r=1)
Proof. In the first place, note that ¢4y(E) = aM + bN, cg{(E)

= ¢ imply AC(E) = 2ab - a?n - 4c. The Riemann-Roch theorem asserts

the following equality for a vector bundle of E' of rank 2 on Fn;
KEDY = 2 +(ca + @e2meEM (e @2 - 205E W /=2

1} Asgsume that both a2 and b are even, then cl(E®

Op (b/3t -lb/3)) =0 and 4B = AE PO, (G/2M - (b/DW).
Thus we may assume that ¢3(E) = 0 and ¢4(E} = ¢, For such an E
we have ')( (EY = 2 - ¢, On the other hand, H2(Fn, E) =0 by
virtue of Lemma 4,13, Thus dim HD(Fn, E) ? 2 - ¢, BSince EY =
E and E is simple, we have HO(Fn, E} = 0, Hence ¢ 2 2, which
implies A (BE) = =4¢c = ~4r (r 2 2).

2) Agsume that both a and b are odd. By a similar reason

ag above we may assume that ¢;{EB} =M + N, ¢5(E) = ¢c. Since

clﬂEV) = ~(M + N}, cz(Ev) = ¢, we have X(E\ﬁ =1 -0, H3(Fn,
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EY = 0, whence dim HO(F,, E) > 1 - c. Op the other hand, since
BO(r,, EY =8O0(F,, % ® Op, (-M-N)) is a linear subspece of 1% (r,, B
and since E 1is simple, we have Hn(Fn, EY) = 0. Thus we get ¢ Z 1,
which implies A(E) = M + M2 - de = n + 2 — 4¢ = -n +2 ~ 4r

{r 2 1), Moreover, in the case where n = 0 end A(E) = =2,
oomsider Ey = E@ Op (M) and By = E®Op (0. Then By = Ey,

G]_(El)

il

N =M, clez) =M ~-N and cz{El) = cz(El) = 0. Thus

Y(Ey) = X(Ey) =1 and H2(F,, By) = HA(F,, Ey) = 0. Therefore

dimy EO(F,, B} > 0, dim HOGF,, B)) = dim, HO(F,, E) > 0, which
is inpos‘g.ble. Hence if m = 0, then A (E) = =4r + 2 (r > 2).

3) Assume that a i3 even and b is odd, Then we may assume
that ©;(E) = N, ¢y(E) = ¢, Since A(E) = -4c and since
I(E)Y £ -1 by virtue of Corollary 4.3.1, (i), we have A(E) = -4r
(r>> 1),

4) Finally assume that a is odd end b 1s even, Then we
may assume that GI(E} =M, cof{E} =c. Since c]_(Ev} = =M,

cz(Ev) = ¢, we have 'X(E.VS =1l-c, H2(Fn, Evi = 0, whence



dim HOGF,, EY)Z 1 - ¢. On the other hand, since gim HO(F,, EY)
< dim HO(F,, E) and E is simple, we have HO(F , B} =0,
Thus ¢ 32 1, which implies that A(E) = M2 - 4¢ = -n - 4r (r7= 1).

q. 8. dl

Each of the conditions of the sbove lemma is sufficient for
the existence of a vector bundle E of rank 2 on F, with c4(E}
= aM + bN, c2(E) =¢. In fact,

15)

Theorem 4.15, There ig a vector bundle E of rank 2 on
Fp, with ¢ (E) = aM + bN, ¢5(E) = ¢ if and only if ome of the
conditions (1), (2), (3), (4) of Lemma 4,14 1s satisfied.

Proof, By virtus of Lamma 4.14 wa have only to prove the

11" part,

1) Aggume that the condition (1) is satisfied. Take a general

member C of | 2 + (2n + Z)N\, then C 1is a non—singular curve

because A + (20 + 2)N is very ample. let P;, ..., Pn+2+r(r2 2)

n+2+r
be sutficlently general points on € and put D, = 121 P;. Since

112
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the genus of € 1s ntl and D, is gemeral, dim|DJ}=r-12Z1
and t Drl is free from base point. Let E, & Rz(Fn, C, D) be
defined by (sq, sy} HO(C, 0c( )% BO@, (D)) with s,y =
D,.. Assume that E, 1sa not simple, then there are positive divisers
Cy, Cg on F, such that Cq + Co~ C~ 2 + 2(ntl)JN amnd C; -« C

- D, > 0 (see Theorem 3.10), ¢ iz linearly equivalent to a;M +

i
bi“ with -ﬂ.i:“_‘ Q, hi,Z 0y 3.1 + ag = 2, bl -+ bz = 2n + 2. If

one of a4, for instance a5y is 0, then blz n+2+r hecause

Cl goes thrnugh Plr TR n+2+.r. Thus . C?_, = M + Hi + L. F N];
2

for some fibres HNi, ..., N"Jz because 2 + boN = 2N + fibres

1f by < n., Then C, cannot go through Py, .auy Ppyorn- We

may assume therefore that C;~~ M + byN, by < n+l, Since deg(C, » C)
.= Wy + 2, we have dimC; . C| £ 043 by virtue of the Riemana-Roch
theorem on C and Clifford's theorem (which asgerts that if D is

a spee;ial divigsor of degree n on a curva, then zdiml 3 _{ n). Thus

€y cannot go through Pys «.es Ppyopye 1f Ppy caey Ppyog,. o



sufficiently general with r > 2. This is a contiradiction,
Therefore E, is simple. On the other hand, A(E,) = -4r, Thus
E = E.@ opn((a-2/2)lﬁ + (b/2 - n=1)N) is the desired vector bundle.
2) Asswnoe that the condition (2) is satisfied, Take a general
member C of |M + mH\, wvhere m =n or ntl according as n 1is
odd or not, Then C is a non-singular curve becange C is a
gection of F,. For a general positive dilviser D, of degree
r+ @-¥2 (r 2 1), construct a vector bundle E,. € R?(F,, C,D)
as in the proof{l)above. Assume that E. is not simple, then there
are positive divisors C;, C3 on Fy such that € +Cgyg ~C~ M
+mN and Cqy - C - Dp >» 0. We may assume that Cj;~M + byN,
Cp~byN with by + by =m, by, by > 0. We bave bp> r + (m-1)/2
becauge Cs goes through every point of Supp(D,}. Thuz by <
(m+1)/2 — r, whence M + b;N = M + fibres if n-¥ 0. Thus if
n % 0, C; caonot go through every points of Supp(Dr) because
by L ¢+ (m-1Y2 = deg D,, This iz a contradiction. Therefore E,.

ig simple 1if n % O, rz 1. On the other hand, if n = 0, then

114



(C, C) = 2 and therefore E, is simple for any r 2 2 by virtue of
Corollary 3.10,1, Since O(E) = -n+ 2 -~4dr, E_Q® OFn((B—l}E)M +
(b-m/2)N) = E iz the desired vector bundle.

3) Asgaume that the condition (3) iz satigfied, Let P be a
point on N, then R2(F,, N, 1) ¥ ¢ for any r= 1 because N is
& non—elngular rational curve. Since (N, N} = 0, an element E,
of R2(F,, N, rP) is simple by virtue of Corcllary 3.10.1. Thus
E = Erqgnwh((a/zau + (b=1/2}N)} iz the desired vector bundle,

4) Agsume that the condition (4) is satisfied. Let P be a
point of M, then sz.l"'n, M, ¥P) F ¢ for any r > 1 because M is
a non-gingular rational curve, Since M, M) = -n < 0, and element
Ey of RE(Fn, M, P} 1is gimple by virtue of Corollary 3.10.1,

Thus E = E,® Oy ((a-1/2)M + (b/2)N) is the desired vector bundle.

q' e, d.

Ag an example let us consider the family of simple vector

bundies of rank 2 with ZMB) = -4 on F.
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Thaorem 4,16, Let 8(n, a, b) be the set of isomorphism
clagses of gimple vector bundles E of rank 2 on F, with c,(E)
=aM + bH, A(E) = -4, If (1) a iz even, b is cdi and nf O or

)
(2) oneof 8 end b 4ig odd, the other is even and n = 0, then
there 1s a bljective map (Pn.a.b : P(x) —s 8(n, a, b)}. Moreover,
~ o~
there is & vector bundle S(a, b) on Fgx Pl such that "S(a, b)y
= #0,a,p(*} for any x &Pl(x).

Proof, First of all, note that 1f n, a, b satisfy the
ahove conditions them 8{n, a, b) i=¢‘ by virtue of Theorem 4,15,
Since Fgp =Pl x pl and since N =ply Q, = RX Pl for some
Q, R & Pl, we may assume that a is even and b 15 odd even 1if
n=0, Take an E'& S(n, a, b) and let us consider E =E'® OFn

(=(a/2)M = (b=1/2)N). Then e; (B} =N and co(E) = 1. Since N (B)

=2, XEY =0, #2P,_, B} = v3(r,, E)

0, we have dim HO(Fn. B

2 2 and therafore Hﬂ'(Fn, E @01?“(—!{}} HD(Fn, EV) =0, Hl(l-"n.

1

E® op (-N)) = H1(F,, BY) = 0. By a similar argument as in the

proof of Theorem 4.7 we have HO(X, Oy (1)) = BO( w1l(W), Oy (1) &

116
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Q > with the tautological linebundle Oy(1) of E on

wlao
Tt X = P(E)Y—> F,. B8ince w=l(N) 1is a rational ruled surface
and since the fibre W 13 chosen arbitrarily in the above argument,
the above isomorphism implies that |0x(1)[ hss no fixed fibre.

Thus if D 4ig the fixed component of |OX(1)| y then D 1s & section

of 1 : X—>»F,, whence E is an extension of linebundles;

0Ly an(aM + BN} ——3 E —3 Op (a'M + b'N) —s O,

'Bince ¢4(E) = (a + a*)K + (b + b")N = N, cp(E) = ~aa'n + ab’ +b'b
=1, wa obtain a =131, a*'=-1, b=n/2 b'=1=n/2 or a=-1
a' =1, b=1-n/2, b =n/2, Thus n is even, 1If a = 1, then

n =0 because HO(F,, Opn(al[ + (b - 1}N))g_H°(F E @0y (-N)) =0,

n*
Since Hl(I"O, GFD(ZI = N33 =0 by virtue of the Riemann-Roch theorem,
the above extension splits in this case, rand we ohtained a contradiction.
If a=«l, then n =0 also becauge HOU(F,, Op, (@™ + (b*=1IN)} &

B (Fp, Op (a¥ + (b-1)N)) and because dim HO(F,, Op (a'M + (b'=1)N))

= n/2, ai u(F y Op_(aM + (b=1)N)} = 0, On the other hand, since
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the sxact sequence
0 —> OFO(N -N)—> E —> DFD(H)--;? 0

provides dimg HO(X, Ox(1)) = dimy B%(F,, B} = 2 and since Ox(1) =
Ox(D) ® k(L) for some linebundle L on Fg, we have 0Oy (1) =
0y + wla) or Oy(d + TGN, But, in any case, T0(D; . Dy)
N for Dy, Dy with Ox{(1)==0y(Dy) because TT(D; . D}~ M.
This contradicis the fact that ¢;(E) =N, We see therefore that
{og (1)l hes no fixed component, Then by a similar argument as

in the proof of Theara:n 4.7, for any gaeneral members . D1s Dy in
[0g(1)|; we see that Dy - Dy =Y is a nom-singular curve
satlafying the conditiom (E;) such that TW{) = (a fibre N; of
Fp). Thus elal(P(E)) = Pi X F, and E €R2(F,, Nj, P) fora
point P € N;. Conversely every element of Rz(Fn, Ni: P) 1s
simple because (N1, N1) = 0. Since dim HO(Np, on, P» = 2,

RE(FH. Ny, P) consists only of one element by virtue of Theorem

2,14. Moreover, if Nj;, Ny are mutually distinet fibres of F,
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then B, By for B; & R(F, Ny.Pj) (i =1, 2) by virtue of
Theorem 2,13, Thus there is a bijective map ¢ : {fibres of ?n\f
—2= 5(n, 0, 1). BSince F, 1is a rational ruled surface, there is

& canonical bijective map  : Plfk)m—){ribres of Fpt.

Therefore e obtain a bljective nap ‘-’Fn’g,l = G- - Plixy—s
B(n, 0, 1). 8ince 8(n, a, b) =§_E @ op ((a/DM + (b-1/2)N}E &

S, 0, 1], we obtain a bijective map P, oy ¢ PLKI——%S(n, a, b),

In order to r-.m«. the last assertion, consider 2Z = Pﬁ ® Pl':lc' % Pll"

3 3
whoge systemncoordinatES is (zél), 2{1) A z{()z), zim H zg ), z](_ )).

et Y ba the subvariety defined by zén zgm + E'.:'Iz_l) z{z) =0

1 1
b 4 Pk * Pk be the closed

1 _ .1 1
KPk—Pk?’nP

and let j:z—--aypi-xf .

0
immergion defined by J((x, ¥:. 2}) = (X; ¥, 2, Z). Then JC(¥) =¥
is a subvariety of Pl-bundle P}]:' X Fgx P:._'._-)FDK PI]:- satisfying
the condition (Bg). Let S(0, 1) be the regular vector bundle on
FD)(. Pl defined by ¥', then 1t is clear that for any even integer

a8 and odd integer b, S(a, b = (0, DS proy, la/P +{b-1/30

ls the desired vector bundle with the natural projection



P

1
FoX P —3 Fy.

q.

e,

do
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Footnhotes,

1) In faet g {0z} =0/, and eo g*(Il—{T] is an ideal of Oy,
(see Leapma 1,5.).

2) Let w 1 X — S be the profective bundle P(E) assoclated with
& veotor bundle E of vrank N 41 (N2> 1), 4 linebupdls L on X is,
by abuse of languape, called a tautologicel linebundls when L is the
tautological linebundle of a vector bundls E' with P(E') =X, In the
case where S 1is reduced, 1L is a tautological linebundle if and only if
Lg =L Gbsk(s) is the linebundls associated with the hyperplans of T¢X(s)
= Fy,) foramy seS. If Ly, L, are tautelogical linetundles on X,
then there is & linebundle ¥ on S such that Ly = L, ®C(H).

3} The direct proof of this faet is easy, But geometrie
interpretetion of this (1.e, the relation between Theorem 1.1 and

Theorem 1.3) Ia very important.

4) For an affine scheme Z = Spec(B) and b e B, 2z(b)



denotes Spec(By).

§) Note that locally this complex K, 1is isomorphic te the
usual Koszul comples dafined by hps «.4s hﬂ with a local eouation
hy of H;. Note also that if Xa(f;, ..., f))} is the Koszul
complex detined by elements f;, ..., f, of A and if {flr vess fr}
contains a unit element, then H;E,{f1, .... L) DM =0 ( Yi> o
for every A-module M.

6} As a matter of fact ¥ is an immersiom,

7} If dim 8 = 1, then the theory in the segual is trivial
because we assume that ¥ is irreducible (cf, Remark 2,16}

8) Of course, C; > ¥; means that the support of C;
contains Yy,

9) Vvery ample in the sense of Sumihirc : A vector bundle E
on 8 is called very ample 1f the tautologleal linebundle of E
on P(E) 1z very ample-in the sonse of Grothendieck. H. Sumihiro
proved the following; {i} For any vector bundle Z there ic a

linebundle T =such that E@® L is very ample if 5 is projective
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(see Lowma 1.ILl). (i1) E = E, & Ey is very ample if and only if
both Ey and Ez are very ample, (iti If f : E~—>E' 1is &
surjective homomorphism of vector bundles and if E is very amplse,
then E' is very ampls. (iv) If E 1is ample in the sense of

Hartshorne, then there 1s an integer n such that BS"(B) is very

0
ample for any n 2 ng (SM(E) is the symetric tensor product of grade
n). (v} 1f R ig very ample, then E ip generated by its global
gections and the morphism g : 8 —» Grags defined by E 1is & cloged
imwersion,
10) In the next section we shall ghow that ¢4(E) =T,
ca(E} =D for E & RY(S, T, D). .
11> This means that £,, ..., fy form a bagis of HO(X-{Y),
Oy vy (Hb)) it (£y) = H'i - E"}.
12) In the next chapter we shall show that SRT(S, T, D)

consists of all simple vector bundles in RY{(S. T. D}.

¢ c

13) Note = (-1)“'1/&‘.131 = Il¢1;f'o::'.‘) z (-—l)b( )2
ath=c b=0 b
arx0;,b>0

(-r/eM1-1)C = 0,
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14) For divisors Dy, Dy on a non-singular surface, (D;, Dp)
denotes the intergection number of .D,, Dz.

15} In [[?) Schwarzenberger says that there is a simple vector
bundle E of rank 2 with <,;(E) = n, €,(E) =m if n2 -4 < 0.
But thig is not true as we have shown, His error comes from an
incorrect statement (b) in the proof of his Theorem 7.

16} In [jﬁ] Schwarzenberger says without proof that for any
a, b, ¢ with ab - 2c ¢ 0 there is 2 simple vector bundle E of
fank 2on F, with ¢q(E) =aM + bN, c©,(B) =c. But this is not
true (see the mbove coanditions (1), (2)).

17) A simple vector bundle E with A (E) = ~4 which does

not satisfy these conditions exists only on F, (gee Theorem 4.15).
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