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Introduction and Summary

In 1929, Langmuir and Tonks found a aystematic
osclllation in a plasma and showed that its angular
frequency i{s given by wp={(ﬂwn032)/m)l/2, where m, e
and n, 4are the mass, charge and average density of the
particle. Since then, this oscillation has been studied
in many aspects both experimentalily and theorectically.

The fiprst theoretical work 1s the one by Vlasovl)

s who
pProposed to describe wave processes in a rarefied plasma

by means of a kinetle equation wlth a self-consistent
field, starting from the c¢ollisionless Boltzmann equation
and the Poisson equation. After his theory, Landau

pointed out the mathematical error of his treatment and
then theoretically predleted the phenomenon of Landau
dampingz). Both treatments are based on the theory linear
with respect to the fluectuation field. If we go beyond the
linear theory, however, those particles whose velocitles
are close to the phase velocity of the wave contlnue to

be accelerated {(or decelerated) by the wave field and

show a secular behavlor in time. As a result, there is

a time above which the linear theory becomes invalid.

Let us conslder two time scales. One is the Landau damping
time of the wave, (to be relerred to as Tp ) and the

other 13 the period of bounclng motion of a particle in

the bottom of potential trough of the wave (referred as Tg ).



The latter time scale is inversely proportional to the
square rcot of the field strength of the wave. When the
amplitude of the wave fleld is sufficlently small, so that
TD*«'TB s+ We can use the linear theory 1n respect of the
interaction between the wave and particles. As the

amplitude of the wave becomes larger and T gets nearly

B

equal or larger than = the nonlinear coupling of the

D?
wave and particles begins to play important reles. 3Such

a sltuation was first dlscussed by Bohm and Grossaj.

They divided the particles into two groups: one is

composed of the particles which are trapped in the potential-
energy troughs of the wave and which are necessary to be
treated nonlineariy, and the other iz composed of those

which are untrapped. These Quthors have studied the
relation between the distributlion of the two groups of
partiecles and the staticonary character of the wave.

As an extenszion of their work, a theory is édeveloped by
Bernstein, Greene and Kruskalu) who dlscussed a stationary
exact solution of the nonlinear Vlasov egqusation.

The stability of the seclution was not discussed, however,
There are other nonlinear theories of plasmas, for
instance, the weak turbulence theory, the orbit-modification
theory, and aé@n. We shall not refer to these theories

here.

Experimentally, a conslderable progress has been made

in plasma physics slnce 1955 and we are now able to



produce very quiescent plasmas in laberatories and also
to exclte waves of arbltrary frequencies by applylng
high frequency oscillaticns to a Langmuir prebe.

As a result the dispersion relation for plasma waves have
been studied in detail and many of the results of the
linear theory have been experimentally checked. In
particular, the phenomenon of Landau damping has been
observed by Malmbeprg, Wharton and Drummonds}. Further
progress in experimental technlgques has made it possible
to excite a large-amplitude coherent wave for which the
relation ‘L'p>'£D holds. The phenomena due to the
presence of trapped particles have been wldely studled
both experimentally and theoretically. Among them, the
rhencmens of the amplitude oscillation and the
trapped-particle instabllity are noticeable. The former
iz a phenomenon that the amplitude of & large-zmplitude
wave (hereafter referred to as the carrier wave) excited
in & plasma oscillates in space with a periocd spproximately
equal to v, T, {v_ is the carmer phase velocity) and was

PEB D
observed by Malmberg and Whartonﬁ)

for the first time.

The particles trapped In the potential troughs of the

wave make the bouncing motion and, therefore, they periodi-
¢ally exchange thelir energies with the carriler wave.

It is the physical reason for this phenomenon. Theoretically,
it has been investigated by O'Neilajand by Al'thul and

Karpmag}using different methods. The trapped particle



instability is a phenomenon in which waves of frequencles
different from the carrier-wave frequency by approximately
integral multiples of the bounce frequency 2n/tg (1.e.
sideband waves to the carrier) become unstables, gnd has
been obeerved by WhartonT) et al. This phenomenon iz due
to the energy transfer from the trapped particles bouncing
in the periodic potential troughs of the earrier wave to
sideband waves via resonance coupling and 1t has been
studied theoretically by KrJﬂer-Dawson-Suda;a) and
Mima—NishikawH!). This problem has raised a question
regarding the stability of the B-G-K solution mentioned
ahove,

The above problems are all concerned wlth the phase
eoherent response of a plasma to the electric fleld.
In plasmas, however, There also exists spontaneous
emission of plasma waves. I¥ ccmes from the discreteness
of the plasma, namely, charged particles moving in the
dielectric medium emit collective oscillations by
Cerenkov emission. The fluctuation level in a thermal-
equilibuium plasma 1s derivable from a balance between
the rate of spontaneous emisslon and that of Landau damping.
This corresponds to the fluctuatlon dissipation theorem,
In & homogeneous plasma, the emlssion rate can be calculated
by making use of a particle orblt of free motion and a
dielectric function derived by the linear theory.

In an inhomogeneous system where a large-amplitude



toherent wave 1is propagating, however, both of the particle
orblt and the dielectric character of the plasma are
modified by the existence of the carrier wave. The
principal subjJect of thie work is to develop a thecry of
the spontaneous Cerenkov emission in which the effects of
the carrier wave menticned above are taken into account.

The main motlvaticons of this work are the following.
First, the theory of a moderately strong ion-wave

12) indicates that in

turbulence given by Nishikawa and Wu
collisionless plasmas, partiele-trapping (discussed in

a statistical sense) due to low-level ion-wave fluctuations
could be significant even for stable plasmas. According
to their considerations,lit may be necessary to take into
account the effect of electron-trapping for the spontaneous
emission even in the discussion of the thermal level of
ion-wave fluctuations, The second motivation is connected
with the work on the anomalous resistivity by Dupreel3),
14) 15)

16)

Kadomtsev and Pogutse and others. According to

2 Lenard17), and Guernseyls)

the theory of Balescu
on the collisions bhetween the particles and waves in

a plasma, there exlsts an effect of the slowling down

of the particles due to the reaction of the medium

against the spontaneous Cerenkov emission by the particles,
Dupree and others proposed that this slowing-down effect
would become much larger if we take into account the effect

af coherent emission due to the localization of the



particles in phase-space (Dupree called it "macroparticle"),
and consequently, 1ts effect would give rise to an
anomalous effective collision frequency on the particles.
Following thelir proposal, we want to consider the influence
of the carrier wave on the spontaneous GCerenkov emission
and the coherence effect of this emission due to the
existence of the carriler wave. Finally, although the
experimentaily observed sideband excitatlon in the

presence of a large-amplltude wave 1s considered to he
expleined by the theory of trapped particle instabilitles,
there also exlsts a possibility of spontaheous emission of
gildeband waves as a result of a perlodic modulation of

the particle orbita. Por a complete comparison of the
theory with experiment, 1¢ is necessary to ¢larify &
qualitative difference between the sldeband exclfatlon

visz a trapped particle instability and that via spontanecus
enission.

Let us present a bhrief summary of the presults obtained
in thils work. In the case of the emlsslen of an untrapped
particle, waves of many different frequencies are emitted.
They include the one which satisfles the ordinary Cerenkov
condition, but its emission rate 13 weakened as compared
with the emission by a freely-moving particle. Also included
1s an emission corresponding to the scattering of the
carrier wave by the particle (for example, the Thomson
scattering). A trapped particle emlts sideband waves in

addition to the carrier wave itself. The frequencies of



the sldeband waves are different from the carrier-wave
frequency by approximately integral multiples of the bounce
frequency and the spectrum of these emissions 1in the wave-
number space becomes discrete and symmetric around the
wave-number of the carrier wave. The effect of the presence
of the carrier wave on the dielectric propgrty of the system
appears mainly in the emission by the trapped particle.
Namely, the disperslion relation and emission rate of the
sldeband waves are medified in comparison with the result

of the primary treatment where this effect 1s neglected.

For the emiszsion by an aggregate of trapped partiecles,

fthere appears a coherence effect because of the localization
of particles iIn the potentlal trough and also because of

a periodie array of groups of localized particles which
reflects the periodicity of the carrier-wave potential,
These effects cccur only for the emlsslon of the carrier
wave itself.

We discuss the problem of spontanecus emission of
plasma waves in the presence of a finite-amplitude wave,
dividing the consideration into two parts. In the first,
the theory of the spontaneous emission in a homogeneous
plasma i1s briefly reviewed. We also refer to & theorylg)
which takes into account only the effeet of the orbit
modification, but neglecta the effect of the carrier wave
on the dilelectric character of the plasma. Such a theory

may be used in the case when the amplitude of the carrier



wave 18 sufficlently small. In the second part, we
develop a theory which takes intc account the effect

of the carrier wave on the dlelectric character of the
plasma as well asg on the particle orbilt, The theory is
based on the Klimontovich formaliamzo) and iz an extension
of the theory of spontaneous emission in a uniform plasma

to an inhomogenecous plasma.
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Pert I

§1l. Spontaneous Emissions in Plasmas

First of all, let us derive a general expressioh for
the rate of spontaneous Cerenkov emission of longitudinal
waves per unlt time by a single particle. This rate 1s
equal to the work done by the medium as a reaction to the
wave emlssion by the particle because of the energy
conservation in the process of the emlssion. Therefore,

the rate of wave emlssion, denoted by Ic s 1is glven by

- - —p
IU--Jdr T r,E)E (), (1.1)
where ¢ represents the specles of the particle, and 5; ’
Ea are the current density corresponding te the particle
motion and the eleetric fleld due to the particle,
respectively. The integration 1s carrieq out over the
whole plasma. Let us Fourler-analyse in space and time as

- - P ‘.*_
Jo(T,t) =fdk aw J, (k) elk r-1vt

and (1.2)-
- -
ik¥=-iwt

- > - -
By (K, 5) = [ak aw B, (k) o .

Then, 1 is written in the Fourier representation as

g

-11l=-



IU=-(21r}3IdE dwda* Eu(l-;,m)-;a{-?:,m*) emHutu)t g 4y

ﬁ
By means of the test-particle method, we can relate Ja

=l
and EG with the charge density Pg corresponding to
the movlng particle. The Polsson equation in the

Fourler representation is given by

- =3 - -y
1iee Do {k,0) = dmp _(k,0) . (1.4)
q

where Dcr is the corresponding electric displacement.

The electric displacement 1Is related to the electric fileld

as

-y #e LY L T
D, (k,0) =e” (k,u) E_ (k,0) (1.5}

where ‘%F(;,m} 1s the dielectric tenser. In this
treatment, however, we use the dielectric function for

a homogeneous and isotropic¢ plasma since we suppose that
the amplitude of the carrier wave 1s small enough for its
effect on the dielectric property of the system to be
negligible., From the equation of continuity, ?a(?c,m} 1s

given by

-

ke (k,w) = wp (e ) (1.6)

=]l



By making use of eqs.(1.3)~(1.6), the expression for I

is rewrltten as

-y -5
N'Do(k,w)ﬂ'ﬁ("k:m') ~i(wHe )t
ZE,p ¢
k" (k,w)

-’
IU--Q(Eﬂ)uijdkdmdm‘ (1.7)
We apply eq.{1.7) to the case of & homogeneous unmagnetized
plasma. In this case, we may adopt the orbit of free motion
for the test particle, The charge density corresponding
to thils motlon is

. -

plr,t) -eB(r-th) R (1.8}
-3
Vo belng the unperturbed veleclty of the particle.
Substituting the Fourler component of this gquantity into
eq.(1.7}, we obtain the emission rate of the particle

-
wilth the velocity v

g @as
*

2 kv y

1(vy) = 218 {ah—p? ey d . (1.9)
(2m) k € (k,w)
This expression c¢an approximately be written as
- 62 - . -+ 3

vp) =1zny Idk 5 3c° §Ckevg-wy ) (1.10)

K (mgl

W=,

-~
where «, satisfies the equation Reee(k,mk)-ﬂ .



i2. Effects of a Pinite Amplitude Wave

We consider the spontaneous Cerenkov emission in
an unmagnetized plasma 1n the presence of a finite-amplltude
wave. For simplicity, we confine ourselves to a one-
dimensional treatment. The equation of motion for the

fest-particle is
m =5 = -eE, sin(kox-ﬂot) . {(2.1)

where EDI Bin(kox—ﬂot) represents the carrier wave wlth

the ampilitude E0 » +the frequency ﬂo and the wave

number kG . Considering this equation in the wave frame,
we find that the total energy of the particle W i=
conserved in this frame and the whole psartilceles can be
divided into two groups according to thelr total energles;
one 1s a group of untrapped particles whose total energles
are larger than eED/kG and the other is a group of
trapped ones whose total energies are smaller than eEO/‘kU .
Therefore, we separate that problem Into two cases as

follows

(1) Untrapped-particle case:

Por simplicity, we consider only those particles
whose kinetic energiee are much larger than thelr potentlal
energies, We then adopt the following orbit for the test-

particle in the laboratory frame:

x(t) =« sin(kox-ﬂot) Vet (2.2)

14



where Xq and VD are the initial position and velcelty

of the test particle and

g
_ m Eo
o = 5
(2.3)
QD E ﬂo-—kuvn

This orbit is correct to the first order with respect to
the expansicn parameter eED/kow . The charge density

cerresponding to this motion is glven by

p(x,t} = eﬁ(x-v’ot—u Bin(koxo - nDt)) . {(2.4)
Substituting the Fourier component of this quentlty into
eq.(1.7) and averaging over the initial position, we

obtain the emlssion rate by the untrapped particle after

some calculations as

wT 2 Yy 2
I (Vg)=2me ;Jcik —— I (ka)b(a, - kvg-nfy) (2.5)
k (3T|m=mk)

where J 18 the Bessel function. In the above expression,
the term n=0 shows that the wave which satisfles the
ordinary Cerenkov condition is emitted but its rate is
.reduced by & factor Jg(kn) » This reduction is due to

the fact that the particle veloeclity can be, equal to the

-15-



phase veloclty of the moduliation of the particle orbit
by the wave field, The term n=1 corresponds to the
Thomson scattering of the wave (ko,nn) by the particle
of velocity ¥, @&s seen by the resonance condition

(i1) Trapped-particle case:

For simplicity we confine our treatment only to
those particles which are trapped in the bottom of the
potential €rough. We obtain the orblt for such a particle

perturbationally as

x(t) = Vo (t) +$ﬁ-ﬁg sin(u t +8) (2.6)

where VU 1s the phase wveloclty of the carrler wave, ma
is the bounce frequency in the bottom of the potential
trough and & 1s the initial phase of the particle.

The above expression is correct to the flrst order with
respect to the expansion parameter kow/eE . The

0
corresponding charge density is .given by

p(x,t}=eﬁ(x-v0t-£g(% sinfupt +8)) . (2.7)

The same procedure as done .for the case of the untrapped
particle brings the final expression for the emission rate
of the trapped partiecle with the total energy W £o the

form:

-16-



IT(W)=217922[d1{ “k Jx ﬂ)ﬁ(m “ RV, -nw) . (2.8)
n kz(iii[ ) nteg fm k 0 B

pw lwmw,
In this case, the term n=0 correasponds to the emission
under the ordinary Cerenkov conditiocn., The emission rate
is, however, reduced by a factor Jg fi-¢%g) compared
with that of a freely moving particle.B The resonance
condition for the term n¥%0 shows that the trapped
particles also emit side-band waves whose frequencies
are different from the ecarrier-wave frequency by approximately
integral multiples of wg and consequently, the spectrum
of emission becomes dlscrete in ¥ space, These situations
reflects the bounclng metion of the particle in the
potential well., If we treat the motion of trapped
particles more exactly, however, the bouhce frequency
13 no longer independent of the particle energy and the
result mentlioned above would be medified cerrespondingly.
We neglect the particles which exist near the boundary
between the trapped and untrapped reglons. We find,
however, from the equatich of motion that these particles
spend almost all of thelr time near the top of the
potential with the velocity nearly equal to the phase
velocity of the carrier wave. Therefore, they will emit

the carrier wave on the average as a freely moving

particle with the veloelty ?U does.

-17=-



£3 Coherence effect

In the present system the trapped particles are
localized to each potential trough because of the existence
~of the carrier wave. Consequently, the coherence effect
can oceur for the case of the emission by an aggregate of
trapped particles. There exlsts another ccherent effect
due to a periodic array of groups of localized particles
which reflects the periodielty of the carrier-wave potential.
Let us consider these coherence effects in the followlng.
We specify the trapped particle with a pair of suffixes
{J,p), which denotes the p-th partiecle trapped in the J-th
potential trough. The Fourler component of the charge

density corresponding to the particle (J,p) iz

o TP (1,0) = £ §u_(K /BHLRT, e 1PBLTPYg (ukv mrusy) ™1y
n

g

(3.1)
where W(J,p) and B8{(J,p) are the total energy and
initial phase of the particle (J,p} 1n the wave frame
respectively and Xy is the initial poszsition of the bottom
of the J=-th potential trough. The charge density
corresponding to an aggregate of trapped particles is
cbtained by summing eq.{3.l} over (J,p) . Making use of
eq.{1.7), we get the expression for the emlssicn rate by

all of the trapped partlcles as

w]1B=



e
K2 )
k
W
k k:fﬁﬂﬁ__T k [2W(J .8
+ 2WiJd,p) {ﬁ ( ) -
} Idk 2,3¢° J (MB ) JD(mB '__E‘-—)ﬁ(mk kvo)
pks  k°( | )
k
@
k k J k L.s
*.] Idk e JG(E'JEEEEZEI) TG (=7
J5 2,5hc B
g Kk )
P, W

5w ~kV,) e~ k(xg=xp ),

Let us discuss each term of the right hand side of the

above expression separately.

(1} First term:

Thls term is the simple sum of the result for g
single particle obtalined 1n §2, and reprezents an ordinary
incoherent contribution. Let us consider the emission by
the aggregate of particles trapped in the same potential
end denote the number of them as N; - Then, the emission
rate corresponding to this term (denoted by IE ) is Ny
times as large as that of a single partiecle if we neglect

the difference of the energy between different particles:

-19-



T

h I
where I

I3 the emission rate by a single particle.

{1i) second term:

This term represents the coherent contribution of
the group of particles in the same potential trough, and
arises only for the emission of the carrier wave 1tself.

The order of magnitude of this contribution {(denoted by

T

T P
I2 } is Nj times as large as Iu :

A

LTIt
*

{1ii1) third term:

This term corresponds to the coherence effect hetweeh
the emissions by the partieles trapped 1n different
potential troughs. As seen from the factor exp[-ik(xJ-xL)],
this effect appears only for the emiszsion of the carrier

wave ltself.

If we treat the probliem three-dimenslonally, these
coherence effects will considersbly be reduced except
for the emissicon of the wave whose dlrection of propagation
is equal to that cof the carrlier wave, since the localization
of trapped particles mentioned above 1z essentially
one-demensional and so there is no locailzation over the

directions perpendicular to the wave vector of the carrier

wave.

-20-
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3ynopsis

The spontanecus Cerenkov emission of longitudinal waves
in a plasma with small but finite amplitude wave (hereafter
referred as the carrier wave) 1s investigated. Two effects
of the carrier wave are taken intc account; one is the modifi-
cation of the test-particle orbit and the other that of the
dielectric c¢character of the plasma. It 1s shown that particles
trapped in the potential-energy troughs of the carrier wave
emit a discrete spectrum of sideband waves (in addition to the
carrier wave itself) whose frequencies are different from
the carrier-wave frequency by approximately Integral multiples
of the bounce frequency. An untrapped particle also emilts
waves at several different frequencies, including the one
which satisfies the ordinary Cerenkov condition, but these
frequencles depend on the partlele veloclity. The results
are compared with those reported in our prevlious paper where
only the effect of the orblt modification 1s taken lnto

conisideration.



§1. Introduction

In the usual treatmentl)

of the spontaneous Cerenkov
emlsslon of longitudinel waves, the plasma is assumed to be
spatially homogeneous and a particle orbit of free motion

is used for the test particle. 1In this paper, we conaider

the situation in which a finite-amplitude wave (hereafter to
be ;eferred to as the carrier wave} is stationarily travelling
in the plasma. Two effects of the carrier wave are to be
taken inteo consideration; one is the modification of the
test-particle orbit and the other is that of %the dielectriec
character of the plasma.

We have recently presented a theoryz) in whieh only the
modification of the test-particle orbit is taken into account,
the dielectric character belng assumed to be the same as that
for a homogeneous system. We found that i) the particles
trapped at the bottoms of the potential-energy troughs of the
carrier wave emit the carrier wave itself, but at the same
time its sideband waves whose frequencies are different from'
the carrier freguency by the 1integral multiples ¢f the bounce
frequency of the trapped particles, and i1) an untrapped
particle also emits waves at several different frequenciles,
including the one which satisfies the ordinary Cerenkov

condition, but these frequencies depend on the velocity of

the test particle,



In the present paper, we take into account the effect on
the dielectric character of the plasma as well as that on the
test-particle orbit. Two important modifications to our

previous resultz)

are obtained regarding the emission of slde-
band waves by the trapped particles. PFirst, the dispersion
relation (the frequency versus wavenumber relation) of side=
band waves 1s medified from the one in a homogeneous system.
Secondly the emission rates of the sideband waves are modified.
In addition to the sidebands the trapped particles also emit
the carrier wave itself. For the emission by the untrapped
particles, there 1s no substantial modificatlcocn by the change
in the dlelec¢tric character of the system.

We start from the assumption that there exlis%ts a s¢o-called
B.G.K. state3’ %), Although the stability of a B.G.K. state
5)

i1s open to question”’, we do not concern this problem.

In fact, our results can equally be used for both stable and
weakly unstable systems, as in the c¢ase of a homegeneous
systemsJ. We then consider a microscopic charge-density
fluctuation to this B.G.K. state and calculate the electric
field induced by this fluctuation., This iz done in §2 and

§3. The relation between the electric field and the charge-
~density fluctuation 1s expressed in terms of the generalized
susceptibilities of the plasma whieh are calculated in §4.

The spontaneous Cerenkov emisslion rate is then calculated

in §5 with the use of & kinetlc wave equation for the spectral
density of the electric fleld. The resulfts are discussed in

the last sectlon.



$§2. Basic Equations

For simplicity, we consider a one~dimensional and non-magnetized
plasma. We confine our attention to high-frequency electrostatic
waves and regard the ions as a uniform background of positive charge.

In order to discuss spontaneous Cerenkov emission, the contri-
bution from microscopic fluctuations must be taken into account in

the kinetic wave equation. Therefore, we start from the Klimontovich

equationsg:
[ + v - & Bix,t)}-2)f(x,v,t} = O (2-1)
at X m v
-2 Efx,t) = 4wen {1 de fix,v,t)} « (2-2)
o o

where m , =-e and n,6 are the mass, charge and average density
of the electron and £({x,v,t} is the microscopic electron distribu-

tion function which satisfies the initial condition:

£(x,v,0) = -+ g atx-x.m:]at%—vjwn . (2-3)
nO 3 ]

xj{OJ ; vj(OJ being the initial position and velocity of the j-th
particle respectively. Averaging eqs. (2-1) and (2-2) with respect

to the initial preparation of the system, we obtain

[ « BB (x,t)>2]<Ex,v,t)> = £ —a—cE{x,tJf(x.v,t}:»c (2-4)

at Ix m av m v
—3-— <Bi{x,t)» = 4“9“0[1-de<f[xrvnt]”] r {2-5}
Ix

where the angular bracket means the ensemble average and



CEME}Elx,v,£) ) =B (x,t) £, v, t) ~<B i, t)> <E(x, v, t)).
If we adopt the Vlasov approximation, eq. (2-4) is reduced to

2 v o ECE(,t) 2ICE(x,v,t)> = 0 . (2~4")
3t 3x m av '

As the average state satisfying eqs. (2=4') and (2-5), we consider
a situation in which there is a monochromatic stationarily traveling
wave of the form,

Eﬂ (x,t) = E,co8 (kn,x""o,t} ' {2—=a)}

egs. {2-4'} and {2-5) are then written in the wave frame (moving

with wave phase velocity V.=ﬁ"-} as follows:
o

(v - & Eg (x)E-1F(x,v) = 0 (2-7)
Ix m av

2 E, (x} = 4ﬂen,[1—deF(x,v)l ' {2-8)

ax

where E {x) and F(x,v) are the average electrostatic field and
distribution function in the wave frame.
From egs. (2-1), (2-2), (2-7) and (2-8) we can obtain the

equations governing the fluctuating quantities
f¥ (x,v,t) = fix,v,t) - Fl,v) , E¥(x,t) = El(x,t) - E,(x)

in the wave frame as follows:

2+ v - & B, x) 1 (x,v,t) = & BF (x,6) 2P (x,v) (2-9)
it ax m v m oV
2 ol (x,t) = —~4nen, S av £ {(x,v.t} ., (2=10)

X



where the superscript u denotes the fluctuation from the average.

In the above eguation we have neglected tha term %E"(x,t)-%f“(x;vrt}-?”
The general solution of eq. (2-9} consists of two parts:; the parti-
cular solution of this eguation and the general solution of the

corresponding homoganeous equation, i.e.,

[ + vt - 2 g, )28 (x,v,8) = 0 . {2-11)
it 3IX m oV
Using the solution of egs. (2-9) and (2-10) we can derive an eguation
for the spectral density of the electriec field in the form
Lo Ef ) |2 = 2y <|[EP (2[5 + 5
Ik k k k

where T is the damping rate of the fluctuation of wave number

k and Sk is a source term. It is this source term which gives

the time rate of spontaneocus emission of waves.

+ Neglect of this term is essentially eguivalent to the randcom

phase approximation in the eguation for <ffP(x,v,t)f”{x',v'.t')).



§3. Solution of the Basic Eguations

We first investigate the particular solution of eq. (2-9}.
It can be derived by the Green's function method as done by
M. V. Goldman.s} Integrating the solution over the wvelocity, the

charge-density fluctuation p"(x,t) is derived as

o t
dapP{x,t) = - Saxt S at' 2 y(x,x';t-t')E" (x',t") (3=-1)
L L)
2 xte,xt pe-tty = m;B[t—t') § aviotaxxt viit-t))
Ix "
x =2 Flx',v'} , {(3-2)
gyt
where x(x,x';t-t') represents the electrostatic susceptibility

of the system, o{t-t') is the usual step function and

%Pétilaﬂg—)lfz (electron plasma frequency). In the above expression,
x(x',v';t-t*) and vi{x',v';t-t') represent the orbit satisfying

the following eguation with the condition x=x' , wv=v' at t=t':

& -y (3-31

dt

T ow-2g,) . (3-4)

dt m

We introduce a Fourier-Laplace component A(k,w} of a physical

quantity A(x,t) defined by

+ o
Alk,0) = de S at eTWFTIKX Aoy ) (3=5)
-—rt g

alk,w) being assumed to be regular in the region Imw>0.



In this representation, egs. (3~1l) and (3-2) are rewritten as

e

o tkow) = —iE gy (k,wlEY (nk, , ) (3-6)
47 nN=—w
Nz +ow 10 w
' 1 1
Xp (ks w) = -1-B S av! Qﬁ_,( dg eltt gl (kinkelx
k g 10 "
u .
R R e LS I (3=7)

oV

where we have used the fact that our system is periodic in space
. . _ 2n
with the period ro (= TE:'}'
Next, the general sclution of the homogeneous equation (2-11)
¢can he written as

2 (x,vet) = —2— § slx=x.(£)] [v=-v.(t)] - F{x,v) , (3-8)
8 ng 3 j j

where xj(t}=x(x,j,v,j;t} ’ Vj {t)—_-v(x,j,v,j:t) in the previous

notation and suffix:s iz used to indicate the solution of the homo-

gensocus equation. The corresponding charge-density fluctuation ™

beccmes o
p:{x,ti = ~nge de f: (X,V,t)
=-e I slx-x3(e)] - pox) , (3-9)
J

po{x) being the charge density due to F(x,v). The Fourier-

Laplace component of eq. (3-9) is

it -ikx, (t)+iet
p:(k;m) = —e § S dt e - po(kn’ﬁk,k° I (3-10)
0



Adding this term to eq. (3-5) and using Poisson's equation,

we obtain the equation for electric field E"(k,w) as follows:

. + - C g
EX(,w) ¢ T x Ok w)EY obnkg ) = IR oV ) o (3-11)
k

Y= =0

We rewrite eg. (3-11) in terms of Fourier-Laplace components in the
lakoratory frame. The Fourier-Laplace component in the laboratory
frame 'Eu (k,w} is related to the component in the wave frame
E" (k,w} through

EY (k, wtkV,) = E* (X, a) (3-12)

{this can be derived using the relation between the positions in
both frames.) Therefore, eq. (3-1l) is written in the laboratory
frame as

B

(.k-ru) + I xn (k,m—kvn)'ﬁ“ (k+nk, rf#"‘nmo) = iﬂ};if;

n

Pikow) o (3-13)
The above equation is a matrix equation of infinite-dimension.

Let us restrict ourselves to the case of small amplitude field
E, in the sense that

E, << {y4m,T , (3-14)

T being the electron temperature. In this case the dispersion
relation of this system is not much different from that of the
homogeneousz system. Therefore, we may truncate the above matrix
equation, retaining only those components gl (k+nk, ,0+n»,) in

eg. (3-13) whose wavenumbers and frequencies nearly satisfy the . -
dispersion relation of the hamogeneous system. In the present case
we have only to retain two camponent Eu {(k,w) and E"' (k=2k,,w~2w,) ,

because only these can simultaneously satisfy the dispersion relation



of the homogeneous system approximately. Then, eg. (3-11} is

reduced to the coupled egquations for these two components:

{14%, (k, u=kV,) } X_p UkramkV,) EY (k,0) ]
|

Xp (k=2Ko, u=kVo) 14X, (k=2k, ,0=k¥,) }f | B tk-2k, y0-20,)

'}wi Eﬁ(k;m)
k S
{ ] 5159

~ATE L BY (k=2kq , wm2u,)

k-2k,
From the condition that the corresponding homogeneous equations
have a non-trivial sclution, we can obtain the dispersion equation

in the present approximation as

D(kw) = 0, {3-18)
where
D(k,w) = {L+Xo {k,u=kVe) }{1+X, (k-2Ko,=kV,) }
= X_g (ks u—KVa) Xy (k=2ko rumkVa) (3-17)

The solution of eg. (3=16) specifies the collective oscillation of
the system., Here we are not concerned with the details of the
solution of (3-16).

Using (3-10) one can derive the charge-density correlation

1 b

function <pg{k;m)p;*(k'16}} as . osrain gl

<p§(k,m)p:*(k';d)>

+w= w
-3 : TR P '
= dedxl S atde! <p:{!€;t}p:(xt RANEY ikx+ipt+ik'x"'—ig*t
-= 0

- _ikx, (£)+ik'x, (€')
= e S dtat' i <e > J
o i.3

L} - * I
Elwt id*t

>
c '

(3-18)

10
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where the asterisk denotes the complex conjugate. If we neglect

correlations between different particles, this reduces to

u ~ikx, (E}+ik %, (£1) o .
‘P:(k:wip:*(k'.dh - a2 S dtdt' I <e ] j ,glot-du*t!

h
0 (3-19)
In the above derivation we used the relation
e< I GEx—xj (t}]> = =ps (X} . {3-20)

]



8. Explicit Expression for Susceptibility

-

In this section we wish to derive an explicit expression for
the susceptibility. For this purpose we must assume explicit forms
for the orbit xtx'.;-v':tl and the average distribution function
Fix',v'}) in eg. (3-7]).

We first derive the orbit satisfying egs. (3-3) and (3-4}.

We can put E,(x)=-E,sink,x without loss of generality. Then,
the first integration of eq. (3-4) gives the energy conservation

law in the wave frame:

1 2 eE,
WE =my® + —cosk,x = constant. (4=1)

As we can see from this law, particles can be split into two groups
according to their energies; one is a group of untrapped particles
whose total energies are larger than eE,/k, and the other is a
group of trapped ones whose total energies are smaller than eE,/k,.
Although we can get the exact orbit of a partiele by using an '
elliptic integral, we shall here be content with an approximate
orbit for simplicity. '

First for trapped particles, we approximate their motion by a
small oscillation near the bottom of the potential trough; that is,
we derive the oxbit by perturbational approach with .small expansion
parameter ngﬁf {<<ll , retaining only the lowest order term.

More explicitly, we use the following approximate equation for
eg. (3-4)

QIK = = E:_E.Q. k (_x-.:h‘ J- (4~2)
at o - 51' f



-

where we chose a particle trapped in the trough at x=%£— as a
representative of the trapped particles.

The solution of the above equation is of the form

x{t) = . i ‘/—i sin (uptte] + A2 (4-3)
B m 2

’—ZE cos{th+u) p (4—-4}
M -

where (p=/feE.K,/m is the bounce frequency and the energy W and

vit)

the phase o are determined by the initial econditions. For the

initial values of x=x' , wv=v' , we have

A

x(t) = x?(x‘,v‘;t} = %%sinqﬂt + (x'= %3Jcosw5t + -2 (4=5)
. 2
v{t) = v?(x',v';t} = v‘cos@Bt - thx‘- %ﬁasinqat . {(4=6)

The guantities x?(x',v‘:t] and vElx',v';t} are the expressions
for =X(x',v':t) and wi{x',v':t) of a trapped particle in the
pregsent approximation.

For untrapped particles, we can also solve the equation
perturbationally with a small expansion paramater' E%ifﬂ {<<1}

and retain only the lowest order term. The approximate eguation is

v . 2E2 gink, [vet+x(0)] (4-7)
at m

and its solution is written as follows:



I 4-

x{t) = v ¢ +.-—§17 ainfkev.t+gl. (4-8)
' MoV, . u
vit) = v, + —SEe cos [k, v.t+g) ; (4-9)
mK,vg

where v, is the unperturbed velocity of a particle in the wave
frame and 8 is determined by the initial position of the particle.
In the calculation of xn . however; it is sufficient to use the
orbit of a freely moving particle;T that is,

x0T (x',viit) = v't 4 x! (4=10)

x(t)

vOT (x' ,vit) = v, (4-11)

wvi(t)

xET and VET

being the expressions for x(x',v';t} and wi{x',v';t)
cof an untrapped particle in the present approximation.

Next, we consider the average distribution function P{x,v)..
Detailed discussions about this function are found in the refer-
ences 3) and 4}. Here we usae their result in the limit of small

amplitude harmonic waves, i.e.

£, 0= Zylxle(ve= 2y ) for wo

Fix,v) = {
£a, (~IVo2y kN e(vP- Zyx))  for w0

+ 5,00 L2y oo-vile Gy xi~v?) ,  (4-12)

+ Error incurred by this approximation is of orders of [eE,/(k,Wl]2

and  [eE./ (koT}]°.



where £y, v)=£,,(0,v) is the distribution function of untrapped

electrons at the point x=0 in the wave frame, y[leE%*ﬁl-COSkoxﬁ
&

and u is 'a constant which is given by the dispersion relation:

-2 +eo

D £,,%v1
=% S ay 24 1. {4-13)
ko il v

We can see from the relation between W and y(x) that
particles whose velocities at the point x exceed 'éy(xl are
untrapped and those whose velocities at the point x are smaller
than %g(x} are trapped.

From now on, we choose a Maxwellian distribution for f01{v}

in the laboratory frame. That is,

£5, (V) = Coexpl~ om{v+Va)?] , 4-14)

C, being a suitable normalization constant.
We are now ready to carry out the calculation of the suscepti-

bility xn(k,m) given by eq. (3-7). We rewrite eg. (3-7} as

follows:
wz Hoe J‘ . . PR
Xn(k,m) = - —E-S dv" S .g.x_-. rvnm}el{lﬁnkolx _aF!x LY 1.
k Ao 31"
- ,
(4-15}
where we put
i - L t,
O xeviin=a S at elot-ikx&!, vty 4-16)

{(regular at Imw>Q}

13



L&

In our approximation this becomes. the following form; for an

wntrapped particle

-ikx!

\QUT(x‘ Vi) = e B (4=17)
w=kv"
and for a trapped particle
- oot
T LTI Ttk Oei-g21 13, (50
D7 viiw = -e T (1) (4-18)
n,L=—= wh (ri-l.)wB .

We used the expansion formula by the Bessel function in calculation
of QT. Let us split xntk,m} into two parts ng(k,M) and
x_:(k,m) corresponding to contributions from two groups of electrons.

That is, X, (k, w)= x {k, m)+x {k,w) , where

:\. o+
T = - 2§ S av + S :dv},a%,wetk-*nknx?_s_l._r x,v)
0" ==

3V

. ﬂ“l‘ (4-19)

A
S as S dvg (%,V; w) e:|. {(k+nk,}x pF(x,v)
0 raca) av .

'J m (4-20)

Substituting the explicit form for F(x,v} into egs. (4-19) and
(4-20) and carrying out the integration over the velocity (see
Appendix A}, we obtain the following expressions correct to the

first order in y(x} (or Eg;):
2

uT m
(k,0) = - ;']E% Zo (ﬁ‘}&n 0
2 2 - )
m, 2 wp yb ' x .
~ g B R R He g 3,1 10

(4=21}



wWhere
S dv —m £q7 V2. for 2% 0
yo  uk=v k
z°L1%) = +m L
=P deﬂf (v) for £ « 0
v 01 k

and P in front of the integral sign means to take the principal

value of integration at wv=0 , and .

g .
x (k,w) = (-1) (EE) 24 L B

e 2 gme=m phEw

-{usﬂ'nm'—us_lmuq} (4-22)

B
where
Hs,n(k) = c"ils[Bs,n{kl*%{Bs,n+l{kJ+Bs,n-l{k]]}"
ra/2
Bs,n(k) - S %J {kx]e:l.(k&nk Ix .
~ho/2

From the property of the Bessel function, we can vexify that

H (k} ia purely real and
8,0

H g ok} = B (k)

(4-23)

B, ok} =B, _ ¢k .

Note that the right-=hand side of (4-22) does not contain the temm
corresponding to s=0 ({(see (4-23)). The dielectric constant of
a homogeneous system in the laboratory frame e,(k,0] is written

as follows in terms of the quantities mentioned above;

uT

o kyw) = 1 4 xUT(kew=kVol , (4-24)



L Y-
but in this case the function Z,(2} is given by § d“‘ﬁ?f+v—lfvful(v}

always.
Equations '(4-21) and (4-22) axre our final results cbtained

for the susceptibility-



i g,

§5. Time Rate of Spontaneous Emission

We start from the coupled equation (3-15). Solving this
equation for EM(k,u] , we gat |

B (k,u) = -D—(-]‘:ll— [ {14 x, (k- zkafﬂ!"kvol}Ps Uey )

1
k.—-zk.

X.p k¢ kY, ]p uc-zk,,u-zm,u - (5=1)

Using this solution, we can obtain the expression for the spectral
density of electric field due to fluctuations, Uk(tJE<]ﬁ£Ltl|> ¢

as follows:

mtﬂ

Uk{'t}-{*i QE_E___ E“ Ugfm)l
+ 27 Di{k, w}
- (am)2< IS— S [2{ 14 o Ut 2o Vo ) o U pw)
2T D{kjm] ’ .
+ Do
- ﬁ‘:x_z {kfm-kvolp:&‘zkufm_z-“oll |2>:
(5-2)
. duw 'l'm'l'.iﬂ'd

where the integral sign Sﬁ?' is an abbreviation of S i%-(g>01.

+ —=+ig

Let us calculate the corxelation function ‘F:{k*mlsg*(kf.d'l- ,
making use of egs. (3-19}, (4-3) and (4-8). We neglect correlations
between different particles. Therefore, we can split <p Bg Ug

into two parts as follows:

<p:(k,m]pgﬁk',m‘l> <p5(k¢w]p“*(k' '}> +<p {kqwlp“*(kf,m L> .

where



- - —ikx . (£}+ik'x, (£').
<p:{k; lq‘lﬂ:*(k_lfm‘l:.i‘:ezs datdt* I e I ML j . e

o J=TP
. - : c —ikx, (Bl hikx, (£') L ..
‘p:(k;wlp:*{k',u'hPT;gzs dtdt' 5 e 3 3 elmt—lw'*t'
ht J=UTP
{5-3)
the SYmelS_ L and pX denoting the summations over the .
J=TP j=UTP

trapped and untrapped particles, respectively. After some calcula-

tieong (see Appendix B), we obtain trapped-particle contxibution in

the wave frame

N t +-ca
¥ (k) p"* (k04T = ¢ e emilk)Ae/2 T 5 (ka.)T (K'ay)
s 8 =P fome B3R 3

x L (5-4)

[m-!.mB] {w ! *.—E,t;JBI, '

and for untrapped-particle contribution

UT v
<0gkBlog* (k! y')> " = jEUTPe I J,(kby)d, (kiby)
= ﬁ -

1
{m-{k+£k,)v,j}{m'*—(k'+1k,)v,j},

M

{5-5)
where we put

2W,
a, = = [—1 b,z =) (5-6)
J “s¥m , Ko KoV

and Wj and v,j are the energy and unperturbed velocity of the

j—th particle in the wave frame, respectively. In the above deriva-

tion we assumed randam distribution for the initial phases of the

particles.

iwt-iw'*¢'

20
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Using the relations (5-4) and (5-5), we can rewrite .(5-2) as

o

+ o=

U (£) = p US(p;€) 4+ OOT(e) , (5-7)
k L=un k ! Uk
Uptest) = 5 (4we)? AT, 02, (5-8)
j=TP
+
Uttt} = ¢ (avel? g 1A% Gy 2, (5-9]
J=UTF £ ==m
B T PR J..(ka,)
AT(3,8) = \& e [{1+x (k=2ko w0k, ) } - —E—
227 Dk, %) {omkVomLug) | k
' Ty (k=25 Y48 ,)
=X_, (k,0-kV,) « 1,
k-2k,
(5-10)
o =iwt {14xe{k=2k,,w~kV.)) T (kB.)
AT (5,0 = (au e 0T 1 2
327 Dik,w) m-;:{v.w,j)-zk,v,j k
X_ 5tk 0=kV, ) JL((kﬂZk,)bj]]

-k (Vo #Vay )= (2=2) KoV k~2k,
(5-11)

J;here we used the relation ;;{k,m)=p:{k,m-kvo}.

In the calculation of the spontaneous emission rate, it is
sufficient to know a behavioxr of the dielectric constant near the
frequencies m=kvn+nt for emissions by trapped particles and
P=k(V,+Vsj)+ﬂkoVoj for emissions by untrapped particles, because
waves are spontaneously emitted only when a pole associated with
the collective oscillation (i.e. D(k,w)=0) coincides with another
pole associated with the individual particle motion (i.e. m=kv°+LmB
and y =k{vo+v°j)+gk°v°j for trapped and untrapped pariticles

respectively). This situation is essentially the same as in the



nsual treatment for a homogeneous case.®! 1t should be notead
that each term on the right-hand side of (5-7) has a definite
physical meaning as the spectral density of each separate wave,
since different terms in (5~7) correspond to fluctuations of
different frequencies and wavenumbers; as wa shall see bElOH.+1
We shall calculate Ui(t;t) and Ug?tt} in the following.
(I} Trapped-particle contribution

As seen from (4-22) and (4=-23], the susceptibility xT(k;M“kVo}
is a smooth funciton of & near the freguency uw=kV, , while it i
becomes wery large near w=kVy+Lug (£+0i., This is due to the fact
that the bouncing motion of trapped particles can resonate with
the oscillation of a perturbed electric field of frequency
w=kVo+tuy {#¥0). Taking this resonance effect into account, we
calculate Ug{o;t) and UE{gitl (40} separately in the following.
(i) Calculation of UE{U:t]

We shall approximate the solution of Dk kV,)=0 by k=k,.
This approximation is based on the understanding that the dispersion
relation (3~16) can be used to describe approximately the carriex
wave itself by taking the limit k»k,. Comparison of the solution
of D{k,kV,)=0 with that of (4-13) shows that the error incurred
by this approximation isa of the order of ﬁ{ko/mB)z which is very
small compared with unity, provided the trapped~-particle density
is sufficiently small compared with the total number density.

Using the above approximation, we obtain after some approximate

+) See the 6-functions contained in egs. (5-13), (5-16) and (5-17L.

22
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calculations (see Appendix C)

T, (Koa,l . =L {(kV,~w,—1lg}t
AT(J'"G)' = ol ——d - gSt-iw,t {e kVo~uo1s) =1 } (5-12}
koﬂo ’ kvo-klu_'iﬁ ¥
where aq=§ﬁ1[ and a small imaginary . quantity 4i¢ is introduced
Ww=w 5

for convenience. Inserting (5-12} into {(5-8) and applying an asymp=
totic formula for small & (§<<we) ,°! we obtain

ulio;e) = = Lane) f330K 2 ) .

L (0:t) = - 3—-21;1: & (kVomwol (5=13)

5=TP ki | &, |

{ii) Calculation of UE(L:t} (240)
In the calculation, the following approximation will be used

for Di{k,w}:

D(k;m) & eo{k:w)eo(knzkﬂtm-zmol
+ ok, 0)xs (k=2Ko ,0=KVo] + £o (k=2Kq ru=20e) X2 (Kou=kV,) |

In this approximation the term [XE(k,m—thle(kFqurw“kV°1

—xfztk,ﬂ—kvo}xg[k—2k,,m—kv,}1 is neglected (see (3-17}), since
this term is of order (;/vt}zexp[—2vf]§2], where ;2=T/2m and
v =wg/ke. Near the frequency satisfying o=kVg+iuwp (2%0) , the
texm corresponding to s=-§ in the expression for xﬁtk,m-kval

{see (4=22)) becomes very large, so that D(k,w) c¢an approximately

he written as

- ")
Dik,y} = ————B——Je,lk,u){H_ (k=2ko}=H_, . ,{k~2k,)
Ny w=kV oL TR oL | }

+ e, (k-zkg ;-‘.u,"zw 91 {qu‘l_l'o '(k-] -H'-'R,"‘].,U 0(1 }J .
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S8imilar approximationa ean be used for the numerators of the

integrand in (5-10).. RAfter some calculations (see Appendix Cl, .

we get
. T e
AT (i, 8) = _ {7, ka, 1+=——g ()T (U=2kola)}
ke {1+h (2) ] J 2ka-k L J
R TNOLS {;.i RV o+ Ly e (23 ~1 7y (0) '}t;;i }
[~ » i
kv,+£wh-mk{£}-ivk(zl '

. (5-14)
Where

wk(&) E'm£+h{1){2m°+wﬁfzk;}

1+ he}
@) Vith Bv g oy
k 1+ hie)
H (K)=H_, _, _, 0kl
Hop 4,00 ZKel=H_ g o k=2K,]
ned) = Ue-2k,  Begt1,0ITHEog g oK)
% Hogp1,0WZkeIH g o (km2k,)
Oy = de |
amm-m"
k r

mﬁ and Yp being the real and imaginary parts of the zero of
£, (k,0), respectively. Inserting (5-14} into (5-8) and applying
the same asymptotic formula for small vy, (2} (v {(L)<<w, (#)) as

in case (i), we obtain

5 .
by (4me) 1 k 2
(o3t) = . {7, ka, 1+—=—g {2}7 ((k-2k,}a)]

Yk e sErp K2 fo {1+ (a2} % 4 ) 2kek ¢
2vy (a1t
L P =1} [kV,+12 wp—w, (21]

Y {2}
(5-16)
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(IT). Untrapped-particle contribution
We confine our attention to the emission by those particles
whose velocities in the wave frame satisfy the condition:

1]
‘“?, >p (ﬁﬁ _

We shall neglect the emission by other particles for simplicity.
By the same reascn as for the trapped-particle case, we replace

the dielectric function by an approximate expression which is

]
find that the first term in the square bracket of the integrand

correct in the region of w near [k(v,+v,j)+ koVe:]l. Wea then

in (5-11) gives the dominant contribution to AUT(j,L) (sea

Appéndix €). The final result is given by

12 272t te
Tte) = p o—sdrel. d fat k) s g2ke)
J=UTP k|a |© Y2 g e ]

x4 Ik (Vg-+v°j}+£kgvoj-wi] - (;5-171

We now derive a kinetic wave equation for the spectral density
by differentiating egs., (5-13), (5-16] and (5-17} with time. That

is, y
2 Jaikoa.l
'"‘B—UE(DE t]‘ = 27 I {4“31 - % & U{Va-h}ol (.5-18).
ot j=TF k lae

2 2y, (}ulest) = 2n g AES) L
{Qt k ] 'k' j=TP k |ak{l+h.b’.l}|2

k 2
® [JR. U’Caj )m ulJE(&“zko)aj]] § U‘-vo."'-?ewB“mku:l]

(2%0).

o {5=19)
-1—21"’1“%(1:) =27 I -lﬂm—&ﬁ ;:m 3% kb )
{3t ki'k j=UTP ¥ @] 2 pom b3

x .s‘{k{v,+v,j1+zk,v,j—m];] . {(5-20).
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These eguations are ¢f the form of eq. (2-12). As pointed
out there, the right-hand sides give the time éates of spontaneous
emission for the corresponding fluctuations.

Integrating the right-hand sides over k and sumwming up
over { . for the trapped-particle case, we obtain the time rates
of total emissions by the trapped and untrapped particles (to be

dencted by I ana 19T + respectively]l. They are

2 _
Jo {ksa.)
ITa 1 Sdk[i—ﬁe) 7l 8 (kV,mw,)

J=TP K Ianl
(41193 1 _[‘
+ L , (ka J+—ng({k ~2ks)a,)
150 K2 |ap b1 ]2 -
x 8 (kVo+tuwg=u, (A D] {(5-21)
and

uT (dre)® ¥ 2

17 =y e n R ke, )8 e VetV tekeve mup] L (5-22)
j=ured 1% ay | ¥ peme ’

Note that these results can be used not only for a stable case but
also for a weakly unstable case, because we assumed only the small-
ness of the imaginary part of the frequency compared to the real

part.gl
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§6. Discussions

Let us discuss the results obtained in &5 by investigating
the emission rate and the resonance condition (the condition which
determines the frequency and wavenumber of the wave emitted).

We first consider the emission by trapped particles. 1In the
integrand of (5-21), the first term gives the emission of the
carrier wave itself. Its emission rate is the same as was obtained
in our previous paper;aj and can become quite large;,since all tha
trapped particles take part in this emission. Strictly speaking,
the presence of this emission produces a gifficulty in the present
formulation, since the carrier~wave amplitude continucusly increases
due to this emission. WNote that we are considering a B.G.K. state
as the unperturbed state, so that the carrier wave does not suffer
any Landau damping. In reality, however, the spontanecus emission
produces a modification of the average distribution and this modifi~
cation in turn affects the stationary character of the B.G.K. stqte:
Thus for a complete discussion of the statlionary state, it appears
necessary to consider a coupled equation for the spectral wave
energy and the average distribution, as done in the quasiline%r
theory.

The rescnance conditions in the terms with i=0 in (5-21)
indicate emission of those sideband waves whose wavenumbers and
fregquencies are given by the relations kvo+1mB=mk(£) and m=mk{11.
These sidebands constitute a discrete spectrum with the frequency
separation of order w, around the carrier-wave frequency .

A similar kind of sideband emission was als¢ obtained in our

previous work, but our new result includes two important
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modifications. First, the frequency versus wavenumber relation
1s now given by u=u, (8} , but not by the Bohm-Gross frequency;
this modification arises from that of the effective dielectric
function from e, (kew) to {eo Ukew)+h(2) eo (k=2Kq,u=20,) , which
i8 a certain average of the dielectric functions for the two waves,
(k,w) and (k-2k,,w~2w,} , in the homogeneous system. Secondly,
the emission rate is modified by two effects, one due to the above
modification of the dielectric function and the other due to the
presence of two charge fluctuations, ;:{k,m) and 5:(k-2k,,m-2u,) ‘
which contribute to the fluctuating field ﬁ“{k,w]. Either of thase
two effects, when taken independently, is very large, but their
effects tend to cancel each other, so that their resultant effect
is not quite substantial. An estimate for the case of =%l
and kg a.<<l shows that the new emission rate is one order of
magnitude less than the result obtained in our previous work.

Equation (5-22), obtained for the emission by untrapped particles,
indicates that an untrapped particle also emits many waves including
the one which satisfies the usual Cerenkov condition, i.e. the temm
with 2=0 4in the sum. The terms with =0 correspond to the
scattering of the carrier wave by the particle. These results for
the emission by untrapped particles are the same as those obtained
in our previous work.

To summarize, one can state that the effect of the modification
of the dielectric property of the plasma appears mainly on the emis-
sion by the trapped particles. This is naturally untderstood since

the effects mentioned above come mainly from the trapped-particle

susceptibility xT.



In the present theory, we have ignored the corrxelation among
different particles. 1In reality, the motions of those trapped
particles which are localized in the same potential trough of the
carrier wave can become strongly correlated to each other. This
may cause a coherence effect on the spontaneous emission, namely
the emission rate may become proportional to the sgquare of the
trapped particle density in a given potential trough. In addition
to this, another type of coherence effect can be expected due to
a periodic array of the trapped particles. Namely, waves emitted
in different potential troughs can be superposed in phase. These
coherence effects can be expected only for the emission of the

carrier wavae itself.
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Appendix A

— Integration over Velocity in X5 —

Subatituting the explicit form of eq. (#=12) for F(x,v)
intc egs. (4-19) and (4=20), we obtain

X (k, w)

me (=)o (] vE-EE02L)
(=3 (- f 2 EyijLv ) °1 m
= EE. S.;l_ 1nk°x{ _S w=ky T Ivﬁ___y (x)

i 57 "f°1u"2:§£m }
o { avd—( B ([P Ly, g
Jezc " JP-2y
" (A1)
2 ka A 3
e o i{k+nkgix
xTk,u0) = R e B g (-1)F—2 %s[k(x Ja)Je

x & S avy, (X¥y. L (A2)

(1) Calculation in XE:
2y (x
m
A (x) = & S dv J (%1) <.
£ b | B 3
_PByix ﬁy(x)—v

1]
a F
#ﬁ
|5
[y
&
" iﬂ
N
[w
"y
t:
ﬁ
I
] E
o
™
&
=
™
(=
[ 48]



Making use of properties of the Besgsel function, we obtain

w g
W t J LE)
__Bis ————— for #=0dd
Agtxl - Tk «a 3 G:;§7;f 24)
0 for l=even
and
A, Gl = -13'A G @s)

where we put qﬁ%;J5§T§T7E

2 ) . .
(o2 = X .2.8B0 (1 ook, x) = 4- Ky 2sin?fe¥y) . (A6}
2 Ko
wg m k,
Expanding Jktt) in power sexies of t and integrating over t ,

we obtain

0P e i (20mel-1) e
n=0 n!{2g+n+l): 2 { 20+n+1) 18t 2,

(a7}

{e) 2£+3
Sd' 2£+l
St /az 'Eg+1

Then, substituting this result into the expression of xg and

carrying out the x-integration, we find that contributions £from
higher-order terms in o become smaller (see the factor si;f&5%54
in eq. (A6))}. So we retain only the lowest—order terms in a

and obtain eg. {4-25}.

{ii} Calculation in ng-

In case that y{xl/Tﬁﬁ; . we can expand the functions in the

integrand of eqg. (Al]l as follows:

32
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and

Substituting these expansions intoe the corresponding factors

and considering the fact y(x}/T<<l , we obtain eg. (4-21].



Appendix B

—- Calculation of Charge-~Density Coxrelation Functions —

We can calculate these quantities by substituting the explicit
orbits of egs. {(4-3) and (4~8] into egq. {(3-19}.
(i) Trapped-particle case

Using eqg. [4—31; we get

ik%—“— “ikajsin {wgtt+a)

—ikx.(t) = & a
e J \
-ik -ifw_t—ikc
= g Tﬁ_ z JR, (kaj)e . . (Bl}
Then, L
-ikx (€)+ik x, (&) -i{kuk'}%ﬂ
e J > = a T J,(ka.}Jd. (k'a.)
g,s 1 0E ]

=i {Rugt=swt') _ioo
x e B B T emtlmsda,

Assuming no initial-phase correlation, we find that this reduces to

-1kxj(t)+1k xj(t )

<e >
. by X .
-1.(k-k')§-°- —:.R.u:-B(t—t ) (B2)
— [} -
= g i Jﬂ{kaj)Jﬂ{k aj)e
Then, we obtain
- —ikx. (t)+ik'x, (& L
S dtdt’ <e ey (8) %! ):-e”“t"'"’*t
0 A
-1 (k—k'-}-:—_!-‘-"- 1
- L J,(kas1J, {k'a;) {B3)
s JptRaglag teiay

(=) (w*=2u_)

(Imw,w > 0)
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(ii) Untrapped-particle case
Using the orbit of eq. {4-8)l, we get under the assumption of

no initial-phase correlation,

~ikx, (E)+ik'x, (£').
i xj (ti+ik xJ (")

<e >

=1 (e+ikylv, 5 il (k+ik, v, jt'

=g EJR.U“ijJR.Lkbj] .
(B4)
Then, we ogbtain
g - ' t . L~
S dbdrt<e lkxj (t]'l‘ik xj (t }>ellﬂt-‘lw*t'
1
—_ 1
= E Jg{kbj}JR‘[k b.)

I {w- (k+.l',k°)v°j}{5*-01‘+Lk,)v;jll .

(Tmw,& > 0) (B3]



Appendix C

— (Calculation of AT and AUE-——

1y aTey, o
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When k~k, and w~kV,~ @, , we can show .the following relations

making use of eqs. (4-21) and (4=22}:
Yo (K, 0~kVo) ¢ ¥o (km2Kq ,u=kV,)
T e T lk=2ko pw=kV, 1
x_z (e, w~kVol1= Xz( o ¢l o

and therefore

DOkw) = {14y o (Kw=kV, i —p Ut yw=kVo 1} { by o (k=2ko =KV, )
3 (k2K po=kVo 1}

Using the above relation, we obtain

Jolkea.) A =i wk
a"(3,0) ¥ ——- y — = T
ko 3 2T (w-kVo) {1+Xo (k, w-kVo)=X_, {k, w-kVo) .

(cl)

Near 4=u, the function {l+X, (k,wkV,)-X_,(k,«kV,} can be

approximated as follows;
(14X, (k,4-kV,)=XD, (k,0-kV,)] = o, {u-w,~16] , (c2)

where the coefficient @, can approximately be written as

a°=%%31 . Substituting (C2}) into {Cl} and closing the integration
"y

(e
path in the lower-half plane, we cbtain eq. (5-12).



(ii). AT{5, L)

Using the approximate forms for the integrand of eq. (5-10),

we obtain
s W
AT(j;&) . cdu _e iwt . EJLCkaj} EEgg:JLKk.2k,Lajl..

+2T okVorkug Lo, )+ - ‘hlk)e, (km2ko w20} .
-2k,

(C3)

We make the resonance approximation for e.;

€o (k,w} + —'&k_h[fd Eo (k=2k, , w204}

)

o {wmwp=i¥p} + o h(2) {m-zm,-mi_Zko-iYi_zkn}

1

oy {1+ (R Hurwy (21=1y, (21 ] -

Substituting this relation into {(C3} and closing the contour in
the lower—half plane, we get eq. (5-14}.
wii) a%,e)

The susceptibility X: can be estimated as follows at the
point u=k(V,+von+gk°v,. for those particles which satisfy the

J
W
condition V°§>>[E§)2= For #%-1
<]

yTIk kvt tkoVo 1 = (-1)7 & 25 H (k)
n J 3 s {tk+£k,)v,j+sm3}z-w§ 80
1 S
m 1 " 'wp‘ 2.]1(;2]2
(A1)" (KoVayl °
~ il 2jnBI <g 1
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and for Rk==1 (k¥k,)

1

X Ks ko) vl = 1) B, (R-H_| 00}
U{_]';-ulvnj f !
= 0 .
where
Ao/ 2 2y (X
e $® O -
N, = n, —_ dv F{x,v) (trapped—-particle number)
T Ao
gf,. (0} w
= nn l — uai} —B
i ko k-o
N = u_(f§)2 {effective-oscillator number)
Ks
= _a—fOl(O] '-—u::.i - n‘r/n'ﬂ' <
T Ko
(nB can ha negative)

]

and we used the following evaluation;

(kovoj}z = X2 (y,~v)2

= w2 {l-k,r,1%
2

~mp.

We, therefore, neglect xE as being small compared to €, in

this case.
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Flgure Caption

Flg. 1 The curve of m-—a-ﬁ'l’{(n.) and wmkKVy+iu The intersecting

5 -
polnt (wack)’kn) gives the frequency and wave number of
the wave which satisfies the resconance condition kV;+1mB=

'S;"k(n.).
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