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Introduction and Summary 

     In 1929, Langmuir and Tonks found a systematic 

oscillation in a plasma and showed that its angular 

frequency is given by w
p=((47rn0e2)/m)1/2,where  m, e 

and n0are the mass, charge and average density of the 

particle. Since then, this oscillation has been studied 

in many aspects both experimentally and theorectically. 

The first theoretical work is the one by Vlasovl), who 

proposed to describe wave processes in a rarefied plasma 

by means of a kinetic equation with a self-consistent 

field, starting from the collisionless Boltzmann equation 

and the Poisson equation. After his theory, Landau 

pointed out the mathematical error of his treatment and 

then theoretically predicted the phenomenon of Landau 

damping2). Both treatments are based on the theory linear 

with respect to the fluctuation field. If we go beyond the 

linear theory, however, those particles whose velocities 

are close to the phase velocity of the wave continue to 

be accelerated (or decelerated) by the wave field and 

show a secular behavior in time. As a result, there is 

a time above which the linear theory becomes invalid. 

Let us consider two time scales. One is the Landau damping 

time of the wave, (to be referred to as TD ) and the 

other is the period of bouncing motion of a particle in 

the bottom of potential trough of the wave (referred as T).
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The latter time scale is inversely proportional to the 

square root of the field strength of the wave. When the 

amplitude of the wave field is sufficiently small, so that 

 TD  << TS , we can use the linear theory in respect of the 

interaction between the wave and particles. As the 

amplitude of the wave becomes larger and TRgets nearly 

equal or larger than TD , the nonlinear coupling of the 

wave and particles begins to play important roles. Such 

a situation was first discussed by Bohm and Gross3). 

They divided the particles into two groups: one is 

composed of the particles which are trapped in the potential-

energy troughs of the wave and which are necessary to be 

treated nonlinearly, and the other is composed of those 

which are untrapped. These authors have studied the 

relation between the distribution of the two groups of 

particles and the stationary character of the wave. 

As an extension of their work, a theory is developed by 

Bernstein, Greene and Kruskal4) who discussed a stationary 

exact solution of the nonlinear Vlasov equation. 

The stability of the solution was not discussed, however. 

     There are other nonlinear theories of plasmas, for 

instance, the weak turbulence theory, the orbit-modification 

theory, and sonon. We shall not refer to these theories 
here. 

     Experimentally, a considerable progress has been made 

in plasma physics since 1955 and we are now able to
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produce very quiescent plasmas in laboratories and also 

to excite waves of arbitrary frequencies by applying 

high frequency oscillations to a  Langmuir probe. 

As a result the dispersion relation for plasma waves have 

been studied in detail and many of the results of the 

linear theory have been experimentally checked. In 

particular, the phenomenon of Landau damping has been 

observed by Malmberg, Wharton and Drummond5). Further 

progress in experimental techniques has made it possible 

to excite a large-amplitude coherent wave for which the 

relation "t" D holds. The phenomena due to the 

presence of trapped particles have been widely studied 

both experimentally and theoretically. Among them, the 

phenomena of the amplitude oscillation and the 

trapped-particle instability are noticeable. The former 

is a phenomenon that the amplitude of a large-amplitude 

wave (hereafter referred to as the carrier wave) excited 

in a plasma oscillates in space with a period approximately 

equal to vpTB (vp is the carrier phase velocity) and was 

observed by Malmberg and Wharton6) for the first time. 

The particles trapped in the potential troughs of the 

wave make the bouncing motion and, therefore, they periodi-

cally exchange their energies with the carrier wave. 

It is the physical reason for this phenomenon. Theoretically, 

it has been investigated by O'Neil and by Al't•hul and 

Karpman)using different methods. The trapped particle
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instability is a phenomenon in which waves of frequencies 

different from the carrier-wave frequency by approximately 

integral multiples of the bounce frequency  27/TB (i.e. 

sideband waves to the carrier) become unstables, and has 

been observed by Wharton7) et al. This phenomenon is due 

to the energy transfer from the trapped particles bouncing 

in the periodic potential troughs of the carrier wave to 

sideband waves via resonance coupling and it has been 

studied theoretically by Krezer-Dawson-Sudan) and 
Mima-Nishikaw0). This problem has raised a question 

regarding the stability of the B-G-K solution mentioned 

above. 

     The above problems are all concerned with the phase 

coherent response of a plasma to the electric field. 

In plasmas, however, there also exists spontaneous 

emission of plasma waves. It comes from the discreteness 

of the plasma, namely, charged particles moving in the 

dielectric medium emit collective oscillations by 

Cerenkov emission. The fluctuation level in a thermal-

equilibuium plasma is derivable from a balance between 

the rate of spontaneous emission and that of Landau damping. 

This corresponds to the fluctuation dissipation theorem. 

In a homogeneous plasma, the emission rate can be calculated 

by making use of a particle orbit of free motion and a 

dielectric function derived by the linear theory. 

In an inhomogeneous system where a large-amplitude
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coherent wave is propagating, however, both of the particle 

orbit and the dielectric character of the plasma are 

modified by the existence of the carrier wave. The 

principal subject of this work is to develop a theory of 

the spontaneous Cerenkov emission in which the effects  of 

the carrier wave mentioned above are taken into account. 

     The main motivations of this work are the following. 

First, the theory of a moderately strong ion-wave 

turbulence given by Nishikawa and Wu12) indicates that in 

collisionless plasmas, particle-trapping (discussed in 

a statistical sense) due to low-level ion-wave fluctuations 

could be significant even for stable plasmas. According 

to their considerations, it may be necessary to take into 

account the effect of electron-trapping for the spontaneous 

emission even in the discussion of the thermal level of 

ion-wave fluctuations. The second motivation is connected 

with the work on the anomalous resistivity by Dupreel3), 

Kadomtsev and Pogutse14) and others.15) According to 

the theory of Balescu16), Lenard17), and Guernsey18) 

on the collisions between the particles and waves in 

a plasma, there exists an effect of the slowing down 

of the particles due to the reaction of the medium 

against the spontaneous Cerenkov emission by the particles. 

Dupree and others proposed that this slowing-down effect 

would become much larger if we take into account the effect 

of coherent emission due to the localization of the
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particles  in phase-space (Dupree called it "macroparticle"), 

and consequently, its effect would give rise to an 

anomalous effective collision frequency on the particles. 

Following their proposal, we want to consider the influence 

of the carrier wave on the spontaneous Cerenkov emission 

and the coherence effect of this emission due to the 

existence of the carrier wave. Finally, although the 

experimentally observed sideband excitation in the 

presence of a large-amplitude wave is considered to be 

explained by the theory of trapped particle instabilities, 

there also exists a possibility of spontaneous emission of 

sideband waves as a result of a periodic modulation of 

the particle orbits. For a complete comparison of the 

theory with experiment, it is necessary to clarify a 

qualitative difference between the sideband excitation 

via a trapped particle instability and that via spontaneous 

emission. 

     Let us present a brief summary of the results obtained 

in this work. In the case of the emission of an untrapped 

particle, waves of many different frequencies are emitted. 

They include the one which satisfies the ordinary Cerenkov 

condition, but its emission rate is weakened as compared 

with the emission by a freely-moving particle. Also included 

is an emission corresponding to the scattering of the 

carrier wave by the particle (for example, the Thomson 

scattering). A trapped particle emits sideband waves in 

addition to the carrier wave itself. The frequencies of
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the sideband waves are different from the carrier-wave 

frequency by approximately integral multiples of the bounce 

frequency and the spectrum of these emissions in the wave-

number space becomes discrete and symmetric around the 

wave-number of the carrier wave. The effect of the presence 

of the carrier wave on the dielectric  propIrty of the system 

appears mainly in the emission by the trapped particle. 

Namely, the dispersion relation and emission rate of the 

sideband waves are modified in comparison with the result 

of the primary treatment where this effect is neglected. 

For the emission by an aggregate of trapped particles, 

there appears a coherence effect because of the localization 

of particles in the potential trough and also because of 

a periodic array of groups of localized particles which 

reflects the periodicity of the carrier-wave potential. 

These effects occur only for the emission of the carrier 

wave itself. 

     We discuss the problem of spontaneous emission of 

plasma waves in the presence of a finite-amplitude wave, 

dividing the consideration into two parts. In the first, 

the theory of the spontaneous emission in a homogeneous 

plasma is briefly reviewed. We also refer to a theory19) 

which takes into account only the effect of the orbit 

modification, but neglects the effect of the carrier wave 

on the dielectric character of the plasma. Such a theory 

may be used in the case when the amplitude of the carrier
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wave is sufficiently small. In the second part, we 

develop a theory which takes into account the effect 

of the carrier wave on the dielectric character of the 

plasma as well as on the particle orbit. The theory is 

based on the  Klimontovich formalism20) and is an extension 

of the theory of spontaneous emission in a uniform plasma 

to an inhomogeneous plasma.
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Part I 

§1. Spontaneous Emissions in Plasmas 

     First of all, let us derive a general expression for 

the rate of spontaneous Cerenkov emission of longitudinal 

waves per unit time by a single particle. This rate is 

equal to the work done by the medium as a reaction to the 

wave emission by the particle because of the energy 

conservation in the process of the emission. Therefore, 

the rate of wave emission, denoted by  I
cy , is given by 

IQ =-Jdr ja(r,t)•Ea(r,t),(1.1) 

where a represents the species of the particle, and j
c , 

Ea are the current density corresponding to the particle 

motion and the electric field due to the particle, 

respectively. The integration is carried out over the 

whole plasma. Let us Fourier-analyse in space and time as 

       ja(r,t)=Jdkdw ja(k,w) eik•r-iwt 

and(1.2) 

Eacr,t) =Jdk dw Ea(k,w) e ik•K-iwt 

Then, Ic is written in the Fourier representation as
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 Ia =-(2Tr)31dk  dwdw' EQ(k,w)• jQ(k,w') e-i(w+w')t 

By means of the test-particle method, we can relate j
a 

and Ea with the charge density p
a corresponding to 

the moving particle. The Poisson equation in the 

Fourier representation is given by 

ik•Da(kw) = 47p
a(k,w) ,(1 

where Da is the corresponding electric displacement. 

The electric displacement is related to the electric field 

as 

    DQ(k,w) =ee(k,w) Ea(k,w)(1 

44e-I 

where E.(k,w) is the dielectric tenser. In this 

treatment, however, we use the dielectric function for 

a homogeneous and isotropic plasma since we suppose that 

the amplitude of the carrier wave is small enough for its 

effect on the dielectric property of the system to be 

negligible. From the equation of continuity, ja(k,w) is 

given by 

k• ja(k,w) = wpa(k,w)(1

(1.3)

.4)

.5)

.6)
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By making use of  eqs.(1.3)-(1.6), the expression for Ic 

is rewritten as 

4 

Ic=-2(2rt)4iJdkdwdw'e2 QPce-i(w+w')t (1.7) 
                      k c (k,w) 

We apply eq.(1.7) to the case of a homogeneous unmagnetized 

plasma. In this case, we may adopt the orbit of free motion 

for the test particle. The charge density corresponding 

to this motion is 

p(r,t) = e6(r-v0t) ,(1.8) 

a v0 being the unperturbed velocity of the particle. 

Substituting the Fourier component of this quantity into 

eq.(1.7), we obtain the emission rate of the particle 

a with the velocityv0 as 

4 .4 
          2k•v 

   I(v0) _-4~re3(dk20Im Q(1.9) 
           (2Tr)Jke(k,w) 

This expression can approximately be written as 

   2w 
I(v0) ------- 

    4 _(2n) fdk----------------ek6(k•v0-wk) ,(1.10) 
                 k2(acI) 

w= wk 

where wk satisfies the equation Rece(k,wk)=0 .
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§2. Effects of a Finite Amplitude Wave 

     We consider the spontaneous Cerenkov emission in 

an  unmagnetized plasma in the presence of a finite-amplitude 

wave. For simplicity, we confine ourselves to a one-

dimensional treatment. The equation of motion for the 

test-particle is 

          2 
m 

dt2= -eE0sin(k0x-c0t),(2.1) 

where ED sin(k0x-c0t) represents the carrier wave with 

the amplitude E0 , the frequency Q0 and the wave 

number k0. Considering this equation in the wave frame, 

we find that the total energy of the particle W is 

conserved in this frame and the whole particles can be 

divided into two groups according to their total energies; 

one is a group of untrapped particles whose total energies 

are larger than eE0/k0 and the other is a group of 

trapped ones whose total energies are smaller than eE0/k0 . 

Therefore, we separate that problem into two cases as 

follows 

(i) untrapped-particle case: 

     For simplicity, we consider only those particles 

whose kinetic energies are much larger than their potential 

energies. We then adopt the following orbit for the test-

particle in the laboratory frame: 

       x(t) = a sin(k0x -~Ct) + V0,(2.2)
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where x0and V0are the initial position and velocity 

of the test particle and 

                             e 

                  a -               mE0  
 (k0v0-c0)2 

                                                   (2.3) 

                 SZDE0-kV                      0 00 

This orbit is correct to the first order with respect to 

the expansion parameter eE0/k0W . The charge density 

corresponding to this motion is given by 

     p(x,t) =ed(x-v0t-a sin(k0x0-1Dt))(2.4) 

Substituting the Fourier component of this quentity into 

eq.(1.7) and averaging over the initial position, we 

obtain the emission rate by the untrapped particle after 

some calculations as 

     rw IUT(V )=2Tre2LJdkeJ2(ka)d(wk-kv0-nQD), (2.5) 
nk2(ae 

awIw=wk) 

where Jn is the Bessel function. In the above expression, 

the term n=0 shows that the wave which satisfies the 

ordinary Cerenkov condition is emitted but its rate is 

reduced by a factor Jo(ka) . This reduction is due to 

the fact that the particle velocity can be. equal to the
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phase velocity of the modulation of the particle orbit 

by the wave field. The term  n=1 corresponds to the 

Thomson scattering of the wave (k0,c ) by the particle 

of velocity vO as seen by the resonance condition 

wk-52O=(k-k0)40 

(ii) Trapped-particle case: 

     For simplicity we confine our treatment only to 

those particles which are trapped in the bottom of the 

potential trough. We Obtain the orbit for such a particle 

perturbationally as 

     x(t)=V0(t) +m sin(w0t +~),(2.6) 

B where V0is the phase velocity of the carrier wave,wB 

is the bounce frequency in the bottom of the potential 

trough and 13. is the initial phase of the particle. 

The above expression is correct to the first order with 

respect to the expansion parameter k0W/eE0 . The 

corresponding charge density is,given by 

      p(x,t)=e6(x-V0t-FWsin(wBt +S)) (2.7) 

The same procedure as done for the case of the untrapped 

particle brings the final expression for the emission rate 

of the trapped particle with the total energy W to the 

form:
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    (w IT(W)=27re2ldk----------------- 2 ~EekJ2(B PTAT)d(wk- kV0- nwB).(2.8)  k (
awIw=wk) 

In this case, the term n=0 corresponds to the emission 

under the ordinary Cerenkov condition. The emission rate 

is, however, reduced by a factor J2(.2m) compared 
with that of a freely moving particle. The resonance 

condition for the term nk0 shows that the trapped 

particles also emit side-band waves whose frequencies 

are different from the carrier-wave frequency by approximately 

integral multiples of cos and consequently, the spectrum 

of emission becomes discrete in k space. These situations 

reflects the bouncing motion of the particle in the 

potential well. If we treat the motion of trapped 

particles more exactly, however, the bounce frequency 

is no longer independent of the particle energy and the 

result mentioned above would be modified correspondingly. 

We neglect the particles which exist near the boundary 

between the trapped and untrapped regions. We find, 

however, from the equation of motion that these particles 

spend almost all of their time near the top of the 

potential with the velocity nearly equal to the phase 

velocity of the carrier wave. Therefore, they will emit 

the carrier wave on the average as a freely moving 

particle with the velocity V0 does.
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§3 Coherence effect 

     In the present system the trapped particles are 

localized to each potential trough because of the existence 

of the carrier wave. Consequently, the coherence effect 

can occur for the case of the emission by an aggregate of 

trapped particles. There exists another coherent effect 

due to a periodic array of groups of localized particles 

which reflects the periodicity of the carrier-wave potential. 

Let us consider these coherence effects in the following. 

We specify the trapped particle with a pair of suffixes 

(J,p), which denotes the p-th particle trapped in the J-th 

potential trough. The Fourier component of the charge 

density corresponding to the particle (J,p) is 

 p(J,p)(k,w) -2LJn(w/2W(m,P)) e-in6(J,p)d(w-kVC-nwB) e-ikx 
         n BJ                     V 

                                                  (3.1) 

where W(J,p) and R(J,p) are the total energy and 

initial phase of the particle (J,p) in the wave frame 

respectively and xJ is the initial position of the bottom 

of the J-th potential trough. The charge density 

corresponding to an aggregate of trapped particles is 

obtained by summing eq.(3.1) over (J,p) . Making use of 

eq.(1.7), we get the expression for the emission rate by 

all of the trapped particles as
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           Jdk----------------wkJ2(k./2W(Jp))S(--nw)      (J,p) nk2(aEel ) n wB mk0B 
                       aw w=wk 

 + Jdk----------------ek JO(wJ2W(m'p))JO(w,/2W(ms))S(wk-kV0) 
 pisk2(aeI )BBY W w=wk 

+.1 Jdk wk  J (kf2W(J)p)) J(k/2W(L's)) 
  J1/21,k2()ee 0wBm 0‘wm 

pisawIw=wk) 

                                      6(wk-kV0) e-ik(xJ-xL)} 

Let us discuss each term of the right hand side of the 

above expression separately. 

(i) first term: 

     This term is the simple sum of the result for a 

single particle obtained in 52, and represents an ordinary 

incoherent contribution. Let us consider the emission by 

the aggregate of particles trapped in the same potential 

and denote the number of them as NJ•Then, the emission 

rate corresponding to this term (denoted by Ii ) is NJ 
times as large as that of a single particle if we neglect 

the difference of the energy between different particles: 

     TT               IT
-NJI

u
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where  IT is the emission rate by a single particle. 

(ii) second term: 

     This term represents the coherent contribution of 

the group of particles in the same potential trough, and 

arises  only for the emission of the carrier wave itself. 

The order of magnitude of this contribution (denoted by 

I2 ) is NJtimes as large as IT : 

           IT2IT          2Ju 

(iii) third term: 

     This term corresponds to the coherence effect between 

the emissions by the particles trapped in different 

potential troughs. As seen from the factor exp[-ik(xJ-xL)], 

this effect appears only for the emission of the carrier 

wave itself. 

     If we treat the problem three-dimensionally, these 

coherence effects will considerably be reduced except 

for the emission of the wave whose direction of propagation 

is equal to that of the carrier wave, since the localization 

of trapped particles mentioned above is essentially 

one-demensional and so there is no localization over the 

directions perpendicular to the wave vector of the carrier 

wave.
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 Pat IL 

Synopsis 

     The spontaneous Cerenkov emission of longitudinal waves 

in a plasma with small but finite amplitude wave (hereafter 

referred as the carrier wave) is investigated. Two effects 

of the carrier wave are taken into account; one is the modifi-

cation of the test-particle orbit and the other that of the 

dielectric character of the plasma. It is shown that particles 

trapped in the potential-energy troughs of the carrier wave 

emit a discrete spectrum of sideband waves (in addition to the 

carrier wave itself) whose frequencies are different from 

the carrier-wave frequency by approximately integral multiples 

of the bounce frequency. An untrapped particle also emits 

waves at several different frequencies, including the one 

which satisfies the ordinary Cerenkov condition, but these 

frequencies depend on the particle velocity.. The results 

are compared with those reported in our previous paper where 

only the effect of the orbit modification is taken into 

consideration.



§1. Introduction 

     In the usual  treatment of the spontaneous Cerenkov 

emission of longitudinal waves, the plasma is assumed to be 

spatially homogeneous and a particle orbit of free motion 

is used for the test particle. In this paper, we consider 

the situation in which a finite-amplitude wave (hereafter to 

be referred to as the carrier wave) is stationarily travelling 

in the plasma. Two effects of the carrier wave are to be 

taken into consideration; one is the modification of the 

test-particle orbit and the other is that of the dielectric 

character of the plasma. 

     We have recently presented a theory2) in which only the 

modification of the test-particle orbit is taken into account, 

the dielectric character being assumed to be the same as that 

for a homogeneous system. We found that i) the particles 

trapped at the bottoms of the potential-energy troughs of the 

carrier wave emit the carrier wave itself, but at the same 

time its sideband waves whose frequencies are different from 

the carrier frequency by the integral multiples of the bounce 

frequency of the trapped particles, and ii) an untrapped 

particle also emits waves at several different frequencies, 

including the one which satisfies the ordinary Cerenkov 

condition, but these frequencies depend on the velocity of 

the test particle.
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     In the present paper, we take into account the effect on 

the dielectric character of the plasma as well as that on the 

test-particle orbit. Two important modifications to our 

previous  result2) are obtained regarding the emission of side-

band waves by the trapped particles. First, the dispersion 

relation (the frequency versus wavenumber relation) of side-

band waves is modified from the one in a homogeneous system. 

Secondly the emission rates of the sideband waves are modified. 

In addition to the sidebands the trapped particles also emit 

the carrier wave itself. For the emission by the untrapped 

particles, there is no substantial modification by the change 

in the dielectric character of the system. 

     We start from the assumption that there exists a so-called 

B.G.K. state3) 4). Although the stability of a B.G.K. state 

is open to questions), we do. not concern this problem. 

In fact, our results can equally be used for both stable and 

weakly unstable systems, as in the case of a homogeneous 

system6). We then consider a microscopic charge-density 

fluctuation to this B.G.K. state and calculate the electric 

field induced by this fluctuation. This is done in §2 and 

§3. The relation between the electric field and the charge-

-density fluctuation is expressed in terms of the generalized ' 

susceptibilities of the plasma which are calculated in §4. 

The spontaneous Cerenkov emission rate is then calculated 

in §5 with the use of a kinetic wave equation for the spectral 

density of the electric field. The results are discussed in 

the last section.
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§2. Basic Equations 

      For simplicity, we consider a one-dimensional and non-magnetized 

plasma. We confine our attention to high-frequency electrostatic 

waves and regard the ions as a uniform background of positive charge . 

      In order to discuss spontaneous Cerenkov emission , the contri-

bution from microscopic fluctuations must be taken into account in 

the kinetic wave equation. Therefore , we start from the Klimontovich 

equations: 

            [-~- +  vim- - -e- E (x,t)-a-] f (x,v,t) = 0(2-1) 
      at ax m av 

-a- E(x,t) = 47reno{1- Sdv f(x,v,t)} ,(2-2) ax 

where m , -e and n
o are the mass, charge and average density 

of the electron and f(x,v,t) is the microscopic electron distribu-

tion function which satisfies the initial condition: 

f(x,v,o) =1E 8 [x-xj (0) ]d [v-vj (0) ] , (2-3) 
                           no0 

xj (0) , vj (0) being the initial position and velocity of the j-th 

particle respectively. Averaging eqs. (2-1) and (2-2) with respect 

to the initial preparation of the system, we obtain 

[ a +-v a - e<E (x,t)>-- -] <f (x,v,t)> (x,c (2-4) 
at ax mavm av 

2 <E(x,t)> = 4Treno[1-S dv<f(x,v,t)>] ,(2-5) 
 ax 

where the angular bracket means the ensemble average and
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 <E(X,t)f(x,v,t)›c <E(x,t)f(x(v,t)>-<E(x ,t)><f(x,v,t)>. 

     If we adopt the Vlasov approximation, eq . (2-4) is reduced to 

[a+ v— -e <E (x,t)>a]<f (x,v,t)? = 0 . (2-4') 
at ax m av 

As the average state satisfying eqs. (2-4') and (2-5), we consider 

a situation in which there is a monochromatic stationarily traveling 

wave of the form, 

            E
0(x,t) = Eocos (k0t)t),(2-6) 

eqs. (2-4') and (2-5) are then written in the wave frame (moving 

with wave phase velocity Vo=ko) as follows: 

           [v2- - e E. (x)-2-]F (x,v) = 0(2-7) 
         ax m av 

— E. (x) = 4Tren, [1- S dvF(x,v) ] ,(2-8) 
ax 

where E.(x) and F(x,v) are the average electrostatic field and 

distribution function in the wave frame. 

     From eqs. (2-1) , (2-2) , (2-7) and (2-8) we can obtain the 

equationSgoverning the fluctuating quantities 

fu (x,v,t) = f(x,v,t) - F(x,v) ,Eu (x,t) = E(x,t) - E. (x) 

in the wave frame as follows: 

[-a- + v  -  E0 (x) a ] fu (x,v,t) = 2- E' (x,t) a F (x,v) (2-9) 
  at ax m avm av 

a El' (x,t) = -47ren, S dv fu (x,v,t) ,(2-10) 
ax
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where the superscript  u denotes the fluctuation from the average . 

In the above equation we have neglected the term mE u (x, t)avfu(x, v, t) . 7) f 
The general solution of eq. (2-9) consists of two parts; the parti-

cular solution of this equation and the general solution of the 

corresponding homogeneous equation, i.e., 

[-s2 + v-a-- -  E, (x)-a-] fu (x,v,t) = 0 .(2-11) 
at ax m a 

Using the solution of eqs. (2-9) and (2-10) we can derive an equation 

for the spectral density of the electric field in the form 

            -L< I Ek(t) 12> = 2Yk< I Ek(t) 12> + Sk(2-12) 
             at 

where Yk is the damping rate of the fluctuation of wave number 

k and Sk is a source term. It is this source term which gives 

the time rate of spontaneous emission of waves.

t Neglect of this term is essentially equivalent to the random 

phase approximation in the equation for < fµ (x, v, tW (x' ,v' , t' )> .
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 §3. Solution of the Basic Equations 

     We first investigate the particular solution of eq . (2-9). 

It can be derived by . the Green's function method as done by 

M. V. Goldman.6) Integrating the solution over the velocity, the 

charge-density fluctuation p'(x,t) is derived as 

+. 

47rpu(x,t) = - dx'Cdt'ax(x,x' ;t-t' )EU(x' ,t') (3-1) 
          JJOax 

+co 
a x (x,x' ; t—t') E w20 (t—t') S dv' a [x—x (x' ,v' ; t—t') ) 

      ax 

                           xa F (x' iv') ,(3-2) 
avl 

where x (x,x' ; t-t') represents the electrostatic susceptibility 

of the system, 0(t-t') is the usual step function and 
        2 

w _(4rmme )1/2 (electron plasma frequency). In the above expression, 

x(x',v';t-t') and v(x',v';t-t') represent the orbit satisfying 

the following equation with the condition x=x' , v=v' at t=t': 

                           dx        = v(3 -3/ 

                        dt 

dv = - Ea (x) .(3-4) 

           dt m 

We introduce a Fourier-Laplace component A(k,w) of a physical 

quantity A(x,t) defined by 

A(k,w) = S
1dx  S dt eiwt-ikx A(x,t)(3-5) 

A(k,w) being assumed to be regular in the region Imw>0.
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     In this representation, eqs.  (3-1) and (3-2) are rewritten as 

                                      +00 

p u (k, w) = -i  E Xn(k,w1 Eu(k+nk, , w)(3-6) 
47T n=-= 

           2 +0~000 
                     dx'i(k+nk,) x' Xn (k, w)=_ikSdv cCdt eiwte                   -0300 u 

                             x e--ikx(x',v';t)JF(x', v') , (3-7) av 

where we have used the fact that our system is periodic in space 

with the period x0 (- 12i/). 

     Next, the general solution of the homogeneous equation (2-11) 

can be written as 

fs (x,v. t) =  E d [x-x. (t) ] [v-v.(t) ] - F(x,v) ,(3-8) 
n0 

wherexJ(t)=x(x,J,v0J;t) ,vJ(t)-v(x0J,v0J;t) in the previous 

notation and suffix.s is used to indicate the solution of the homo-

geneous equation. The corresponding charge-density fluctuation '.) 

becomes                                                     +00 

ps (x,t) - -n,e c dv fs (x,v,t) 

               = —e E d [x-x. (t) ] - Po(x) , (3-9) 

J 

Po(x) being the charge density due to F(x,v). The Fourier-

Laplace component of eq. (3-9) is 

-ikx .(t)+iwt 
ps(k,w) = -e E  dt e- Po(k0)6 k,ko , (3-10) 

J 0
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     Adding this term to eq. (3-6) and using Poisson's equation , 

we obtain the equation for  electric field E µ(k
,W) as follows: 

+co 
Eu (k, w) + E Xn(k, w)EU (k+nko,w)=4Tr~ps(k, w) . (3-11) 

   n=-0 

We rewrite eq. (3-11) in terms of Fourier-Laplace components in the 

laboratory frame. The Fourier-Laplace component in the laboratory 

frame Eu(k,w) is related to the component in the wave frame 

EP (k,w) through 

Eu (k,w+kV0) = EP (k,(0)(3-12) 

(this can be derived using the relation between the positions in 

both frames.) Therefore, eq. (3-11) is written in the laboratory 

frame as 

 Eu (k,w) + 
nEXn~'4 
                  (k,w-kV0)E(k+nko,w+nwo) =klps(k,w) • (3-13) 

The above equation is a matrix equation of infinite-dimension. 

     Let us restrict ourselves to the case of small amplitude field 

Eo in the sense that 

Eo << ^4Trn0T ,(3-14) 

T being the electron temperature. In this case the dispersion 

relation of this system is not much different from that of the 

homogeneous system. Therefore, we may truncate the above matrix 

equation, retaining only those componentsE''` (k+nko ,W+no „) in 

eq. (3-13) whose wavenumbers and frequencies nearly satisfy the 

dispersion relation of the homogeneous system. In the present case 

                                           u 
we have only to retain two component E (k,w) and Eu (k-2ko , w-2 wo) , 

because only these can simultaneously satisfy the dispersion relation



10

of the homogeneous system approximately. Then, eq. (3-11) is 

reduced to the coupled equations  for these two components: 

{ 1+X o (k, w-kVo) } X-2(k,w-kV)Eu(k, w) 

    X2(k-2ko,w-kV„) {1+Xo(k-2ko,w-kVo)} Eu(k-2k0,w-2wo) 

4Tri ^-p 
ps(k,w) 
                        k 

(3-15) 
4Tri  -p k -2k p

s(o,w-2w0) k-2k , 

From the condition that the corresponding homogeneous equations 

have a non-trivial solution, we can obtain the dispersion equation 

in the present approximation as 

D(k,w) = 0 ,(3-16) 

where 

       D(k,w) = {1+X0 (k,w—kVo) }{1+xo (k2ko,w—kVo) } 

— X-2(k,w-kVo)X2(k-2ko,w-kV0) •(3-17) 

The solution of eq. (3-16) specifies the collective oscillation of 

the system. Here we are not concerned with the details of the 

solution of (3-16) . 

     Using (3-10) one can derive the charge-density correlation 

function <ps (k,w)ps* (k' ,a)> as;,I' ;:,' . 

      +Idx1 co = SdxSdtdt'<ps(x,t)ps(x',t')>e—lkx+iwt+ik'x'-id*t° 
    J

O 
°° -ikx . (t)+ik'x.(t')i

wt-id*t°     = e2 S dtdt' E <e1>>ce, (3-18) 
    0id
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where the asterisk denotes the complex conjugate. If 

correlations between different particles, this reduces 

                                      -ikx . (t)+ik' x(t') <ps(k,w)ps*(k',6i)> = e2  S dtdt'  E  SeJ 

                      0 In the above derivation we used the relation 

                 e< E 6 [x-xj (t)]> = -130(X) • 
j

we neglect 

 to 

>eiwt-i(1*t' 

      (3-19)

(3-20)



 A. Explicit Expression for Susceptibility 

      In this section we wish _ .to derive an explicit expression for 

the susceptibility . For this purpose we must assume explicit forms 

for the orbit x(x' ,v';tl and the average distribution function 

F(x' ,v') in eq. (3-7) . 

     We first derive the orbit satisfying eqs . C3-31 and C3-41. 

We can put E°(x)=-E °sink°x without loss of generality. Then, 

the first integration of eq. (3-4) gives the energy conservation 

law in the wave frame: 

eEo 
            W =1mv2 + —cosk°x = constant.C4-1) 

       2 k° 

As we can see from this law, particles can be split into two groups 

according to their energies; one is a group of untrapped particles 

whose total energies are larger than eE°/k° and the other is a 

group of trapped ones whose total energies are smaller than eEO/k°. 

Although we can get the exact orbit of a particle by using an 

elliptic integral, we shall here be content with an approximate 

orbit for simplicity. 

     First for trapped particles, we approximate their motion by a 

small oscillation near the bottom of the potential trough; that is, 

we derive the orbit by perturbational approach.with.small expansion 

parameter W/ek°(«11 , retaining only the lowest order term. 
                            ° More explicitly, we use the following approximate equation for 

eq. (3-4) 

dv=eEo ko(x- 4.).C4-21 
         dt m

12



where we chose a particle trapped in the trough at x=2.2as a 
 representative , of the trapped particles. 

     The solution of the above equation is of the form 

          x(t l =/274-                   sinCwt+ol)+.~C4-3Z 
.BmB 2 

         V Ct)=2Wcos (wBt+a) ,C4-4) 

                       m where (j B=JeE°k°/m is the bounce frequency and the energy W and 

the phase a are determined by the initial conditions. For the 

initial values of x=x' , v=v' , we have 

     x(t) = xo(x',vt;t) =-77+Cx'-2°)coswBt +=°'C4-5) 
B2 

     v(t) = vo(x',v';t) = v'coswBt - wB(x'- 2 )sinwBt. (4-6) 

The quantities xo(x',v';t) and voCx',v';t) are the expressions 

for x(x',v';t) and v(x',v';t) of a trapped particle in the 

present approximation. 

     For untrapped particles, we can also solve the equation 

perturbationally with a small expansion parameterek°/W (<c1) 
and retain only the lowest order term. The approximate equation is 

            dv =eE°sink. [v°t+x(0)]C4-7) 

          dt m 

and its solution is written as follows:

13



 l4

x(t)=vt + P2°2sinikoyot+g].(4-8) 
mkovo 

v(t) = vo + eE°  cos [k ovot+(3] ,(4-9) 
mkovo 

where v° is the unperturbed velocity of a particle in the wave 

frame and R is determined by the initial position of the particle. 

In the calculation of x
n , however, it is sufficient to use the 

orbit of a freely moving particle;t that is, 

             x(t) E xoT(x',v';t) = v't + x'(4-10) 

           v(t) E v;T(x',v';t) = v' .,(4-11) 

xoTand voT being the expressions for x Cx' , v' .; t) and v (x' , v' ; t) 

of an untrapped particle in the present approximation. 

     Next, we consider the average distribution function FCx,v).. 

Detailed discussions about this function are found in the refer-

ences 3) and 4). Here we use their result in the limit of small 

amplitude harmonic waves, i.e. 

              f 01(1v2-2                             -y .(x))0 (v22-                                   n1yCx))for v)0 

F(x,v) = 

                f01(-"v2-n2-~yCx))OCv2- myCx)) forv0 

                   + [f 01(0) -4.17Cx)—v2] oy Cx1-v21 ,L4-12)

t 

and

Error incurred 

[eEo/ (koT) l 2.

by this
                                     2 approximation is of orders of [eE

0/ Ck°W) l



where  f01(v)=f01(0,v) is the distribution function of untrapped 

electrons at the point x=0 in the wave frame, y (x)=ek4-11l-cosk,xls 
and u is a constant which is given by the dispersion relation: 

                                               ,„              2h~ 

              1 =2[FdvO1.CvlI- pi .(4-131 
kov 

     We can see from the relation between W and y(x) that 

particles whose velocities at the point x exceedjy(x) are 
untrapped and those whose velocities at the point x are smaller 

than my (x) are trapped. 
     From now on, we choose a Maxwellian distribution for fol(v) 

in the laboratory frame. That is, 

f01(v) = Coexp [-2T (v+Vo)2] ,(4-14) 

Co being a suitable normalization constant. 

     We are now ready to carry out the calculation of the suscepti-

bility Xn(k,w) given by eq. (3-7) . We rewrite eq. (3-7) as 

follows: 

                  2 +.0 

 X(k,w) = -Cdv'(0dx',)(x(,v1;w)ei(k+nkoZx'aF(x'rv'~` 
nk 

_, 0~°av` 

(4-15) 

where we put 

             00.v'; ) - i S dt eiwt-ikx(x`,v`;.t). C4-161 

0 

                           (regular at Imw>0)

15
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In our  approximation this becomes the following form; for an 

untrapped particle 

                                           -ikx' 

          ,..QUTCx`,v`;wl=eC4-17) 
w-kv ` 

and for a trapped particle 

                   -ik~°+0,Jri[kCx`-2°1lJCk~t) 
 „DT(x`,v,;w) = -e2y C-1)nB (4-18) 

n , k=—cow+ (n- k) wB . 

We used the expansion formula by the Bessel function in calculation 

of 4 T. Let us split Xn (k,w) into two parts XnT 0(1(.0) and 
Xn(k,w) corresponding to contributions from two groups of electrons 
That is, Xn(k,w)=XnT(k, w)+Xn(k, w) , where 

                   12y (x)  
         w2 a0Jm +00 

 Xn~Ck,w) _ - -25{ 5 dv +5;dv}&UTCx,v;w)ei(k+nk°)x .F(x,v) 
   k0xo _0Jav 

                  J~'- 
        J2-----(x)m(4-19) 2 X0+~_ in 

 XT (k,w) = -CdxSdv sr (x,v; w) ei (k+nk° )x BF (x,v)  nkJa°J
av .               0 

- /2y (x) --------- 
m(4-20) 

Substituting the explicit form for F(x,v) into eqs. (4-19) and 

(4-20) and carrying out the integration over the velocity (see 

Appendix A), we obtain the following expressions correct to the 

first order in y (x) Cor E°) : 

                2 

  XnT(k,w) _ -7:
k4_"22.m  Z° (k) dn, 0 

2 2•• 

.. (T)2..kQ{Z1(k)+22(k)}{dn,0-2Cbn,_1+6n,l)1 , 
L4-211



where 

 +~ 

 Sdv  V V° Cv1. for ` k ,0 w/k-v 01k 

        Z°Cal 
+.0 

-P C dvv+V°f01 Cv1 for k = 0 

and P in front of the integral sign means to take the principal 

value of integration at v=0 , and 

                L')2.2.+ ~°wB Xn(k,w) = (-1)n().E'~H s+l n(k)-Hs^ln(k)C4-221             °2 s=w+sw
B, 

where 

          Hs n(k) =C-i)s[Bs,n(k)+2.{Bs ,n+l (k)+Bs,n--1(k) 11 
X0/2 

          B (k) =dx J (kx) ei (k+nk°) x s,nSA° s 
                        -x 0/2 

From the property of the Bessel function, we can verify that 

Hs , n(k) is purely real and 

H-s,n (k) = Hs in (k) 

(4-231 
                   Bs,n (k) = Bs,-n(:k) . 

Note that the right-hand side of C4-221 does not contain the term 

corresponding to s=0 (see (4-23)). The dielectric constant of 

a homogeneous system in the laboratory frame e°Ck,w1 is written 

as follows in terms of the quantities mentioned above; 

e° (k,w) = 1 + X7Ck,w-kV°1 ,C4-241

lt7



 IS

but in this case the  function Z90 
always. 

Equations C4-21) and 14-221 axe 

for the susceptibility.

is given by

our final results

  v+vo dv
w k-vf01(v)

obtained



 §5.  Tirrke Rate of Spontaneous Emission 

     We start from the coupled equation L3-151 _ Solving this 

equation for Eu (k, w) , we get 

     E (k,w) =  4Tri  Ik{1+Xo Ck-2ko,w-kVo)}psCk,w) 
D(k,w) 

                             

1--------x 
2 (k,w—kVo)ps(k-2k.,,w-2woi]C5-1) 

k-2k. 

Using this solution, we can obtain the expression for the spectral 

density of electric field due to fluctuations, Uk(t) E < IEkLt) I > 
as follows: 

                     -iwt .. 
Uk(t)=< ISdw  eEu(k, w) 12> 

         + 27r D(k,w) 

                     -iuit 
     =(47r)2<Cdw  e  (1{1+Xo Ck-2ko,w-kVo1}PP (k,w) 

.327r D(k,w) 

1 X
-2(k,w-kV0)PkC0(-2w0))I2>. 

k-2k0 
(5-2). 

                                                                       +m+.iad 
where the integral sign 5-d--(2-wis an abbreviation of S(a>01. 

          +27r-°+i62 

     Let us calculate the correlation function <psCk,w)p*(k',w'1. 
making use of eqs. (3-19) , (4-3) and (4-8) . We neglect correlations 

between different particles. Therefore, we can split <pspsl5 

into two parts as follows: 

<ps(k, w) 4*(k1 .w`)>=<ps (low) ps* Ck' ,w')>T+<ps Ck,w1pPs* CM ,w' 1. UT 

where

a.



 2D

                              00 

 Pu-ikx . Ct) +ik'x..Ct') <PCk, W) P* CM.,ui )>T=e2C dtdt'.Ee..]J elwt..lw t 
• 0 )=TP 

00 --ikx . Ct)+ik' x, Ct' ) <Ps (k, w) Ps* (k' ,wt)UT, dtdt' E e J J e] wt-iw' *t' 
0 j=UTP (5 -3) 

the symbols E and E denoting the summations over the 
         j=TPj=UTP 

trapped and untrapped particles, respectively. After some calcula-

tions (see Appendix B), we obtain trapped-particle contribution in 

the wave frame 

                                                  + <PS(k,w)PS*(k',w`)>T =Ee2 e-i(k-k')a0(2EJ QUcaJ%JQUc'a) 
         j=TPk=-~ 

x  1 C5-4) 
(w-2,wB) (w.' *-R,wB)_i 

and for untrapped-particle contribution 

+00 
 <Ps(k,w)PS*(kl,w')>UT = Ee2E J~(kbj)JR(k'bj)                               j=UTP k=-co 

                                                x 

1  

                                  {w-(k+Rk,)v,j}{w'*-(k'+Rko)v0.}, 

                                                               (5-5) 
where we put 

lrW_l ------wB2      a._-Zb_l(5-6) 
            J wB • m , J ko k,voj4 

andWjandv0.are the energy and unperturbed velocity of the 

j-th particle in the wave frame, respectively. In the above deriva-

tion we assumed random distribution for the initial phases of the 

particles.



     Using the relations (5-4) and  (5-5)  , we can rewrite (5-2) as 

                              +co Uk(t) = E UkC;t) + UkT        R(t) ,(5-7) 

   Uk(R;t) E E (4lre)2 IATCj.I2 ,(5-8) 
j=TP 

    UkT(t) E E (47re)2E I AUT(j,R .) ,2I(5-9) 
j=UTP R =~ 

       -iwtJ.) 
    AT (j,Q)=Sdwe [{l+Xo(k-2k„w-kVo)}•L1

+2Tr D(k,w) (w^kV,-RwB)k 
JR((k-2ko ).a . ) 

_2(k,w-kVo) -----------------1 
k-2k, 

C5-10) 

     AUT(J'R)dw  e-iwt[{l+X,(k-2k,,w-kVo)}.JQ.(kb~) 
2"rz D(k,w) w-k (V,+voj)-Rkov0 . k 

X_2 (k, w-kVo)
• J2,((k-.2k,) b . ) 

w-k (V,+v,j)- (R-2)kovojk-2k0 
(5-H) 

where we used the relationps(k,w)=ps(k,w-kV,). 
      In the calculation of the spontaneous emission rate, it is 

sufficient to know a behavior of the dielectric constant near the 

frequencies w=kV,+RwB for emissions by trapped particles and 

w=k(V,+v,j)+Qk,v,j for emissions by untrapped particles, because 

waves are spontaneously emitted only when a pole associated with 

the collective oscillation (i.e. D(k,w)=0) coincides with another 

pole associated with the individual particle motion (i.e. w=kV,+RwB 

and w =k(V,+v,j)+2.k,v,j for trapped and untrapped particles 

respectively). This situation is” essentially the same as in the

2'1
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usual treatment for a homogeneous  case .6) It should be noted 

that each term on the right-hand side of (5-71 has a definite 

physical meaning as the spectral density of each_ separate wave, 

since different terms in (5-7) correspond to fluctuations of 

different frequencies and wavenumbers, as we shall see below.t1 

We shall calculateUT(0t) and UkCt) in the following. 
(I) Trapped-particle contribution 

     As seen from C4-22) and (4-231, the susceptibilityXT (k. w-kV, ) 

is a smooth funciton of w near the frequency w=kVo , while it 

becomes very large near w=kV,+R,wB C.401. This is due to the fact 

that the bouncing motion of trapped particles can resonate with 

the oscillation of a perturbed electric field of frequency 

w=kV0+2wB (2,0). Taking this resonance effect into account, we 

calculate Uk (o; t) and Uk (R.; t) CR.VO1 separately in the following. 
(i) Calculation of Uk (0; t) 
     We shall approximate the solution of D(k,kVo1.=0 by k=ko. 

This approximation is based on the understanding that the dispersion 

relation (3-16) can be used to describe approximately the carrier 

wave itself by taking the limit k--k0. Comparison of the solution 

of D(k,kV0)=0 with that of (4-13) shows that the error incurred 

by this approximation is of the order of uCko/wB)2 which is very 

small compared with unity, provided the trapped-particle density 

is sufficiently small compared with the total number density. 

Using the above approximation, we obtain after some approximate

t) See the 6-functions contained in eqs. C5-131, (5-161 and C5-171_.



 13 

calculations (see Appendix C) 

       T(0 =J0~Oaj)8t-i,wot ie-i(kVowo-id)t-1   j .)-ieC .5-12) 
          koaokV0-w 0-i6J 

where ao=a21and a small imaginary quantity i6 is introduced 
w=wo 

for convenience. Inserting (5-12) into C5-8) and applying an asymp-

totic formula for small 6 (6<<w 0) ,91 we obtain 

                    (4Tre) 2Ja (ko a :)'        Uk (0; t) = E ---------22• 2Trt • 6 (kV0-w01 • C5-13) 
                 j=TP koIan' 

(ii) Calculation of Uk (L.; t) (RkO) 
     In the calculation, the following approximation will be used 

for D(k,w): 

              D(k, w) = eo (k,w)co (k-2ko,w-2wo1 

              + Eo (k,w)x; (k-2ko,w-kVo) + eo Ck-2ko,w-2w01Xo Ck,w-kVo1 • 

In this approximation the term [ x o (k, w-kV0) x o (k-2k0 , w-kVo 1 
-XT2(k,w-kV0)X2(k-2k0, w-kv0) ] is neglected (see(3-17)) , since 
this term is of order (v/vt)2exp[-2Vo/v2], where v2=T/2m and 

vt wB/ko. Near the frequency satisfying w=kVO+RwB (R,0) , the 

term corresponding to s=-R, in the expression for xn(k,w-kV0) 
(see (4-22)) becomes very large, so that D(k,w) can approximately 

be written as 

D(k,w) = ---------------wB IEoCk,w1{K 0 .1,0(1(-21(01-K 2,-1,0(k-21(011 
w--kVO-kwB 

                     + 60 Ck-2k0 , w-2w 0 )_ {FîR+1, 0 ~k) ̂ x Ck) }]



 24

Similar approximations can be used for the numerators of the 

integzand i,n C5-10).. After some calculations (see Appendix 

we get 

 A,TC7,2,)(l)-------------------{kCka•)+--------gC2,)J C(k-2k         kak{l+hC2,) }42k,-k2,J 

                 e'k(k) t— i wk (k) t•.e l (kdf.2, wB—wk.(k) — i Yk(2,)) tl 

                       x

C) i

where

wk(2,) _. 

YkCZ) 

g(k) 

h (2,) 

 ak 

Y° being 

respectiv 

asymptoti

wk+h.(2.) {2w, +w10-2k1

kV, +2,w--

    1 + h(2,) 

Yk+h)Yk -2k 

               0  

   1+h(2,) 

    H-2,+1,-2 (k)-H-2 ,-1,-2(k)

-w
k CZ/(2,/

H_Q+1 ,0(k-2ko)-H-2._1,0(.k-2k.) 
ak -2k o  H-2,+1, 0(k)-H_2,_-1',0(k)

             ak H-k+1,0 (k-2k.)-H.-2 ,-1,0 (k-2k.) 

aka_Lal 
aw           w=wk, 

Y°beingthe real and imaginary partsofthe 

respectively. Inserting (5-14) into 

asymptotic formula for small Yk (k ) 

obtain 

     —re2 • 121J
kCka~)+--------         k2 1= a

k{ l+hCk) { 
                      2Y(k) t 

            

• ---------{ek-116 [} 
Y(k)

J 

(5-14)

(5-15)

wk and 

eo (k,w), 

the same 

in case ( 

  UT(2 ,;t)



is

 (II), Untrapped-particle contribution 

We confine our attention to the emission by those particles 

whose velocities in the wave frame satisfy the condition: 

                                                                                W.                    Vol>>,wB, 

We shall neglect the emission by other particles for simplicity. 

By the same reason as for the trapped-particle case , we replace 

the dielectric function by an approximate expression which is 

correct in the region of w near [kCV0+vo.
J)+k7ovo•l• We then 

find that the first term in the square bracket of the integrand 

in (5-11) gives the dominant contribution to AUT Cj,k, .)Csee 

Appendix C). The final result is given by 

                 2 2y °t +co 
    UkT(t) = E 24Tre)2Tro{e k -1} EJQ(kb.1 j=UTP klaklYk2=-co 

                                    xdjkCVO+voj)+2kovoj-wk] . (5-171 

     We now derive a kinetic wave equation for the spectral density 

by differentiating eqs. C5-13) , (5-161 and C5-17) with time. That 

is,2 
                         2 J(ká)     aUk(0;t) =2TrE(4'r)•-------------------2d CkVo-wo) (5-181 atj=TP k2gaol 

                                  2 

   j a -2Y(2)UTC2; t) = 27rE(4Tre) 1  
  tatkkj=TP k2 a

k{1+hC21 } l 2 

               x IJ Cka)+-------k g (1),1- (Lk-2k°) 26 tkVo+RwB-wk(2,ll 
2k0 -k 

(.k 0) 
(5-19) 

   2UTC4 Tre)2+02 

   f—-2YkiUk (t) = 27r E2-2 E J2(kbj)    3tj=UTP klakl2=-0 

                              x 6 [k(Vo+voj)+2kov oj—wk] • (5-20)
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These equations are of the f orm of eg. (2-12) . As pointed 

out there, the right-hand sides give the time rates of spontaneous 

emission for the corresponding fluctuations . 

     Integrating the right-hand sides over k and summing up 

over Q. for the trapped-particle case , we obtain the time rates 

of total emissions by the trapped and untrapped particles (to be 

denoted by IT and IUT , respectively). They are 

                2  

        5ak[(4).°°2Jd (kV,-(0o)    j=TP ko la01 

                    2 

        1             +
R40(4k2)•{ l+h (1t) } l2{ JR(ka~2ko-k                      l a) +g (R) JR(((-2ko) aj) ] 2 

                       k 

                                     x d (kVo+2,wB-wk(R))}(5-21) 

and 

                     2"4"3IUT = E Sdk24~re)2E JR (kbj) d [k(V,+voj)+Rkovaj-wkl •(5-22) 
        j=UTP klaklR=-~ 

Note that these results can be used not only for a stable case but 

also for a weakly unstable case, because we assumed only the small-

ness of the imaginary part of the frequency compared to the real 

    9) 
part.



 §6.  Discussions 

      Let us discuss the results obtained in §5 by investigating 

the emission rate and the resonance condition (the condition which 

determines the frequency and wavenumber of the wave emitted) . 

      We first consider the emission by trapped particles . In the 

integrand of (5-21), the first term gives the emission of the 

carrier wave itself. Its emission rate is the same as was obtained 

in our previous paper,3) and can become quite large ( since all the 

trapped particles take part in this emission . Strictly speaking, 

the presence of this emission produces a difficulty in the present 

formulation, since the carrier-wave amplitude continuously increases 

due to this emission. Note that we are considering a B.G.K. state 

as the unperturbed state, so that the carrier wave does not suffer 

any Landau damping. In reality, however, the spontaneous emission 

produces a modification of the average distribution and this modifi-

cation in turn affects the stationary character of the B.G.K. state. 

Thus for a complete discussion of the stationary state, it appears 

necessary to consider a coupled equation for the spectral wave 

energy and the average distribution, as done in the quasilinear 

theory. 

     The resonance conditions in the terms with k=0 in (5-21) 

indicate emission of those sideband waves whose wavenumbers and 

frequencies are given by the relations kVo+kwB wk(21 and w=wk(2) . 

These sidebands constitute a discrete spectrum with the frequency 

separation of order wB around the carrier-wave frequency w0. 

A similar kind of sideband emission was also obtained in our 

previous work, but our new result includes two important
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modifications. First , the.  frequency versus wavenumber relation 

is now given by w=w(R) 
,. but not by the Bohm-Gross frequency; 

this modification arises from that of the effective dielectric 

function from o (k, w) to { Eo Ck( w) +h (i,) eo (k-2ko , w-2 wo) , which 
is a certain average of the dielectric functions for the two waves

, 

(k,w) and (k-2k0,4)-2w0) , in the homogeneous system . Secondly, 

the emission rate is modified by two effects , one due to the above 

modification of the dielectric function and the other due to the 

presence of two charge fluctuations, ps (k, w) and ps(k-2ko , w-2 wo) , 
which contribute to the fluctuating field E(k,w). Either of these 

two effects, when taken independently, is very large, but their 

effects tend to cancel each other, so that their resultant effect 

is not quite substantial. An estimate for the case of k=±l 

and koa, «l shows that the new emission rate is one order of 

magnitude less than the result obtained in our previous work. 

     Equation (5-22), obtained for the emission by untrapped particles, 

indicates that an untrapped particle also emits many waves including 

the one which satisfies the usual Cerenkov condition, i.e. the term 

with R=0 in the sum. The terms with k=0 correspond to the 

scattering of the carrier wave by the particle. These results for 

the emission by untrapped particles are the same as those obtained 

in our previous work. 

     To summarize, one can state that the effect of the modification 

of the dielectric property of the plasma appears mainly on the emis-

sion by the trapped particles. This is naturally untderstood since 

the effects mentioned above come mainly from the trapped-particle 

susceptibility XT.
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      In the present  .theory, We Kaye ignored the correlation among 

different particles. In reali `txf the motions of those trapped 

particles which are localized in the same potential trough of the 

carrier wave can become strongly correlated to each other . This 

may cause a coherence effect on the spontaneous emission , namely 

the emission rate may become proportional to the square of the 

trapped particle density in a given potential trough . In addition 

to this, another type of coherence effect can be expected due to 

a periodic array of the trapped particles. Namely, waves emitted 

in different potential troughs can be superposed in phase. These 

coherence effects can be expected only for the emission of the 

carrier wave itself.



30

                            Acknowledgments 

     The author wishes to thank Professor K. Nishikawa for his 

continual guidance and his kindness in reading and improving 

the original manuscript. Thanks are also due to Dr. T. Sato, 

Messrs. K. Mima and H. Tomita for some valuable discussions.



 31

                            Appendix A 

-- Integration over Velocity in X--- 
                                                   n 

     Substituting the explicit form of eq. (4-12) for F(x,v) 

into eqs. (4-19) and (4-20), we obtain 

 UT 
Xn (k, w))2y (x) 2-------------2y(x 

    2 X0wVm1m2_2Y(x)~V(-v)f°1(-v-m 
      dx ink°xdv-----(--)(-qvm°)22     —eJw-kv TJv --y(x) kS~m           0° 

+~of (Jv22y (x)--------------- ) 

                 + S dv------1(-m)(Jv2-2y(x)1V°)°1m  
               J2y(x)w-kv T m .qv2-?y(x) mm 

                                                  (Al) 

      w2—ikx0+coX0i(k-t-nk°)x  Xn(k,w) =e2E (_1)s 1 Cw-Js[k(x-2)le 
         ks,Q=-o w+(s-i)uBJ0 

m x S dvJ~(kv).  v-(A2)               TT --------- 
                             2y                         _ (x)u'B                          Jyx)m(-2J 

(i) Calculation in Xn: 

             J2y(x) 

                         m 

         AQ(x) =S dv JR(wv)J
y(x)_vv                2y(x)B2 

                       m 

                        kwi2y(x)-------- 
         uwB2 m Bdt --------------------tJ9,(A3) 

                wk) 2Y(x )k2wB  my-------(x) J1_()22YX)t2•                              wBf in

1



Making use of properties  of the Bessel function
, we obtain 

                      }t. wB. 1.t JQ: Ct).              2.•-_. --._ S dt--------------fork=odd 
  A2,(X) = k a 0 11-t2/a2(A4) 

0for Q=even 

and 

A = C-11 kA Cx1 ,(A5) 

where we put a=-fly--------(x) /m 
wB 

                 2 

           [a2 =k2..2.eE°(1-coskox) = 4• Ck)2sin2(k2x)] . (A6) 
wB m ko° 

Expanding JQ (t) in power series of t and integrating over t 

we obtain 

Sa t J22+1 2Q+3n   dt 2Q+1 =a(-11 ,Ca)2n{2(Q+n+l)-1}~:.Tr 
 0fl_tl/a'l22Q+1n=0 n: (2Q+n+l) : 2{2(2+n+1)11:2 . 

(A7) 

Then, substituting this result into the expression of xnand 
carrying out the x-integration, we find that contributions from 

                                                             2ox 
higher-order terms in a become smaller (see the factor sin(k2 

in eq. (A6)). So we retain only the lowest-order terms in a 

and obtain eq. (4-25). 

UT (ii) C
alculation in Xn 

     In case that y Cx) /T 1 we can expand the functions in the 

integrand of eq. (A1) as follows;

32.
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± v2_. my (x 1

+1/ 2-m vy (xl

v{~~ XCx)+ 
        my 2 

= 1 {1+y(x2)•+ 
 v mv

• • • } ,

and

and

f 01 (± /v`— my (x))

Substituting these 

considering the fact

= f ,(v) {1+vo.L(_~.+ 
 1 

vT

expansions 

y (x) /T«1

into 

, we

•••}

the corresponding 

obtain eq. C4-21)

factors
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 Appendix B 

— Calculation of Charge--Density Correlation Functions 

     We can calculate these quantities by substituting the explicit 

orbits of eqs. C4-31 and 14--81 into eq. C3-19) . 

(i) Trapped-particle case 

     Using eq. (4-31, we get 

                         ika°-ika.sin(wt+a) 
       -ikx(t) = e2eB 

            e 

              -ikx-ikwt-ika 
= e2E Jk(ka

~) eB(B1) 
Then, 

-ikx. (t)+ik' x.(t')-i(k-k')2 
 <e>>> = eE J1 (kaj) JS (k' a. ) 

                                               k,s 

x -i (kwBt-swBt')        e<e a 

Assuming no initial-phase correlation, we find that this reduces to 

    -ikx .(t)+ik'x.(t') 
<e>> 

         -i (k-k')2°-ikW B(t-t').(B2)       = eE J
2. Jk                                    (k'a~) e                        k 

Then, we obtain 

             -ikx(t)+ik'x
~(t') Sdtdt'<e>eiwt-iw*t' 

0 -i(k-k' )A° 
    =e2J (ka.)J (k'a.)---------------------------1(B31 

                  kkCw-kwB) Cw*-32,wB1 

(zmw, w> 0)



 35

 (ii) Untrapped-particle case 

     Using the orbit of eq. C4--81, ye. get under the 

no initial-phase correlation, 

       -ikx .(t)+ik'x..Ct' ). 
 <e>> 

              -i (k+kk o) v,t+i(k'+A,ko)vo. t' 
= ej3 E J,(kb.)J 

R 

Then, we obtain 

         co -ikx(t) +ik' x , (t') 

   Sdtdtt<e>eiwt-•iw*t' 

0 

      = E JQCkbj) JR(k' b, ,)1 

as s ump ti,on

(k' b.~ )

of

CB 4)

{w—..~ 

CIm w , w > o)

-- kko)v. }

(B5)
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 Appendix C 

                  — Calculation of AT and AUT—. 

(i) AT(j,0) 

        When k-k., and w...kVo wo , we can show the following relations 

 making use of eqs. (4-21) and (4-221: 

X0 (k,w-kV,) = X 0 (k-2k, ,w-kV0 ). 

X T 2 (k, w -kV,) = X 2 (k- 2 k 0, w -kV, l 

  and therefore 

D(k,w) = { l+X a (k,w-kV,)+XT2 (k,w-kV, l} { 1+X o (k-2ko ,w-kV, ) 
-X 2 (k-.2k. ,w-kV.)} . 

  Using the above relation, we obtain 

        Jo(koa.)dwe-iwt 
  AT(j,0)1  'k

o+2'T (w-kV0) {l+Xo (k, w-kV0) -XT2 (k, w-kV0) }. 

(Cl) 

  Near w=w0 the function {1+X0 (k, W-kV0)-XT2 (k, w-kV, } can be 

  approximated as follows; 

[1+Xo (k, w-kV0) -XT2 (k, w-kV0) ] = ao { w-wo-i8 } ,(C2) 

 where the coefficient ao can approximately be written as 

      aEo   a
o=awSubstituting (C2) into (C1) and closing the integration 

w= wa 

 path in the lower-half plane, we obtain eq. (5-12).



 (ii). ATCj,k) 

     Using the approximate forms for the integrand of eq. (5-10)4 

we obtain 

  T(J,QetQ(ka)A)_Sdw 27r w-kVo-"B ak 
                                 co (k,w)t---------•h_CR)Eo Ck^2ko fw-2wo).                                         a

k-2ko 
                                                    (C3) 

We make the resonance approximation for Co; 

Co (k,w) + kh(R) co Ck-2ko,w-2wo) 
ak -2k , 

ak{w-wNYkl akh(k) {w-2wo-wk-2ko-iYk-2ko } 

            = a
k{1+h(R) Hw-wk(R)-iyk(2) } . 

Substituting this relation into (C3) and closing the contour in 

the lower-half plane, we get eq. (5-14)_ 

(iii) AUT (j , Q ) 

     The susceptibility xn can be estimated as follows at the 
point w=k(Vo+vo.)+R,kovo. for those particles which satisfy the 

w condition voj»(kB)2: For Qk-1 

2w2 ... . ,. 

  xn[k,kvo+kkovo.] = (-1)n K ---------------------------2 
BH

sCk1          JJs { (k+2,ko) vo.+sw3}-wBin 
                1 .cep . wB2 

            ,.. --------------2•}iCk) 
                    (2,+112 Ckovoj)o 

1.. n I 
--------- 2<51 (R+1) n

o

3.7



and  for k=-1 (kkk0 ) 

         Xik; (k-k0)Yo]=C-1)n 1  {Hl (k)) }                 a(k-k 0)v0J 

= 0 

where 

X0/2 /2y(x)/m 

    nT - no S dxSdv F(x,v) (trapped-particle number) 
                                  0 -X 0/2 - 1/2y(x)/m 

           8f01 (0) wB wB 
      = no {------------ - u•—} — 

         ?Tk0 k0 

       -u•(wB)2 n(effective-oscillator number) 
k0 

           8B         =, °1(u)•-- - nT/no 
     Ti k0 

(nB can be negative) 

and we used the following evaluation; 

                           (k0v0.)2=ko(V0-v)2 
                                  = wo(1-k 0 X 0) 

-r w2 

p 

We, therefore, neglect xn as being small compared to co in 
this case.
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