学位申請論文
岡田邦英

A STUDY OF HYPERFINE FIELD AT CO NUCLEUS
IN AN ANTIFERROMAGNETIC COO

## By <br> Kunibide OKADA <br> 1975

## ABSTRACTS

By using a $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator, some Mössbaür experiments at very low temperatures were performed.

The magnetic byperfine field at parent nuclei, $\mathrm{Co}^{57}$, in an antiferromagnetic CoO was measured by Mössbauer experiments at very low temperatures. The sample was cooled down to 0.08 K by the $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator. Then the nuclear polarization of the parent nuciei, $\mathrm{Co}^{57}$, occured and the $\mathrm{Fe}^{57}$ Mössbauer emission spectrum became to be asymmetiric. From the intensity ratio of the outermost peaks of the emission spectrum of $\mathrm{Fe}^{2+}$ ions, it was derived that the sign of the hyperfine field at Co $^{57}$ nucleus in $C o O$ was plus and its magnitude was $590 \pm 40 \mathrm{kOe}$. A considerable amount of $\mathrm{Fe}^{3+}$ ions were also existed in addition to te $\mathrm{Fe}^{2+}$ ions. The origen of the coexistensy of both ions has not been understood yet theoretically. The hyperfine field at the parent nucleus, $C o^{57}$, estimated from the $\mathrm{Fe}^{3+}$ spectrum was $+603 \pm 80 \mathrm{kOe}$, which agreed with the value estimated from the $\mathrm{Fe}^{2+}$ spectrum.

With the help of the information mentioned above, an investigation of $\mathrm{Co}^{59}$ NMR in CoO singie crystal was performed in the antiferromanetic state. The value of the hyperfine field at $\mathrm{Co}^{59}$ nucleus was found to be $495.5 \pm 0.5 \mathrm{kOe}$ at 4.2 K in zero external magnetic field which was smaller than the
value of 590 kOe estimated by Mössbauer experiments. A main cause for the error in the estimation fron the Móssbamer spectrum may be an overestimation of the absolute temperature of sample. The value of the observed hyperfine field agreed with that of 511 kOe calculated theoretically. The rotational spectra of Co ${ }^{59}$ NMR in CoO single crystal with the small external magnetic field were measured, from which the tilt angle of the axis of the hyperfine field from the c-axis was obtained.

## ACKNONLEDGENRNTS

During the course of this reserch, many people have contributed their tines and advices, which have been greatly appreciated. It is a pleasure to acknowledge them here. The author would like to express his sincere gratitude to Prof. 1. Hirai and Dr. T. Shinjo for their valuable advices, guidances and encourgements. His thanks are also due to Erof. T. Takady for bis continual encouragements. He is indepted to Prof. K. Motizuki, Csaka University, and Dr. H. Yasuoka ror informative discussions. He expressed his thanks to 他. T. Latsuzara for helpful advices about a computer progranaing and also members of Hirai unit for their discussions and assistances throughout this work. Finally, he wishes to acknowledge to Prof. T. Hashi for his encouragements and advices.

## TABLE OF CONTENTS

ABSTRACT ..... i
ACKNOWLEDGEMENTS ..... ii
TABLE OF CONTENTS ..... iii
LIST OF TABLES ..... vi
LIST OF FIGURES ..... vi
CHAPTER I GENERAL INTRODUCTION ..... 1
CHAPTER II $\mathrm{He}^{3}-\mathrm{He}^{4}$ DILUTION REFRIGERATOR ..... 4
\$ 2.1 Introduction to $\mathrm{He}^{3}-\mathrm{He}^{4}$ Dilution Refrigerator. ..... 5
\$ 2.2 Basic $\mathrm{He}^{3}-\mathrm{He}^{4}$ Properties ..... 8
\$ 2. 3 Cooling Power of Refrigerator. ..... 15
\$ 2.3.a In the Case of $\mathrm{He}^{3}$ Refrigerator. ..... 15
$\$ 2.3 . b$ In the Case of $\mathrm{He}^{3}-\mathrm{He}^{4}$ Dilution ..... 20Refrigerator
$\$ 2.3 . c$ Comparison of $\mathrm{He}^{3}$ Refrigerator and Dilution ..... 27Refrigerator
\$ 2.4 Continuous Dilution Refrigerator ..... 31
\$ 2.4.a Dilution Refrigerator based on the ..... 32 Circulation of Helium-4.
\$ 2.4.b Dilution Refrigerator based on the ..... 34Circulation of Helium-3
\$ 2.5 Construction of Dilution Refrigerator. ..... 36
\$ 2.5.a Mixing Chamber and Ultimate Temperature. ..... 36
\$ 2.5.b Heat Exchanger. ..... 47
\$ 2.5.c Still ..... 56
\$ 2.6 Experimental Apparatus ..... 58
\$ 2.6.a Circulation System of $\mathrm{He}^{3}-\mathrm{He}^{4}$ Dilution ..... 58 Refrigerator
\$ 2.6.b Main parts and Operating Characteristic ..... 62 of the Dilution Refrigerator
CHAPTER III NUCLEAR POLARIZATION AND THE EFFECT ON THE ..... 70 " MOSSBAUER SPECTRUM AT THE VERY LOW TEMPERATURE
\$ 3.1 Introduction. ..... 71
\$ 3.2 Review of M\&ssbauer Effect. ..... 72
\$ 3.2.a Emission from Bounded Atoms and Recoilless ..... 73 fraction.
\$ 3.2.b Width of Gamma-Ray Spectrum and Why the ..... 82 M8ssbauer effect is valuable
\$ 3.2.c Study of Hyperfine Structure. ..... 90
\$ 3.3 Nuclear Polarization and the Effect on the ..... 94 Mठssbauer Spectrum
\$ 3.4 MOssbauer Thermometer ..... 99
\$ 3.5 Matrix Element of the $\beta$-Transition ..... 113
CHAPTER IV THE MAGNETIC HYPERFINE FIELD AT Co ${ }^{57}$ IN ANTIFERROMAGNETIC COO. ..... 137
\$ 4.1 Introduction. ..... 138
\$4.2 Crystalographic and Magnetic Structure of ..... 141Antiferromagnetic CoO
\$ 4.2.a Crystalographic structure ..... 141
\$ 4.2.b Magnetic structure. ..... 144
\$ 4.3 M\&ssbauer experiments on CoO ..... 150
\$ 4.4 Experimental ..... 157
\$ 4.5 Experimental result ..... 160
\$ 4.6 Analysis and Discussion ..... 175
\$ 4.6.a The $\mathrm{Fe}^{2+}$ spectrum ..... 175
$\$ 4.6 . \mathrm{b}$ The $\mathrm{Fe}^{3+}$ spectrum ..... 183
CHAPTER $V$ NMR STUDY OF $\mathrm{CO}^{59}$ NUCLEUS IN ANTIFERROMAGNETIC CoO ..... 193
\$ 5.1 Introduction to $\mathrm{Co}^{59}$ NMR. ..... 194
\$ 5.2 Experimental Methods ..... 197
\$ 5.3 Experimental Results in Zero External Magnetic Field ..... 200
\$ 5.4 Analysis and Discussions about Zero Field Spectrum ..... 204
\$ 5.5 Experimental Results about Spin Echo Pattern in External Magnetic Field ..... 211
\$ 5. 6 Analysis and Discussions about Spin Echo Pattern ..... 214
REFERENCES ..... 225

## LIST OF TABLES

## TABLE NO.

2.1 Equilibrium properties of $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution
refrigerator. . . . . . . . . . . . . . . . . . . . 69
3.1 The specific heat and the recoil-free fraction of a Einstein model solid and a Debye model solid . 81
3.2 Properties of $\mathrm{Fe}^{57}$. . . . . . . . . . . . . . . . . 89
3.3 The intensity ratio of M Sssbauer thermometer
(Co ${ }^{57}$ in Fe metal) as a function of temperature . . 104
3.4 Clebsch-Gordon Coefficient. . . . . . . . . . . . . 121
3.5 The intensity ratio versus H/T . . . . . . . . . . 127
4.1 Comparison of the Néel temperature of CoO obtained by different methods . . . . . . . . . . . . . . . 143
4.2 Spin arrangement in CoO . . . . . . . . . . . . . . 145
4.3 The possible mechanism of $\mathrm{Fe}^{3+}$ formation . . . . . 155
4.4 The magnetic hyperfine field at the site of co ${ }^{57}$ nucleus in $C o O$ (from the MOssbauer spectrum for $\mathrm{Fe}^{2+}$ ion ). . . . . . . . . . . . . . . . . . . . - 182
4.5 The magnetic hyperfine field at the site of co ${ }^{57}$ nucleus in CoO (from the M8ssbauer spectrum for $\mathrm{Fe}^{3+}$ ion ). 188
5.1 The obtained results from Co ${ }^{59}$ NMR experiments . . . 224

## LIST OF FIGURES

FIGURE NO.
2.1 The phase diagram of $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures ..... 11
2.2 Schematic of phase separated $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures at $T / 0.1 \mathrm{~K}$ ..... 14
2.3 Latent heat of helium-3 versus temperature ..... 17
2.4 Saturated vapor pressure versus temperature for a lquid helium-3 and a liquidhelium-4 ..... 19
2.5 Specific heat of a pure helium-3 at low temperatures. ..... 21
2.6 Molar enthalpies of a pure helium-3 and ofthe equilibrium $\mathrm{He}^{3}-\mathrm{He}^{4}$ solution at lowtemperatures.24
2.7 The cooling power of a $\mathrm{He}^{3}$ evaporation refrigerator and of a $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator as a function of temperature ..... 30
2.8 Schematic diagram of the continuousrefrigerator based on the circulation of $\mathrm{He}^{3}$. . 33
2.9 Schematic diagram of the continuous refrigerator based on the circulation of $\mathrm{He}^{4}$. . 35
2.10 Schematic diagram ellustrating the thermo- dynamics of the mixing chamber. ..... 37
2.11 Diagram for viscous heating analysis. ..... 41
2.12 Thermal conductivity coefficient for dilute solutions of $\mathrm{He}^{3}$ in $\mathrm{He}^{4}$ ..... 44
2,13 differential element of the continuous heat exchanger ..... 49
2.14 Schematic of step heat exchanger ..... 55
2,15 Circulation system of $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator. ..... 59
2.16 Cooling curve for the dilution refrigerator. . 63
2.17 Principle parts of the dilution refrigerator . 66
2.18 Heat extraction curve for the dilution refrigerator . . . . . . . . . . . . . . . . . 68
3.1 Perturbation of 14.4 keV and ground state energy levels of $\mathrm{Fe}^{57}$ by isomer shift, quadrupole coupling and magnetic hyperfine field. . . . . . . . . . . . . . . . . . 71
3.2 The M川ssbauer spectrum of $\mathrm{Co}^{57}$ in Fe metal . . 84
3.3 The intensity ratio of LINE (6) in M8ssbauer
thermometer (Co ${ }^{57}$ in Fe metal) versus temperature.97
3.4 The intensity ratio of LINE (6) versus H/T. . . 101
4.1 Antiferromagnetic structure of CoO . . . . . . 142
4.2 Schematic spin sptructure models of CoO. . . . 145
4.3 Auger after effect . . . . . . . . . . . . . . 151
4.4 Delayed coincidence MÖssbauer effect . . . . . 153
4.5 Schematic of sample attachment . . . . . . . 158
4.6 The MBssbauer spectrua of $\mathrm{Fe}^{57}$ in antiferromagnetic CoO at various temperatures . . : . . 173
4.7 The MOssbauer spectra for $\mathrm{Fe}^{2+}$ state in antiferromagnetic CoO at various temperatures: . .l75
4.8 Intensity ratio of the outer peaks of the

|  | MXssbauer spectra for $\mathrm{Fe}^{2+}$ state in anti- |
| :---: | :---: |
|  | ferromagnetic CoO as a function of temperature.. 178 |
| 4.9 | MOssbauer spectra for $\mathrm{Fe}^{3+}$ state in antiferro- |
|  | magnetic CoO (Sample-II) at various |
|  | temperatures. . . . . . . . . . . . . . . . . . . 185 |
| 4.10 | Intensity ratio of the outermost lines of the |
|  | M ssbauer $^{\text {spectra for }} \mathrm{Fe}^{3+}$ state in antiferro- |
|  | magnetic CoO as a function of temperature . . . . 186 |
| 4.11 | Atomic ratio of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ versus temperature. . . 190 |
| 5.1 | The schematic of setting the single crustal |
|  | specimen of CoO in the re-entrant type coaxial |
|  | cavity. . . . . . . . . . . . . . . . . . . 199 |
| 5.2 | Spin echo spectra of Co ${ }^{59} \mathrm{NMR}$ in CoO at $77 \mathrm{~K}(--)$ |
|  | and at 4.2 K(-o-)in zero external field . . . 202 |
| 5.3 | Echo decay constants of zero field spectra at |
|  | $77 \mathrm{~K}\left(-0^{-}\right)$and at 4.2 K (-0-) . . . . . . . . . 203 |
| 5.4 | Spin echo intensity as a function of the angle between |
|  | the external field and c-axis at the operating frequency |
|  | of 498.010 MHz and 500.011 MHz . . . . . . . . 212 |
| 5.5 | The frequency-field direction pattern. The solid lines |
|  | are best fit curves of experimental data in corres- |
|  | pond to the application of the external field in the |
|  | a-c plane of CoO single crystal. The broken lines |
|  | are predicted curves in correspond to the application |
|  | in the $\mathrm{a}-\mathrm{b}$ plane. . . . . . . . . . . . . . . . 213 |

5.6 The schematic of the effective field acting on the $\mathrm{Co}^{59}$ nucleus in CoO. Here $x, y$, and $z$ stand for the $a, b, c$ axis in CoO single crystal and $H_{\text {ext }}$ the external field and $H_{N}$ the hyperfine field And $\theta$ is the angle between the external field and c-axis, and $\varnothing$ is the angle between the hyperfine field and c-axis. . . . . . . . . . . . . . . . 215
5.7 The schematic of the relation between $H_{S}, H_{I}$ and the angle of spin of $\mathrm{Co}^{2+}$ ion etc. Here $\theta_{\mathrm{H}_{N}}$ and $\theta_{S}$ are the angle of the observed hyperfine field and the reported spin associated with c-axis, respectively.
5.8 The schematic of the direction of the spin and the orbital momentum of $\mathrm{Co}^{2+}$ ion and the hyperfine field at $\mathrm{Co}^{59}$ nucleus in CoO. . . . . . . . . . . 222

## CHAPTER I

## GENERAI INTRODUCTION

```
Almost MOssbauer experiments at low temperatures published have been performed in cryostats in which liquid helium-4 is the ultimate cooling agent. With a pure helium-3 refrigerator \({ }^{1-3)}\), Taylor and his colleagues got the temperature down to \(0.35 \mathrm{~K} . \quad\) So far, MXssbauer studies at very low temperatures below 0.35 K , could be carried out by the following two technique; adiabatic demagnetization technique \(\left.{ }^{4}, 5\right)\) and \(\mathrm{He}^{3}-\mathrm{He}^{4}\) dilution refrigerator technique 6,7)
Adiabatic demagnetization technique, however, is not very suitable for MXssbauer work because a 'one shot' method cannot satisfactorily cope with the rather long
```

counting times and the relatively large heat leaks normally encountered in these experiments, especially in the presence of the large heat leak one encounters with cooled sources. Thus, the use of a MOssbauer demagnetization cryostat has been limited to absorber experiments with $F e^{57}$, where $a$ good spectrum can be obtained within an hour or so and the source is kept outside the cryostat at room temperature.

The recent advent of the $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator (T.E.Katila et al. group ${ }^{6,7)}$ ) has brought a new and promising method for cooling and has been used successfully for MBssbauer experiments. A cryostat of this type is a continuously operating refrigerator capable of removing large amounts of heat even with modest pumping arrangements. In fact, once the necessary "know how" has been mastered, the operation of dilution machine is very easy and stable. The lowest temperature using a dilution refrigerator has been obtained by Wheatly et al. 8,9 ), who reached 0.010 K in continuous operation and 0.0045 K in a "one shot" process.

There are many reasons for pursuing MXssbauer experiments to very low temperatures. We should first mention studies of hyperfine interactions as a function of temperature in substances with magnetic transitions well below l.0 K. Second, experiments which make use of nuclear polarization
can only be conducted at temperatures at which the thermal energy kT is comparable with the hyperfine interaction energy. For most practical cases significant polarization occurs only at the temperatures below 0.3 K . A typical application of this effect is the MOssbauer thermometer. A valuable feature of polarization experiments using the MBssbauer technique is that macroscopic orientation of the nuclei is not necessary. Finally, we should mention relaxation phenomena and localized moments in dilute alloys , in particular the Kondo effect, as possible candidates for MBssbauer studies at very low temperatures.

It further allows that a mossbauer experiment on oriented nuclei gives information conserning the matrix elements of the $\beta$-decay of parent nucleus. ${ }^{10,11)}$

In this theses, the followings will be presented;
A) A $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator for a MBssbauer study.
B) A M8ssbauer study on $\mathrm{Fe}^{57}$ and $\mathrm{Co}^{57}$ nucleus in antiferromagnetic Coo at very low temperatures, which was done by using the $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator.
C) A Co ${ }^{59}$ NMR investigation in CoO single crystal in antiferromagnetic state, which was enable to make with the help of the information on the hyperfine field at $\mathrm{Co}^{57}$ nucleus on CoO obtained by the M8ssbauer experiments at very low temperatures.

## CHAPTER II

## $\mathrm{He}^{3}-\mathrm{He}^{4}$ DILUTION REFRIGERATOR


#### Abstract

Today, a $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator become a very powerful tool to study various properties of materials at very low temperatures. In this chapter, the general characteristics of the refrigeration device itself are reviewed and the apparatus operated by auther is described.


$\$ 2.1$ Introduction to $\mathrm{He}^{3}-\mathrm{He}^{4}$ Dilution Refrigerator

In 1951 H.London suggested a method for using solutions of helium-3 in superfluid helium-4 to produced refrigeration at low temperatures ${ }^{12)}$. He noted that if the mixture can be initially cooled to a point where the helium-4 is mostly superfluid and has zero entropy, then the total entropy of the mixture is determined by the concentration of helium-3. In the proposed method the temperature would be reduced by allowing helium-3 system to do work adiabatically at the extense of its kinetis energy. The proposal is based on a conception of the properties of helium-3 dissolved in superfluid helium-4 due to Landau and Pomeranchuk ${ }^{13 \text { ). }}$ The helium-3 particles are regarded as impurity with an energy spectrum which might be as simple as the ideal gas like

$$
\begin{equation*}
E=-E_{03}+\frac{P^{2}}{2 m^{*}}, \tag{2.1}
\end{equation*}
$$

where $E_{o 3}$ is a binding energy, $P$ is helium-3 quasiparticle momentum, and $m^{*}$ is an effective mass. Hence adiabatic dilution, in analogy with adiabatic expansion of a gas, shuld result in a decrease in total entropy and a concurrent decrease in temperature. London predicted that

$$
\frac{T_{f}}{\bar{T}_{i}}=\left|\begin{array}{l}
X_{f} \\
\bar{X}_{i}
\end{array}\right|^{\frac{3}{2}}
$$

where $T_{f}=$ final temperature, $\quad X_{f}=$ final $\mathrm{He}^{3}$ concentration, $T_{i}=$ initial temperature, $X_{i}=$ initial $\mathrm{He}^{3}$ concetration . Thus by a tenfold dilution starting at 0.3 K , a final temperature of about 0.65 K should be obtained. This process has actually been carried out with limited success by Taconis , Das and de Bruyn Ouboter ${ }^{14}$ )

Following the discovery by Walters and Fairbank ${ }^{15)}$ of the phase separation phenomenon in $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures, analogous to the " condensation of the Landau-Pomeranchuk $\mathrm{He}^{3}$ gas ", London, Clarke and Mendoza ${ }^{16)}$ proposed a more powful method for producing refrigeration using $\mathrm{He}^{3}-\mathrm{He}^{4}$ solutions. The $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures separate into a lighter $\mathrm{He}^{3}$ rich phase and a heavier $\mathrm{He}^{4}$ rich phase below about 0.8 K . Since the rigime in which phase separation takes place is always at a temperature below the $\lambda$-point, or superfluid transition point for the mixture, London, Clarke and Mendoza noticed that a phase separated $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixture at very low temperatures looks like a quasi-liquid, the $\mathrm{He}^{3}$ rich phase, in equiliblium with a quasi-vapor, the $\mathrm{He}^{3}$ poor phase, and a superfluid $\mathrm{He}^{4}$ vacuum. The system has the odd property that the $\mathrm{He}^{3}$ rich quasi-liquid is less dense than the $\mathrm{He}^{4}$ rich quasi-vapor and floats above it. London et. al
realized that the heat of transition from the quasi-liquid to the quasi-vapor could be utilized for refrigeration just as the latent heat of real liquid-vapor system is used. ${ }^{12)}$ Their measurements showed that the quasi-vapor "pressure" remained quite high at the temperature below 0.1 K and thus refrigeration could be produced at those temperatures. They also noted that if $\mathrm{He}^{3}$ could be distilled from the quasi-vapor phase and returned to the quasi-liquid phase then continuous refrigeration would result, in analogy with a conventional $\mathrm{He}^{3}$ refrigerator.

The first really successful dilution refrigerator was built by Hall, Ford and Tompson ${ }^{17}$ ). Their refrigerator based on the "evaporation" idea and operating continuously reached a temperature of $65 \mathrm{mK}\left(1 \mathrm{mK}=10^{-3} \mathrm{~K}\right)$. Working independently, Naganov, Borisov and Liburg ${ }^{18)}$ constructed a high refrigeration capacity device which operating continuously reached a temperature of 25 mK .

The refrigerator of the author has a simple structure and only 20 minutes were necessary for the cooling from 1.27 K to 0.08 K .
$\$ 2.2$ Basic $\mathrm{He}^{3}-\mathrm{He}^{4}$ Properties

The fact that liquid $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures would separate into two distinct phases at very low temperatures had been predicted theoretically by Prigogine et al. ${ }^{19)}$ and by Chester 20) before it was discovered experimentally by Fairbank and Walters ${ }^{15)}$ in 1956. The basic reason for phase separation into isotropic components is the difference, in the molar volumes of liquid helium-3 and helium-4. The inter-atomic potentials of helium-3 and helium-4 are nearly the same but the zero point energy is inversely propotionaly to the mass. This means that the volume per atom (the molar volume) is larger for helium-3 than helium-4.

The following thermodynamic argument shows that this molar volume difference is likely to lead to isotropic phase separation as the temperature approaches absolute zero. Let us assume we have $n_{3}$ moles of $\mathrm{He}^{3}$ and $n_{4}$ moles of $\mathrm{He}^{4}$ both at a temperature $T$ and a pressure $P$. The respective molar Gibbs function, $g_{3}$ and $g_{4}$ are

$$
\begin{equation*}
g_{3}=u_{3}-T s_{3}+P v_{3}, \quad g_{4}=u_{4}-T s_{4}+P v_{4} \tag{2.2}
\end{equation*}
$$

where $u_{i}$ is molar binding energy, $s_{i}$ is molar entropy
and $v_{i}$ is molar volume. If we consider our system to be a box containing the two isotope, but with a wall prohibiting thier mixing, the molar Gibbs function $g_{3+4}$ is just

$$
\begin{equation*}
g_{3+4}=x_{3} g_{3}+x_{4} g_{4} \tag{2.3}
\end{equation*}
$$

where

$$
x_{3}=\frac{n_{3}}{n_{3}+n_{4}}, \quad \text { and } \quad x_{4}=\frac{n_{3}}{n_{3}+n_{4}}
$$

Now let us remove the restraining wall and allow the two isotopes to mix. The molar Gibbs function of the mixture will be

$$
\begin{equation*}
g_{m}=u_{m}-T s_{m}+P v_{m} \tag{2.4}
\end{equation*}
$$

where $\quad u_{m}=x_{3} u_{3}+x_{4} u_{4}+P\left(v_{m}-v_{4}\right)+P\left(v_{3}-v_{m}\right)$,

$$
s_{m}=x_{3} s_{3}+x_{4} s_{4}+s_{\text {mixing }}
$$

$$
v_{m}=x_{3} v_{3}+x_{4} v_{4}
$$

The last two terms in equation (2.4.a) arises from the fact that during the mixing the $\mathrm{He}^{4}$ must have its molar volume expanded to the mixing molar volume and, likewise, the $\mathrm{He}^{3}$ must be compressed. The term $s_{\text {mixing }}$ in equation (2.4.b) we get for the difference in molar Gibbs function between the mixed and the unmixed states;

$$
\begin{align*}
g_{m}-g_{3+4} & =P\left(v_{3}-v_{m}\right)+P\left(v_{m}-v_{4}\right)-T s_{m i x i n g} \\
& =P\left(v_{3}-v_{4}\right)-T s_{\text {mixing }} \tag{2.5}
\end{align*}
$$

Thus, we see that if the temperature is low enough so that the second term on the right hand side of equation (4) is smaller than the first, it is energetically more favorable for the isotopes to remain separated than it is for them to mix.

Of course the above argument does not guarantee that the conditions for phase separation can met. Several authers have done calculations based on microscopic theories of the interactions involved and have shown that the conditions for phase separation are indeed met for liquid solutions of $\mathrm{He}^{3}$ and $\mathrm{He}^{4}$ (see for example Cohen and Van Leewen 21 ).

The phase separation curve for $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures is
shown in Figure 2.1 and has been established experimentally by many workers 22,23 ). The region between the horizontal axis and phase separation curve is a non physical region. Any liquid mixture of $\mathrm{He}^{3}$ and $\mathrm{He}^{4}$, under its own vapor pressure, at a temperature below the maxmum in the curve will consist of light $\mathrm{He}^{3}$ rich phase, whose concentration is determined by the left hand portion of the curve.


Figure 2.1 Phase diagram of $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures. $x$ is the concentration of $\mathrm{He}^{3}\left(x=n_{3} /\left(n_{3}+n_{4}\right)\right)$

At all temperatures below the $\lambda$-line on Figure 2.1 the $\mathrm{He}^{3}$ $\mathrm{He}^{4}$ mixtures are superfluid.

Perhaps the two most important features of the phase separation curve relating to the dilution refrigeration are the finite concentrations as $T$ approaches 0.0 K . The upper phase becomes essentially pure helium-3 and the lower phase has a limiting helium-3 concentration of $6.4 \%$. These two features as we shall see below contribute both to the simplicity of the theoretical description of the dilution process and to the effectiveness of the process at very low temperatures.

Looking at figure 2.2 we can easily notice the similarity of this system with a liquid in equilibrium with its own vapor. It turns out that this analogy provides a usefull model for the theoretical treatment of dilution refrigerator. London, Clarke and Mendoza ${ }^{16)}$ first used this analogy when they noted that the isotherms of osmotic pressure versus helium-3 molar volume for $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixture at low temperatures are strikingly similar to the pressure-volume isotherms of a condencible gas. The osmotic pressure is a real pressure due to the pressure of helium-3 in a weak $\mathrm{He}^{3}-\mathrm{He}^{4}$ solution. The helium-3 in dilute solutions of helium-3 in superfluid helium-4 has been shown both theoretically ${ }^{12,24)}$ and
experimentally ${ }^{25,26)}$ to be well described as an ideal noninteracting Fermi-gas in which the effective mass of the heliun-3 atoms is modified by the presence of the superfluid helium-4. The osmotic pressure is just the pressure of this ideal Fermi gas. Since there are no dissipative interactions between the helium-3 atoms and the helium-4 atoms, the analogy extends to hydrodynamics as well as thermodynamics.


Figure 2.2 Schematic of phase separated $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixtures at $T<0.1 \mathrm{~K}$.

With the liquid vapor model it will be done to calculate the cooling that takes place which helium-3 is transferred adiabatically across the phase boundary in a phase separated mixture. The correspondeces in the analogy are as follows;
concentrated $\mathrm{He}^{3}$ (upper) phase . . liquid
dilute $\mathrm{He}^{3}$ (lower) phase . . . . . vapor
osmotic pressure of $\mathrm{He}^{3}$ in $\mathrm{He}^{4}$. . vapor pressure

It is considered that the cooling process is essentially the same as that which takes place when the vapor is removed from above a liquid.
\$2.3.a In the Case of $\mathrm{He}^{3}$ Refrigerator

Consider a vessel containing a pure heliun-3 liquid and a helium-3 gas under the satulated vapor pressure in thermal equilibrium at very low temperatures. Our method will be to calculate the difference in the enthalpy of the
upper phase and the lower phase. Since the lower phase is pure helium-3, the molar enthalpy $\left(h_{3}\right)$ of a liquid helium-3 is

$$
\begin{equation*}
h_{l i q}=h_{o 3}+\int^{T} c_{l i q^{\prime}}^{p} d T^{\prime} \tag{2.5}
\end{equation*}
$$

where $h_{o 3}$ is a molar binding energy and $c_{1 i q}^{p}$ is a molar specific heat under the constant pressure. Since there is a very rare gas in the upper phase, the binding energy is zero Therefore, the molar enthalpy ( $h_{g a s}$ ) is

$$
\begin{equation*}
h_{\text {gas }}=\int^{T} c_{\text {gas }}^{p} d T^{\prime} \tag{2.6}
\end{equation*}
$$

where $C_{\text {gas }}$ is the molar specific heat of a helium-3 gas under the constant pressure. The difference of molar enthalpy is

$$
\begin{equation*}
h_{g a s}-h_{l i q}=h_{o 3}+\int^{T}\left(c_{g a s}^{p}-c_{l i q}^{p}\right) d T{ }^{\prime} \tag{2.7}
\end{equation*}
$$

Usually, $\mathrm{L}\left(=\mathrm{h}_{\mathrm{gas}} \mathrm{h}^{-\mathrm{h}_{\text {iq }}}\right.$ ) is called the latent heat and is the quantity of heat needed to boil off one mole of a liquid. This latent heat is shown in figure 2.3 and is almost constant in the low twmperatures.

For evaporation of helium-3 a pump is used and the pumping speed is assumed to be v ( $\mathrm{cc} / \mathrm{sec}$ )


Figure 2.3
Latent heat of helium-3 versus
temperature.

If a flow impeadance of helium-3 is neglected, the pressure of gas in a pumping tube is equal to a saturated vapor pressure of helium-3. Therefore, a mole-number of outgoing helium-3 gas $\left(\dot{n}_{3}\right)$ is

$$
\begin{equation*}
\dot{\mathrm{n}}_{3}=\mathrm{P}_{\mathrm{s}} \dot{\mathrm{v}} / \mathrm{RT}_{\mathrm{room}} \tag{2.8}
\end{equation*}
$$

where $P_{S}$, $R$ and $T_{\text {room }}$ are a saturated vapor pressure, a gas constant and a room temperature. Figure 2.4 shows a saturated vapor pressure of helium-3 versus temperature and $P_{S}$ falls down exponentially below 0.5 K . An analytical form of the saturated vapor pressure between 0.2 and 3.324 K is

$$
\begin{align*}
\ln P_{S}(\mathrm{mmHg})= & -2.49174 / \mathrm{T}+2.24846 \ln \mathrm{~T}+4.80386 \\
& -0.286001 \mathrm{~T}+0.198608 \mathrm{~T}^{2} \\
& -0.0502237 \mathrm{~T}^{3}+0.00505486 \mathrm{~T}^{4}, \tag{2.9}
\end{align*}
$$

(see ref. 27). The cooling power of helium-3 evapolation refrigerator is

$$
\begin{equation*}
\dot{\mathrm{Q}}(\text { ergs } / \mathrm{sec})=\dot{\mathrm{n}}_{3} \mathrm{~L}, \tag{2.10}
\end{equation*}
$$

where $L$ is a latent heat of helium-3.


Figure 2.4 Saturated vapor pressure versus temperature for liquid helium-3 and liquid helium-4.

```
$ 2.3.b In the case of He }\mp@subsup{}{}{3}-\mp@subsup{\textrm{He}}{}{4}\mathrm{ Dilution Refrigerator
```

Now consider a vessel containing a phase separated liquid helium-3 and helium-4 mixture in thermal equilibrium at a temperature below 0.1 K (see figure 2.2). Our method will be to calculate the difference in enthalpy of upper phase, $h_{3}$, and that of the lower phase, $h_{d}$, where $h_{3}$ and $h_{d}$ are molar enthalpy on each phase. Since the upper phase is essentially pure helium-3, $h_{3}$ is equal to $h_{l i q}$ (see eq. (2.5) ). The specific heat of pure helium-3 at the constant pressure, $\mathrm{C}_{\text {liq }}$, was deduced from the data of Brewer, Daunt and Sreedhar ${ }^{28)}$ and Abel, Anderson, Black and Wheatley ${ }^{29}$ ). Figure 2.5 shows the specific heat of pure helium-3 at low temperatures. Below 45 mK , $c_{l i q}^{p}=2.7 R T$; thus we get

$$
\begin{equation*}
h_{3}=h_{03}+1.35 \mathrm{RT}^{2} \tag{2.11}
\end{equation*}
$$

where $h_{o 3}$ is the zero point enthalpy. Pure liquid helium-3 in this temperature region is well described by Landau theory of Fermi liquids $30,31,32$ ) with the effective mass, m* , of the quasi-particles equal to about $2.8 \mathrm{~m}_{3}$ where $\mathrm{m}_{3}$ is the


Figure 2.5
Specific heat of pure helium-3 at low
temperatures
bare mass of helium-3 atom.
Since the helium-4 in the dilute phase is superfluid, the total entropy of the lower phase is just the entropy of the helium-3 atoms, which can be well represented as an ideal degenerate Fermi gas. Thus the molar entropy of the dilute phase is(see for example, Landau and Lifshitz ; Statistical Physics)

$$
\begin{equation*}
s_{d}=\frac{\pi^{2}}{2} R \frac{T}{T_{F}} \tag{2.12}
\end{equation*}
$$

where $T_{F}$, the Fermi temperature, is given by

$$
\begin{equation*}
T_{F}=\frac{\hbar^{2}}{2 k m_{e}}\left(3 \pi^{2} N\right)^{\frac{2}{3}} \tag{2.13}
\end{equation*}
$$

with

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{e}}= \\
& \text { effective mass of a helium-3 atom in a back- } \\
& \\
& \mathrm{N}=\text { ground superfluid helium- } 4=2.4 \mathrm{~m}_{3}, \\
& \mathrm{~N} \text {, }
\end{aligned}
$$

The enthalpy can, in general, be calculated from the relation

$$
\begin{equation*}
d h_{d}=T d s_{d}+V d P=T\left(\frac{d s}{d T}\right) d T+V d P \tag{2.14}
\end{equation*}
$$

The most important contribution to $P$ is the osmotic pressure.

Along the coexistence curve (see figure 2.1) the VdP term in equation (2.14) makes a significant contribution; in this case the condition $u_{3 c}=u_{3 d}$ is valid, that is the chemical potentials of the two phases must be equal. After inserting the proper numerical values, we obtain

$$
\begin{equation*}
h_{d}=h_{d 3}+14.65 R T \quad\left(J / \text { mole. } \mathrm{K}^{2}\right) \tag{2.15}
\end{equation*}
$$

This relation is needed for caluculating the cooling that occurs in the mixing chamber by dilution. Equation(2.15) can be obtained more easily by starting from the basic equation along the coexsistence curve; $\mu_{3 c}=\mu_{3 d}$, that is

$$
\begin{align*}
& \mu_{3 c}=\mu_{3 d}=h_{3}-T s_{3}=h_{d}-T s_{d}  \tag{2.16}\\
& s_{3}=\int_{c^{\prime}}^{T^{\prime}}{ }^{T} d T^{\prime}=c_{1 i q}^{p} \tag{2.17}
\end{align*}
$$

Thus it is seen that the molar entalpy difference between the lower end upper phases is given by

$$
\begin{equation*}
h_{d}-h_{3}=10.6 \mathrm{RT}^{2}+h_{d 3}-h_{o 3}\left(\mathrm{~J} / \text { mole } \mathrm{K}^{2}\right) \tag{2.18}
\end{equation*}
$$



Figure 2.6 Molar enthalpyies of pure helium-3 and the equilibrium ${ }^{4 r} e^{3}-\mathrm{He}^{4}$ solution at low temperatures.
where $h_{d 3}$ is a binding energy of helium-3 atoms in superfluid helium-4. The $h_{d 3}$ is almost the same as the $h_{03}$. The helium-3 in dilute phase is evaporated from a still and is exhausted by a pump. Therefore, a mole-number of outgoing helium-3 is almost constant. If we consider our vessel to be in thermal contact with a heat reservoir at a temperature T , then the rate of heat absorption $\dot{Q}$ that is drawn from the reservoir by the vessel is just

$$
\begin{equation*}
Q=10.6 \mathrm{n}_{3} \mathrm{RT}^{2} \quad(\mathrm{~J} / \mathrm{mole}) \tag{2.19}
\end{equation*}
$$

where $n_{3}$ is a mole-number of outgoing helium-3 per second. Equation (2.10) gives the total heat extraction rate of a single cycle dilution cryostat in which helium-3 is withdrawn from the dilute phase but is not returned to the upper phase. Figure 2.6 shows a complete enthalpy diagram for a dilution refrigerator.

We must stress the fact that $n_{3}$ is not a function of $T$ because the soluability is nearly independent of temperature below 40 mK .

```
$ 2.3.c Comparison of He }\mp@subsup{}{}{3}\mathrm{ Refrigerator and Dilution
    Refrigerator
```

We now clearly see the difference between the dilution process and ordinary evaporation. In a dilution refrigerator the number of helium-3 atoms removed by the pump per unit time is independent of the temperature at mixing chamber but the cooling capacity, per helium-3 atom crossing the phase boundary. decreases propotionally to the temperature. In the evaporation type refrigerator the number of molecules removed from the vapor phase is propotional to the vapor pressure, which decreases exponentially with temperature, while the cooling capacity per atom removed remains approximately constant. This basic difference of the two types of refrigerators results in differences in their operational characteristics as emphasized in figure 2.7.

Therefore, the available cooling power of helium-3 evaporator and dilution refrigerator are

```
helium-3 evaporator
    Q = \dot{\mp@subsup{n}{3}{}}(T) L (J/seC) L = constant,
```

dilution refrigerator (single shot type)
$\dot{Q}=\dot{n}_{3} \times 10.6 \mathrm{RT}^{2} \quad(\mathrm{~J} / \mathrm{sec}) \quad \dot{n}_{3}=$ constant.

Figure 2.6 shows the flow diagram of both type refrigerator Figure 2.7 shows the cooling power of a $\mathrm{He}^{3}$ evaporation refrigerator and of a $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator as a function of temperature. It has been assumed the pump used can handle 5.0 (litres/sec). This corresponds in the dilution refrigerator to a helium-3 circulation rate of 20 ( $\mu \mathrm{mole} / \mathrm{sec}$ ) at all temperatures. In the $\mathrm{He}^{3}$ refrigerator the same circulation rate is btained at 0.5 K . We can notice that in the temperature range $\langle 0.37 \mathrm{~K}$ the cooling capacity of a dilution refrigerator become larger than that of.a evaporation refrigerator.

$$
\begin{aligned}
& \mathrm{He}^{3}-\mathrm{He}^{4} \text { dilution } \\
& \text { refrigerator }
\end{aligned}
$$



Figure 2.6
Schematic flow diagram of the $\mathrm{He}^{3}$ evaporation refrigerator and $\mathrm{He}^{3}-\mathrm{He}{ }^{4}$ dilution refrigerator.


Figure 2.7 The cooling power of a $\mathrm{He}^{3}$ evaporation refrigerator and of a $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator as a functions of temperature. It has been assumed that the pump used can handle $5(1 / \mathrm{sec})$ of gas at all relevant pressure. This corresponds in the dilution refrigerator to a $\mathrm{He}^{3}$ circulation rate of 20 ( u mole/sec) at all temperatures. In the $\mathrm{He}^{3}$ cryostate the same circulation ratio is obtained at 0.5 K .

## $\$ 2.4$ <br> Continuous Dilution Refrigerator

There were basic ideas for realizing a continuously operating refrigerator, one was to circulate superfluid helium-4 and the other to circulate helium-3. In the beginning most work was done on the first idea and this was not very succesful. It lasted untill 1965 when the first dilution refrigerators based on the circulation of helium-3 were developed. but it did not cooled below 0,1 K. In 1966, Hall, Ford and Tompson reported on their first refrigerator with which they reached a temperature of about $70 \mathrm{mK},{ }^{17)}$ at the same time, Neganov, Borisov and Liburg reported on a high cooling power refrigerator with a final temperature of $56 \mathrm{mK}^{\text {l8) }}$. These refrigerators based on a circulation of helium-3. Today the refrigerators of this type is a standard one. The first dilution refrigerator based on the circulation of helium-4 was constructed by Taconis, Pennings, Das and Ouboter in 1971.

```
$ 2.4.a Dilution Refrigerator based on the
Circuration of Helium-3
```

A schematic flow diagram of the dilution refrigerator is shown in figure 2.8. Concentrated helium-3 is condensed in a helium-4 bath at about 1.3 K at C . The liquid produced at $C$ passes down a flow-limiting capillary, designed to produce adequate pressure drop for condensation to occur at $C$, to the still $S$. This capillary is taken from $C$ to $S$ inside the pumping tube from the still, so that the incoming liquid is cooled by heat exchanger with the vapor to the temperature of the still $\mathrm{T}_{\mathrm{s}}$. Between the still $S$ and the mixing chamber $M$ the liquid is further cooled in a heat exchanger $H$ and in $M$ heat is extracted from a load by the passeage of helium-3 atoms from the concentrated to the dilute phase. From $M$ to $S$ the helium-3 returns up the heat exchanger $H$ through the stationary superfluid helium-4. In the still concentrated vapor is distilled from the dilute liquid and returned to $C$ by a pump at room temperatures.

Since this is a stationary flow process, its oreration is most clearly understood by means of an enthalpy flow diagram, in fact the osmotic enthalpy defined by


Figure 2.8 Schematic diagram of the continuous refrigerator based on the circulation of $\mathrm{He}^{3}$

```
$ 2.4.b Dilution Refrigerator through which
    Helium-4 is circulated
```

Figure 2.9 shows a schematic drawing of the main part of the refrigerator through which helium-4 is circulated by Taconis et al. (see for example; ref. 30 )

The lower (demixing) chamber (D) is kept at about 0.25 K by means of a helium-3 bath ( $B$ ) to which it is mounted. The upper (mixing) chamber ( M ) is connected to the lower chamber (D) via a cupronickel capillary (C). There are two superleaks; the first ( $S_{1}$ ), through which superfluid helium-4 is supplied, is brought in
thermal contact with the helium-3 cryostat and goes to nearly the top of the upper chamber (M); the helium-4 is taken out through the second superleak $\left(S_{2}\right)$ which goes from nearly the bottom of the lower chamber to outside the vacuum jacket. Above the vacuum jacket both superleaks are connected via capillaries to a helium-4 gas handling system outside the crypstat. The system can be filled with helium-3 by means of a capillary (F) to the lower chamber. The upper chamber and the capillary (C) are provided with cerous magnesium nitrate thermometers and a germanium thermometer (G) is mounted on the helium-3 cryostat.


Figure 2.9 Schematic diagram of the continuous refrigerator based on the circulation of $\mathrm{He}^{4}$.

## \$2.5 The Construction of Dilution Refrugerator

In this paragraph the aspects involved in the design of the various elements of the continuous dilution refrigerator will be considered in some detail.
\$ 2.5.a The mixing chamber and ultimate temperature

First the thermodynamics involved at the mixing chamber will be considered when it is operating continuously at a temperature below 0.1 K . Let us assume that $\mathrm{n}_{3}$ moles per second of pure helium-3 is entering the top of the mixing chamber at a temperature $T_{i}$ and the dilute phase is leaving the bottom of the chamber at a temperature $T_{m}$. Since $T_{i}$, which the concentrated phase leaves the heat exchanger, is greater than $T_{m}$, a significant part of heat load on the mixing chamber is just cooling in incoming helium-3 down to $T_{m}$. Assuming that all external heat inputs per second to the mixing chamber is $\dot{Q}_{e}$, the stationally condition is

$$
\begin{equation*}
10.6 \dot{\mathrm{n}}_{3} \mathrm{~T}_{\mathrm{m}}^{2}=\dot{\mathrm{n}}_{3}\left[\mathrm{~h}_{3}\left(\mathrm{~T}_{\mathrm{i}}\right)-\mathrm{h}_{3}\left(\mathrm{~T}_{\mathrm{m}}\right)\right]+Q_{e}, \tag{2.20}
\end{equation*}
$$

where $h_{3}(T)$ is molar enthalpy of pure helium-3.


EXTERNAL HEAT INPUT

$$
10.6 \dot{n}_{3} R T_{m}^{2}=\dot{n}_{3}\left[h_{3}\left(T_{i}\right)-h_{3}\left(T_{m}\right)\right]+\dot{Q}_{e}
$$

Figure 2.10 Schematic diagram illustrating the
thermodynamics of the mixing chamber. Here
$h_{3}$ is a molar enthalpy of pure helium-3 and $T_{i}$ and $T_{m}$ are the temperature of incoming helium-3 and mixing chamber, respectively

From equation (2.11), in the temperature region below 0.1 K , $h_{3}(T)$ is given by

$$
\begin{equation*}
h_{3}(T)=h_{03}+1.35 \cdot \mathrm{RT} \tag{2.11}
\end{equation*}
$$

where $h_{o 3}$ is the zero point enthalpy Substituting the equation(2.11) to equation (2.20), we get

$$
\begin{align*}
& 10.6 \dot{\mathrm{n}}_{3} \mathrm{R} \mathrm{~T}_{\mathrm{m}}^{2}=\dot{\mathrm{n}}_{3}\left[1.35 \mathrm{RT}_{\mathrm{i}}^{2}-1.35 \mathrm{RT}_{\mathrm{m}}^{2}\right]+Q_{e} \\
& T_{m}^{2}=\frac{\dot{Q}_{e}+1.35{\dot{n_{3}}}^{R} T_{i}^{2}}{11.95 \dot{\mathrm{n}}_{3} \mathrm{R}} \tag{2.21}
\end{align*}
$$

In the temperature region above 0.1 K , equation (2.21) must be changed.
(1)

$$
\text { Setting } \dot{Q}_{e}=0 \text { in equation (2.11), we get the }
$$ low temperature limit in continuous operation

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=0.336 \mathrm{~T}_{\mathrm{i}} \tag{2.22}
\end{equation*}
$$

and we see that this low temperature limit for $T_{m}$ is determined by the efficiency of the heat exchanger, that is, the value of the incoming helium-3 can be reduced before it enters the mixing chamber.
(2) When the external heat input is constant and $T_{i}=T_{m}$, for example; $10^{-9}$ watt by a electrical resistor for temperature monitor ( $1000 \Omega-1 \mu \mathrm{~A}$ ) or a black body radiation $\left(5.7 \times 10^{-12} \mathrm{~T}^{4}\right.$ watt $\left./ \mathrm{cm}^{2}\right)$, equation(2.20) is rewritten


Here $R=8.31434 \mathrm{~J} / \mathrm{mol} \mathrm{K}, \quad \dot{Q}_{e}=10^{-9} \mathrm{~J} / \mathrm{sec}$ and $\dot{\mathrm{n}}_{3}=10^{-5} \mathrm{~mol}$ /sec typically.


$$
\begin{equation*}
\cong 0.001 \tag{K}
\end{equation*}
$$

Therefore, the lowest temperature is limited about 1.0 mK .
(3) It was first pointed out by Vilches, Wheatly and Abel ${ }^{8)}$ that viscous heating due to the flow of dilute phase from the mixing chamber might be a source of heating. Wheatly et al. pointed out that the viscousheating is the intrinsic temperature limit. We will consider a single cycle process where the helium-3 removed from the still is not returned.

Whennever a viscous fluid is caused to flow, a heat is given off because of mutual friction in the fluid. The fact that viscous heating becomes apparent only at the lowest temperatures results from the temperature dependence of the viscosity and the thermal conductivity of the dilute phase. Although no direct measurements of the viscosity has done, ultrasonic attenuation measurements by Abraham et al. 31) agree with the theory of Bayn and Ebner ${ }^{32 \text { ) }}$ Roach ${ }^{33 \text { ) has used }}$ this theory, combined with that of Bardeen, Bayn and Pines 34), to calculate the limiting low temperature. The viscosity at the low temperatures is

$$
\begin{equation*}
\eta_{d}=\frac{5 \times 10^{-7}}{T^{2}} \quad\left[\frac{\text { dyne sec }}{\mathrm{cm}^{2}}\right] \tag{2.25}
\end{equation*}
$$

Abel, Johnson, Wheatley and Zimmerman ${ }^{351}$ ) have measured the low temperature thermal conductivity, $\mathbb{R}_{d^{\prime}}$ of dilute $\mathrm{He}^{3}-\mathrm{He}^{4}$ solution and found that below about 0.01 K is

$$
\begin{equation*}
R_{d} \cong \frac{30}{T^{3}}\left[\frac{\operatorname{erg}}{\sec \mathrm{~cm} \mathrm{~K}}\right] \tag{2.26}
\end{equation*}
$$

So we see that both the viscosity and thermal conductivity start to become appreciable as $T$ approaches zero. A approximate analysis of the viscous heating will be given here.


Figure 2.11 Diagram for viscous heating analysis

The situation is shown in figure 2.11. A tube of radius a conducts the dilute phase from the mixing chamber. We shall calculate the heat generated in length $l$ of this tube by viscous flow and assume this heat must be removed by the mixing chamber. It is also assumed that the length $\ell$ is isothermal due to the high thermal conductivity of the dilute phase.

The rate of viscous heating $\dot{Q}_{v}$ in this section of tube is geven by

$$
\begin{equation*}
\dot{Q}_{v}=\dot{V}_{d} \Delta P \tag{2.27}
\end{equation*}
$$

where $V_{d}$ and $P$ are volume flow rate of the dilute phase and pressure drop across the length of tubing, respectively. Assuming Poiseille flow ( i.e. no turbulence) we have

$$
\begin{equation*}
\Delta P=\frac{8 \dot{V}_{d} \ell \eta_{d}}{\pi a^{4}} \tag{2.28}
\end{equation*}
$$

(see Landau and Liphshitz; Fluid Mechnics) Now $\dot{V}_{d}$ can be weitten in terms of the molar flow rate of helium-3, $\dot{n}_{3}$. For concentrátion $6.3 \%$ this is

$$
\begin{equation*}
\dot{\mathrm{V}}_{\mathrm{d}}=\dot{\mathrm{n}}_{3} \mathrm{~V}_{\mathrm{d}} / 0.063 \tag{2,29}
\end{equation*}
$$

where $V_{d}$ is molar volume of dilute phase. Taking $V_{d}=$ $28 \mathrm{cc} / \mathrm{mole}{ }^{27}$ ), equation(2.27) becomes

$$
\begin{equation*}
\dot{Q}_{v}=\frac{8 \times 28^{2}}{0.063^{2}} \frac{l \eta_{\dot{a} \dot{n}_{3}^{2}}^{\pi a^{4} T^{2}} \quad[\text { erg } / \sec ]}{} \tag{2.30}
\end{equation*}
$$

Setting this equal to the total heat that can be removed, which is given in equation (2.21) we have for the temperature limit due to viscous heating

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\left|\frac{0.79 \dot{\mathrm{n}}_{3} l}{10.6 \pi \mathrm{r}}\right|^{\frac{1}{4}} \frac{1}{\frac{1}{a}} \quad[\mathrm{~K}] \tag{2.31}
\end{equation*}
$$

We see that $T_{m}$ is not greatly dependent upon the length $Q$ we take. Putting in tylical values for the parameters involved, $\dot{n}_{3}=10^{-5}$ moles $/ \mathrm{sec}, \quad \ell=1.0 \mathrm{~cm}$ and $\mathrm{a}=0.05$ cm, respectively, we get

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=0.005 \quad[\mathrm{~K}] \quad\left(=\mathrm{T}_{\text {limiting }}\right) \tag{2.32}
\end{equation*}
$$

This value agrees well with that deduced by Wheatley et al. 8) We see from equation (2.30) that we shuld be able to
reduce $\mathrm{T}_{\text {lim }}$ by increasing the radius of the dilute phase


Figure 2.12 Thermal conductivity coefficient for dilute solutions of $\mathrm{He}^{3}$ in $\mathrm{He}^{4}$ of normal concentration; $1.3 \%, 5,0 \%$ and at saturated vapor pressure.
tube. However, we cannot increase this radius without limit for two main reasons. The first is fairly simple. Increasing the size of the tubing increases the conduction heat leak down the metal of the tube itself. unless the wall thickness can be made proportionally smaller Since the wall thickness of the tubing used is almost always made as small as possible anyway, this constitutes a problem.

The second is due to an effect noticed by H.London and mentioned by Hall et al. ${ }^{17 \text { ) If the osmotic pressure is }}$ constant, then the concentration of helium-3 at the top near the still is less than at the bottom. Hence, there may be a tendency towards a gravitational instability. London notes that such an instability would be damped by the flow of helium-3 in the tube and estimated a critical diameter of about 1 mm for typical operating conditions.
\$ 2.5.b Heat exchanger

The heat exchanger finally determined the performance of the dilution refrigerator. In the temperature region below 1.0 K it becomes very difficult to achieve good thermal contact between two streams for two main reasons; (a) the thermal conductivities of most materials that can used to separate the two streams become very small below 0.l K. and (b) the thermal contact between liquid helium and solid surfaces is hampered by the Kapitza boundary resistance.

For the concentrated side the Kpitza-resistance between copper and helium-3 is given by

$$
\begin{equation*}
R\left(\mathrm{He}^{3}-\mathrm{Cu}\right)=2 \times 10^{-5} \mathrm{~T}^{-3} \text { sec } \mathrm{cm}^{2} \mathrm{~K}^{4} / \mathrm{erg}, \tag{2.33}
\end{equation*}
$$

The boundary resistance in the dilute phase is more complicated. Wheatly suggested that it is most probable that in the dilute phase energy is first transferred from the walls into the helium-3 quasiparticles via a helium-3 quasi-particle-helium-4 phonon interaction. Since the amount of heat that must be transferred in the exchangers diminishes
with $\mathrm{T}^{2}$ and boundary resistance rise with the third power of $T$, the effective surfaces of the exchanger should be linearly increased with falling temperature.

Usually the heat exchanger is of the following two types; (I) a continuous tube-in-tube heat exchanger ${ }^{36}$ ) and (II) discrete heat exchanger 8) The refrigerator of the auther has a simple continuous heat exchanger with a tube-in-tube type.

## (I) Continuous tube-in-tube heat exchanger

The heat exchangers on the first successful refrigerators ${ }^{17}$ ) were of the continuous type. In this type of heat exchanger an attempt is made to keep the two counterflowing streams in thermal contact continuously while maintaining a low heat flow along the direction parallel to the flow.

Let us consider the efficiency of such a heat exchanger. Figure 2.13 shows a small elements of our continuous heat exchanger. It is assumed that the limit to the thermal contact between the two streams is the Kapitza registant of the area elements dA . On the concentrated side the helium-3, flowing at a rate $\dot{\mathrm{n}}_{3}$, has its tempe-


Figure 2.13
Differential element of the continuous heat exchanger.
rature reduced by the amount $\mathrm{dT}_{3}$ so that equating the amount of heat its takes to do this to the amount of heat flowing through the serfaces element $d A$, we get

$$
\begin{align*}
\dot{n}_{3} c_{3}^{P} d T_{3} & =\alpha\left(T_{3}^{4}-T_{d}^{4}\right) d A \\
& =\alpha T_{3}^{4}\left[1-\left(T_{d} / T_{3}\right)^{4}\right] d A, \tag{2.34}
\end{align*}
$$

The right hand side of equation (2.34)is based on the Anderson, Connolly and Wheatley ${ }^{37}$ ) where we have neglected the difference between the Kapitza resistance for pure $\mathrm{He}^{3}$ and the dilute mixture. $c_{3}^{P}$ is the molar heat capacity of pure helium-3, $\mathrm{T}_{3}$ and $\mathrm{T}_{\mathrm{d}}$ are the respective temperatures of the concentrated phase and dilute phase. For simplicity we assume $\mathrm{T}_{\mathrm{d}}$ is considerably lower than $\mathrm{T}_{3}$, then the total area of the heat exchanger is

$$
\begin{equation*}
A=\frac{\dot{n}_{3}}{\alpha} \int_{T_{S}}^{T i} \frac{c_{3} d T_{3}}{T_{3}^{4}} \tag{2.35}
\end{equation*}
$$

where $T$ is the temperature of the still and $T_{i}$ is the outlet temperature from the heat exchanger

Figure 2.5 shows the specific heat of pure helium-3. We see that it is not unreasonable approximation to devide this curve into two temperature ranges, $T<0.17 \mathrm{~K}$ and
T) 0.17 K and $\mathrm{c}_{3}$ is assumed to be linear in each region as shown in figure 2.5 . We get

$$
\begin{array}{lll}
c_{3}=2.25 \times 10^{8} \mathrm{~T} & {\left[\frac{\mathrm{era}}{\mathrm{~mole} \mathrm{~K}}\right]} & \mathrm{T}_{\mathrm{i}}<0.17 \\
c_{3}=7.77 \times 10^{7} \mathrm{~T}+2.5 \times 10^{7} & {\left[\frac{\mathrm{erg}}{\mathrm{~mole} \mathrm{~K}}\right]} & \mathrm{T}_{\mathrm{i}}>0.17 \tag{2.37}
\end{array}
$$

Inserting these in equation( ) and integrating, we get

$$
\begin{array}{lll}
A= & {\dot{n_{3}}}_{\alpha}^{\alpha}\left[\frac{1.94 \times 10^{7}}{T_{i}^{4}}+\frac{5 \times 10^{6}}{T_{i}^{5}}\right] \mathrm{cm}^{2} & \mathrm{~T}_{\mathrm{i}}\langle 0.17 \mathrm{~K}(2.38) \\
A=\frac{\dot{n}_{3}}{\alpha}\left[\frac{5.63 \times 10^{7}}{\mathrm{~T}_{i}^{4}}-4.07 \times 1010\right] \mathrm{cm}^{2} & \mathrm{~T}_{\mathrm{i}}>0.17 \mathrm{~K}(2.39)
\end{array}
$$

Both of equations assumed that $T_{S} \gg T_{i}$. In equation(2.38) we can make the further simplification that the second term is only a small correction. Then inverting equation (2.38, 39) we get

$$
\begin{array}{ll}
T_{i}^{4}=\frac{1.94 \times 10^{7} \dot{\mathrm{n}}_{3}}{A} & \mathrm{~T}_{i}<0.17 \\
T_{i}^{4}=\frac{5.63 \times 10^{7}}{4.07 \times 10^{10}+A / \dot{n}_{3}} & T_{i}>0.17 \tag{2.41}
\end{array}
$$

Let us take $1 / \alpha=10^{-5} \sec K^{4} \mathrm{~cm}^{2} /$ erg which makes the Kapitza resistance involved about a factor of 10 higher than that measured by Wheatley et al. ). Then we get

$$
\begin{align*}
& \mathrm{T}_{\mathrm{i}}=\left[\frac{1.94 \times 10^{2} \dot{\mathrm{n}}_{3}}{\mathrm{~A}}\right]^{1 / 4} \mathrm{~K}  \tag{2.42}\\
& \mathrm{~A} / \dot{\mathrm{n}}_{3}\left\langle 2.5 \times 10^{5}\left[\frac{\mathrm{~cm}^{2} \mathrm{sec}}{\mathrm{~mole}}\right]\right.  \tag{2.43}\\
& \mathrm{T}_{\mathrm{i}}=\left[\frac{5.63 \times 10^{2} \dot{\mathrm{n}}_{3}}{4.07 \times 10^{5} \mathrm{~A}}\right]^{1 / 4} \mathrm{~K} \\
& \left.\mathrm{~A} / \dot{\mathrm{n}}_{3}\right\rangle 2.5 \times 10^{5}\left[\frac{\mathrm{~cm}^{2} \mathrm{sec}}{\mathrm{~mole}}\right]
\end{align*}
$$

From equation(2.42) we see that if $n_{3}$ is too large then $\mathrm{T}_{i}$ becomed high and low temperature can not be achieved. In our refrigerator $\dot{n}_{3}$ is about $10^{-4} \mathrm{~mole} / \mathrm{sec}$ and
$A$ is about $10 \mathrm{~cm}^{2}$ (inner tube $0.64 \times 0.33 \times 1000 \mathrm{~mm}$ ). Inserting this $\mathrm{A} / \dot{\mathrm{n}}_{3}=10^{5} \mathrm{~cm}^{2} \mathrm{sec} / \mathrm{mole}$ in equation (2.42), we get

$$
\begin{equation*}
\mathrm{T}_{\mathrm{i}}=\left[1.94 \times 10^{-3}\right]^{1 / 4} \mathrm{~K} \cong 0.209 \mathrm{~K} \tag{2.44}
\end{equation*}
$$

If we assume external heat leak is zero, from equation (2,22) in \$2.5.a we get

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=0.336 \mathrm{~T}_{\mathrm{i}} \cong 0.070 \mathrm{~K} \tag{2:45}
\end{equation*}
$$

This value is almost the same as the value measured by

MOssbauer thermometer in our experiment ( 0.080 K ).
Equations(2.42) and (2.43) are actually more restrictive of the total surface area $A$ than $\dot{n}_{3}$ since $\dot{n}_{3}$ must be large enough to maintain a high heat extraction rate above the limiting temperature.
( II ) Step Heat Exchanger

The preceding analysis has shown that it is very desirable to make the heat exchanger surface area as large as possible. It turns out that such a large surface area is easier to achieve if we allow the heat echanger process to take place in a stepwise manner rather than continuously. Such a modular heat exchanger is shown schematically in figure 2.14. In this type of heat exchanger the two counterflowing streams are brought into thermal contact at discrete points. The heat exchange modules are separated by regions of low thermal conduction in order to maintain a low heat flow along the respective directions of flow of the two streams.

The simplest means of attaining very large surface area with a resonably small volume is to use very finely divided particles.


Figure 2.14
Schematic diagram of step heat exchangers

The helium-3 is evaporated from the still to maintain the flow. Assuming no helium-3 is evaporated, then the partial chemical potentials must be equal in the mixing chamber and still, and no osmotic pressure gradient can exist. But, since still and mixing chamber are at different temperatures, there must exist a gradient in concentration $x_{d}$, which is in a first approximation given by

$$
\begin{equation*}
P_{o s m}=\left(T_{m} X_{d m}-T_{s} X_{d s}\right) R / V_{4}=0, \tag{2.46}
\end{equation*}
$$

where $X_{d m}$ and $X_{d s}$ are concentration of helium-3 in the dilute phase of the mixing chamber and in the still, respectively. With $X_{d m}=0.064$ we get for a still temparsture of $0.7 \mathrm{~K}, \mathrm{X}_{\mathrm{ds}}=0.008$. This small concentration is still lowered when helium-3 is evaporated from the still. Then osmotic pressure gradient is built up , which acts as the driving force for the helium-3 atoms to cross the phase boundary in the mixing chamber and produce cooling. For a still temperature of 0.7 K , the pumped gas should cotain about 96 \% helium-3. In practice the result is worse, acording to the superfluid film flow in the still. The enrichment of helium-3 gets better
with lower still temperatures and higher flow rates. Most refrigerators work with still temperatures between 0.6 and 0.8 K and helium-3 concentrations between 70 and $80 \%$. Provided the heat exchanger is good, the helium-4 admixture in the concenterated side has only a small effect on the final temperature of the refrigerator. The helium4 admixture causes an aditional load mainly on the warm end of the heat exchanger, where phase separation occurs. At temperatures below 0.15 K nearly no further separation takes places, since the concentration of the dilute phase remains practically constant below this temperature and no further heat of mixing must be handled if the exchanger. Some provision must be made in the still for keeping the film flow rate low. Since the film flow rate is propotional to the smallest perimeter over which it must flow, the usual method taken to decrease the film flow is to install a small orifice in the top of the still. This orifice should be small enough to keep the film flow but large enough so as not to impede the flow of cencentrated helium-3 gas from the still. Another method for reducing the film flow is discussed by Whitmore et al.38) which involves heating the orifice.

In this section, the apparatus of the dilution refrigerator is described. This system was constructed by Osaka Sanso Kogyo Co.
\$2.6.a Circulation System of $\mathrm{He}^{3}-\mathrm{He}^{4}$ Dilution Refrigerator. (shown in figure 2.15)
(1) Pumping system

The concentrated helium-3 is removed from the still via a pump tube which runs through the 1.27 K bath and the main helium-4 bath. This tube was designed to have a conductance for helium-3 of about $5.6 \times 10^{-4}$ (moles $/ \mathrm{sec}$ ) when the pressure at the still is $2 \times 10^{-2}$ (torr). It diameter increases in three steps from $6 \phi \times 0.5$ at the still to 2 inches at room temperature region.

The pumping system for the vapor removal is an Edwards model E02 (150 $1 / \mathrm{sec}$ ) backed by a ULVAC model PVD-150 (150 $1 / \mathrm{min}$ ) mechanical rotary pump. This rotary pump was completely sealed and this sysytem is capable of a maximum circulation rate of about $5.6 \times 10^{-4}$ moles of $\mathrm{He}^{3}$ /sec.


In our experiments to reauce back~streaming of oil from the diffusion pump into refrigerator, a nitrogen cooled trap is placed between the diffusion pump and the dewar system.
(2) Gas mixing and handiling system

The gas handling system consists of 3-storage tanks with appropriate valves, interconnecting tubing, and pressure measuring devices. Two tanks have a volume of 10 liters and the other 20 liters but only 20 liters tunk is used.

Provisions are made in the gas handing system for introducing the mixture of helium-3 and helium-4 to the refrigerator either through the returen line or through the pumping tube. In early experiments, a molecular sheave trap was used in the system for removing the air from the helium gas, but it has no efficiency. So instead of a molecular sheave, a liquid helium-4 trap is used. When the helium gas is flowed through the liquid helium trap, which is held at liquid helium temperature, the air in the gas is absorbed by the cold trap. Once the helium gas has been so cleaned, the trap may be warmed to room temperature. It is then ready for use again.
(3) Return line for the concentrated helium-3

The concentrated helium-3 gas is flowed through the liquid helium trap, maintained at 4.2 K , before it is conducted back to the refrigerator This removes any air that may get into the gas. After leaving the trap the gas is conducted to the dewar top plate via a flexible stainless steel tube.

The line that carries the concentrated helium-3 gas passes through the nitrogen bath, the main helium bath and 1.0 K bath, maintaining the thermal contuct.

Below the 1.0 K bath a constriction is put in the return line. The purpose of the constriction is to maintain the pressure of the returning helium-3 at a high enough value so that it will recondense in the i. 0 K bath. A flow limiting cappilary tube $(0.05 \mathrm{~cm} 0 . \mathrm{d} . / 0.0025 \mathrm{~cm}$ wall / 50 cm ) was used for the constriction.
\$ 2.6.b Main parts and Operating Characteristic of the Dilution Refrigertor

The refrigerator of the auther has a single heat exchanger with tube-in-tube type and only 20 minutes for the cooling from 1.3 K to 0.08 K . A schematic of the refrigerator assembly is shown in figure 2.16 .
(1) Main parts of the dilution refrigerator

The still is a cylinder made of OFHC copper and has a volume of $11.8 \mathrm{~cm}^{3}\left(\pi \times 3.4 \times 3.4 \times 3.1 / 4 \mathrm{~cm}^{3}\right)$. The heat exchanger to cool the returning helium-3 to the temperature of the siill is wound into a coil which passes through the still. Inside the rop of still, near the pump tube, a small diameter orifice is machined to limit the superfluid film flow. The heater which is necesseary to regulate the still temperature is a $300 \Omega$ manganese wire resistor But it was not used because the temperature of the still became 0.8 K without this heater The temperature of the sill is monitered with a $100 \Omega$ Speer resistor attached to the still with Apiezon $N$ greese. Typical power input to the resistor during measurement is $10^{-11}$ watt.


The mixing chamber is a cylinder made of OFHC copper and has a volume of $2,3 \mathrm{~cm}^{3}$. The tomperature of the mixing chamber is monitered by a $100 \Omega \circ$ resistor that have been previously calibrated in .... $\quad . \quad .08 \mathrm{~K}$ to 1.27 K against the MOssbauer thermometer. The resistance thermometer on the mixing chamber was mounted in exactly the same manner as the still heater.

The heat exchanger is of the tube-in-tube type and have a surface of $4.3 \mathrm{~cm}^{2}$. The two streams in this tube counterflow in thermal contact continuously while maintaining a low heatflow along the direction parallel to the flow. In the proceeding section, it was stated that the temperature of the concentrated helium-3 outgoing from the exchanger become 0.209 K with the effective surface of 4.3 $\mathrm{cm}^{2}$ and the flow rate of $3.8 \times 10^{-4}$ moles/sec, theoretically.

```
Operating ch cte ic or the c
refrirerator
```

```
    s.
liquid nitroy-- reservi.
by putting 10 litres of helil , ir
The cooldown to liquid nitroge: :emperature takes about l.
```

hours.

Once the apparatus reaciss at 77 K , the heliu exchange gas of about $10^{-4}$ tor are introduced to the xchange room and the liquid helium transfer is begun. The :lium transfer usually takes about 2.5 hours by which time he apparatus inside the vacuum can bas been cooled to 4.2 K by means of the exchange gas.

After the dewar is filled by liquid helium-4, the helium in $l \mathrm{~K}$ can is evaporated. $\quad z$ the same time the exchange ga is pumped out and the $\mathrm{He}^{3}-\mathrm{He}^{2}$ mixture is introduced into the dilution refrigerator to ce dence.

After one hour for pumpins, out the exchange gas, the $\mathrm{He}^{3}-\mathrm{He}^{4}$ mixture is circulated. If the initial gas mixture was properly chosen, the mixing chamber reaches its lowest temperatur

in about 20 minutes. If the initial mixture was not properly chosen, the temperature at the mixing chamber and at the still becomes unstable. Figure 2.17 shows the cooling process for the dilution refrigerator with some quantities of $\mathrm{He}^{3}$ applied. In the case of ( A ) in figure 2.17, the quantity of applied $\mathrm{He}^{3}$ was very small. The temperature at the still showed the vibrating behavior curiously. In the case of (B) in figure 2.17, the quantity of an applied $\mathrm{He}^{3}$ is somewhat small and the temperature at the mixing chamber was not stable. In the case of (C) in figure 2.17, since the quantity of an applied $\mathrm{He}^{3}$ was suitable, the temperature at the mixing chamber and the still were very stable. The lowest temperature at the mixing chamber was about 0.08 K by the MOssbauer thermometer. The equilibliumproperties of dilution refrigerator are given in Table 2.1 under no external load.

The heat extraction curves for no still heater are given in figure 2.18 . The curve by Wheatley et al. is shown for comparison.


Figure 2.18
Heat extraction curve for dilution refrigerator The horizontal axis expresses the absolute temperature of the mixing chamber and the vertical axis expresses the heat applied to the mixing chamber.
Table 2.1 Equilibrium Properties of $\mathrm{He}^{3}-\mathrm{He}^{4}$ Dilution Refrigerator

| Still heater | 0 | $0.8 \times 10^{-4}$ moles/sec |
| :--- | :--- | :--- |
| Circulating rate | 0.002 tor |  |
| Pressure at the still | $20-30$ | tor |
| Pressure at the inlet line | 1.7 | liters/STP |
| Quantity of applied $\mathrm{He}^{3}$ | 4.2 | liters/STP |

## CHAPTER III

## NUCLEAR POLARIZATION AND THE EFFECT OF THE

 MOSSBAUER SPECTRUM AT VERY LOW TEMPERATURESAmong the recent fundamental scientific discoveries the MOssbauer effect has the distinction of having been one of the most fruitful. Today, the domain of MBssbauer effect which originally included only low energy nuclear physics, had expanded to include relativity, magnetism, metallurgy, chemistry, and even biophysics.

In this chapter, it will be stated that the nuclear polarization occurs at very low temperatures and it has a serious effect on the MBssbauer spectrum. A concise explanation to a $\beta$-transition of nucleus will be also be presented.

There are many reasons for pursuing MBssbauer experiments at very low temperatures. We should first mention studies of hyperfine intractions as a function of temperature in substances with magnetic transitions well below 1.0 K. Second, experiments which make use of nuclear polarization can only conducted at temperatures at which the thermal energy $k T$ is comparable with the hyperfine interaction energy A valuable feature of polarization experiments using the M8ssbauer technique is that macroscopic orientation of the nuclei is not necessary. Finally, we should mention relaxation phenomena and localized moments in dilute alloys, in particular the Kondo-effect, as possible candidates for M M ssbauer studies at very low temperatures.

At low temperatures a serious problen is radioactive heating. For a $10 \mathrm{mc} \mathrm{co}{ }^{57}$ source the total heating power is 80 ergs/sec, a load which if absorbed by the mixing chamber, is sufficient for preventing the refrigerator from cooling below $0.07 \mathrm{~K}^{40}$ ). In absorber experiments raioactive heating is generally very small, and dalculations show that one should be able to reduced the temperature at least an order of magnitude further

```
$3.2 Review of m8ssbauer Spectroscopy
```

M8ssbauer spectroscopy has become a standard spectroscopic tool in the decade since its discovery. Numerous texts and papers describing its principles and applications are to be found in the literature. 41-44) Consequently, we shall just briefly discuss some of the features of MBssbauer spectra particularly relevant to our experiment.

The parameters of the MOssbauer transition on $\mathrm{Fe}^{57}$ are indicated on figure 3.I which shows the effects of three electromagnetic perturbations on the energy levels, the isomer shift, quadrupole and Zeeman splittings. We shall describe the MOssbauer line width and the recoilless fractions, then proceed to discussions of these perturbations.

## \$ 3.2.a Emission from bounded atoms and recoillessfraction

In 1956 and 1957, R.L.MÖssbauer was studying the scattering of gamma rays at the Max Plank Institute for Medical Research in Heidelberg. While comparing the scattering of the 129 eV gamma ray of $\mathrm{Ir}^{191}$ by $\operatorname{Ir}$ and Pt he found an increase in scattering in Ir at low temperatures which was counter to classical predictions.

To understand the new idea that MBssbauer brought to bear in the analysis of the emission and scattering of gamma rays by atoms bounded in solids, three different cases should be distinguished;

1. If the free-atom recoil energy is large compared to the binding energy of the atom in solid, the atom will be dislodged from its lattice site. The minimum energy required to displace an atom is known from radiation-damage investigations and generally falls in the range from 15 to 30 eV . Under these circumstances, the free-atom analysis given above is applicable.
2. If the free-atom recoil energy is larger than the characteristic enargy of the lattice vibrations, the phonon energy, but less than the displacement energy, the atom will remain in its site and will dissipate its recoil energy by heating the lattice.
3. If the recoil energy is less than the phonon energy, a new effect arises becauce the lattice is a quantized system which cannot be excited in an arbitrary fashion. This effect is responsible for the unexcited increase in the scattering of gamma rays at low temperature first by MOssbauer.

This phenomenon is most readily understood in the case of an Einstein solid. At a given instant, the solid may be characterized by the quantum numbers of its oscillatiors. The only possible changes in its state are an increase or decrease in one or more of the quantum numbers. These correspond to the absorption or emission of quanta of energy $\hbar \omega_{E}$ which in real solids is characteristically of the order of $10^{-2} \mathrm{eV}$. The emission of $a$ gamma ray is now accompanied by the transfer of integral multiples of this phnon energy to the lattice.

It has been shown by Lipkin 44) that when an average is taken over many emission processes, the energy transferred per event is exactly the free-atom recoil energy. Using this fact we may write an expression which leads derectly to the fraction of events, $f$, which takes place without lattice exitation. Since $E_{r}$ is much less than $\hbar \omega_{E}$, typically $\mathrm{E}_{\mathrm{r}}=1.943 \times 10^{-3} \mathrm{eV} \quad\left\langle<\hbar \omega_{E}=10^{-2} \mathrm{eV}\right.$, two quantum transitions can be neglected and as a result $f$ is

$$
E_{r}=(1-\mathrm{I}) \hbar \omega_{E r}
$$

or

$$
\begin{equation*}
\mathrm{f}=1-E_{\mathrm{r}} / \hbar \omega_{E} \tag{3.2}
\end{equation*}
$$

Only these events gives rise to the Mossbauer effect. The $f$ is often called the Lamb-MOssbauer coefficient.

This discussion is equally applicable to the scattering of $X$-rays or neutrons by atoms, where the distinction between elastic and inelastic processes is well known. Elastic scattering is equivalent to scattering without lattice excitation. A general expression for
the fraction of elastic or zero-phonon processes is

$$
\begin{equation*}
f=\exp \left[-4 \pi^{2}\left\langle u^{2}\right\rangle / \lambda^{2}\right] \tag{3.3}
\end{equation*}
$$

where $\lambda$ is the wavelength of the gamma quantum and $\left\langle u^{2}\right\rangle$ is the component of the mean square vibrational amplitude of the emitting nucleus in the direction of the gamma ray. In order to obtain a value of $f$ close to unity, we require $4 \pi^{2}\left\langle u^{2}\right\rangle / \lambda^{2} \leqslant<1.0$, which in turn requires that the rms displacement of the nucleus must be small compared to the wavelength of the gamma ray.

The pysical significance of this requirement is apparant. If the period of the motion of the atom in the lattice is short compared to the time associated with the emession of the gamma ray and the amplitude comparable to the emitted wavelength, then the phase of the emitted wave will be strongly modulated. Such a phase modulated wave is not monochromatic and a resonator tuned to the unmodulated wave is not readily excited because the excitation of the passing wave train is not coherent.

Equation (3.3) can be obtained in microscopic derivation The interaction Hamiltonian between the nucleus and gammarays, $H_{i n t}$ is quantum mechanically

$$
H_{\text {int }}=\sum_{p}\left(-\frac{q}{m_{p} c} \mathbb{A}\left(x_{p}\right) \mathbb{P}_{p}+q \phi\left(x_{p}\right)\right)-\sum_{p, n} \mu_{i} \times\left[\nabla \times \mathbb{A}\left(x_{i}\right)\right]
$$

where, $m, p, q$ and $\mu$ are mass, momentum, charge and the magnetic moment of the nucleus. And the suffix $p$ and $n$ denote a proton and a nutron. $A(x)$ and $\Phi(x)$ are the potential of gamma-rays at the position, x. The transition probability, $W_{i-f}$ from a initial state lin〉 to a final state $|f i\rangle$ is drawn by

$$
\begin{equation*}
\left.W_{i-f} \quad \propto \quad 1 \leqslant \text { in }\left|H_{i n t}\right| f i\right\rangle\left.\right|^{2} \tag{3.5}
\end{equation*}
$$

Since the atomic motion is independent of the motion of nucleus, lin> and Ifi> can be devided into two parts, that is, the state of a nucleus $|N\rangle$ and the state of lattice |L〉.

$$
\begin{equation*}
|i n\rangle=\left|N_{i n}\right\rangle\left|L_{i n}\right\rangle \quad \text { and } \quad|f i\rangle=\left|N_{f i}\right\rangle\left|L_{f i}\right\rangle . \tag{3.6}
\end{equation*}
$$

The $x$ can be expressed with a vector of a position $X_{L}$ from the center of lattice to the center of a nuclear-mass and a vector of a position $\mathbb{X}_{N}$ from the center of a nuclear-mass to a nucleon. The momentum corresponsing to x can also be expressed with $\mathbb{P}_{\mathrm{L}}$ and $\mathbb{P}_{\mathrm{N}}$, namely

$$
\begin{align*}
& \mathbf{x}=\mathbb{x}_{L}+\mathbb{X}_{\mathrm{N}}, \\
& \mathfrak{p}=\mathbb{P}_{\mathrm{L}}+\mathbb{P}_{\mathrm{N}} . \tag{3.7}
\end{align*}
$$

Since the expectation value of $\mathbb{P}_{L}$ is 5-orders of magnitude smaller than that of $\mathbb{P}_{N}$, we get

$$
\begin{equation*}
\mathbb{P} \cong \mathbb{P}_{\mathrm{N}} . \tag{3.8}
\end{equation*}
$$

The gamma-ray is represented with a plane wave, which has

$$
\begin{align*}
& A(x)=A_{0} \exp (i k x)=A_{0} \exp \left(i k \mathbb{X}_{N}\right) \exp \left(i k \mathbb{X}_{L}\right)  \tag{3.9}\\
& \Phi(\mathbf{x})=\Phi_{0} \exp (i k \mathbb{X})=\Phi_{0} \exp \left(i k \mathbb{X}_{N}\right) \exp \left(i k \mathbb{X}_{L}\right)
\end{align*}
$$

Substituting the equation(3.8) and (3.9) to (3.6), we get

$$
\begin{equation*}
\langle i n| H_{i n t}|f i\rangle=\left\langle N_{i n}\right| C\left|N_{f i}\right\rangle\left\langle I_{i n}\right| \exp \left(i k X_{L}\right)\left|I_{f i}\right\rangle \tag{3.10}
\end{equation*}
$$

where $\left\langle N_{i n}\right| C\left|N_{f i}\right\rangle$ is independent of the lattice vibration.
A part of the fraction of recoil-free process is

$$
\begin{align*}
f & =\frac{1\langle i n| H_{i n t}|i n\rangle l^{2}}{\sum_{f} I\langle f i| H_{i n t}|i n\rangle l^{2}}=\frac{1\left\langle L_{i n}\right| e^{i k X_{L}}\left|L_{i n}\right\rangle l^{2}}{\sum_{f} \mid\left\langle L_{f i}\right| e^{i k X_{L}}\left|L_{f i}\right\rangle l^{2}} \\
& \left.=\left|\left\langle L_{i n}\right| e^{i k X_{L}}\right| L_{i n}\right\rangle\left.\right|^{2} . \tag{3.11}
\end{align*}
$$

We introduce the displacement vector $u$ from a lattice point
$\mathbb{P}$, and $\mathbb{X}_{L}=\mathbb{P}+\mathbb{u}$. If the temperature is finite, then equation(3.11) must be replaced by its thermal average

$$
\begin{equation*}
f=\frac{\sum_{i} \mid\left\langle L_{i n}\right| e^{\left.i k \mathbb{w}_{i L_{i n}}\right\rangle 1^{2} e^{-E i / k T}}}{\sum_{i} e^{E i / k T}} \tag{3.1Z}
\end{equation*}
$$

Using the expansion of the exponential function, $e^{i k u}$, we get

$$
\begin{equation*}
1\left\langle L_{i n}\right| e^{i k u \omega_{i n}}\left|L_{i n}\right|^{2}=1-k^{2} I\left\langle L_{i n}\right| u^{2}\left|L_{i n}\right\rangle \tag{3.13}
\end{equation*}
$$

Therefore, substituting equation(3.13) to (3.12), we get

$$
\begin{equation*}
f=\exp \left(-\mathrm{k}^{2}\left\langle\mathrm{u}^{2}\right\rangle\right) \text { or }=\exp \left(-4 \pi^{2}\left\langle\mathrm{u}^{2}\right\rangle / \lambda^{2}\right) \tag{3.14}
\end{equation*}
$$

Where $\left\langle u^{2}\right\rangle$ is the thermal average of $\mathbb{u}^{2}$ and $\lambda$ is the wavelength of gamma-ray.
Q.E.D.

Table 3.1 shows the recoilless fraction of a Einstein-model solid and a Debye-model solid. ${ }^{45)}$

Table 3.1 The specific heat and the recoilless fraction of a Einstein-model solid and a Debye-model solid.

|  | Einstein | Debye |
| :---: | :---: | :---: |
| specific heat low temp. <br> high temp. | $R \frac{\theta_{E}^{2}}{T^{2}} \exp \left(-\frac{\theta_{E}}{T}\right)$ <br> 3R | $\frac{12 \pi^{4} R}{5 \theta_{D}^{3}} T^{3}$ $3 R$ |
| recoilless fraction low temp. <br> high temp. | $\begin{aligned} & \exp \left(-\frac{E_{r}}{k \theta_{E}}\right) \\ & \exp \left(-\frac{2 E_{r}}{k \theta_{E}^{2}}\right) \end{aligned}$ | $\begin{aligned} & \exp \left(-\frac{3 E_{r}}{2 k \theta_{D}^{2}}\right) \\ & \exp \left(-\frac{6 E_{r_{r}}}{k \theta_{D}^{2}}\right) \end{aligned}$ |

\$ 3.2.b Width of Gamma-ray Spectrum and Why the MOssbauer effect is valuable

More important on the MBssbauer effect is the fact that the linewidth of gamma-ray transition is smaller than characteristic values for the magnetic dipole and electric quadrupole interactions of nuclei with surrounding electrons.

Lipkin calculated the spectrum of emitted gamma-ray
from free.atoms with Maxwell distribution. Figure 3.2.A shows a typical gamma-ray apectrum from free atoms, where $E_{r}$ and $E_{e}$ are the recoil energy and the excited energy of a nucleus. The gamma-ray spectrum is centered the value $E_{e}-E_{r}$ and has a width propotional to the mean square velocity in the initial distribution which is charasteric of the Doppler broadening of a spectral line due to the thermal motion of emitting atoms.

Next consider a solid where the nucleus is not free, but is moving in one dimentiona in a harmonic oscillator potential( Einstein model). This is not exactly the same as the motion of an atom in a crystal. The energy of emitted gamma-ray can differ from the energy $E_{e}$ by an integral number of oscillator quanta with an uncertainly
given by the linewidth which is very small. The gammaray spectrum therefore consists of a set of spikes. For the weak binding, the spectrum approach that of free atoms as shown in figure 3.2.B.

The more interesting case is that of strong binding ( here $\hbar \omega_{E}=2 E_{r}$ ). In this case the spectrum consists of spikes at $E_{e}, E_{r} \pm 2 E_{r}$ and other spikes further out as shown in figure 3.2.C. However there can be no gamma-ray emitted with an energy between $E_{e}$ and $E_{r}-2 E_{r}$.

In the case of a real crystal, the spectrum of a lowenergy gamma-ray transition in a solid consists of a zerophonon, full-emergy line plus a phonon-accompanied energy shifted component. The latter is necesserily much broader , not only because the linewidth of the phonons is greater than that of gamma transition, but also because the energy of a phonon is a function of its propagation vector. An acoustic phonon may generally have any energy from zero at $\mathrm{k}=0.0$ to a maximum at the boundary of the Brilloun zone. As a concrete example, consider the spectrum of 129 keV gamma-ray of $\mathrm{Ir}^{191} 44$ ). Figure 3.2.d shows the real spectrum of a solid $\operatorname{Ir}^{191}$ which shows the narrow recoil free component at the energy of the nuclear transition plus broad "phonon wing" to borrow a term that has gained acceptance




Figure 3.2 The gamma-rays emission spectra
(A) from the free atoms with thermal motion.
(B) from the weakly bounded atoms in Einstein solid
(C) from the strongly bounded atoms in Einstein solid


Figure 3.2.D The theoretical spectrum of the 129 keV gamma-ray of $\mathrm{Ir}^{191}$ emitted by an atom in iridium metal at low temperature ${ }^{46)}$. The M8ssbauer spectrometer is sensitive only to the narrow, recoil-free line at zero energy shift which contain $5.7 \%$ of the total area under the curve.
in optical spectroscopy. The width of zero phonon line is $10^{-5} \mathrm{eV}$. The natural line width of $\mathrm{Ir}^{191}$ is $3.5 \times 10^{-6}$ $\mathrm{eV}\left(=0.693 \mathrm{~K} / \mathrm{t}_{1 / 2}\right.$, where $\mathrm{K}_{1}=1.05 \times 10^{-27} \mathrm{ergs} \mathrm{sec}, \mathrm{t}_{1 / 2}=0.13 \times 10^{-9}$ sec). Thus, the width of zero phonon line is almost the same as the natural line width of the nucleus.

It is interesting to consider how momentum is transmitted to the lattice to make these zero-phonon events possible. The velocity with which momentum can travel through the lattice is the velocity of sound. The time available is the decay time of the damped oscillator which represents the radiating nucleus. Sonic velocities in solid are characteristically $10^{-5} \mathrm{~cm} / \mathrm{sec}$. So that during $1.4 \times 10^{-7} \mathrm{sec}$ lifetime of $\mathrm{Fe}^{57}$ the impulse travels $1.4 \times 10^{-2} \mathrm{~cm}$, while during the $1.4 \times 10^{-10} \mathrm{sec}$ lifetime of $\mathrm{Ir}^{191}$ the impulse travels $1.4 \times 10^{-5}$ cm. Thus, even in the irdium experiment there is the time for $3 \times 10^{8}$ nearby atoms to become involved in the recoil-free process. As a result, the recoil energy becomes $3 \times 10^{8}$ times of magnitude smaller than that in the case of a free atom. Therefore, the linewidth by Doppler broadening becomes very small.

More important, however, is the fact that this linewidth is smaller than characteristic values for the magnetic dipole and electric quadrupole interactions of nuclei with their surrounding electrons. For example, the linewidth of $\mathrm{Fe}^{57}$
zero-phonon line is $10^{-8} \mathrm{eV}$ and the magnetic hyperfine interaction the field of 100 kOe is $10^{-6} \mathrm{eV}$. Therefore, MOssbauer experiment makes the study of a hyperfine structure of a nucleus to be possible.

In practice, the energy of gamma-rays emitted from RI source can be varied by the convenient modulation technique based on the Dopper effect. To obtain a hyperfine spectrum, one proceeds as follows. The radioactive material which will constitute the source is incorporated into a host where its nuclear levels remain unsplit. Any cubic, diamagnetic metal will be a good choice provided the radioisotope enters the lattice substitutionally. This source is then mounted on the "velocity modulator".

A stationary absorber is now placed between the source and the detector. If the nuclear levels in the absorber are split by hyperfine interaction, there will be a number of different energies at which absorption takes place.

The most advantageous properties for MUssbauer experiment is found in $\mathrm{Fe}^{57}$ which has been used in more experiments than all other isotopes. Its properties are summarized in Table 3.2. Next, consideration must be given to the cross section, $\sigma_{0}$, for absorption of the gamma ray by the resonant isotope,which is given by

$$
\begin{equation*}
\sigma_{\circ}=\frac{\lambda^{2}}{2 \pi} \times \frac{1+2 \mathrm{I}_{\mathrm{e}}}{1+2 \mathrm{I}_{\mathrm{g}}} / \frac{1}{1+\alpha} \tag{3.15}
\end{equation*}
$$

where $I_{e}$ and $I_{g}$ are the nuclear spins of the excited state and the ground state, respectively, and $\alpha$ is the internal conversion coefficient of the gamma transition. In $\mathrm{Fe}^{57}$ this cross section is $2.2 \times 10^{-18} \mathrm{~cm}^{2}$, which is about 200 times greater than that for the next most important process, photoelectric absorption. As a result, the resonant absorption process can dominate even when the resonant isotope is a minor constituent of the absorption solid. The energy dependence of the absorption cross section is given by the Breit-Wigner formula. If the linewidth is related to the lifetime, the Lorentzian line shape applies both to the emitted radiation and to the absorption cross section. For thin absorbers, the experimentally observed line shape is given by

$$
\begin{equation*}
\sigma_{\exp }(E)=\sigma_{0} /\left[1+4\left(\frac{E-E_{e}}{W_{s}+W_{a}}\right)^{2}\right]^{-1} \tag{3.96}
\end{equation*}
$$

where $W_{s}$ and $W_{a}$ are the linewidth of the source and the absorber. In other words the linewidth of the source and the absorber are additive. If the natural linewidth is realized in both, the M just twice the linewidth of the gamma-ray.

Table 3.2 Properties of $\mathrm{Fe}^{57}$

|  | Ground state | First excited <br> state |
| :--- | :--- | :---: |
| Energy (keV) | 0 | 14.36 |
| Spin and Parity | $1 / 2^{-}$ | $3 / 2^{-}$ |
| Magnetic moment (nm) | 0.0903 | -0.153 |
| Quadrupole moment (barns) | 0 | 0.29 |
| Mean life time (sec) | stable | $1.4 \times 10^{-7}$ |
| Internal conversion coefficient |  | $9.7 \pm 0.2$ |

```
\$ 3.2.c Study of Hyperfine Structure
```


#### Abstract

The parameters of the M8ssbauer transition if $\mathrm{Fe}^{57}$ are indicated in figure 3.1, showing the effects of three electromagnetic perturbations on the energy levels, the isomer shift, quadrupole and Zeeman splittings. We shall describe the origins and magnitudes of these perturbations, briefly.


The isomer shift, also known as the chemical shift, whcih exhibits itself as a change in position of the centroid of the MOssbauer spectra, arises from two effects. One is purely nuclear, caused ny the difference in the size of the nucleus in its excited and ground state. .. The other represents the interaction of the nucleus with the electronic charge that interpenetrates it. This interaction, being a function of electronic density at the nuclear site is dependent upon the chemical environment. Since M Mssbauer spectra arise from a resonance between source and absorber , the observed isomer shift is

b isomer shift, quadrupole coupling and magnetic hyperfien field.

$$
\begin{equation*}
\text { I.S. }=\frac{2 \pi}{5} z e^{2}\left[\left|\psi_{a}(0)\right|^{2}-\left|\psi_{S}(0)\right|^{2}\right]\left[R_{e x}^{2}-R_{g d}^{2}\right] \tag{3.17}
\end{equation*}
$$

where $\left|\psi_{a}(0)\right|^{2}$ and $\left|\psi_{s}(0)\right|^{2}$ are electronic densities at the nuclear site for the source and absorber respectively, $R_{e x}$ and $R_{g d}$ the nuclear radius in the excited state and ground state respectively. One of the uses of the isomer shift is an indication of the oxidation state of MOssbauer isotope. For example, as the 3d electrons by the d electrons and their density at the nuclear site increase. This results in the isomer shift becoming more negative as the oxidation state increases ( $R_{e x}\left(R_{g d}\right)$

## Quadrupole Splitting

The quadrupole coupling is the electrostatic interaction of the nuclear quadrupole moment, $Q$, with the electric field gradient, (EFG) at the nucleus. It is well known that the quadrupole interaction Hamiltonian is

$$
\begin{equation*}
H=\frac{e q Q}{4 I(2 I-1)}\left[3 I_{z}^{2}-I(I+1)+\frac{\eta}{2}\left(I_{+}^{2}+I_{-}^{2}\right)\right] \tag{3.18}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
E_{q}=\frac{e q Q}{4 I(2 I-1)}\left[3 m^{2}-I(I+1)\right]\left[I+\eta^{2} / 3\right]^{1 / 2} m=I,,-I \tag{3.19}
\end{equation*}
$$

where $e q=V_{z z}$ and $\eta$ is asymmetry factor. In the case of $F e^{57}$ in axial symmetry, the ground state ( $I=1 / 2$ ) is unaffected while the excited state $(I=3 / 2)$ is split into the energy levels

$$
\begin{equation*}
E_{q}(m=3 / 2)=e q Q / 4 \text { and } E_{q}(-m)=-e q Q / 4 \tag{3.20}
\end{equation*}
$$

The splitting is thus $\quad E_{q}=e q Q / 2$.

## Zeeman Splitting

The interaction of the nuclear magnetic dipole moment, $u$, with the magnetic hyperfine field at the nucleus $H$ results in the splitting of the nuclear levels into $2 I+1$ sublevels each separated by an energy of uH/I. For magnetic dipole radiation $\mathrm{m}=0, \pm 1$ in the case of $\mathrm{Fe}^{57}$, we have only six transition as shown in figure 3. . The line intensities have the following angular distributions;

| Transition | Line Assignment | Angular distribution |
| :--- | :---: | :---: |
| $-3 / 2 \ldots-1 / 2$ | 1 | $3\left(1+\cos ^{2} \theta\right)$ |
| $-1 / 2 \ldots-1 / 2$ | 2 | $4 \sin ^{2} \theta$ |
| $+1 / 2 \ldots-1 / 2$ | 3 | $\left(1+\cos ^{2} \theta\right)$ |
| $-1 / 2 \ldots+1 / 2$ | 4 | $\left(1+\cos ^{2} \theta\right)$ |

$+1 / 2 \ldots+1 / 2$
5
$4 \sin ^{2} \theta$
$+3 / 2 \ldots+1 / 2$
6
$3\left(1+\cos ^{2} \theta\right)$

Here $\theta$ is the angle between the effective magnetic field at the nucleus and the gamma-ray propagation. Thus the ratio of the line intensities is $3: x: 1: x: 3$ where $x$ from 0, when the effective field is parallel to the gammaray direction, to 4 when the two direction are perpendicular.

In general case of combined magnetic and electric hyperfine effects, all eight transition are made possible due to the mixing of the magnetic substates by the quadrupole interaction. For this general situation a solution cannot be written in closed form. However, the important feature is that the information of $\mathrm{Fe}^{57}$ nucleus can be obtained in both a Mosssbauer experiment used $\mathrm{Fe}^{57}$ absorber and a Mठssbauer a Mठssbauer experiment used $C^{57}$ source.

```
$ 3.3 Nuclear polarization and the effect on
the MOssbauer spectrum
```

Nuclear polarization is one of the characteristic phenomena at very low temperature. Significant polarization occurs only at temperatures where the thermal energy kT is comparable with the hyperfine interaction energy, which is usually lower than 0.1 K . For example, let us consider a sample embeded a most popular MÖssbauer source $\mathrm{Co}^{57}$. The $\mathrm{Co}^{57}$ nucleus has a large magnetic moment (+4.58 nm) which is for instance, fifty times as large as the moment of the daughter nucleus, $\mathrm{Fe}^{57}$. It is expected that Co ${ }^{57}$ nuclei located in a large hyperfine field, of the order of 100 kOe , will show a remarkable polarization at the temperatures range at 0.1 K . It is well known that an $\mathrm{Fe}^{57}$ MOssbauer spectrum in the presence of a magnetic field shows a 6-line splitting whose intensity ratio is usually 3:2:1:1:2:3. Figure 3.2.a shows the MOssbauer spectrum of a standard source of $\mathrm{Co}^{57}$ in afethin foil at high temperature, 300 K . Those intensity ratio deviates from 3:2:1:1:2:3, because the source is a thin foil.

In the presence of a hyperfine field a nuclear state of $C^{57}(I=7 / 2)$ separetes into 8 -sublevells which are characterized by the magnetic quautum number $m_{I}$. The magnetic interaction energy is $-\mu_{\mathrm{H}} \mathrm{Hm}_{\mathrm{I}} / \mathrm{I}$. Here $\mu_{\mathrm{I}}=g \mu_{\mathrm{N}} I$ is the magnetic moment of the nuclear state with spin $=I$ and $\mu_{N}$ is the nuclear magneton. Thus, we have for the separation of two successeve levells ( $\Delta \mathrm{m}_{\mathrm{I}}=1$ )

$$
\begin{equation*}
\Delta \mathrm{E}=-\mu_{I} \mathrm{H} / \mathrm{I}=-g_{I} \mu_{\mathrm{N}} \mathrm{H} \tag{3.2,1}
\end{equation*}
$$

The total magnetic splitting of the nuclear state $I$ is $2 \mu_{I} H$. The population of each level. is given by the Boltzmann factor

$$
\begin{equation*}
P\left(m_{I}\right)=\frac{\exp \left(-m_{I} \Delta E / k T\right)}{\sum_{m_{I}} \exp \left(-m_{I} \Delta E / k T\right)} \tag{3.22}
\end{equation*}
$$

At higher temperatures, where the thermal energy is much larger than the magnetic energy, i.e. $k T \ll 2 \mu_{\mathrm{I}} \mathrm{H}$, the individual sublevels are equally populated. But at low temperatures where $k T \leqq 2 \mu_{\mathrm{I}} \mathrm{H}$, those will no longer be equally populated. Since in the case of $\mathrm{Co}^{57}$ nucleus, the quadrupole interaction is considered to be less than a few percents of the magnetic interaction in general.
it may be neglected.
In MOssbauer experiment, the resonantly absorbed gamma-rays are emitted by the transition from the first excited state of $\mathrm{Fe}^{57}, I_{e}$, produced after the $\beta$-decay of $\mathrm{Co}^{57}$ to the ground state, $\mathrm{I}_{\mathrm{g}}$. In the presence of hyperfine splitting of $\mathrm{Fe}^{57}$ nucleus, this process will occur between the sublevels $m_{e}$ and $m_{g}$. The relative absorption $A\left(m_{e}, m_{g}\right)$ due to such a transition, as observed in a M8ssbauer spectrum, is propotional to

$$
\begin{equation*}
A\left(m_{e}, m_{g}\right) \propto P\left(F e^{57}, I=3 / 2, I_{z}=m_{e}\right) C\left(m_{e}, m_{g}\right) \tag{3.23}
\end{equation*}
$$

where $C\left(m_{e}, m_{g}\right)$ is the square of the appropriate normalized Clebsch-Gordon coefficient and $P\left(\mathrm{Fe}^{57}, \mathrm{I}=3 / 2, \mathrm{I}_{z}=\mathrm{m}_{e}\right)$ is the population of a first excited state $\mathrm{m}_{\mathrm{e}}$ of $\mathrm{Fe}^{57}$. The $P$ is related the polarization of $\mathrm{Co}^{57}$ nucleus through the $\beta$-transition and the magnetic dipole transition. Consequently, the A can be related to the source temperature and the hiperfine field at $\mathrm{Co}^{57}$ nucleus. In the case of a pure magnetic interaction at $\mathrm{Fe}^{57}$ nucleus, the sublevels of $\mathrm{Fe}^{57}$ first excited state are fully characterized by a magnetic quantum number $m_{e}$. Since $C\left(m_{e}, m_{g}\right)=C\left(-m_{e},-m_{g}\right)$, we obtain for the intensity ratio $R$ of two lines


Figure 3. $\overline{2}$ The robssbauer spectrum of $\mathrm{Co}^{57}$ in Fe metal. The (a) is the spectrum at 300 K and (b) at 0.08 K . The spectrum at 300 K has the intensity ratio to deviate from 3;2;1;1;2;3. because the surce is a thin foil.

$$
\begin{equation*}
R=\frac{A\left(+m_{e},+m_{g}\right)}{A\left(-m_{e},-m_{g}\right)}=\frac{P\left(\mathrm{Fe}^{57}, I=3 / 2, I_{z}=+m_{e}\right)}{P\left(F e^{57}, I=3 / 2, I_{z}=-m_{e}\right)} \tag{3.24}
\end{equation*}
$$

If the $\mathrm{Co}^{57}$ nuclei are polarized, the value of this $R$ is not equal to 1.0 . That is, the spectrum is no more symmetric and the most striking is the difference of the intensities at the outermost peaks. Figure 3.2.b shows the MBssbauer spectrum of $\mathrm{Co}^{57}$ in Fe metal at 0.08 K which shows a remarkable asymmetry.

The polarization of the source nuclei, $\mathrm{Co}^{57}$, which is a function of $\mu_{I} H / I k T$, can be determined from the $\mathrm{Fe}^{57}$ MOssbauer spectrum, because the decay time of the nucleus, from $\mathrm{Co}^{57}$ to $\mathrm{Fe}^{57}$, is much shorter than the relaxation time of the nuclear magnetic spins.

When the hyperfine field is already known, the temperature can be determined from the degree of nuclear polarization. For a cobalt nucleus dissolved in iron matrix, the hyperfine field has been determined to be -290 kOe by a NMR experiment 47). Therefore, from the polarization of $\mathrm{Co}^{57}$ nuclei in Fe observed in the MOssbauer spectrum, the absolute temperature can be determined.

This method of temperature determination, M8ssbauer source thermometry 48), may not be useful so generally, manly because of the instrumental condition, but at least for MBssbauer spectroscopic studies at very low temperatures from 0.03 to 0.5 K , it is a very easy and reliable method. In the present work, this $\mathrm{Co}^{57}$ thermometer was used for the absolute temperature determination.
It is, of course, also possible to utilize the nuclear

```
polarization in a absorber spectrum splitted at very low
temperatures. In this arrangement, the source is a
unsplitted single line emitter. This thermometer
can be classified as "absorber thermometer". The absor-
ber thermometer supplies its own calibration, but its
accuracy is limitted by thickness effects, which must be
determined separately. Both types of thermometer require
rather sophisticated experimental equipment, and the
measurement of one temperature may involve counting times
up to anhour.
```

Another difficulty arises besause the $\beta$-transition probability must be known. This problem will be discussed in more detail below. Let us state here that a priori the value of such probability is known only allowed $\beta-$ decays ( $\triangle I=0, \pm 1$ and no parity change). Table 3.3 shows the intensity ratios between each line as a function of the absolute temperature in the case of $\mathrm{Co}^{57}$ nuclei in thin $F e$ metal, which was calculated with a computer, Facom 270/30, at the Data Processing Center, Kyoto University. Table 3.4 shows the intensity ratios as a universal function of $H / T$, where $H$ is a magnetic hyperfine field at co ${ }^{57}$ nucleus and $T$ is the absolute temperature.

On the other hand, if the temperature of the sample is determined, the magnetic hyperfine field at co ${ }^{57}$ nucleus

can be estimated from the nuclear polarization. Using this technique, Finnish group has estimated the hyperfine fields at dilute cobalt in $P d$ and $P t$ matrics and the observed values were +280 kOe and -119 kOe respectively ${ }^{49,50 \text { ). This }}$ new method is especially useful to estimate the hyperfine fields in antiferromagnetic substances because the application of NMR is technically difficult.



ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 00000000000000
 $\begin{array}{lll}1 & \sigma & \pm \\ -1 & \pi & \pi\end{array}$ 2
2
2
$\square$ OOHNNHNHNH 0



| $0.1333 E+00$ | $0.8151 E-01$ |
| :--- | :--- |
| $0.1398 E+00$ | $0.8817 E-01$ |
| $0.1463 E+00$ | $0.9493 E-01$ |
| $0.1527 E+00$ | $0.1018 E+00$ |
| $0.1590 E+00$ | $0.1087 E+00$ |
| $0.1652 E+00$ | $0.1156 E+00$ |
| $0.1713 E+00$ | $0.1226 E+00$ |
| $0.1773 E+00$ | $0.1296 E+00$ |
| $0.1832 E+00$ | $0.1366 E+00$ |
| $0.1890 E+00$ | $0.1436 E+00$ |


|  |
| :---: |
|  |  |
|  |
|  |
| $\infty$ - $+\infty$ + |
|  |
|  |
|  |  |
|  |



 $0.1100 \mathrm{E}-01$ $0.1200 E-01$ $0.1300 \mathrm{E}-01$ $0.1400 E-0.1$
$0.1500 E-01$ $0.1500 \mathrm{E}-01$
$0.1600 \mathrm{E}-01$ $0.1600 \mathrm{E}-01$ $0 \cdot 1700 \mathrm{E}-01$ $0.1800 \mathrm{E}-01$ $0.1900 \mathrm{E}-01$

TEMPERATURE (K) $0.2000 E-01$
$0.2100 E-01$
$0.2200 E-01$
$0.2300 E-01$
$0.2400 E-01$
$0.2500 E-01$
$0.2600 E-01$
$0.2700 E-01$
$0.2800 E-01$
$0.2900 E-01$

TEMPEFATUKE (K)
$0.3000 \mathrm{E}-01$ $0.3000 E-01$
$0.3100 E-01$ 0.3200E-01 -1
0
1
$w$
0
0
$m$
$\vdots$
0 -1
0
1
0
0
0
$\vdots$
N
0



 0
+
0
0 $\infty$
$\cdots$
$\cdots$
$\cdots$
0 응ㅇㅇㅇㅇㅇㅇㅇ


ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ








ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ $t+t+t+t+t+$出山山出山山山山山













## ㅊ <br> TEMPERATURE

TEMPERATURE（K）
$00+\exists 006 Z \cdot 0$
$00+30082 \cdot 0$
$00+300 \angle 2 \cdot 0$
$00+30092 \cdot 0$
$00+3005 Z \cdot 0$
$00+300 \neg z \cdot 0$
$00+300 \varepsilon z \cdot 0$
$00+\exists 002 Z \cdot 0$
$00+300 \tau 2 \cdot 0$
$00+\exists 0002 \cdot 0$

TEMPERATUKE（K）





 OCOCCOOCOC岩岂岁岁苟出出出出岁 f
 －000000000

ㅇㅇㅇㅇㅇㅇㅇㅇ 0808080080
$++4++++t+t$

 ммmмmмmмmm $\therefore \dot{\circ} \dot{\circ} \dot{\circ} \dot{0} 0^{\circ} \dot{\circ} 0^{\circ}$



TEMPERATURE（K）
$0.1000 E+01$
$0.1100 E+01$
$0.1200 \mathrm{~F}+01$
$0.1300 \mathrm{E}+01$
$0.1400 \mathrm{E}+01$
$0.1500 \mathrm{E}+01$
$0.1600 \mathrm{E}+01$
$0.1700 \mathrm{E}+01$
$0.1800 \mathrm{E}+01$
$0.1900 \mathrm{E}+01$




 00000000000
0000000

$+4+4+4$ | + | + | + |
| :--- | :--- | :--- |
| $\omega$ | $+4+4+$ |  |
| $m$ | + | + |



 0000000000 $\bigcirc 000<\infty<0<0$




$0.6466 E+00$
$0.6466 E+00$
$0.6467 E+00$
$0.6468 E+00$
$0.6468 E+00$
$0.6469 E+00$
$0.6469 E+00$
$0.6470 E+00$
$0.6471 E+00$
$0.6471 E+00$

000000000





Hनririrnनrr 0000000000
 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 in in in in in in in in min -000000000

TEMPERATURE (K)




ㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 $+4+t+t+t+4$


 0000000000

000000000 00000000000 $+t+4+t+4+t+1$ ano a o o o o o o









TEMPERATURE (K)


To estimate the nuclear polarization from the intensity ratio of two lines in a MXssbauer spectrum, a $\beta$-transition probability must be known. In this section, the $\beta$-transition will be summarized concisely

The interaction Hamiltonian used to describe the decay was first proposed by Fermi(1933). The interaction is involved an weak interaction whose strength is $10^{-11}$ orders of magnitude smaller than that of the electromagnetic interaction. The genaral forms of the $\beta$-decay Hamiltonian is given by

$$
\begin{equation*}
H_{\beta}=\frac{l}{\sqrt{2}} \int d r^{3}\left[J_{u}^{+} j_{u}+\text { h.c. }\right] . \tag{3.25}
\end{equation*}
$$

where $J_{u}$ and $j_{u}$ are the current density of nucleons and leptons in four dimentions. In the present theory of the $\beta$-decay, it is a fact that all existing data on the $\beta$-decay are in good agreement with a combination of the vector and axial vector interactions. That is, the Hamiltonian is written by

$$
\begin{align*}
H_{\beta}=\frac{1}{\sqrt{2}} \int d r^{3} & {\left[g_{v}\left(\psi_{N}^{+} \gamma_{u} \psi_{N}\right)\left(\psi_{1}^{+} \gamma_{u}\left(1+\gamma_{5}\right) \psi_{1}\right)\right.} \\
& \left.+g_{A}\left(\psi_{N} \gamma_{u} \gamma_{5} \psi_{N}\right)\left(\psi_{1} \gamma_{u} \gamma_{5}\left(1+\gamma_{5}\right) \psi_{1}\right)+\text { h.c. }\right] \tag{3.26}
\end{align*}
$$

where $\gamma_{i}$ is the Dirac matrix and $\psi_{N}$ and $\psi_{I}$ are the operators of field of nucleons and leptons. The first term is the vector type interaction and the second term is the axial vector type interaction. The coupling coefficient of $g_{V}$ and $g_{A}$ from the experimental data are

$$
\begin{align*}
& g_{V}=(1.40 \pm 0.20) / 10^{-49}\left(\mathrm{erg} \cdot \mathrm{~cm}^{3}\right),  \tag{3.27}\\
& g_{A} / g_{V} \cong-1.23 . \tag{3.28}
\end{align*}
$$

After the nonrelativistic approximation, the Hamiltonian $H_{\beta}$ can be expanded into multipoles by the same way it is done in the case of gamma-transition. However, in the $\beta$-decay it is generally not true that only moultipoles of lowest possible order have to be considered. Table 4.3 lists the nuclear matrix elements of different rank for allowed and first forbidden $\beta$-decay togetger with their selection rules. The lowest order Hamiltonian is given by

$$
\begin{aligned}
H_{\beta} & \cong \frac{g_{V}}{\sqrt{2}} \int d r^{3} \sum_{i}\left(\Psi_{N}^{+} \tau(\dot{1}) \delta\left(\mathbb{c}-\mathbb{r}_{i}\right) \Psi_{N}\right)\left(\Psi_{I}^{+} \Psi_{1}\right) \\
& +\frac{g_{A}}{\sqrt{2}} \int d r^{3} \sum_{i}\left(\Psi _ { N } ^ { + } \tau ( \dot { j } ) \delta \left(\mathbb{r}-r_{i},\right.\right. \\
& + \text { h.c. }
\end{aligned}
$$

where $\sigma_{i}$ and $\sigma$ are the Pauli spin matrive tocerate on the nucleon and the lepton, respectively. The first term of Hamiltonian (3.29) is called the Fermi transition and the second term the Gamow-Teller transition. Both transitions are allowed transitions. The pure Fermi transition ( $I=0$; no parity change) and the mixed Fermi-Gamow-Teller transitions ( $I_{i} I_{f}=0$; no parity change) are of little interest here. A pure Gamow-Teller decay is found for several MBssbauer soures, in paticular `for Co ${ }^{57}$ ? The transition probability for the $\beta$-decay is given by using the formula derived in the first-order time-dependent perturbation theory

$$
\begin{equation*}
\left.W(i, f)=\frac{2 \pi}{\hbar}\left|\langle f| H_{\beta}\right| i\right\rangle\left.\right|^{2} \tag{3.30}
\end{equation*}
$$

where $W$ is the transition probability. In the case of Co ${ }^{57}$, since the Hamiltonian is found to be a Gamow-Teller transition, the transition operator blongs to a first rank tensor.


Therefore, the probability $W$ between two magnetic hyoerfine levels with the Wigner-Ekart theorem is given by

$$
\begin{equation*}
W\left(m_{i}, m_{f}\right)=C^{(I)}\left(m_{i}, m_{f}\right)|\langle\|V\|\rangle|^{2} \tag{3.31}
\end{equation*}
$$

where

$$
\begin{equation*}
C^{(l)}\left(m_{i}, m_{f}\right)=K I_{f}, m_{f}, l,\left.\left(m_{f}-m_{i}\right)\left|I_{i}, l, I_{i}, m_{i}\right\rangle\right|^{2} \tag{3.32}
\end{equation*}
$$

is the square of the Clebsch-Gordon coefficient for dipoler radiation and 〈\|V\|〉 is a reduced matrix element. Using the relation (3.31), the calculation of the intensity ratio of two lines in a MBssbauer spectrum can be explicitly performed for the case of $\mathrm{Co}^{57}$

In a forbidden $\beta$-transition generally all six matrix elements will be present unless some of them are excluded by the selection rules. That is, matrix elements of 3-type transitions (rank zero(scalar), $W^{(0)}$, rank one(vector) $W^{(1)}$ and rank two (tensor) $W^{(2)}$ ) is needed. The relative strength of $W^{(0)}, W^{(1)}$ and $W^{(2)}$ are not known a priori. However, the observation of the population of the different hyperfine levels in the daughter nucleus with the MBssbauer effect may give direct evidence as to the relative strengths of the different reduced matrix
elements. It is customary to define mixing ratios of the reduced matrix elements in the following manner;

$$
\begin{equation*}
\delta^{2}=\frac{|\langle\|V\|\rangle|^{2}}{|\langle\|S\|\rangle|^{2}} \quad \text { or } \quad \frac{|\langle\|\mathrm{T}\|\rangle|^{2}}{|\langle\|V\|\rangle|^{2}} \tag{3.33}
\end{equation*}
$$

By evaluating the Clebsch-Gordan coefficients we will be able to obtain the mixing ratios from M on polarized sources which decay by first forbidden $\beta$-transition. Two experiments of this type have been performed so far. By $\mathrm{He}^{3}$ refrigerator, the Munich group has studied $\operatorname{Tm}^{169}$, which is populated by the $\beta$-decay of $E r^{169} .51,52$ )

## \$ 3.6 Exact Expression of Intensity Ratio as a Function of $H / T$

In the case of $\mathrm{Co}^{57}$, we will discuss the exact expression of the intensity ratios as a function of nuclear polarization or $H / T$, where $H$ and $T$ are the magnetic hyperfine field and the absolute temperature at $\mathrm{Co}^{57}$.

When the nuclear spins of $\mathrm{Co}^{57}(\mathrm{I}=7 / 2$, parity-) in the presence of a magnetic field $H$ are in a thermal equilibrium, the population of each sublevel,n, is given by the Boltzmann factor,

$$
\begin{equation*}
P\left(C^{57}, I=7 / 2, I_{z}=n\right)=\exp (-n \mu H / I k T) / \sum_{m} \exp (-m \mu H / I k T) \tag{3.34}
\end{equation*}
$$

where $k, \mu$, I and $T$ represent the Boltzmann constant, the nuclear moment of $\mathrm{Co}^{57}(+4.58 \mathrm{~nm})$, the spin of the nucleus ( $I=7 / 2$ ) and the absolute temperature, respectively.

At higher temperatures, where the thermal enargy is much larger than the magnetic energy, i.e. $k T\rangle>2 \mu \mathrm{H}$, the individual sublevels are equally populated. But at low temperatures, where $k T \leqq 2 \mu \mathrm{H}$, those will no longer be equally populated. Here it is assumed that the
electric quadrupole interaction is much smaller than the magnetic hyperfine interaction and can be neglected. Substituting the values of $u\left(=4.58 \times 5.0505 \times 10^{-24} \mathrm{erg.g} \mathrm{~g}^{-1}\right)$ and $k\left(=1.38054 \times 10^{-16} \mathrm{erg} . \mathrm{K}^{-1}\right.$ ) to the equation(4.13), $P$ is

$$
\begin{align*}
& \left(X=4.787 \times 10^{-8}\left[K^{-1} O e^{-1}\right]\right)  \tag{3.,35}\\
& P\left(C^{57}, I=7 / 2, I_{z}=n\right)=\exp (-n X H / T) / \sum_{n}, \exp (-n X H / T) .(3,36)
\end{align*}
$$

In the preceding section it was stated that The $\beta$-transition probability between two hyperfine levels can be calculated with the Clebsch-Gordon coefficients.

The $\beta$-decay ( $K$ electron capture) will lead to six sublevels of the second excited state of $\mathrm{Fe}^{57}$ ( $\mathrm{I}=5 / 2$, parity-). The population of a sublevel, $m$, in the second excited state of the daughter nuclei, after integration over all directions and lepton spins, is given by

$$
\begin{equation*}
P\left(\mathrm{Fe}^{57}, \mathrm{I}=5 / 2, \mathrm{I}_{\mathrm{z}}=\mathrm{m}\right)=\mathrm{K}_{1} \mathrm{C}(\mathrm{n}, \mathrm{~m}) \quad \mathrm{P}\left(\mathrm{Co}^{57}, \mathrm{I}=7 / 2, \mathrm{I}_{\mathrm{z}}=\mathrm{n}\right) \tag{3.37}
\end{equation*}
$$

where $K_{1}$ is the propotional coefficient and $C(n, m)$

$$
C(n, m)=|\langle 7 / 2 n, 1(m-n) \mid 7 / 21,5 / 2 m\rangle|^{2}
$$

一般式
$\left\langle J_{1} M_{1} J_{2} M_{2} \mid J M\right\rangle=\delta\left(M, M_{1}+M_{2}\right) \sqrt{2 J+1} \Delta\left(J_{1} J_{2} J\right)$
$\times \sqrt{\left(J_{1}+M_{1}\right)!\left(J_{1}-M_{1}\right)!\left(J_{2}+M_{2}\right)!\left(J_{2}-M_{2}\right)!(J+M)!(J-M)!}$
$\times \sum_{z}(-)^{x}\left[z!\left(J_{1}+J_{2}-J-z\right)!\left(J_{1}-M_{1}-z\right)!\left(J_{2}+M_{2}-z\right)!\right.$
$\left.\times\left(J-J_{2}+M_{1}+z\right)!\left(J-J_{1}-M_{2}+z\right)!\right]^{-1}$

ただし，

$$
\begin{equation*}
\Delta\left(J_{1} J_{2} J\right)=\sqrt{\left(J_{1}+J_{2}-J\right)!\left(J+J_{1}-J_{2}\right)!\left(J+J_{2}-J_{1}\right)!/\left(J_{1}+J_{2}+J+1\right)!} \tag{C.1}
\end{equation*}
$$

$$
\left.\left[J_{2}=\frac{1}{2}\right] \quad<J_{1} M-M_{2} \frac{1}{2} M_{2} \right\rvert\, J M>
$$

$$
\begin{array}{ccc} 
& M_{2}=\frac{1}{2} & M_{2}=-\frac{1}{2} \\
J=J_{1}+\frac{1}{2} & \sqrt{\left(J_{1}+M+\frac{1}{2}\right) /\left(2 J_{1}+1\right)} & \sqrt{\left(J_{1}-M+\frac{1}{2}\right) /\left(2 J_{1}+1\right)} \\
J=J_{1}-\frac{1}{2} & -\sqrt{\left(J_{1}-M+\frac{1}{2}\right) /\left(2 J_{1}+1\right)} & \sqrt{\left(J_{1}+M+\frac{1}{2}\right) /\left(2 J_{1}+1\right)}
\end{array}
$$

$\left[J_{2}=1\right] \quad<J_{1} M-M_{2} 1 M_{2}|J M\rangle$

$$
\begin{aligned}
& J=J_{1}+1 \sqrt{\frac{\left(J_{1}+M\right)}{\left(2 J_{1}+1\right)\left(J_{1}+M+1\right)}} \sqrt{M_{2}=0} \quad \sqrt{\frac{\left(J_{1}-M+1\right)\left(J_{1}+M+1\right)}{\left(2 J_{1}+1\right)\left(J_{1}+1\right)}} \sqrt{\frac{M_{2}=-1}{\frac{\left(J_{1}-M\right)\left(J_{1}-M+1\right)}{\left(2 J_{1}+1\right)\left(2 J_{1}+2\right)}}} \\
& J=J_{1} \quad-\sqrt{\frac{\left(J_{1}+M\right)\left(J_{1}-M+1\right)}{2 J_{1}\left(J_{1}+1\right)}} \\
& J=J_{1}-1 \sqrt{\frac{\left(J_{1}-M\right)\left(J_{1}-M+1\right)}{2 J_{1}\left(2 J_{1}+1\right)}} \\
& -\sqrt{\frac{M}{\sqrt{J_{J_{1}}\left(J_{1}+1\right)}}} \\
& \sqrt{\frac{\left(J_{1}-M\right)\left(J_{1}+M+1\right)}{2 J_{1}\left(J_{1}+1\right)}} \\
& J=J_{1}-1 \sqrt{\frac{\left(J_{1}-M\right)}{2 J_{1}\left(2 J_{1}+1\right)}}-\sqrt{\frac{\left(J_{1}-M\right)}{J_{1}\left(2 J_{1}+1\right)} \frac{\left(J_{1}+M\right)}{}} \\
& \text { (C.4) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ウィグナー係数の体陆として (4.63) にあげた関保式 } \\
& \left\langle J_{2} M_{2} J_{1} M_{1} \mid J M\right\rangle=(-)^{J_{1}+J_{3}-J}\left\langle J_{1} M_{1} J_{2} M_{2} \mid J M\right\rangle
\end{aligned}
$$

$\left(\begin{array}{ll}J_{1} & J_{2} \\ M_{1} M I_{2} M\end{array}\right)=(-) J_{1}-J_{1}-{ }^{2}(2 J+1)^{-1 / 2}\left\langle J_{1} M_{1} J_{2} M_{2} \mid J-M\right\rangle$.
これらについては类雯もつくられている。

Table 3.4 Clebsch－Gordon coefficient
is the square of the Clebsch-Gordon coefficient. Table
4.4 shows the Clebsch-Gordon coefficient and with this Table 4.4 we get

$$
\begin{align*}
& P\left(\mathrm{Fe}, \frac{5}{2}, \frac{5}{2}\right)=\mathrm{K}_{1}\left[2 I P\left(\mathrm{CO}, \frac{7}{2}, \frac{7}{2}\right)+6 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2}, \frac{5}{2}\right)+\mathrm{P}\left(\mathrm{CO}, \frac{7}{2}, \frac{3}{2}\right)\right] \\
& \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{3}{2}\right)=\mathrm{K}_{1}\left[15 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2}, \frac{5}{2}\right)+5 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2}, \frac{3}{2}\right)+3 \mathrm{P}\left(\mathrm{Co}, \frac{7}{2}, \frac{1}{2}\right)\right] \\
& \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{1}{2}\right)=\mathrm{K}_{1}\left[\operatorname{lOP}\left(\mathrm{CO}, \frac{7}{2}, \frac{3}{2}\right)+I 2 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2}, \frac{7}{2}\right)+6 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2},-\frac{7}{2}\right)\right] \\
& \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{1}{2}\right)=\mathrm{K}_{1}\left[10 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2},-\frac{3}{2}\right)+12 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2},-\frac{5}{2}\right)+6 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2}, \frac{1}{2}\right)\right] \\
& \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{3}{2}\right)=\mathrm{K}_{1}\left[15 \mathrm{P}\left(\mathrm{Co}, \frac{7}{2},-\frac{5}{2}\right)+5 \mathrm{P}\left(\mathrm{Co}, \frac{7}{2},-\frac{3}{2}\right)+3 \mathrm{P}\left(\mathrm{CO}, \frac{7}{2},-\frac{1}{2}\right)\right] \\
& P\left(\mathrm{Fe}, \frac{5}{2},-\frac{5}{2}\right)=\mathrm{K}_{1}\left[21 \mathrm{P}\left(\mathrm{Co}, \frac{7}{2},-\frac{7}{2}\right)+6 \mathrm{P}\left(\mathrm{Co}, \frac{7}{2},-\frac{5}{2}\right)+P\left(\mathrm{Co}, \frac{7}{2},-\frac{3}{2}\right)\right] \tag{3.30}
\end{align*}
$$

where $\mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \mathrm{~m}\right)$ and $\mathrm{P}\left(\mathrm{CO}, \frac{7}{2}, \mathrm{n}\right)$ are the population of the second excited state of $\mathrm{Fe}^{57}$ and the state of $\mathrm{Co}^{57}$.

After the $\beta$-decay, the following transition occurs which is the magnetic dipole transition from the seconä excited state to the first excited state of $F e^{57}(I=3 / 2$, parity -). The interaction Hamiltonian is known to
belong to a first rank tensor. Therefore, after integration over all the direction, the population of a sublevel,i, in the first excited state is given by

$$
\begin{equation*}
P\left(\mathrm{Fe}^{57}, I=3 / 2, I_{z}=i\right)=K_{2} C(m, i) P\left(\mathrm{Fe}^{57}, I=5 / 2, I_{z}=m\right) \tag{3.39}
\end{equation*}
$$

where $K_{2}$ is the propotional coefficient and $C(m, i)$

$$
C(m, i)=|\langle 5 / 2 m, 1(m-i) \mid 5 / 2 \quad 1,3 / 2 i\rangle|^{2}
$$

is the square of the Clebsch-Gordon coefficient for the dipole radiation. Using Table 4.4, we get

$$
\begin{aligned}
& P\left(\mathrm{Fe}, \frac{3}{2}, \frac{3}{2}\right)=K_{2}\left[10 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{5}{2}\right)+4 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{3}{2}\right)+\mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{1}{2}\right)\right] \\
& \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{1}{2}\right)=\mathrm{K}_{2}\left[6 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{3}{2}\right)+6 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{1}{2}\right)+3 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{1}{2}\right)\right] \\
& \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2},-\frac{1}{2}\right)=\mathrm{K}_{2}\left[6 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{3}{2}\right)+6 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{1}{2}\right)+3 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2}, \frac{1}{2}\right)\right] \\
& \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2},-\frac{3}{2}\right)=K_{2}\left[10 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{5}{2}\right)+4 \mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{3}{2}\right)+\mathrm{P}\left(\mathrm{Fe}, \frac{5}{2},-\frac{1}{2}\right)\right]
\end{aligned}
$$

where $P\left(F e, \frac{3}{2}, i\right)$ and $P\left(F e, \frac{5}{2}, m\right)$ are the population of the first excited state and the second excited state of $\mathrm{Fe}^{57}$.

Finally, the transition from the first excited state to the ground state of $\mathrm{Fe}^{57}$ ( $\mathrm{I}=1 / 2$, parity -) occurs, which is the same magnetic dipole transition as above and is used for the MBssbauer effect. When the nucleus $\mathrm{Fe}^{57}$ is only in a magnetic field, then, the MBssbauer spectrum has six lines. Assuming that the sample is powder and the intensity of the line, which is correspodence to the transition from the state of $\mathrm{Fe}^{57}\left(\mathrm{I}=3 / 2, \mathrm{I}_{z}=3 / 2\right)$ to $\mathrm{Fe}^{57}(\mathrm{I}=1 / 2$, $I_{z}=1 / 2$ ), is unity. the intensity ratios of six lines are written by

$$
\begin{aligned}
& \mathrm{R}(3 / 2,3 / 2)=1.0 \\
& \mathrm{R}(1 / 2,1 / 2)=\frac{2}{3} \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{1}{2}\right) / \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{3}{2}\right) \\
& \mathrm{R}(-1 / 2,1 / 2)=\frac{1}{3} \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2},-\frac{1}{2}\right) / \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{3}{2}\right) \\
& \mathrm{R}(1 / 2,-1 / 2)=\frac{1}{3} \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{1}{2}\right) / \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{3}{2}\right) \\
& \mathrm{R}(-1 / 2,-1 / 2)=\frac{2}{3} \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2},-\frac{1}{2}\right) / \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{3}{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{R}(-3 / 2,-3 / 2)=\mathrm{P}\left(\mathrm{Fe}, \frac{3}{2},-\frac{3}{2}\right) / \mathrm{P}\left(\mathrm{Fe}, \frac{3}{2}, \frac{3}{2}\right) \tag{3.41}
\end{equation*}
$$

Whenever the nucleus $\mathrm{Fe}^{57}$ is only in a magnetic field, those $R$ can be represented as a universal function of $H / T$, where $H$ is the magnetic field at the parent nucleus $C^{57}$ and $T$ is the absolute temperature. Table 4.5 and figure 4.2 show the intensity ratio.

If the nucleus $F e^{57}$ has both the magnetic interaction and the electoric quadrupole interaction, the sublevels of the second excited state of $\mathrm{Fe}^{57}$ nucleus are not characterized by the magnetic quautum number, $\mathrm{m}_{\mathrm{I}}$. In this case, for example $\mathrm{Fe}^{57}$ in COO , the mixing effect of wave function has been taken into consideration. It is tacitly assumed that the depolarization effect is neglected because the nuclear spin-lattice relaxation time is very long.


Figure 3.4 Intensity-ratio of LINE (6) versus $H / T$.
$0.9974 \mathrm{E}+00$
$0.9971 \mathrm{E}+00$
$0.9968 \mathrm{E}+00$
$0.9966 \mathrm{E}+00$
$0.9963 \mathrm{E}+00$
$0.9960 \mathrm{E}+00$
$0.9958 \mathrm{E}+00$
$0.9955 \mathrm{E}+00$
$0.9953 \mathrm{E}+00$
$0.9950 \mathrm{E}+00$


$0 \cdot 1000 \mathrm{E}+02$
$0 \cdot 1100 \mathrm{E}+02$
$0.1200 \mathrm{E}+02$
$0.1300 \mathrm{E}+02$
$0.1400 \mathrm{E}+02$
$0.1500 \mathrm{E}+02$
$0.1600 \mathrm{E}+02$
$0.1700 \mathrm{E}+02$
$0.1800 \mathrm{E}+02$
$0.1900 \mathrm{E}+02$
$\mathrm{H} / \mathrm{T}$（KOE／K $)$






NNNNNかNNNの ofonosoño

 MツMmMmツmmm
1000000000
NNヘNNNNNNN


$$
\begin{aligned}
& n \\
& B \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$




## 









$0.6453 E+00$
$0.6452 E+00$
$0.6452 E+00$
$0.6451 E+00$
$0.6450 E+00$
$0.6450 E+00$
$0.6449 E+00$
$0.6449 E+00$
$0.6448 E+00$
$0.6447 E+00$



NNNNNNNNNN $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ + & 0 & 0 \\ 1 & + & + & + & + & + \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 4 & + & 0 & 0 & 0 \\ \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$N \sim N N N N N N N$ OOOONOONON






LINE (6)


00000000000 OOOOOCOOOOC
$t+t+t+t+t$

大rNrNrrooso 000000000000


응ㅇㅇㅇㅇㅇㅇㅇㅇㅇ $t+t+t+t+t+$
 OnO』न $\propto \infty \propto \propto \infty \propto \propto \infty \propto \infty$

$\sim \sim N \sim N \sim N N N N$ | NNNNNNNNN |
| :---: |
| 00000000 | 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ $0.6100 E+0$

$0.6094 E+0$
$0.6089 E+0$
$0.6083 E+0$
$0.6078 E+0$
$0.6072 E+0$
$0.6067 E+0$
$0.6061 E+0$
$0.6056 E+0$
$0.6031 E+0$

## INE (2)

## LINE(3)






0000000000



NMNMNANAN
NMNMNANAN



0

$\qquad$
$\square$






응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
OCOCOOOOOO
$+t+t+t+t+t$


納Niningyyty $00^{\circ} 00000000$

ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
OOOOOCOOOOC


 0000000000

 octitcticcot

 ヘNNNNNNNNツ


020003000
$+4+4+t+4+$山出山以


00000000000



 000000000

|  |
| :--- |
|  |
|  | 0000000000

 $0.1200 E+04$ $0 \cdot 1300 E+04$ $0 \cdot 1400 E+04$ $0.1500 \mathrm{E}+04$ $0.1600 \mathrm{E}+04$ $0.1700 E+04$
$0.1800 E+04$ $0.1900 \mathrm{E}+04$
 $0.2000 E+04$
$0.2100 E+04$
$0.2200 E+04$
$0.2300 E+04$
$0.2400 E+04$
$0.2500 E+04$
$0.2600 E+04$
$0.2700 E+04$
$0.2800 E+04$
$0.2900 E+04$


0000000000
OOOOOOOOOO $++++++++++$

 NッNNNNNNNN $\therefore \dot{0} 0 \dot{0} 0 \dot{0} 000$


OOOㅇㅇㅇㅇㅇㅇㅇ
$t+t+t+t+t+t$




さささ寸ささ寸さささ

 000080
00000000
ondinnto nin in in in n n in n n




## H／T（KOE／K



ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
0000000000 ＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋＋
白 1



H／T


\footnotetext{





ninmin in min in min



岕出出出出出出出出出出


－0000000000







| $0.1259 \mathrm{E}+00$ | $0.7432 \mathrm{E}-01$ |
| :--- | :--- |
| $0.1240 \mathrm{E}+00$ | $0.7247 \mathrm{E}-01$ |
| $0.1221 \mathrm{E}+00$ | $0.7068 \mathrm{E}-01$ |
| $0.1203 \mathrm{E}+00$ | $0.6893 \mathrm{E}-01$ |
| $0.1184 \mathrm{E}+00$ | $0.6722 \mathrm{E}-01$ |
| $0.1166 \mathrm{E}+00$ | $0.6556 \mathrm{E}-01$ |
| $0.1149 \mathrm{E}+00$ | $0.6394 \mathrm{E}-01$ |
| $0.1131 \mathrm{E}+00$ | $0.6236 \mathrm{E}-01$ |
| $0.1114 \mathrm{E}+00$ | $0.6082 \mathrm{E}-01$ |
| $0.1098 \mathrm{E}+00$ | $0.5933 \mathrm{E}-01$ |



$\qquad$

$$
0.000^{\circ} 0^{\circ} 00^{\circ}
$$



## CHAPTER IV

THE MAGNETIC HYPERFINE FIELD AT Co ${ }^{57}$<br>IN ANTIFERROMAGNETIC COO

The mono-oxides of transition group ions are known to be antiferromagnetic substances. This CoO is specially interesting since its $C o$ ions have large residual orbital moments. The MUssbauer measurements on $\mathrm{Co}^{57}$ doped CoO has been done at various temperatures down to 0.08 K , using a $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator and the magnetic hyperfine field at co ${ }^{57}$ in coo has been estimated.

```
$4.1 Introduction
```

In the preceding chapter, it was stated that, from the M8ssbauer emission spectrum on $\mathrm{Fe}^{57}$ at very low temperatures, the hyperfine field at $\mathrm{Co}^{57}$ of the parent nucleus embeded in a substance can be known. This new method to estimate the hyperfine fields is especially useful in anyiferromagnetic substance, because the application of NMR is techniqually difficult.

In this chapter, the MOssbauer measurements on $\mathrm{Co}^{57}$ embeded in an antiferromagnetic material, CoO, down to 0.08 K which was obtained with a $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator are described and the estimation of the hyperfine field at $\mathrm{Co}^{57}$ is attempted.

The magnetic scattering from CoO has been studied by Shull et al. 65) who established the presence of the antiferromagnetic transition. CoO has a NaCl structure above the Neel temperature and lattice undergoes a large tetragonal contraction. The antiferromagnetic structure is skeched in figure 4.1, but the precise direction of the magnetic spin is not fixed and still in controversy. 66) Although CoO seems to be one of the simplest materials, many interesting and unresolved problem exist in its magnetic
properties and gathered the attentions of many scientists in the fields of neutron diffraction and also MÖssbauer spectroscopy. For a futher study on CoO, microscopic information by NMR experiment will be very important. The estimation of the hyperfine field done in the present work will be helpful to find the NMR signals. Although the search for NMR signal has not yet been successful, a theoretical prediction was carried out by Motizuki about ten years ago. 67) The hyperfine field at 0 K was estimated to be +490 kOe.

The anormalous charge state observed in M8ssbauer emission and absorber spectra have brought about a number of discussions. 68) CoO is the most extensively studied material from this point of view and many M8ssbauer studies have published in the past ten years. Wertheim 69) has first measured the MOssbauer source spectrum of $\mathrm{Fe}^{57}$ in CoO and found a condiderable amount of $\mathrm{Fe}^{3+}$ coexisting with $\mathrm{Fe}^{2+}$ Wertheim suggest that the observed $\mathrm{Fe}^{3+}$ is a metastable state resulting from the Auger after effect. ${ }^{70}$ ) Because the content of $\mathrm{Co}^{3+}$ in CoO is very small, the observed $\mathrm{Fe}^{3+}$ ions are supposed to be produced very rapidly after the nuclear transition from $\mathrm{Co}^{57}$ to $\mathrm{Fe}^{57}$. However, it was also found that the relative amount of $\mathrm{Fe}^{3+}$ drastically
depends on the method of sample preparation and the measuring temperature. 71,72 ) On the other hand, a delayed coincidence measurement was applied by Trifthauser and Craig, ${ }^{73)}$ but the observed ratio of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ showed no time dependence within the availavle time intervals. This result has been regarded as a negative evidence for the interpretation with Auger effect. At the present stage , however, no explanation is completely satisfactory for those experimental facts on CoO.

```
$ 4.2
Crystalogrophic and Magnetic Structure of Antiferromagnetic CoO
```

\$ 4.2.a Crystalographic structure
Coois an antiferromagnetic substance with its Neel
temperature $\left(\mathrm{T}_{\mathrm{N}}\right)$ at about 290 K . The precise value of the N'eel temperature obtained from different experiment ${ }^{52-60)}$ varies slightly, Table 4.1 compares the Neel temperature of CoO obtained different methods.

Below the Néel temperature, the lattice undergoes
a large tetragonal contraction along the cube-edge. Nagamiya et al. ${ }^{61)}$ reported that the tetragonal contraction is $1.2 \times 10^{-2}$ and additional rhombohedral elongation occurs with $e_{x y}=e_{y z}=e_{z x}$ of magnitude $5 \times 10^{-4}$.

Saito et al. reported that $C o O$ has two types of magnetic domains, named t-domain and r-domain, in the antiferromagnetic state by a X-ray diffraction. ${ }^{62)}$ The $t$-domain is in connection with tetragonal deformation and $r$-domain in connection with rhombohedral deformation. CoO has the lattice parameter of 4.24 A at 300 K .


| $\begin{array}{ll}\text { Table.4.1 } & \text { Cob } \\ \\ \\ \text { Author }\end{array}$ | rison of the Ne ned by different | 1 temperature methods | $\mathrm{CoO}$ |
| :---: | :---: | :---: | :---: |
|  | Method | Transition temperature (K) | Ref. |
| La Blanchatais | Succeptibility | 292.2 | (53) |
| Foex | Dilation | 292.2 | (54) |
| Street and Lewis | Young's modulus | 289.2 | (55) |
| Fine | Young's modulus | 271.0 | (56) |
| Trombe | Succeptibility | 292.0 | (57) |
| Greenwald <br> Bizette and | x-rays | 278-284 | (58) |
| Assayag | Specific heat | 289.7 | (59) |
| Khan and Erickson | Neutron | 295. $\pm 1$ | (60) |

Jasnom and Wortis ${ }^{63)}$ have hypothesized that the behavior of a magnetic system near its critical point has one-to-one correspondence to the system. If so, CoO should become like an Ising antiferromagnetic near $T_{N}$. Salamon ${ }^{64)}$ by specific heat measurement and Rechtin and Aberbach by the neutron intensity study reported that CoO shows the behavior of the 3-dimentional Ising like antiferromagnet, which has the critical indecies of $\alpha=0.05 \pm 0,02$ $\alpha=0.29 \pm 0.25$ and $\beta=0.29 \pm 0,25 \quad\left(\alpha^{\prime}=0.05, \alpha=0,12\right.$, and $\beta=$ 0,315 by the prediction of the 3 -dimentional Ising model ${ }^{2}$

The spin arrangement firstly determined by a neutron diffraction study by Shull, Strauser and Wollen in 1951.65) Figure 4.1 shows the spin structure of $C O O$ which believed by many unvestigators, such that the spin are parallel on each (lll) planes but antiparalle to those on neighbering (lll) planes. However, the spin assingment in CoO in the antiferromagnetic state has been in acontroversal stage.

Li proposed two models, model A and Model B, based on the assumption of a single magnetic axis in figure 4.2. From powder diffraction data, Shull et al. ${ }^{65)}$ as well as Roth 76)
accepted model $A$. Roth assigned the spin direction paralle to [ll7], which makes an angle $11^{\circ} 30^{\prime}$ with respect

| Table 4.2 Spin Arrangement in CoO |  |  |
| :---: | :---: | :---: |
| investigators | model | angle |
| Nagamiya, motizuki <br> Shull et al. ${ }^{\text {65) }}$ <br> Roth ${ }^{78}$ ) <br> Uchida et al. ${ }^{81 \text { ) }}$ <br> Saito et al ${ }^{82}$ ) <br> $\mathrm{Ok}, \mathrm{Mu} \mathrm{ll}^{72}{ }^{72}$ <br> Rechtin Averbach ${ }^{84}$ $\text { Y.Y.Li } 8 \text { 8) }$ <br> van Laar ${ }^{74)}$ <br> Greiner et al. ${ }^{80}$ ) <br> van Laar ${ }^{74}$ ) <br> Roth ${ }^{78}$ ) | collinear <br> Li-A <br> Li-A and B <br> Li-A <br> .- <br> multispin <br> multispin | $\begin{aligned} & 10^{\circ} \\ & 11^{\circ} 30^{\prime} \\ & 11^{O_{3}} 0^{\prime} \\ & 10^{\circ} \\ & 10^{\circ} \\ & 7^{\circ} 5^{\prime} \\ & 27^{\circ} 4^{\prime} \\ & 27^{\circ} 4^{\prime} \end{aligned}$ |



Fig. 1. Li's models $\Lambda$ and B. Circles with + sign represent $\mathrm{Co}^{++}$ ion with spin-up. Circles with - sign represent that with spindown.
Figure 4.2
Schematic of spin structure models in COO
to [001]. Nagamiya and Motuzuki ${ }^{77}$ theoretically arrived at a similar result (angle of deviation $10^{\circ}$ ). Roth, later introduced a number of multispin axis structures (I, $K$, R,T,U) with tetragonal symmetry in keeping with the tetragonal distortion 78) Later on, van Laar et al. ${ }^{79 \text { ) }}$ repeated Roth's experiment with a high-resolution diffractmeter and rejected the Roth s multi-spin. He could explain these data with a collinear model A with an angle of deviation $27.4^{\circ}(\alpha=-0.325, \beta=-0.325, \gamma=+0.888)$ or equally well with a multispin axis structure described in Table l in ref 85. On the other hand: Uchida et a1. ${ }^{80)}$ interpreted their recent magnetic anisotropy measurements in terms of Roth's single axis model A with spin along [117] (11.30 ). Greiner, Berkowitz and Weinborner studied the torque courver of single crystal CoO. They ruled out the muthispin model by van Laar and decide in favor of the collinear model with the spin making an angle of $27.4^{\circ}$. Again, Saito et al. found that their low temperature $X$-ray diffraction data could best be explained by Roth $s$ collinear model ( $10^{\circ}$ ). 81) Recently Ok and Mullen ${ }^{82)}$ concluded from the analysis of MOssbauex experiment that the spin arrangement agree with the van Laar model. Rechtin and Averbach ${ }^{83)}$ reported a collinear structure with the moments tipped out the [111] planes $7^{\circ} 50^{\prime}$ toward the c-axis.

For the determination of the spin arrangement, microscopic information by NMR experiment will be important. The search for NMR signal has not yet been succesful. In table 4,2 the results of spin arrangement obtained by meny investigators is summalized.

```
$ 4.3
MBssbauer investigations on CoO
```

In 1961, Wertheim ${ }^{69}$ ) has first measured the M8ssbauer source spectrum in CoO doped with $\mathrm{Co}^{57}$ and found a considerable amount of $\mathrm{Fe}^{3+}$ coexisting with $\mathrm{Fe}^{2+}$. Because the content of $\mathrm{Co}^{3++}$ in CoO is very small, the observed $\mathrm{Fe}^{3+}$ ions are supposed to be produced very rapidly after the nuclear transition from $\mathrm{Co}^{57}$ to $\mathrm{Fe}^{57}$. Wertheim suggested that the observed $\mathrm{Fe}^{3+}$ is a metastable state resulting from the Auger after effect ${ }^{70}$ ).
A. Auger effect

If radioactive co ${ }^{57}$ is embeded in a lattice which contains Co or Fe , the $\mathrm{Co}^{57}$ goes into Co or Fe substitutional position. By K or $L$ electron capture the $\mathrm{Co}^{57}$ is transformed into $\mathrm{Fe}^{57}$ This can be in different states of ionization, due to Auger cascades, which is metastable states. Resonance absorption of $14.4 \mathrm{keV} \mathrm{Fe}{ }^{57}$ gamma-ray detects usually one kind of ions which have the valency of the substituted ion. This means that the electroncapture time of highly ionized atoms is very short compared to the lifetime of $\mathrm{Fe}^{57}$ isomeric state. Pollk has reported the theoretical studies on the Auger cascade and M8ssbauer effect in 1962. The experimental
data concerning the electron capture of $\mathrm{Co}^{57}$ is the $\mathrm{K} / \mathrm{L}$


Figure 4.3.a $K$ and $L$ fluorescence


Figure 4.3.b The Auger cascade scheme of $\mathrm{Co}^{57}$


Figure 4.3.c The Mठssbauer spectrum of $\mathrm{Co}^{57}$ in Co ( $\left.\mathrm{NH}_{4} \mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as an example of Auger after effect
capture ratio; $83.5 \% \mathrm{~K}$-capture and $16.5 \%$ L-capture, and the $\mathrm{K}=\mathrm{fluorescence}$ yields

$$
\begin{equation*}
0.32 \pm 0.05=\frac{R_{K}}{R_{K}+A_{K}} \tag{5.1}
\end{equation*}
$$

where $R_{K}$ is a radioactive transition probability and $A_{K}$ is total Auger transition probability. Figure 4.3.a shows the K-fluorescence ( L ) vs atomic number. Pollak built up the Auger cascade scheme of $\mathrm{Co}^{57}$, figure 4.3.b shows the scheme and figure 4.3.c is the MOssbauer spectrum of $\mathrm{Co}^{57}$ in $\mathrm{CO}\left(\mathrm{NH}_{4} \mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as typical example of Auger after effect. ${ }^{74)}$

At time $\mathrm{t}=0$ one has the following situation; $\mathrm{Fe}^{++}=5 \%$ and $\mathrm{Fe}^{+++}=95 \%$ from this theory. After the decay, Wertheim detected by MBssbauer effect two states of ionization for the ion; $\mathrm{Fe}^{++}=53 \%$ and $\mathrm{Fe}^{+++}=47 \%$ at the time $\mathrm{t}=10^{-7} \mathrm{sec}$. Herefrom, Pollak deduced the time of atomic electron capture by $\mathrm{Fe}^{+++}$in CoO to be $(1.4 \pm 0.2) \times 10^{-7} \mathrm{sec}$.

Later on, it was also found that the relative amount of $\mathrm{Fe}^{+++}$drastically depends of the method of sample prepalation and measuring temperature 71). The amount of $\mathrm{Fe}^{+++}$ definitly increase with crystal imperfections. In 1966 Trifthauser and Craig , succeeded to develope the delayedcoincident MOssbauer technique which permits measurements


Frg. 2. Delayed coincidence Mössbaucr studies using a source of $\mathrm{Co}^{67}$ in Cu and an absorber of potassium ferrocyanide. The "time filtering" effects displayed with this unsplit source were used to permit resolving more complex spectra in systems displaying multiple charge states. Note the "negative absorption" which is particularly strong in curves II and III. The last curve (taken without coincidence) is shown for comparison.


Fic. 3. Delayed coincidence ME spectra for $\mathrm{Co}^{10}$ in CoO at $300^{\circ} \mathrm{K}$. No evidence for metastable charge states is found. In all measurements, an unsplit absorber of potassium ferrocyanide was used.
(A)

Figure 4.4 Delayed coincidence MOssbauer spectra.
(A) is the spectra for $\mathrm{Co}^{57}$
in Cu metal.
(B) is the spectra for $\mathrm{Co}^{57}$
in CoO. No evidence
for metastable states is found.
of the time evolution of the MBssbauer resonance following the resonant nuclear level. Such delayed coincident measurement was applied on $\mathrm{Co}^{57}$ of CoO , but the observed ratio of $\mathrm{Fe}^{+++} / \mathrm{Fe}^{++}$showed no time dependence within the available time interavals; $10^{-8}-10^{-9} \mathrm{sec}$. Figure 4.4 (B) shows the delayed-coincident M8ssbauer spectra for $\mathrm{Co}^{57}$ in CoO at 300 K . This result has been regarded as a negative evidence for the interpretation with Auger effect.

At the present stage, however, no explanation is completely satisfactory for those experimental facts in CoO. For the possible mechanisms of $\mathrm{Fe}^{+++}$formation in CoO, four reasons are to be considered ( see Table 4.3).

Table 4.3 The possible mechanism of $\mathrm{Fe}^{+++}$formation
(1) Due to the after effect of the nuclear decay, metastable $\mathrm{Fe}^{+++}$or more higher charged states produced. The $\mathrm{Fe}^{+++}$state observed in COO is such a long-lived metastable state ( $10^{-7} \mathrm{sec}$ ). Ref. 69,92
(2) There are two crystallographic forms for CoO; COO(I) has a complete NaCl structure and CoO(II) has a NaCl structure with half of its positive ion sites and half of its negative sites vacant. Only the $\mathrm{Fe}^{+++}$state can be observed in the spectrum for $\mathrm{COO}(I I)$ and usually obtained samples are the mixtures of this two forms.

Ref. 86,83
(3) In the vicinity of defects, the cations will have a finite probability to be in +3 charge state.

Since the ionization potential is much smaller for $\mathrm{Fe}^{++}$than $\mathrm{Co}^{++}$, pairs of $\mathrm{Fe}^{+++}$ion and vacacy should be stabilized relative to paires containing Co ${ }^{+++}$. Blomquist et al. have suggested a large mobility of vacancies in order to account for the experimental results that the $\mathrm{Fe}^{+++} / \mathrm{Fe}^{++}$ratio is very large even if the vacancy concentration is rather low.

Ref. 87, 73
(4) The semiconducting properties of COO is important. The ratio of $\mathrm{Fe}^{+++} / \mathrm{Fe}^{++}$observed in MOssbauer pattern is a function of the $p$-type dopant and $n$-type dopant density

Ref. 88

## \$4.4 Experimental

Two samples of CoO including $\mathrm{Co}^{57}$ were prepared. Small platinum plate were used as sample holders. Cobaltous chlaride was thinly spread on the plate and the carrier-free $\mathrm{Co}^{57}$ solution was dropped. Sampıe-I was heated for 24 hours at $1000^{\circ} \mathrm{C}$ in the atmosphere of $\mathrm{CO}_{2}$ and Sample-II was heated in air for 24 hours at $1200^{\circ} \mathrm{C}$. The samples were rapidly cooled after the heat treatments. The source strength at room temperature was 0.3 mCi . The MOssbauer source spectra at room temperature and liquid $\mathrm{He}^{4}$ temperature were in good agreement with the formerly reported ones ( e.g. figure 11 in ref 83). The characteristics of the spectra could confirm the samples were single phase CoO.

All mearsurements were made with moving a standard absorber, which was unenriched stainless steel foil, whose thickness was enough to obtain an ideal powder pattern, The analysis of the spectra was made with a computer, Facom 270/30, at the Data Processing Center, Kyoto University, with the combination of the graphic display or digital $X-Y$ plotter. The least square method was applied for fitting the theoretical curve with the observed spectrum.


Figure 4.5 Schematic of the sample attachment

The $\mathrm{He}^{3}-\mathrm{He}^{4}$ dilution refrigerator was described in Chapter II.93) The sample was attached to the copper block by Apiezon-N grease to ensure the thermal conduction.

Carbon resistres,Speer $100 \Omega 1 / 2 \mathrm{w}$, were used for the temperature monitors at the still, the mixing chamber and the sample place. The time length for each measurement was about 10 hours and the temperature fluctuation was less than 0.01 K . The absolute temperature was determined by the Mठssbauer thermometery. A standard source, $\mathrm{Co}^{57}$ in a thin Fe foil was attached to the same block, whose activity was about 2 mci . The m8ssbauer spectra of the standard source at the lowest temperature of 0.08 K and atroom temperature are sown in figure 3.2 . The asymmetry caused by the nuclear polarization of co ${ }^{57}$ nuclei is obviously seen in the spectrum at 0.08 K . The absolute temperature was determined from the intensity ratio of the outermost peaks.

The self heating effect for the radioactive sources seems to be unimportant above 0.05 K (see p. 240 in Ref. 6 ), as far as the activity is not very high.

## \$45 Experimental Re lts



In order to estimate the intensity ratio, $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ spectrs must be separated. Because the three of the six lines for $\mathrm{Fe}^{3+}$. state are seen as independent peaks, the position and intensities of the other three, superposing with the $\mathrm{Fe}^{2+}$ spectrum, can be unambiguously determined.

The thre eaks also an שfe wtear
polariz: $\quad$ and the effects are tas.on.
In figure $4 .+\%$ the $r e$ amon of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ for
the case of Sample-II ar hown as a whion of temperature.

Figure 4.6 The MBssbauer spectra of $\mathrm{Fe}^{57}$ in antiferromagnetic CoO (Sample-II) at various temperatures.

$\$ 4.6$
Analysis and Discussion
\$4.6.a The $\mathrm{Fe}^{2+}$ spectrum

In order to obtaine the intensity ratio of lines for $\mathrm{Fe}^{2+}$ state only, the subtraction of the six lines for $\mathrm{Fe}^{3+}$ state from the observed M8ssbauer spectrum was made. Figure 4.7 shows such spectra for $\mathrm{Fe}^{2+}$ state only.

In the case of $\mathrm{Fe}^{2+}$ state, a quadrupole interaction is comparable with a magnetic hyperfine interaction and as result, eight kinds of mbssbauer transition are possible. Below 4.2 K , the observed MOssbauer spectrum for $\mathrm{Fe}^{2+}$ state consisted from four lines since the two middle lines were respectively composed of three transitions. Fortunately, each of the two outer peaks correspondings to one kind of transition and the nuclear polarization of parent $\mathrm{Co}^{57}$ nuclei can be caluculated the intensity ratio of the outer lines. In figure 4.8 , the relative intensity ratio of temperature.

Figure 4.7 The MBssbauer spectra for $\mathrm{Fe}^{2+}$ state in antiferromagnetic CoO at various temperatures.


Figure 4.8 Intensity ratio of the outer peaks of the M8ssbauer spectra for $\mathrm{Fe}^{2+}$ state in antiferromagnetic CoO.as a function of temperature.


The theoretical principles for the calculation are described in section 3.4. Since a quadrupole interaction is comparable to the magnetic interaction, the mixing effect of the wave functions of ${ }^{-} \mathrm{Fe}^{57}$ nucleus must be taken into consideration. The wave functions of $\mathrm{Fe}^{57}$ nucleus obtained by Ok and Mullen ${ }^{83)}$ were used for this calculation. Namely, the quadrupole interaction and the magnetic interaction for $\mathrm{Fe}^{57}$ nucleus in COO are

$$
\begin{align*}
& \mathrm{H}=150 \mathrm{kOe},  \tag{5.1}\\
& \mathrm{eqQ} / 2=-1.01 \mathrm{~mm} / \mathrm{sec},  \tag{5.2}\\
& \Theta=39.5^{\circ}  \tag{5.3}\\
& \mathrm{P} \equiv \mathrm{eqQ} / 6 \mathrm{~g}_{\mathrm{e}} \mu_{\mathrm{N}} \mathrm{H}=-0,33 \tag{5.4}
\end{align*}
$$

where $H$ is the hyperfine field at $\mathrm{Fe}^{57}$ nucleus, eqQ/2 is the quadrupole interaction and $\theta$ is the angle between the direction of $H$ and the principle axis of EFG tensor. ${ }^{83)}$ The wave functions of $\mathrm{Fe}^{57}$ first excited state can be calculated with these values of the hyperfine parameters for $\mathrm{Fe}^{57}$ nucleus. And the hyperfine field at $\mathrm{Co}^{57}$ nucleus was estimated with that wavw functions of $\mathrm{Fe}^{57}$ nucleus. Table 4.4 gives the observed
ratio of the two outer most peaks at various temperatures. The last column of the table shows the magnetic hyperfine field at $\mathrm{Co}^{57}$ nucleus caluculated at the respective temperature. The average valus of the hyperfine field is 590 kOe and the possible error ahould be smaller than 40 kOe . The solid curve in figure 4.8 shows the temperature dependence of the intensity ratio, when the hyperfine field is 590 kOe .

It is to be noted that the asymmetry caused by the nyclear polarization is seen in the oppsite direction to the case of $\mathrm{Co}^{57}$ in Fe metal shown in figure 3.2. The hyperfine fields at $C o$ and $F e$ nuclei in $F e$ metal are known to be negative and from the temperature dependence of the hyperfine field, the sign of the field at $\mathrm{Fe}^{57}$ in Coo was also determined to be negative. Therefore, the sign of that at $\mathrm{Co}^{57}$ is concluded to be positive. It is a merit of the present method that the sign of the hyperfine field can be estimated without applying an external field even for antiferromagnetic materials.

The fyperfine field at $\mathrm{Co}^{57}$ in antiferromagnetic CoO was thus determined to be $+590 \pm 40 \mathrm{kOe}$, when is a little larger than the theoretically predicted value, +490 kOe by Motizuki ${ }^{93)}$. If we consider the possible
error in the estimation of the intensity ratio and also consider the ambiguities in the calculation of the hyperfine field, such as the hyperfine constant and the ground state wave function, the agreement between the experimental and theoretical values seems to be fairly good.

| Tahle 4.4 The ma | atic hyporfine field at the sit (from the Mossbatier spertrum | of $\mathrm{CO}^{57}$ nucleus in CoO the $\mathrm{Fe}^{2+}$ ion) |
| :---: | :---: | :---: |
| Temperature ( mK ) | Intoncity ration of onter limes | Hyperfine finda( lage ) |
| Sample I |  |  |
| $80 \pm 10$ | $0.90 \pm 0.03$ | $545 \pm 30$ |
| $150 \pm 10$ | $0.35 \pm 0.03$ | $608 \pm 30$ |
| Sample lit |  |  |
| $30 \pm 10$ | $0.32 \pm 0.03$ | $556 \pm 30$ |
| $200 \pm 10$ | $0.14 \pm 0.03$ | $610 \pm$ ? 0 |
| $300 \pm 10$ | $0.54 \pm 0.03$ | $630 \pm 30$ |
| 1.17 ( K ) | $0.76 \pm 0.03$ |  |
| 1.20 ( K ; | $0.86 \pm 003$ |  |
|  | weighted averace | $590 \pm 40$ |

\$ 4.6.b Analysis and Discussion about $\mathrm{Fe}^{3+}$ spectrum

The spectrum for $\mathrm{Fe}^{3+}$ also shows a remarkable asymmetry due to the nuclear polarization. Figure 4.9 shows the M8ssbauer spectra for $\mathrm{Fe}^{3+}$ state only at various temperatures. With the same treatment as the case of $\mathrm{Fe}^{2+}$ spectrum, the fyperfine field at $\mathrm{Co}^{57}$ could be deduced as $+603 \pm 80 \mathrm{kOe}$. The intensity ratio of the outermost ines is plotted in figure 4.10, with the calculated curve in which the hyperfine field was assumed to be 603 kOe . Since the statistics of $\mathrm{Fe}^{3+}$ spectra were rather poor, the possible error was somewhat larger.

Figure 4.11 shows the ratio of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ observed in the spectra. The relative intensity of the $\mathrm{Fe}^{3+}$ spectrum decreased remarkably with a decrease of temperature. This result is in accordance with the previous observation (e.g. Fig.ll in ref.83). Such a large temperature dependence cannot be explained with the difference of the Debye temperatures for the two ionic states. Therefore, the atomic ratio of $\mathrm{Fe}^{3 \dagger} / \mathrm{Fe}^{2 \dagger}$ should vary with temperature. On the other hand, at low temperatures, between 4.2 K and 0.1 K , the ratio was practically constant and about $21 \%$ of the total iron remained as the $\mathrm{Fe}^{3+}$ state.

| Figure 4.9; | M Sssbauer spectra for $\mathrm{Fe}^{3+}$ state in |
| ---: | :--- |
|  | antiferromagnetic coo (Sample-II) |
|  | at various temperatures. |



Figure 4.10. Intensity ratio of the outermost lines of the M sssbauer spectra for $\mathrm{Fe}^{3+}$ state in antiferromagnetic COO as a function of temperature.


$\begin{array}{ll}\text { Figure 4.11 } & \text { Atomic ratio of } \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+} \text { versus } \\ \text { temperature }\end{array}$


For Sample-I, the amount of $\mathrm{Fe}^{3+}$ below 4.2 K was about $31 \%$.

Concerning the state of $\mathrm{Fe}^{3+}$ state produced from $\mathrm{Co}^{57}$ atoms in CoO, we have obtained the following two experimental results.
(1)

The hyperfine field at the parent nucleus estimated from the $\mathrm{Fe}^{3+}$ spectrum is nearly as the same as that from the $\mathrm{Fe}^{2+}$ spectrum. In other words, all the cobalt ions are crystallographically equivalent.
(2) The atomic ratio of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ has no temperature dependence between 4.2 K and 0.1 K .

According to the result (1), it is very doubtful to assume that the cobalt ion to be transformed into $\mathrm{Fe}^{3+}$ is crystallographically different from that into $\mathrm{Fe}^{2+}$. Ok and Mullen ${ }^{89)}$ had assumed that CoO has two crystal phases. According to their speculation, the parent cobalt ion of $\mathrm{Fe}^{3+}$ has definitely a different surrounding. In contrast to the parant ion of $\mathrm{Fe}^{2+}$ having six oxygens as the nearest neighbors, that of $\mathrm{Fe}^{3+}$ has only three oxygens. If it
is the case, the hyperfine field at the parent cobalt ion of $\mathrm{Fe}^{3+}$ should not be the same as that of $\mathrm{Fe}^{2+}$.

At the higher temperature range, the temperature dependence of the $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ ratio seems to correspond to the thermal equilibrium at each temperature. Since the mobility of vacancy should be very small at low temperature, below $4.2 \mathrm{~K}, \mathrm{Fe}^{3+}$ ions cannot be stabilized except in the vicinity of a defect. The concentration of cobalt ions in a surface layer or neighboring a crystal defect( possibly much less than 0.1\%) is surely too small to explain the observed number of $\mathrm{Fe}^{3+}$ ions.

At the low temperature, the mobility of electron should also very small. Therefore, the semiconducting property of CoO is not important below 4.2 K .

Therefore much of the $\mathrm{Fe}^{3+}$ ions observed below 4.2 K are thought to be a metastable state produced after the nuclear decay.

A complete interpretation is not yet possible but the present result are helpfui to consider the mechanism of the formation of $\mathrm{Fe}^{3+}$ state.

## CHAPTER V

NMR STUDY OF Co ${ }^{59}$ NUCLEUS IN ANTIFERROMAGNETIC COO

With the help of the information on the hyperfine field at co ${ }^{57}$ nucleus obtained by mossbauer experiments at very low temperatures, the spectrum of $\mathrm{Co}^{59}$ NMR in CoO single crystal was observed in antiferromagnetic state. The observed absolute value of the hyperfine field at $\mathrm{Co}^{59}$ nucleus was found to be $495.5 \pm 0.5 \mathrm{kOe}$ at 4.2 K in zero external magnetic field, which was smaller than the value of 590 kOe estimated by the MBssbauer experiments at very low temperatures. This error on the estimation in M8ssbauer studies is considered to be caused to an over estimation of the absolute temperatire of sample due to heating of the source thermometer itself, which, if the thermal contact is not complete, the hyperfine field at $\mathrm{Co}^{57}$ nucleus will be estimated to be larger than the real value. The detail analysis of $\mathrm{Co}^{59}$ NMR in CoO will be given in this section.

```
\$5.1 Introduction to \(\mathrm{Co}^{59}\) NMR
```

Nuclear magnetic resonance experiments, with particular use of the transient NMR technique, provide detailed information conserning the static and dynamic properties of the ordered spin system. Since each $\mathrm{Co}^{59}$ nuclear spin is coupled to the $\mathrm{Co}^{2+}$ electronic spin via intra-atomic hyperfine interaction, the co 59 NMR signals in COO are expected to reflect the microscopic nature of the respective sublattices. The hyperfine interaction between the nucleus and electrons in ion can be written as

$$
\begin{equation*}
\mathcal{H}=\mathscr{X}_{\mathrm{F}}+\mathscr{H}_{1}+\mathscr{X}_{\mathrm{a}}+\mathscr{H}_{Q}, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{H}_{\mathrm{F}}=2 \beta g_{\mathrm{N}} \beta_{\mathrm{N}} \sum_{\mathrm{k}} \frac{8}{3} \pi \delta\left(r_{\mathrm{k}}\right) \bar{s}_{\mathrm{k}} \cdot \overline{\mathrm{I}},  \tag{5.2}\\
& \mathcal{H}_{\mathrm{I}}=2 \beta g_{N} \beta_{N} \sum_{\mathrm{k}} \frac{1}{r_{k}^{3}} \overline{\mathrm{I}}_{\mathrm{k}} \cdot \overline{\mathrm{I}},  \tag{5.3}\\
& \mathcal{H}_{\mathrm{d}}=2 \beta g_{\mathrm{N}} \beta_{\mathrm{N}} \sum_{\mathrm{k}}\left[\frac{\bar{s}_{k} \cdot \overline{\mathrm{I}}}{r_{\mathrm{k}}^{3}}+\frac{3\left(\bar{r}_{k} \cdot \overline{\mathrm{~s}}_{\mathrm{k}}\right)\left(\bar{r}_{\mathrm{k}} \cdot \overline{\mathrm{I}}\right)}{r_{k}^{5}}\right] \tag{5.4}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{H}_{Q}=\frac{e^{2} Q}{2 I(2 I-1)} \sum_{k}\left[\frac{I(I-1)}{r_{k}^{3}}-\frac{3\left(\bar{r}_{k} \cdot \bar{I}\right)}{r_{k}^{5}}\right] \tag{5.5}
\end{equation*}
$$

Here $l_{k}$ and $s_{k}$ stand for the orbital and spin angular momentum of the $k$-th e;ectron, respectively, $r_{k}$ the distance of the $k-t h$
electron from the nucleus, $\beta$ the Bohr magneton, $\beta_{N}$ the nuclear magneton, $g_{N}$ the nuclear gyromagnetic factor in units of e/2Mc, and $\bar{I}$ the nuclear spin angular momentum of magnitude $I$. The $\operatorname{sum} \sum_{k}$ extends over all the electrons in the ion and outside the ion. The latter inter-atomic interaction is considerably smaller than the former intra-atomic interaction. The effective Hamiltonian for the nucleus is obtained by averaging the above Hamiltonịan with respective to the electronic wave function of the ground state of the ion. The most simple way to do it is to use the effective hyperfine Hamiltonian in the ground term of the ion

The ground states of the 3d-transition metal ions in the weak-field coupling scheme are as follows;

1) the orbital singlet state ion

$$
\begin{aligned}
& \mathrm{A}_{1} ; \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Cu}^{+} \mathrm{ets}, \\
& \mathrm{~A}_{2} ; \mathrm{C}_{\mathrm{r}}{ }^{3+}, \mathrm{Mn}^{4+}, \mathrm{Ni}^{2+}(\mathrm{OC}) ; \mathrm{Co}^{2+}(\mathrm{Td}) \text { etc, }
\end{aligned}
$$

2) the orbital doublet state ion

$$
\mathrm{E} ; \mathrm{Mn}^{3+}(\mathrm{Oc}) \text { etc, }
$$

3) the orbital triplet ion

$$
\begin{aligned}
& \mathrm{T}_{1} ; \mathrm{Cr}^{4+}, \mathrm{V}^{3+}, \mathrm{Co}^{2+}(\mathrm{Oc}) \text { etc, } \\
& \mathrm{T}_{2} ; \mathrm{Fe}^{2+}(\mathrm{Oc}) \text { etc. }
\end{aligned}
$$

Here Oc and Td indicate octahedral and tetrahedral sites. Most of NMR signals have been observed associated with the ions in the orbital siglet states $A_{1}$ and $A_{2}$ and orbital doublet $E$, and
the origins of the hyperfine fields in such cases are well understood by now, ${ }^{96)}$ while observation of signals associated with the ions in the orbital triplet $T_{1}$ and $T_{2}$ have been very rare. ${ }^{97-101)}$ So that it is very interesting to observe such as $\mathrm{Co}^{59}$ NMR in CoO where $\mathrm{Co}^{2+}$ ions located at octahedral site and clarify the origin of the hyperfine field and why it was difficult to observe the signals.

The crystal of CoO used was a commercial single crystal grown by a flame fusion method by Nakazumi Crystal Co. The specimen with rectangular flat (001) surfaces was cleaved out of as-grown crystal and had about $8 \times 7 \times 15 \mathrm{~mm}$ in the size. The crystal axis was determined by using an X-ray photograph, which showed a Braff diffraction pattern characteristic of NaCl type structure. In order to get a single domain sample below $\mathrm{T}_{\mathrm{N}}$, the sample was cooled through the Neel temperature with a temperature gradient imposed along one of the cubic principal axes very slowly. There coexist two types of domain, t-domain and r-domain, in antiferromagnetic state which was first found by Saito, et all ${ }^{102 \text { ) Since the } r \text {-domain remain after this }}$ stress-cooling, the NMR spectrum could not been obtained from a complete single domain sample.

The $C^{59}$ NMR in antiferromagnetic CoO was performed by a standard pulse technique. The single crystal was mounted in a re-entrant type coaxial cavity in Fig.5.1. A high power pulsed rf-oscillator (Nihon Koshuha Model PMN l000) was used to produce a large transverse rf-field of about l00 Oe at the sample position. The integrated amplitude of the spin echo signals was stored in a boxcar integrator (PAR Model 160) and recorded as a function of the direction of the external
magnetic field. The precise frequency of echo signals was determined by looking beats between echo signals and the output of a standard signal generator whose frequency was read by a digital counter.

\$ 5.3 Experimental Results in Zero External Magnetic Field

A single line spectrum of $\mathrm{Co}^{59}$ NMR in CoO single crystal was observed at zero external magnetic field. The obtained spin echo intensities were normalized when at $\tau=0$, taking into account the variation of the echo decay constants associated with the measured frequency. Figure 5.2 shows such spectrum obtained 4.2 K and 77 K . The center resonance frequencies ( and the corresponding hyperfine fields at $\mathrm{Co}^{59}$ nucleus) were $498.2 \pm 0.5 \mathrm{MHz}(495.5 \pm 0.5 \mathrm{kOe})$ and $493.3 \pm 0.5 \mathrm{MHz}(490.6 \pm 0.5 \mathrm{kOe})$ , respectively. The ratio of a square of 2 -nd moment and a 4-th moment in connect with both observed spectrum was about 0.7, where the integral from 488 to 508 MHz , was made in this moment calculation. When the spectrum is of Lorentzian, the ratio becomes 2.6 and when of Gaussian, the ratio becomes 0.33. Therefore, the observed spectra of $\mathrm{CO}^{59} \mathrm{NMR}$ in CoO are almost of Gaussian and both half width of each spectrum are estimated to be 2.5 MHz . On the other hand, the spin echo decay time had the temperature variation and its decay behavior was single expornential with time constants $\left(\mathrm{T}_{2}\right)$ of $21 \pm 5 \mu \mathrm{sec}$ at 77 K and $75 \pm 5 \mu \mathrm{sec}$ at 4.2 K , respectively, at each center frequency in Fig.5.3. Assuming the homogeneous line shape to be of Lorentian , those decay constants corresponding to half-line width of about 8 kOe and 2 kOe , respectively. Since these width is narrower
than the observed half width of about 2.5 MHz , the width of the obtained spectrum is considered to be caused by an inhomogeneous broadening with splitting due to the electric quadrupole interaction, although no such clear splitting were observed. The splitting is estimated to be less than about 0.8 MHz .


Fig 5.2

Fig 53


The NMR constants (hyperfine field, quadrupole splitting and line width etc.) of $\mathrm{Co}^{59}$ in CoO were calculated theoretically by Motizuki. 93) In the calculation, however, the old values of the hyperfine constants of $\mathrm{Co}^{2+}$ ion were used. Here the author will recalculatethem by using the equations associated with the NMR constants derived by Motizuki and the latest values of the hyperfine constants.

In order to obtain the effective Hamiltonian for co ${ }^{59}$ nucleus , the interaction (5.1-5)has to be averaged with respective to the electronic wave function of the ground state of the $\mathrm{Co}^{2+}$ ion as following;

$$
\begin{align*}
\left\langle\psi_{g}\right| \mathcal{X}_{N}\left|\Psi_{g}\right\rangle & =\left\langle\Psi_{g}\right| \mathcal{H}_{F}+\mathcal{H}_{1}+\mathcal{H}_{d}\left|\psi_{g}\right\rangle \\
& =-g_{N} \beta_{N} \overline{\mathrm{I}} \cdot\left(\bar{H}_{F}+\bar{H}_{1}+\bar{H}_{d}\right) \tag{5.6}
\end{align*}
$$

and

$$
\left\langle\Psi_{g}\right| \mathcal{X _ { Q }}\left|\Psi_{g}\right\rangle=\frac{e^{2} q Q}{4 I(2 I-I)}\left[3 I_{Z}^{2}-I^{2}+\eta\left(I_{X}^{2}-I_{Y}^{2}\right)\right]
$$

where $H_{F}, H_{1}$ and $H_{d}$ are the contact, the orbital and the dipole hyperfine fields resulting from the interaction, $\mathcal{H}_{\mathrm{F}}, \mathcal{X}_{1}, \mathcal{H}_{d}$, respectively. the $X-Y$-and $Z-a x i s$ denote three principal axes of the electric field gradient tensor, and $\eta$ is an asymmetric parameter defined by $\left(\mathrm{V}_{\mathrm{XX}}-\mathrm{V}_{\mathrm{YY}}\right) / \mathrm{V}_{\mathrm{ZZ}}$.

The electronic state of the free $\mathrm{Co}^{2+}$ ion is $\left(3 \mathrm{a}^{7}\right)^{4} \mathrm{~F}$. In the cubic crystalline field of $C O O$, the orbital degeneracy of this state is partially lifted leaving the ground state triply degenerate. This ground state can be described in terms of the angular momentum operator $\overline{1}$ of magnitude one, the total angular momentum operator $\overline{\mathrm{L}}$ being replaced by $-(3 / 2) \overline{\mathrm{I}}$. This small $\overline{\mathrm{I}}$ is coupled to the spin angular momentum, $\overline{\mathrm{S}}$, through the spin-orbit coupling and they form the total angular momentum $\overline{1}+\bar{S}$. The eigen states of the ion are characterized by the eigen values of $(\bar{I}+\bar{S})^{2}=j(j+1)$, with $j=1 / 2,3 / 2,5 / 2$. However there exists exchange interaction among the ions, and when this is taken into account the Weiss molecular field, those states which have been different $j$ but $l_{z}+S_{z}$ couple each other, where $z$ is the direction of the Weiss field. With this idea, Kanamori ${ }^{94}$,95) calculated the wave function on the ground state of $\mathrm{Co}^{2+}$ ion at absolute zero, taking into account the effect of small tetragonal deformation of the crystal. In this calculation the direction of spins was simply assumed to be along [001], i.e. the direction of the contraction. The Hamiltonian used is

$$
\begin{equation*}
\mathcal{H}=2 J_{1} z_{1}\langle s\rangle s_{z}+\lambda \bar{I} . \bar{s}-c l_{z}^{2} . \tag{5.8}
\end{equation*}
$$

and the ground state wave function was determined self-consistency as the lowest eigen state of this Hamiltonian. In this expression, $J_{1}(>0)$ is the exchange interaction constant between next nearest neighboring ions, $z_{1}$ the number of next nearst neighbores ( $z_{1}=6$ )
and $\lambda^{\prime}=(-3 / 2) \lambda$, being the usual spin-orbit coupling constant. The ground state wave function thus determined was of the form

$$
\begin{equation*}
\psi_{g}=k_{1}|3 / 2,-1\rangle+k_{2}|1 / 2,0\rangle+k_{3}|-1 / 2,1\rangle \tag{5.9}
\end{equation*}
$$

where the first and second suffices of represent the values of $S_{z}$ and $l_{z}$. respectively, and $k_{1} k_{2}$ and $k_{3}$ are numerical factors which depend on the magnitude of $J_{1}, \mathcal{X}$ and the deformation of coefficient $c$. Using the values of $2 J_{1} z_{1}=180 \mathrm{~cm}^{-1}, \lambda^{\prime}=270$ $\mathrm{cm}^{-1}$ and $\mathrm{c}=140 \mathrm{~cm}^{-1}$, the $\mathrm{k}_{1}, \mathrm{k}_{2}$ and $\mathrm{k}_{3}$ were calculated to be

$$
\begin{equation*}
\mathrm{k}_{1}=0.909, \quad \mathrm{k}_{2}=0.385, \quad \mathrm{k}_{3}=0.162 \tag{5.10}
\end{equation*}
$$

Averaging the interaction (5.1-5) with this wave function (5.9), the intra-atomic hyperfine field at 0 K in zero external fields are

$$
\begin{align*}
H_{F}= & -A\langle S\rangle / g_{N} \beta_{N}  \tag{5.11}\\
H_{1}= & 2 \beta g_{N} \beta_{N}\left\langle r^{-3}\right\rangle \frac{1}{2}\left(k_{k}^{2}-k_{3}^{2}\right)\left(3-5 \gamma^{2}\right)  \tag{5.12}\\
H_{d}= & 2 \beta g_{N} \beta_{N}\left\langle r^{-3}\right\rangle \frac{1}{7}\left[\frac{1}{5}\left(2-9 \gamma^{2}+12 \gamma \sqrt{1-\gamma^{2}}\right)\left(k_{1}^{2}-2 k_{2}^{2}-k_{3}^{2} / 3\right)\right. \\
& \left.+\frac{\sqrt{2}}{10}\left(1+13 \gamma^{2}+16 \gamma \sqrt{1-\gamma^{2}}\right)\left(\sqrt{3} k_{1}-2 k_{3}\right) k_{2}\right] \tag{5.13}
\end{align*}
$$

where $r$ represents that amplitude of the ${ }^{4} P$ wave function which is mixed by configuration interaction to the ground orbital triplet
arising from ${ }^{4} \mathrm{~F}(\gamma=0.185$ according to Kanamori).
Motizuki assumed the hyperfine constant of the Fermi contact term, $-A / g_{N} \beta_{N}=5.3 \times 10^{-3} \mathrm{~cm}^{-1}$ and the expectation value of inverse cube distance $\left\langle r^{-3}\right\rangle=5.2$ a.u., and calculated these hyperfine fields. These constants were obtained by Abragam, Horowits and Pryce ${ }^{\text {l03) }}$, analysing the paramagnetic resonance experiments for $\mathrm{Co}^{2+}$ ions, which was made for

$$
\mathrm{CoSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{CoSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O} \text { (Bleaney \& Ingram 1951) }
$$

and $\quad 3 \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O} \quad\left(\right.$ Trenam 1953) ${ }^{105)}$

By using these hyperfine constants, Motizuki calculated the hyperfine fields to be

$$
\begin{align*}
& \mathrm{H}_{\mathrm{F}}=-2.69 \times 10^{5} \mathrm{Oe}  \tag{5.14}\\
& \mathrm{H}_{1}=7.32 \times 10^{5} \mathrm{Oe}  \tag{5.15}\\
& \mathrm{H}_{\mathrm{d}}=0.282 \times 10^{-5} \mathrm{Oe} \tag{5.16}
\end{align*}
$$

And the total field acting on the $\mathrm{Co}^{59}$ nucleus was

$$
\begin{equation*}
\mathrm{H}_{\mathrm{N}}^{\text {total }}=\mathrm{H}_{\mathrm{F}}+\mathrm{H}_{1}+\mathrm{H}_{\mathrm{d}}=+490 \mathrm{kOe} \tag{5.17}
\end{equation*}
$$

which was good accord with the experimental value of +495.5 kOe ,

However, Fry and Llewellyn made the electron double resonance experiments, refer to as ENDOR, of $\mathrm{Co}^{2}+$ ions in MgO in 1961.106) and determined the hyperfine constant , $A=290.55 \pm 0.06 \mathrm{MHz}$. It is considered that this value of $A$ has to use for the calculation of the hyperfine field at $\mathrm{Co}^{59}$ nucleus in CoO. By using this constant $A=290.55 \pm 0.06 \mathrm{MHz}$, and the calculated value of $\left\langle r^{-3}\right\rangle=$ 6.035 a. u. ${ }^{106 \text { ), the hyperfine fields were recalculated as following, }}$

$$
\begin{align*}
& \mathrm{H}_{\mathrm{F}}=-369 \mathrm{kOe}  \tag{5.18}\\
& \mathrm{H}_{\mathrm{l}}=849 \mathrm{kOe}  \tag{5.19}\\
& \mathrm{H}_{\mathrm{d}}=32.7 \mathrm{kOe} \tag{5.20}
\end{align*}
$$

And the total field acting on the $\mathrm{Co}^{59}$ nucleus was

$$
\begin{equation*}
\mathrm{H}_{\mathrm{N}}^{\text {total }}=\mathrm{H}_{\mathrm{F}}+\mathrm{H}_{1}+\mathrm{H}_{\mathrm{d}}=+511 \mathrm{kOe} \tag{5.21}
\end{equation*}
$$

which is also good accord with the experimental value of 495.5 kOe . In spite of no taking into account of the effect of the spin inclination on the ground state wave function of Kanamori, the error between the theory and the experimental datum was only about $3 \%$. Such smallness of the effect was showed by Motizuki theoretically by using the perturbed ground state wave function. The dominance of the orbital hyperfine field seems to be the prominent feature of the residual orbital ions.

By using the hyperfine constants obtained by ENDOR experiments, the electric field gradient, $q_{3 d}$, due to (3d ${ }^{7}$ ) electrons was also calculated as following,

$$
\begin{align*}
q_{3 d} & =e\left\langle\frac{1}{r^{3}}\right\rangle \frac{1}{35}\left(2-9 \gamma^{2}+12 \gamma \sqrt{1-\gamma^{2}}\right)\left(\mathrm{k}_{1}^{2}-2 \mathrm{k}_{2}^{2}+\mathrm{k}_{3}^{2}\right) \\
& =12.0 \times 10^{14} \frac{\mathrm{e} . \mathrm{s.u}}{\mathrm{~cm}^{3}} \tag{5.22}
\end{align*}
$$

which yields the quadrupole splittings, $\delta$, to be

$$
\begin{align*}
\delta & =2 \frac{3 \mathrm{eQ}}{4 \mathrm{I}(2 \mathrm{I}-1)} \mathrm{q}_{3 \mathrm{~d}} \\
& =2.5 \times 10^{6} \mathrm{~Hz} \tag{5.23}
\end{align*}
$$

where the latest value of $Q$ used was 0.4 barn. ${ }^{107)}$ This theoretical quadrupole splitting was 3.2 times larger than the observed one, 0.8 MHz . On the other hand, the field gradient , $q_{\text {lattice }}$ due to the structure outside of the ion has been calculated by taking into account only the nearest neighbour octahedron consisting of six ions and by taking the point charge model as following,

$$
\begin{equation*}
q_{\text {lattice }}=1.7 \times 10^{12} \frac{\text { e.s.u. }}{\mathrm{cm}^{3}} \tag{5.24}
\end{equation*}
$$

which is three orders of magnitude smaller than (5.23). In general, an electric field gradient can be expressed

$$
\begin{equation*}
q=q_{3 d}(1-R)+q_{\text {lattice }}\left(1-\gamma_{\infty}\right) \tag{5.25}
\end{equation*}
$$

where $R$ and $\gamma_{\infty}$ are a shielding and antishielding coefficients which are effected by inner core electrons. Usually, the $R$ is plus several tenth and $\gamma_{\infty}$ is minus of the order of several tens but those are very difficult to estimate. ${ }^{108)}$ Since the $R$ and $\gamma_{\infty}$ have not been taken into account here, the discrepancy between (5.23) and the experimental calue should not be taken too seriously. This is because, if $R$ is 0.7 , the theoretical value of the quadrupole splitting will be the same as the experimental value. Such value is not unreasonable.

The homogeneous line width due to the indirect nuclear spin-spin coupling was estimated to be 57.60 e theoretically by Motizuki, which was considerably larger than the experimental value, 2.3 Oe, at 4.2 K . The cause of this discrepancy is not easy to understand. The problem of the homogeneous line width is closely related to the dynamical properties of the electronic spin system of CoO and will be investigated further in future.

From these analysis of the zero field spectrum, it is concluded that the calculated NMR constants were reasonable in spite of no taking into consideration about the effect of the spin inclination in CoO.

Experimental Results about Spin Echo Pattern in an External Magnetic Field

Figure 5.4 shows the typical spin echo intensity as a function of an angle between an external field and c-axis, where the strength of the external field was 15.0 kOe . The larger peaks correspond to the center of the resonance when the external field was rotated in the a-c plane of CoO single crystal. The weak peaks correspond to the center of the resonance when the external field rotated in the $a-b$ plane. Since this sample had multi-domains, the problem associated with the magnetic structure of CoO, a collinear or multi-spin , could not be settled from this experiments. The resonance pattern of $\mathrm{Co}^{59} \mathrm{NMR}$ in CoO is shown in Fig.5.5. The solid lines in this Fig. 5.5 are the best fit curves of the experimental data in corresponding to the application of the external field in the a-c plane in CoO. The broken lines are the predicted curves in corresponding to the application in the $a-b$ plane.


Fig. 5!5.

\$ 5.6 Analysis and Discussions about Spin Echo Pattern

Since the spin of $\mathrm{Co}^{2+}$ ion in CoO is known to lie in the [110] plane in neutron diffraction data, ${ }^{72-87)}$ the direction of the hyperfine field at $\mathrm{Co}^{59}$ nucleus also lies in the [110] plane. In order to avoid an error due to the effect of the field induced momentum, the analysis was made at another external field strength, 8 kOe . As the same results for the error were obtained, the effect of the field induced momentum was not serious. This was also shown by Motizuki theoretically, that is, the frequency shift of the central line is no more than -0.0655 MHz for $\mathrm{H}_{\text {ext }}=10 \mathrm{kOe}$.

As shown in Fig.5.6, the effective field acting on $\mathrm{Co}^{59}$ nucleus can be written as

$$
\begin{align*}
& \mathrm{H}_{\mathrm{x}}= \pm \mathrm{H}_{\mathrm{N}} \sin (\phi) / \sqrt{2}+\mathrm{H}_{\mathrm{ext}} \sin (\theta)  \tag{5.26}\\
& \mathrm{H}_{\mathrm{Y}}= \pm \mathrm{H}_{\mathrm{N}} \sin (\phi) / \sqrt{2}  \tag{5.27}\\
& \mathrm{H}_{\mathrm{z}}= \pm \mathrm{H}_{\mathrm{N}} \cos (\phi)+\mathrm{H}_{\mathrm{ext}} \cos (\theta) \tag{5.28}
\end{align*}
$$

where $x, y$, and $z$ stand for the $a, b$ and $c$-axis in CoO single crystal, and $H_{\text {ext }}$ the external field, $H_{N}$ the hyperfine field at $\mathrm{Co}^{59}$ nucleus. And $\phi$ is the angle between the hyperfine field and $c$-axis, and $\theta$ is the angle between the external field and


Fig. 56
c-axis. The 8 kinds of the combination associated with the sign of $H_{N}$ are possible because of the multi domain structure of the sample. When the external field is applied in the $\theta$ direction in the $a-c$ plane, the center resonance frequency,f, is written as following,

$$
\begin{align*}
f(\theta)= & \left(\frac{g_{N} \beta_{N}}{h}\right) \sqrt{H_{x}^{2}+H_{y}^{2}+H_{z}^{2}} \\
= & \left(\frac{g_{N} \dot{\beta}_{N}}{h}\right) \sqrt{\left[ \pm H_{N} \sin (\phi) / \sqrt{2}+H_{e x t} \sin (\theta)\right]^{2}} \\
& \frac{+H_{N}^{2} \sin (\phi) / 2+\left[+H_{N} \cos (\phi) \pm \mathrm{H}_{\mathrm{ext}} \cos (\theta)\right]^{2}}{} \\
= & \left(\frac{g_{N} \beta_{N}}{h}\right) \sqrt{H_{N}^{2}+H_{e x t}^{2} \pm 2 H_{N} H_{e x t}(\cos (\theta) \cos (\phi) \pm \sin (\theta) \sin (\phi) / \sqrt{2}]} \\
\cong & f_{o} \pm f_{\operatorname{ext}} \cos \left(\theta \pm \phi^{\prime}\right) \tag{5.29}
\end{align*}
$$

where $\quad f_{0}=\left(\frac{g_{N} \beta_{N}}{h}\right) H_{N}$

$$
\begin{equation*}
f_{\text {ext }}=\left(\frac{g_{N} \beta_{N}}{h}\right) H_{e x t} \sqrt{1-\frac{\sin ^{2}(\phi)}{2}} \tag{5.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \left(\phi^{\prime}\right)=\tan (\phi) / \sqrt{2} \tag{5.32}
\end{equation*}
$$

The solid lines in Fig. 5.6 are the best fit curves of the experimental data as written the following functions,

$$
\begin{equation*}
f(\theta)=498.2 \pm 15.1 \cos \left[\theta \pm(14.9 \pm 0.5)^{\circ}\right] \tag{5.33}
\end{equation*}
$$



Fig. 5.7

By using the (5.32) and (5.33), the angle between the hyperfine field and c-axis was determined to be $20.6 \pm 0.5^{\circ}$. That is, the direction of the hyperfine field was found to be not parallel to the spin, which is considered that the orbital momentum of $\mathrm{Co}^{2+}$ ion is not parallel to the spin. In order to estimate the direction of the orbital momentum, the author used the contact and the orbital hyperfine field calculated theoretically ,$(5.18)$ and (5.19), and the angle between the spin of $\mathrm{Co}^{2+}$ ions and c-axis. As shown in Fig.5.7, the following equation is concluded,

$$
\begin{equation*}
\mathrm{H}_{\mathrm{F}} / \sin \left(\theta_{\mathrm{L}}-\Theta_{\mathrm{H}_{\mathrm{N}}}\right)=\mathrm{H}_{\mathrm{L}} / \sin \left(180^{\circ}-\theta_{\mathrm{S}}+\theta_{\mathrm{H}_{\mathrm{N}}}\right) \tag{5.34}
\end{equation*}
$$

By using the ratio of the contact and the orbital hyperfine field from eq.(5.34), the angle between the orbital momentum of $\mathrm{Co}^{2+}$ ion and c-axis, $\Theta_{\mathrm{L}}$, is written as

$$
\begin{equation*}
\theta_{\mathrm{L}}=\theta_{\mathrm{H}_{\mathrm{N}}}+\sin ^{-1}\left[\frac{\mathrm{H}_{\mathrm{F}}}{\mathrm{H}_{\mathrm{L}}} \sin \left(\theta_{\mathrm{S}}-\Theta_{\mathrm{H}_{\mathrm{N}}}\right)\right] \tag{5.35}
\end{equation*}
$$

where $\theta_{H_{N}}$ and $\theta_{S}$ are the angle of the observed hyperfine field and the reported spin associated with c-axis, respectively. Figure 5.8 shows the schematic. Assuming the ratio of $H_{F} / H_{L}$ to have ten percents accuracy and taking into account the experimental error, $\theta_{\mathrm{L}}$ may be written to be

$$
\begin{equation*}
\theta_{\mathrm{L}}=23.2 \pm 1.0^{\circ} \tag{5.36}
\end{equation*}
$$



It is plaussible that the angle of the orbital momentum is smaller than the spin angle, $27.4^{\circ}$. This is because the orbital momentum tends towards the c-axis for the tetragonal crystal field term in a Hamiltonian for 3d electrons. It was revealed by Motizuki group ${ }^{14)}$ that the estimation of this angle is very difficult to make by taking into account the effect of the spin inclination with a simple perturbation theory. If neutron diffraction peaks contributed mainly by the orbital angular momentum are studied, this estimated value, $23.2^{\circ}$ will be checked.

The experiments were also performed at the temperature of 20 K and 77 K . The results obtained were that the angle between the hyperfine field and c-axis increased when the temperature was increased. These results are smmed up in Table 5.l. This temperature variation of the angle of the hyperfine field at $\mathrm{Co}^{59}$ nucleus associated with c-axis cannot be explain easily. This is because, so far, a theory for the cause of the spin inclination has not been formulated with 109,110 ). If such theory is formulated in future, these results obtained here will be used to test the theory.

Table 5.1 The obtained results from this Co ${ }^{59}$ NMR experiment. $\quad \Theta_{\mathrm{H}_{\mathrm{N}}}$ is the angle between the c -axis and the hyperfine field at $\mathrm{Co}^{59}$ nucleus in CoO. $\mathrm{f}_{\mathrm{c}}$ is the center resonance frequency of $\mathrm{Co}^{59}$ NMR. $\mathrm{T}_{2}$ is the echo decay time constant.

| $\Theta_{\mathrm{H}_{\mathrm{N}}}$ | $20.6 \pm 0.5^{\circ}$ at 4.2 K <br> 21.3 at 20 K <br> 23.9 at 77 K |
| :---: | :---: |
| $\mathrm{f}_{\mathrm{c}}$ | $498.2 \pm 0.5 \mathrm{MHz}$ at 4.2 K <br> 498 at 20 K <br> 493.3 at 77 K |
| $\mathrm{T}_{2}$ | $72 \pm 5 \mathrm{u} \mathrm{sec}$ at 4.2 K <br> 21 at 77 K |

## REFERENCES

1) J.G.Dash, R.D.Taylor, P.P.Craig, D,R.Cochran and W.E. Keller; Phy. Rev. Letters $5(1960) 152$.
2) J.G.Dash, R.D.Taylor, D.E.Nagle, P.O.Craig and W.M. Visscher; Phy. Rev. 122 (1961) lll6.
3) R.D.Taylor; The M8ssbauer Effect(Proc. Second International Conference on the M and Sons, New York, (1962)p203.
4) M.Shinohara, A.Ito, T.Fujita, A.Ishigaki and K.Ono; Japan J. Appl. Phys. 6 (1967) 982.
5) M.Shinohara, A.Ito, T.Fujita, A.Ishigaki and K.Ono; Japan J. Appl. Phys. 7 (1968) 170.
6) G.M.Kalvius, T.E.Katila and O.V.Lounasmaa; "M Effect Methodology, Vol.5", ed. I.J.Gruverman (Plenum Press, New York, 1966) 231.
7) G.J.Ehnholm, T.E.Katila, O.V.Lounasmaa, and P.Reivari ; Cryogenics June (1965) 136.
8) O.E.Vilches and J.C.Wheatley, Physics letters 24 A (1967) 440 and 25A (1967) 344.
9) J.C.Wheatley, O.E.Vilches, and W.R.Abal; Physics 4 (1968) 1.
10) G.A.Bykov and Phan Zuy Hien; Soviet Phys.-JETP 16 (1963) 646.
11) G.M.Kalvius, G.J.Ehnholm, T.E.Katila, O.V.Lounasmma
and P.Reivari; Bull. Am. Phy. Soc. 13 (1968) 1469.
12) H.London; Proc. Int. Conf. Low Temperature Physics, Oxford (1951) 157.
I.D.Landau and I.Pomenranchuk; Dokl. Akad. Nauk SSSR 59 (1948) 157.
13) T.P.Das, R.DE Bruyu Ouboter and K.W.Taconis; Proc. 9th Int. Conf. Low temperature Physics, Columnbus, Ohio, eds. J.G.Daunt, D.O.Edwards, F.J.Milford and M.Yaqub, Part B. p.1253. Plenum Press, New York (1965)
14) W.M.Fairbank and G.K.Walters, in Proceedings of the Symposium on Solid and Liquid Helium Three (Ohio State Research Foundation, Columbus, Ohio, 1957) p. 220.
15) H.London, G.R.Clarke and E.Mendoza; Phys. Rev. 128 (1962) 1992.
16) H.E.Hall,P.J.Ford and K.Thompson; Cryogenics 6 (1966) 80.
17) B.S'Neganov, N.Borisov, and K.Thompson; Soviet Phys. Jetp 23 (1966) 959.

Prigogine, Bingen and Bellemans; Phys. 20 (1964) 633.
20) G.V.Chester; Proceedings of the Paris Conference on the Physics of Low Temperatures 1955 (Centre National de la Recherche Scientifique and UNESCO, Paris) p. 385.
21) Cohen , E.G.D. and Van Leewen, J.M.J; Physica 26 (1960)385.
22) D.O.Edwards, D.F.Brewer, P.Selignan, M.Skertic, and Yaqub; Phys. Rev. Letters 15 (1965) 15
R.deBreyn Ouboter, K.W.Taconis, C.Le.Pair and J.J.M.

Beenakker; Physics 26 (1960) 853.
24) I.Pomenrunchuk; Zh Eksperium. i. Theor. Fitz 19 (1949) 42.
25) A.C.Anderson, W.R.Roach, R.E.Sarwinski and J.C.Wheatley; Phs. Rev. Letters 16 (1966) 262.
26) A.C.Anderson, W.R.Roach, R.E.Sarwinski and J.C.Wheatley; Phy. Rev. Letters L7 (1966) 367.
27) " Teion Kougaku " 3 (1968) 227 (in Japanese).
28) D.F.Brewer, J.G.Daunt and A.K.Screekhar; Phy.Rev.ll5 (1959) 836.
29) W. Abel, A.C.Anderson, W.C.Black and J.C.Wheatley; Physics 1 (1965) 337
30) K.W.Taconis, N.H.Pennings, P.Das and R.De Bryun Ouboter; Physica 56 (1971) 108.
31) B.M.Abraham, Y.Eckstein, J.B.Ketterson and J.H.Vignos; Phys.Rev. Letters 17 (1960) 1254.
32) G.Bayn and C.Ebner; Phys. Rev. 164 (1967) 235.
33) W.R.Roach; Ph.D thesis, University of Illinous 1966 (unpublished).
J.Bardeen, G.Baym, D.Pines; Phys. Rev. 156 (1967) 207. W.R.Abel, R.T.Johnson, J.C.Wheatley and W.Zimmerman, Jr; Phys. Rev. Letters 18 (1967) 737. A.C.Anderson; Rev. Sci. Ins. 41 ( 1970) 1446.
37) A.C.Anserson, J.I.Connolly, and J.C.Wheatley. Phys. Rev. 135 (1964) A910.
38) S.C.Whitmore, J.M.Sanders and S.R.Ryan; Proceedings of the ll-th International Conference of Low temperature Physics, St. Andrews (1968).
39) W.J.HUikamp and O.V.Lounasmaa; Rev. Prog. Phys. 36 (1973) 424.
40) G.M.Kalvius, T.E.Katila and OiV.Lounasmaa: "MUssbauer Effect Meyhodology, vol.5", ed.I.J.Gruverman (Plenum Press, New York, 1966) p. 231.
41) H.Frauenfelder; "MXssbauer Effect" (W.A.Benjamin, 1962)
42) G.Wertheim; "MBssbauer Effect, Principles and Applications" (Academic Press).
43) V.I.Goldanskii, R.H.Herber; Chemical Application of M\&ssbauer Spectroscopy" , (Academic Press,1968)
44) "An Introduction to MBssbauer Spectroscopy" ed. L. May (Plenum Press, 1971).
45) A.H.Muir,Jr., K.J.Ando, and H.M.Coogan; M8ssbauer Effect Data Index 1958-1965" (Intersxience,1966).
46) W.M.Visscher; Ann.Phys.(NY) 9 (1960)194.
47) Y.Koi, A.Tsujimira, T.Hihara and T.Kashida; J. Phys. Soc. Japan $16(1961) 1040$.
48) W.A.Steiyert and R.D.Taylor vol.4" ed. I.J.Gruverman (Plenum Press, New York, 1965)
49) P.Reivari; Phys Res.Letters 22 (1969) 167.
50) T.Ericsson, M.T.Hirvonen, T.E.Katila and V.K.Typpi;

5I) R.Geller, F.Wagner, W.Wiedemann, and P.Kienle; private comminucation (1968).
52) G.M.Katvius, G.J.Ehnholm, T.E.Katila, O.V.Lounasmaa and P.Relvari; Bul. Ann. Phy. Soc. 13 (1968) 1469.
53) C.H.Lablanchtais; J.Phys. Radium, Paris 12 (1951) 1036.
54) M.Foex; c.r. bebd séanc. Acad. Sci. Paris 227 (1948) 193.
55) R.Steet and B.Levis; Nature 168 ( 1951) 1036.
56) M.E.Fine; Phys.Rev. (1952) 1143.

57 M.F.Trombe; J. Phys. 12 (1951) 170.
58) S.Greenwald; Acta Crystallogr. 6 (1953) 396.
59) G.Assayag and M.H.Bizeṭtee; Cr. bebd séanc Acad. Sci. Paris 239 (1954) 238.
60) J.S.Smart; Phys. Rev. 86 (1952) 968.
61) T.Nagamiya, S.Saito, Y.Shinimura and E.Uchida; J. Phys. Soc. Japan 20 (1965) 1285.
62) S.Saito, K.Nakahigashi, and Y.Shimomura; J. Phys. Soc. Japan 21 (1966) 850 .
63) D.Jasnow and M.Wortis; Phys. Rev. 176 (1965) 195.
64) M.B.Salamon; Phys. Rev. B,2 (1970) 210.
65) C.G.Shull, W.A.Strauser and E.O.Wollen; Phys. Rev. 83 (1951) 333.
66) D.C.Khan and R.A.Erickson; Phys. Rev. 1 (1970) 2243.
67) K.Motizuki; J. Phys. Soc. Japan 15 (1960) 5
68) W.R.Helms and J.G.Mullen; Phys. Rev. B 4 (1971) 751.
69) G.K.Wertheim; Phys. Rev. 124 (1961) 764.
70) H.Polak; Phys. Satus Solidi 2 (1961) 764.
71) J.Blomquist, S.Grapenqiesser and R.Soderquist; Phys. Status Solidi(a) (1971) 435.
72) J.G.Mullen and H.N.Ok; Phys. Rev. Letters 8 (1966) 287.
73) W.Trifthalker and P.P.Craig; Phys. Rev. 162 (1967) 274.
74) B.van Laar; Phys. Rev. 19 (1965) 584.
75) B.van Laar; J. Phys. Soc. Japan 20 (1965) 1282.
76) W.L.Roth; Phys. Rev. 110 (1958) 1333.
77) T.Nagamiya and K.Motizuki; Rev. Mod. Phys. 30 (1958) 89 •
78) W.L.Roth; Phys. Rev. lll(1958) 772.
80) B.van Laar, J.Schweizer and R.Lemaire;Phys. Rev 141 (1966) 538.
81) E.Uchida,N.Fukuoka, H.Kondoh, T.Takeda, Y.Nakazumi and T.Nagamiya;J. Phys. Soc. Japan $19(1964) 2088$
82) S.Saito, K.Nakahigashi and Y.Shimomura; J.Phys.Soc. Japan 21 (1966) 850
83) H.N.Ok and J.G.Mullen; Phys. Rev. 168 (1968) 563.
84) R.D.Rechtin and B.L.Averbach; Phys. Rev. 100 (1972) 4294.
85) Y.Y.Li; Phys. Rev. 100 (1955) 627.
86) H.N.Ok and J.G.Mullen; Phys. Rev. 21 (1968) 823.
87) J.Blomquist, S.Grapenglesser and R.S8derquist;Phys. Stat. Sol. (a) 4 (1971) 435.
88) W.R.Helms and J.K.Mullen; Phys. Rev. B 4 (1971) 749.
89) H.N.Ok, W.R.Helms and J.K.Mullen; Phys. Rev. 187 (1968) 1242.
90) H.N.Ok and J.G.Mullen; Phys. Rev. Letters 27 (1968) 1242.
91) D.Schroeer and W.Trifthäuser; Phys. Rev. 147 (1966) 306.
92) W.G.Bhide and G.K.Shenoy; Phys. Rev-147 (1966) 306.
93) K.Motizuki; J.Phys. Soc. Japan 15 (1960) 888.
94) J.Kanamori; J.Phys. Soc. Japan 17 (1957) 177.
95) J.Kanamori; J.Phys. Soc. Japan 17 (1957) 197.
96) T. Kubo, A. Hirai and H. Abe; J. Phys. Soc. Japan 26 (1969) 1094.
97) V. Jaccarino; Phy. Rev. Letters 2 (1959) 163.
98) H. Nishihara, H. Yasuoka and A. Hirai; J. Phys. Soc. Japan 32 (1972) 1135.
99) K. Okada and H. Yasuoka; J. Phys. Soc. Japan 32 (1974) 1711.
100) T. Tsuda, K. Okada and H. Yasuoka; J. Phys. Soc. Japan 37 (1974) 1713.
101) H. Yasuoka; Private communication.
102) S. Saito, K. Nakahigashi and Y. Shimomura; J. Phys. Soc. Japan 21 (1966) 850.
103) A. Abragam, J. Horowitz and M. H. L. Pryce; Proc. Roy. Soc. A 230 (1955) 169.
104) B. Bleaney and D. J. E. Ingram; Droc. phys. Soc. A63 (1950) 408. R. S. Trenam; Proc. Phys. Soc. A66 (1953) 118.
106) D. J. I. Fry and P. M. Llewellyn; Proc. Roy. Soc. A266 (1962) 84.
107) Nuclear Moments Compiled by G. H. Fuller and V. W. Cohen, Appendex 1 to Nuclear Data Sheets, issued with Vol. 6 Set 5.
108) A. J. Freeman and R. E. Watson; "Magnetism", ed. G. T. Rado and H. Suhl (Academic Press, New York, 1965) Vol.II A,p. 273.
109) T. Yamada and O. Nakahigashi; J. Phys. Soc. Japan 36 (1974) 1304.
ll0) O. Nakahigashi and T. Yamada; J. Phys. Soc. Japan 36 (1974) 136.

