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INTRODPUCTION

The main objective of the present paper is to clarify a
close relationship between Gentzen-type sequential formula-
tion of formal systems (especially of modal calculi) and
Kripke-type semantics, Though the investigations by Schiitte
(311, Maehara [20], Fitting {31, Prawitz [27], etc. have
suggested this relationsghip either explicitly ov impliecitly,
the usefulness of Gentzen systems for the semantical studies
of modal calculi seems to be less recognized that it deserves.
In this paper, we wish to establish its usefulness in a
decisive way. We now proceed to explain the background
motivation for cur study.

When an interpretation, or semantics, of a formal system
is given, we are always interested in the question: "Is it
complete?" Indeed, the completeness of the semantics is
essential so that it is really useful for the study of the
formal system in question. The naturalness of the semantics
is fundamental as well., For instance, in the case of modal
calculi, we know such semantics as algebraic, topological
and Kripke-type. {(See Cresswell [2], Lemmon [18], Rasiowa
[28], Rasiowa-Sikorski [29], Segerberg [34] ete.) Among
these, Kripke-type semantics introduced by Kripke [15, 16]
has proved to be most successful.

On the other hand, the method of formulating a formal

system is not unique. Formulations such as Hilbert-type



natural deduction, Gentzen's sequent system and Smullyan's
analytic tableau are well-known. And each formulation has
its own merits for both syntactical and semantical study of
formal systems. (See, e.g., Kreisel [13., 1], Prawitz [25,
26), Zucker [39], Takeuti [38] and Smullyan [35].) In this
paper, however, we take the standpoint of regarding that
Gentzen-type sequential formulation is best fitted for the
Kripke-type semantical study of formal systems. We have
slightly modified the notion of a sequent in order to
establish the natural correspondence between Gentzen systems
and Kripke models. I.e., we define a sequent as a pair of
two (possibly infinite) sets of well formed formulas.

Though our method is general enough to admit applications
to, for example, intermediate logice and other modal calculi,
we will, in this paper, only concentrate on three modal
systems KT3, KT4 and KT5 of knowldge as introduced by
McCarthy [21, 22). However, since these systems are
generalizations of bi-modal logies S4-T, S-S54 and 85-85,
which in turn are generalizations of T, S4% and §5, our
results applies directly to these modal calculi. In fact, we
have so designed the languages that our argument will always
be relative to a particular choice of the language, and that
by a suitable choice of the. language we will be able to
obtain the specific result for any one of these logics. We
leave applications of ocur method to other logics to the

interested reader.



There are many known proof-techniques of completeness
results. See, e.g., Godel [61, Henkin [10], Takahashi [37],
Fitting [3], Smullyan [35], Kripke [15, 16], Lemmon-Scott
(18], Segerberg [34], Schutte [31] and Maehara [22¢]. In the
present paper, we prove the completeness theorem in two
different ways. The first one is the so-called Henkin-style
proof. However, our proof is new in that it is relative to a
get f of wffs which is closed under subformulas, so that we
can at the same time prove compactness by letting & to be
the whole set of wffs and decidability by letting f +to be
the set of subformulas of a certain formula. Our second
proof is bhased on cut-free formulations of the systems.
Especially, a cut-free system for 85 is obtained by a close
inspection of the first proof. The cut-elimination theorem
of these systems yields our second proof of the decidability
of XT3, KT4 and S85. For KT3 and XT4, it also gives a
proof of the disjunction property of these logics.

As we mentioned above, in our first. proof of the
completeness theorem, we construct a model U{R), called the
universal model over 1, for any & which is closed under
subformulas. By means of this fundamental model, we will
define a category I(Q) of Kripke-type models over . In
this category, U(fR) will be characterized as "the" terminal
object of the category. The classificatien problem of models

will also be conveniently treated in this category. For the



modal logic S5, we can obtain a complete classification of
models. This result easily shows the normal form theorem for
S5, and the structure of Lindenbaum algebra of S5 will also
be determined.

We now briefly sketch the content of each chapter.

In Chapter 1, we first define the languages upon which
our formal systems will be built. The main reason for
introducing many languages rather than a single language is
that we can explain the difference between certain logics
{such as S4% and S4%-T) as the mere difference of languages.
We then define Hilbert-type axiomatizations of the three
modal systems KT3, KTh and KT5. Corresponding to these,
three equivalent Gentzen-type sequential systems GT3, GTH
and GT5 will be defiped. Though our notion of a sequent
admitts an infinite set of wffs both in the antecedent and in
the succedent, a theorem to the effect that this generalization
is superficial will be proved. Nevertheless, the importance
of the generalization will be fully exhibited in the subsequent
chapters.

In Chapter 2, we introduce a topology, which is
homecmorphic to Scott's Pw topoleogy, on the whole set WEf
of wifs. BSeveral syntactic notions concerning deducibility
will be expressed in topological terminology.

In Chapter 3, we define the Kripke-type semantics for
KTi (i = 3, 4, 5). Two completeness proofs will be given

there. Compactness, decidability and cut-elimination theorem



will be proved as by-products. The first completeness proof
furnishes us with a basis for subsequent studies, while the
importance of the second proof lies in giving cut-free systems
as by-products.

Chapter 4 is devoted to the category theory of Xripke
models. In contrast to the notion of p-morphism due to
Segerberg [34], which is defined by referring to the relational
structure of models, cur notion of homomorphism is defined
without any explicit reference to the relational structure of
models. Roughly speaking, we define an (f-) homomorphism as
a mapping which preserves the semantics in U(Q) of a model.
Thus for each R, we obtain a distinct category K(([R). In
case R 1is equal to WEf, our notion of homomorphism contains
the notion of p-morphism.

In Chapter 5, we study the modal caleulus S5 as an
application of the results obtained in Chapter 4. A complete
classification of S5 models under a certain equivalence
relation on models will be given. Our method gives another
proof of normal form theorems by Itoh [12] and the result of
Base [1) which determines the Lindenbaum algebra of 35 with
finite generators.

The final chapter, Chapter 6, is devoted to the study of
+wo well-known puzzles, the puzzle of wise men and the puzzle
of unfaithful wives. It was McCarthy [22] who first attacked
these puzzles in a formal manner. The second puzzle, however,

remained almost untouched. The difficulties which arise in



the formal presentation of the puzzle are twofold. Firstly,
the puzzle involves the self-referential statements. Secondly.,
the totality of one's knowledge is difficult to characterize.
We will present a solution which we think successfully gets
over these difficulties. The notion of knowledge set and
knowledge base to be defined in this chapter will play an
important role in characterizing the totality of one's
knowledge. A model-theoretic scolution of the puzzle of wise

men will also be given there.



CHAPTER 1
THE FORMAL SYSTEMS

l1.1. Basic language
+

The basie language L is a triple (Pr, Sp, H ),

where

P = Pls PE:"“ H
Bp =8 ,8 . 3
m+ = I’ E, L

are denumerable sequences of distinct symbols. Nt is the
set of numerals denoting the corresponding positive integers.
But, for simplicity, we will identify n with its denotation
n. S; € Sp will also be denoted by 0 and will be called

"FOOL."

1.2, Languages
A language L 1is a triple (Pr, Sp, T) where

Fr < Fr H
SpcSp
T < N

Elements in Pr, Sp and T denote proposiiional variables,
persensg and time, respectively. Our arguments henceforth
will, unless stated otherwise, always be relative to a

language L. So the reader may choose any language he likes

- 10 -



and read the following by fixing his favorite language. For
example, if he is only interested in the classical
propositional calculus, he should take L = ( Pr, 0, g .
When an explicit mention of the language L to be considered
is necessary, we will express it by explicitly writing L

somewhere as a suffix ete.

1.3. Well formed formulas
The set of well formed formulas is defined to be the

least set Wff such that:

{(W1) 1 ¢ WEf 3

(W2) Pr c WEF

(W3) 4, B ¢ WEf implies oaBR € WEE 3

(W) S e Sp, t € T, g ¢ WEf 1implies Stg ¢ WEE.

The symbols ; and s denote "false" and "implication™,
respectively.

We will make use of the following abbreviations:

a>f = ogp read "o implies g"
o = a0t read "not qo"
T = -y read "true®
avp = —gsf read "5 or g"
arB * —(a>ong) 1read "g and "
[St]ly = Stqg read "S knows o at time t"
St>a = 7[Stl-a read "a is possible for §

at time t"

- 11 -



{3t} = [St]av[St]l—™ ¢ read "S knows whether a at

time ¥

Remark. If L is the simplest language ¢ &, 6, @ ), the
conditions (W2) and (W4) in the definition of Wff become
vacuous, so that we have Wff = { 1, 1o1, 15(1o1), (1o1)>1,
*e+} . We will not repeat this sort of remarks in the sequel.
However, the reader should always be alert and notice that
the definitions or proofs may become simpler for a particular
choice of L. We also remark that the cardinality of Wff

is @ irreapective of L,

For any « ¢ Wff, we define BSub(a) c WEff inductively

as follows:

(S1) o ¢ Pry{1} => Sub(a) = {a} ;
(82) o = Boy =>  Sub(e) = {a}uSub(BluSubly) ;
(83) a = [(5tl8 — Sub{a) = {a)uSub{(p).

We say B 1is a subformula of a if B & Subla).

1.4, Hilbert-type systems

We now define three modal systéms KT3, KT4 and KT5
of knowledge due to McCarthy [22]. We begin with the
definition of KT3.

The axiom schemata for KT3 are:

(ﬁl) T W =11

- 12 -



(A2) a>(B>a)

(A3) (a>(8>Y))2((aB)>(x>Y))
(as) [5t]a>a

(AS) [0tla=[0t][Stla

1)
(A6) [5t1(e2B)>([Sula>L{SulB), where T s u

In <(Al1)-(AB), o, B. Y denote arbitrary wffs, 3
denotes avbitrary element in Sp, and t, U denote arbitrary
elements in T.

The notion of a preof in KT3 is defined by:

Definition 1.1. Let o ¢ WEf. A finite sequence of
wiffs @1, *°° , o (n 2 1) is a proof of a« in KT3 if

o = o and for each i one of the following three conditions

(i) ¢. is an instance of (Al)=-(A6)

(ii) there exist Jj, k < i such that o = ujzui {In this
case, we s5ay 'ui is obtained from uj and ajzai by
modus ponens.)

(iii) there exists Jj < i such that @, = [St]uj for some
Se€ 8p and t € T (In this case, we say [Stla. is

J
obtained from %5 by ([St]-) necessitation.)

We write J~a if thereexists a proof of a. When we

wish to emphasize that it is a proof in KT3, we write

- 13 -



F @ (in XT3), Furthermore, for any T ¢ WEff we write

r+-a if | B,>(B,2( +++ (B 2a) +++ )) for some By, **° ,

15
Bme r.

As an exercise we show the following

Lemma 1.2. Let KT3" be the logical system obtained

from XT3 by replacing (A6) by the following two axiom

gchemata:

(x) [Stle>[Sula , where t = u
(xx) [Stlaalstl{a>B)>[StIR

Phen KT3 and XT3 are equivalent. IT.e., for any o ¢

WEE,
o {in KT3) <iff } a (in KT3™),

where the notien of a proof in KT3* ie defined similarly as

in Definition 1.1,

Proof. It is sufficient to show | (%), |- (*xx} (in
KT3) and } (A6) (in KT3"). Now, suppose t s u. Then,

putting T = = =121, we have

1 (St)(toa)>({[5ulr>[Sula} (instance of (A6))
2 ([5t)(ro0)>{[Sult=[Sula})=>(([St]1(xoa}=>[Sult}

a{[St]1{Tt=a)=[Sula)) (instance of (A3))
3 ([Stl(t2a)>[Sult)o([StI(t=a)=[Sula)

- 14 -



(modus ponens (MP) from 1, 2}

TR (instance of (Al})

5 [Sulr ([Su)-necessitation from 4)

68 [Sulro(IStl{roal)>[Sulr} (instance of (A2))

7 [Stli{r-a)>[Sulr (MP from 5, 6)
8 [stl{r=za)>[Sula (MP from 7, 3}
9 a={t=a) (instance of (A2))
10 [Stlas(tsa)) ([St]l-necessitation from 9)

11 [Stlas(1aa))>([Stles[StI(tan))
(instance of (A6))
12 [Stla>[Stl(t>a) (MP from 10, 11)
13 (L8t)(tza)s(Sulal>([Stlaa{[St1{t>a)=>[Sulal})
{instance of (A2))

14 LStlas(EStl(t2a)>[Sula) (MP from 8, 13)

15 [Stlas([Stl(toalo[Sula)o(([3tJa=[St1{roa))a{[Stla>[Sula)}

(instance of (A3))
18 {[Stla>[S8t){(roal))>{[StlaxlSula)

(MP from 14, 15)
17 [Stle>[Sula (MP from 12, 16)

This is a proof of (x) in KT3. We now give an
outline of a proof of (s#) in XT3. Let a' = [St]a,

[St]8 and vy = [StJ(osB). We wish to prove

(y>(a’5B" ) }o((a'ay)=8'), i.e.,
Cya(a">B" 1) (((a'>(yoL) )t )oR")

in KT3.

- 15 -
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We will make use of the following rules which may



be easily asecrtained.

8>y => | (a=28)>(a>y)
I~ a8, | B>y = | a3y

We then proceed as follows.

1 (y2la's28"))ola’>(yap"))

2 (a's(y=g")s{a'=(g'>m¥y))
(a'2(— B's y))2(—p's( a's— ¥)
(=g'>( a's> =y))=a{ =la'>— y)os—8")

(—(a'> n y)om— g'Ias(—~(a'> — y)oB"3

= = w

(y>(a'™@g'")a(—(a'> — y)2p")

In the above proof we have omitted several easy steps of the
derivation. The proof of (A6) 1in KT3 is left to the

reader.

Now, KT4 is defiﬁéd to be the system obtained from
KT3 by adding the following

(A7) [S5tles[StlI[Stla

This axiom will be referred to as the positive introspective

axiom.

KT5 is obtained by adjoining the following
(A8) —[Stles(St)-[Stl

This axiom will be called the negative.introspective axiom.

- 16 -



Remarks.
(1) Axioms (Al1)-{(A3) give an axiomatization of classical
propositional calculus. (See, e.g., Lyndon [19].) Axioms

(A4)-(A6) may be intuitively understood as follows.

(A4): What is known is true.
(A5)}: What FOOL knows at time t, FOOL knows at
time t that everyone knows it at time t.
(AB): The meaning of (AB) is better explained in
terms of (+) and (*+) in Lemma 1.2.
(#): What is known remains to be known.

{(x+): Everybody can do modus ponens.

(2) If Sp contains 0, the condition (iii) of Definition

1.1 may be restricted to: Infer {0tlae from a.

{(3) The relation of the systems XTi +to the other modal
system may be illustrated as below. We do not include
Hintikka's knowledge system [11] in the following figure.
However, we note that it is a special case of Ku with the
language so restricted as not to contain 0 in §p. For any

set S5, 18} will denote its cardinality.

- 17 -



85
PC

/—3
,ﬂf"’##;§

////’
—#;,,,ﬁfifa

KTS
K5
86=-3856

KTu

#”ﬂ,,,eQ? Xt

S4-S4

VoL

sy-T
T *’”’ﬂfﬂ#’? IT| = 1
PC ISpl = 2
|spl = 1 Sp = 0
Sp = @ ITH = 1 ITI = 1
iTl = 1
Fig. 1.1. Relation of KTi to other modal logics

- 18 -



In the above diagram, K3, K4 and K5 are the systems in
McCarthy [21], Sato [30], and PC denotes the classical
propositional calculus. The restrictions imposed on the
language to obtain a desired logical system is shown below
the name of the system. Furthermore, an arrow A —» B
indicates that A is a subsystem of B. For example, the
modal system 84 is obtained from KT4 by restrieting Sp
and T to be singleton sets. The systems on the same
vertical line are arranged acéording to their deductive power.
Thus, for exaple, anything provable in 84 is provable in
85.

(4) Hayashi's remark [ 81 is still valid. Namely, KT3+

(A8) 1is already equivalent to KT5 (= KT3+(A7)+(A8)).

1.5 CGentzen-type systems

We now define Gentzen-type systems GTi (i = 3, Y, 5)2)
which are equivalent to XTi, By a sequent we will mean an
element in the set 2wff32Wff. Namely, it is a pair of
(possibly infinite) sets of wffs. Note that our notion of a
sequent differs from the original one due to Gentzen [ 4 ] at

least in the following points. Gentzen defines a sequent as

a finite figure of the form ¢

1 s ’ﬂm-l-ﬂl, rew ’Bl'l

while we define a sequent more abstractly and admits infinite

sets of wifs,.

In order to match with Gentzen's notation, we will

denote a sequent by T » A rather than by (F; A), where



'y A = Wff. Like this, subsets of Wff will be denoted by
Greek capitals. Furthermore, wé will employ the abbreviations

such as:

'+ A,H =T + Al ,

a, Ty B+ = {ajuTu{B) ~ & .

Thus, for example, a, B+ v, 8, Y, B, a > 6, 6§, v and
a, %, #, B > v,§ denote the same aseguent ({u,'ﬂ}, {y, 61).

We will alaso use the following notation:

(1) Tg+ 85T > A iff Tg =T and 4, < A.{(In this
case, we say PD > bu is a reastriection of
'+ A, or P > A 1is an ectension of I'0 -+ ﬁu.)

£2) PU a P 4iff ' eI and T is finite.

0 0

(3) l"n-!-.&nu: r +a iff Iy = I' and é.uccﬁ.

Now, we give the definition of @&T3.

Axioms: a <+ a
1 =+
Rules: T = A
(extension)
n, I' A, I

'+ A, o a, I » E

{cut)
r, m-» A, &

I + A, o B, T + I
{>+)

asB, I', T > A, I

- 20 -



T - A, B
a, » (55)

I' + A, o

o, I' + A

{[5t]+)
[Stle, T' » &

r, [Oull » «

(+u, [St]),, where u < t
[Sulr, [Oull - (Stle

In the above, the rules ([St)+) and (-u, fSt])3 are
rule schemata, where 8 1is an arbitrary element in Sp and
t, u are arbitrary elements in T. One may apply the rule
{+u, [St])3 only when u = t. Also in the above for any
I <« WEf, S ¢ Sp and t ¢ T, [StIr denotes the set {[Stla |
a ¢ I'}. The notion of a proof in GT3 is defined similarly
as in Gentzen's LK [4]. Note, however, that we allow the
sequent 1 + as a beginning sequent. We write [T » A (in
GT3) 1if it is provable in GT3.

The following inference rules are easily seen to be

admissibe in GT3:

' + A
—————— (thinning+)
a, F + A
r - A
— {(+thinning}
I'' + A, a
o, a, I' > A

(contractions)

a, T' = A

- 2] -



' > A, o, o

(+contraction)
' A, a
I‘}“,B,H-"ﬁ
{interchange+)
r,B,Cﬁ,n“‘ﬁ
T + A, o, B, £
(+interchange)
' A, B, 0, L
I' + A, &
{—=)
—a,l' + A
a, I' > A
{(+—)
' + A,—a
a, T > A B, T + A
(v=+)
evB, T = A
' A, « r - A, B
(+v)
I + A, avB I'+ A, avp
a, T + A g, T + A
(A=)
asB, T > A arB, T + A
I + 4, & I A, B
(+a)
' =+ A, aaB

For example, the following proof figure shows that (v»)

admissible in GT3:

- 22 =



a, T -~ A
J (extension)

e, T + A, 1
{(+2)
T » A, a>1 B, T + A

(>+2

(a>L)>B, T + A

This means that, in spite of the difference in the definition
of a sequent, every proof figure in (propositional) LK may
itself be considered as one in GT3.

Now, GT4 is obtained from GT3 by replacing the rule

(+u, [S‘t])3 by the following:

[Sull, [Oull » a

{+u, [St])q, where u £ t
{Sull, [Oull - [St]e

BTS is obtained from G6T4 by changing the rule

(+u, [S'l::ll",4 to:

[(Sull', [Oull +» [OulE, [Sula, o

) (+u, [St])S,
[Sull, [Oull » [OulZ, [Sula, [Stlae ’

where, u =< t

1.6. Some metatheorems
Let us call a sequent T » A finite if both T and

A are finite. Then the following lemma is easily obtained.

Lemma 1.3. If a finite sequent T + A <{p provable (in
6Ti) then each sequent ocecurring in any proof of T + A 4{a

Finite.

- 2?3 -



Theorem 1.4, If | T » A& (in KTi) then there exist

some Ty =T and Ay =4 sueh that |- Ty = &, (in KTi).

Proof. By induetion on the number n of sequents
occurring in the proof of T + A,
{n = 1): Since T + A 1is a beginning sequent, T » A itself
is finite.
{n > 1): We consider the case that the last (i.e., downmost)

inference is (>+). The proof then is of the form:

M+E, n B, & + ¥

(o)
CI.:IB, I[,@"*E,T

By induction hypothesis, we have finite HD, gr ¥o> TD guch

that

(exiension) and

n -, a

H - ¥
o 0 (extension)
B, & + V¥

- 74 -



Then we construct the following proof figure.

]'[D-r-EO 4’0-1'"0

“D + Ep-u, o B, QG-B > ¥,

asB, N, éo—ﬂ + Lg-0, ¥

asf, M, ¢ + L, ¥

We see that g~p, M. %8B + Ip~ws ¥ gerves as the desired

sequent. Other cases may be dealt with similarly.

Theorem 1.5. For any @ ¢ Wff, b © (in KTi) <iF and

only if F > o {in 6Ti).

Proof. We only prove the case 1 = 5.
Proof of only if part: We prove by induction on the
construction of a proof of o in KTS5. Namely, we assume
that we are given a proof of «. Then each formula occurring
in the proof is either an axiom or the result of an
application of an inference rule to previocusly obtained

formula{s). We first show that every axiom of KT5 is

provable in GTS.

- 25 =



(Al): ad + o

+ Ny 0

+ =00a

(AZ): a o

B, o > a

& »~ Ao

+ a>(Boo)

(Aﬂ): B - B Y+ ¥
a > o B By + ¥
a +a &, xRy By + ¥

o, 0B, as(Bay)+ ¥

> B, as{fayY)+ a=y

ax(foy)+ (0=B)a(0oY)

+ (oo foY)Io((waB)a{amyY))

{AL): o+ o

L |

a + By o

> a2B, d o+ o

‘{a2pl2a + o

+ ((a>B)oa)2a
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(AS): o+ a
[5t])a + a

(AB}: a + o

[0t]a + a

[0t)e + [St]a

fotle » [OtI[St]a

+ [Ot]uz[0t][St]a

(A7): a > o B+ B

a, a>B + B

G>f + aofB [Sula, asB »~ B
[St]1(asB8) + osB [Sula, [Sul{awsB) ~ B
[St]1(a=B) + [Sul(a=R) [Sula, [Sul{a-B) - [Sulp

{8t)(o=B),[Sula - [Sulp

{5t)(asB) » [Sulas[SulB

+ [St1{a=B)>([Sulu=ESulR)
We now consider the inference rules. We can express modus

ponens (|l-a, |- aap => [-B) and necessitation (}a =>

I-{8tla) in GT5 as follows:
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*1 o+ o B+ 8
"' + 0o B @B, o + B
+a a + B
+ 8

{necessitation);

+ o

+ [8t]a

Proof of if part: We prove that if a finite sequent T -+ A

is provable in GTS then TAQ A es A IRV vee VB VI is
provable in KI5, where Gys *o0 y Qo (Bl, ces Bn) is any
enumeration of (A, resp.) with pessible repetitions.

First note that (TAa A <+« A 3BV ==+ VB VL)

(Thuin .o ““éaﬁiv “es vséyl) is provable in KTS5 if

{ogs oo 5oy} = {aj, =+c s ap} and {gy, «-+ , B} =

{Bls *** > 3&}. The proof is carried out by induction on the
construetion of the proof. We only deal with the rules
([St1s) and (su, [8t]);. Suppose [Stla, ays ==+ , oy, =+

By» *** » B, is obtained from s oy, ++- , ap * Bys ccr 5 B
by an application of ([5tl]+). Then by induction hypothesis,
F'(T“G“ﬂlﬂ cee ha)2(ByY eee vsnyl} {(in KTS). Since

- [Stlase, we have }-(TA[St]uAuln ‘o hqm)a(anhqlA s Aam).
Hence, |- {(TalStlaraqr v Aq )=2(gqv +ov vg vi). Next,

suppose [Stlay, »»+ » [Stlay, [Otlyy, --- , [Ot]yp >
[Otlﬁl, sen [Utlﬁq, [StJBl, see [St]ﬂn, fS5ulae is obtained
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from [Stla,, +=++ , [Stla, (otlyys =** [Dt]Yp +
[0t)s,, --- , [C}t]éiq, [St1By, *** > (stl8,, ¢« Dby an

application of (=+u, [St])s. By induction hypothesis,

F—(TA[St]aln sor AlStla_alOtIy,a ==« n[Ot]YP)=
([Ot1s,v ++- vIOtI§ vISTIByv --- vIStIB Vi)

Noting that

-[St1l(asg)a (EStiu>ESt]R)
and

b [Stloqa »++ ALStlo,>[St](oga vee AG))
we have from (1), by necessitation and above,

}—TA[St][StJalA voor h[St][St]ama[St]EOt]Tln e A
[St][OtJYPﬁ.[St]—'[Ot]Sln h[S‘t]"[O't]GqA
[S‘t]"[St]Blﬁ« A[S‘t]_‘[S‘t]Bn:n[St]u.

Since

|—£St]ui:=[3t][3t]ui,
FCotIy;>[stllotdy,,
- —lot}é,a[st]- [ot1s;

and

= ~[stls;alst] —(stlg,

we have
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- TAlStla A oo AlStla ALlOtDy A+ A[Ot}"rp:-

[Ot]nslv res v[Dt]qu[StJﬂl’ﬂ' tee V[St]Bm\'[St]aﬂs

which was to be proved.

Corollary 1.6, Let T c WEff and o ¢ WEf. Then
T - o (in KTi) <f and only €¢f | T + & (in GTi).

Proof. Only if part: By definition, T | o implies
the existence of' some Bl, ver ﬁn ¢ T such that
- B12(By> +++ (B Pa) +o+ ). Hence - Bys »»° B, + «. By
(extension) we have | T -+ a.
If part: By Lemma 1.4, there exist some By> *=- >, B such
that | By» " » B, > a. Hence L o+ B2 (By2 cer
(8, a) +++ ). By Theorem 1.5, |- B.,>(B, =+ o(B 3a) =+~ ).

This means T |- o.

For any T ¢ WEf, we let —T ={—=a | ¢« ¢ T'}. The

following lemma is easy to ascertain.

Lemma 1.7.
I r+aA (in €Ti)
iff I + &,—T (in GTi)
iff | —, T (in 6Ti).
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CHAPTER 2

TOPOLOGY ON 2"if

Scott [33] has introduced Py as a model for type-free
lamda calculus. It is also designed as a universal domain

of computation. In this chapter we introduce a topology on

WEf

2 which is homeomorphic to Pw topelogy. We then show

that several syntactical properties of our leogical systems
may be conveniently expressed in terms of topological
languages. The result in this chapter tells us the
naturalness of considering infinite sequents. This chapter

is independent of the remaining chapters.

2.1. Definition of topology

We now define a topology on PACEIRS DS any finite T =

WEE, we put Uy = { Ae2"EE ) 1o oAy, {U, | T: finite)

WEE

forms a basis of open sets. I.e., X ¢ 2 is, by definition,

open if and only if it may be written as a union of some Ur's.
Since WEf is a denumerable set it is clear that under this

WEE

topology 2 is homeomorphic to Scott's Puw. Following

Scott, we write T for WEf and : for the empty set @,
since these are top and bottom elements of the Boolean lattice

WEf - . .
2 {under the inelusionship (g) ordering}. We define

several funetions on ZWff as follows.

is defined by:
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(2)

(3)

(4)

()

(6)

(7)

is

is

is

is

is

not{(lr) = —=1r.

- L] L] 3
151ncon315tenti H

defined by:

WEf WEf

2 —> 2

T (if T | 1 (in KTi))

isinconsistentitr) =

1 {otherwise),

where 1 = 3, 4, 5,
istheoremi : ZWff —ma-ZWff
defined by:
T (if | ev e+ vo (in KTi) for
istheoremi(r) = some {al, ses an} < T
1 {otherwise)
DCs 2WEE 5 QWIS (deductive closure)}
defined by:
DC;(F)» =T = {a | T |- a (in KTD)} .
isprovablei : EWffx2Wff-——é 2Wff
defined by:
T (if GTi |- T + &)
isprovablei(P + A) =
1 (otherwise)
Jeft : 2WEE, o WEE ., oWEE
defined by:
left(T +~ A) = —Aul.
right GWEE, JWEE — 5 pWEE
defined by:

is
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right(T +~ A) = Au—T.

2.2. Topological characterization of syntactical properties

Wif

2 » with the dbove topology, is a continuous latiice

in the sense of Scott [32], and so is ZWffx2Wff with
product topology. Then the functions defined in 2.1 are all

continuous functions. More precisely, we have the following:

Theorem 2.1. PThe following diagrams are commutative in

the eategory of continuous lattices with continuous maps.

2N

SHEE SWEE 1Sprov WEF

WEf .
N {%5
X
not | Inot MNEE
5
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JHEE 2

A
¥4

DC. 2Wff

2Wff

Proof. Commutativity follows from results in 1.6.

Continuity is also immediate. For example,

isprovablei(r + A) =l_J{isprovablei(r0 > A) | Tg =« r}

=l_J{isprovablei(F - ﬂU) | 50 o A}

by Lemma 1.4. Then by definition in Scott [33]), we see

isprovablei is continuous.

The following result is also straightforward. For the
definition of retracts and the least fixed point operator Y,

we refer to Scott [ 33].

Theorem 2.2.
(1) istheoremi, isinconsistenti, and DCi are retracts,

fz) Y(DCi) 18 equal to the set of theorems in ¥Pi.

Remark. ‘Theorem 1.4 is equivalent to the continuity of

isprovablei.
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CHAPTER 3
KRIPKE-TYPE SEMANTICS

3.1. Definition of Kripke-type medels
Let W be any nonvoid set (of posaible worlds ¥+ A

model M on W 1is a triple
<W; v, v>,

whare

r : SpxT —— QWXW

and

v : Pru{.} ———a?w.

Given any model M, we define a relation F c WxWff as

follows:

(E1) If aec¢ Pu{u} then w g iff w ¢ via)

(E2) If a B>y then w ko iff mot w F gor wkY

(E3) If «

[Stl1g then wE o iff for all w'e¢ W

gsuch that (w, w') e r(S, t}, w'E o

We will write "w F o (in M)}" if we wish to make M explicit.
An informal meaning of (E3) is that [Stla is true in w
if and only if o is true in any world accessible to S5 at
time t from w. A formula <« is said to be vaiid in M,
denoted by M Fa, if w Fa for all w eM. (By w ¢ M, we
of course mean w ¢ W.) We will write w —EE—;W' instead

of (w, w') ¢r{(S, t) when r is understood. Furthermore,
- 35 -



we will employ the following notations:

w F T (read "w realizes ") iff wpEka for alla eT

w=la iff not w ik a

w =l iff w ga for all a ¢ T

w =l I' + A (read "w realizes I + 4 ") iff wE T and
w =l A

wEFET +A iff not w =IT + A

MET > A iff w B[F > A for all w ¢ M
A model! M is a KT3-model if

(M1) x»(1)

n

@
(M2) r(0, t)

u

r(S, t) for any S ¢ Sp and t €T

v

(M3) (S, u) 2r(8, t) forany S €5 and wu, t € T
such that u = t

{M4) »(S, t} 1is a reflexive relation for any § ¢ Sp and
t €T

{M5) r(0, t} is a transitive relation for any t € T

A model M is a KTy-model if it satisfies (M1)-{(M3)

and

(M6) r(S8, t) is a reflexive and transitive relation for

any S eS8p and t €T

Amodel M is a KTS5-model if it satisfies {(M1)-(M3)

and

{M7) r(8, t) is an equivalence relation for any S € Sp
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and t T

3.2. Soundness of KTi-models

We now wish to show that each formula provable in KTi
is valid in any Ki-model. First we prepare some terminology.
We gay I + A is i-provable (i-coneistent, resp.) if it is
provable (unprovable, resp.) in GTi. We say T » A is
imrealizable if there exists some Ki-model M and w ¢ M
such that w =T + 4. I + & is said to be i-valid if it 1is

not i-realizable.

Theorem 3.1. (Soundness Theorem) Any i-provable

sequent ig l-valid.

Proof. The proof is by induction on the construction
of a proof of the given sequent. That any beginning segquent
is i-valid is immediate from the definition. As for the
inference rules, we only treat (-u, [St])5 of GT5, since

other cases are either similar or easier. B¢, consider:

[Sulr, TOulnr -+ [Oulr, [Sula, o

[Sul)l, [Oull » [Qulz, [Sulr, [Stla ,

where u =z t.

By induction hypothesis, the upper sequent is S-valid.

Suppose, for the sake of contradiction, that the iower

sequent is not 5-valid. Then there exist some KTS5-model M
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and w € M such that
w s [Sull, [OulNl +[Culz, [Sula, [StJa.

This implies w = [St}a. Hence, for some w' such that

W _.Si:,.w"

(1} w' =la

holds. Since u < t, we have
(2) w S,

by (M3), Then, we have

(3 w S

by (M2}. Let B ¢ T and take any w" such that

Su
—_—

w' w". Bince 7r(S, u) is transitive by (M7), we have

W —§Eﬁ>w". Since w [ [Sulg, we have w" E B. This means

w' E [SulB by (E3). Hence
(4) w' E [Sulr.

Next, take any B in A. Then, since w = [SulB there

exists some WwW" such that
(5) w M e

Since r(S, u) is an equivalence relation we have
w' -EELéif' from (2) and (5). Hence, w' =z [Sulg by

(E3), so that
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(6) w' = [SulA.
From (3) we obtain, similarly as above,

{7) w' F fouln,
(8) w' = [OulE.

(1), (), (6), (7) and {(8) means
w' = [Sulr, [Oult » [Oulz, [Sula,a.
This is a contradietion.

Corollary.3.2. If Fe {in KTi) then MEa for any
Ki -model M.

Corollary 3.3. {Coneiatency of XTi agnd GT1) The

empty sequent 18 not provable in @Ti.

3.3. Completeness of Ki-models

We begin by a syntactical result, which is a kind of

Lindenkbaum's Lemma.

Lemma 3.4. Let be that FT » A (in GTi) and

¢ 2 TUA, Then there exist P& such that

(2) = I' + & (in ari)
(24) T + B 5T »

(iié€) TuA = ¢
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Proof. Let a : B —5¢ be a surjection. We write

@y for o(i). We define Pn + an (n = 0} as follows:

I'G-aﬂ,D:I'-r-ﬁ

P o> 4., a ., (if Va Ioo* A8 ,q)

n+l ™ Bpe1
o o410 Ty * &, (otherwise)

We show by induction that J¢ I, + &, {n 2 0). The case

n=0¢ is verified by the assumption of the lemma. Consider

the case n = m+l, and suppose |- Towy * Bpey- Then, by

the definition of T ., + &_,;», we have - Tm ™ &m0 %pe1

and | o ..s T+ &,. From these we obtain | T+ 4, by

{cut), which contradiects the induction hypothesis.

- -] -]
Now we put I + X l_J T, L_J A, . Then we have

n=0 n=0

'+ A>T +4A and Tul ®#. What remains to be shown is
that P + X is i-consistent. Suppose the contrary. Then
by Lemma 1.4, we have T' + A' = T' + & such that

- r' > A'. Now, let N = max{ n(B) | B ¢ T'uA' }, where

n(g) = min{ i | B8 = a.,

i }. Then we have T'uaA' c Tyudy. We

prove T' c PN' Suppose 0; € ' and as £ Ty- Then we

have o; ¢ T and o; e Ay ¢ X. But TI'nX = ¢. This proves

It e Ty Similarly, A' c EN' Since | TI''" + A'. we have

I Ty > Ay» which is a contradiction.

A set @ of wffs is said to be closed under subformulas
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if 1+ € 8 and Sub(ae) ¢ 2 for all a ¢ . Now take any
such % and fix it. We say a seguent I + A 1is @, i-
complete if T + A is i-consistent and Tua = Q. We denote

by Ci(ﬂ) the set of all 2, i-complete sequents. I.e.,
C;(@) = {r+4 | Tea =2, T >4 is i-consistent}.

We observe that TI'nA = @ since I + A is i-consistent.
"For any T € Wff, S ¢ Sp and t ¢ T, we put Tgy = fa ]
[St]a € T}. We now define the universal modei UL(Q) =

<U; R, V> over f as follows. (Since our definition will
depend on the logical system KTi, we will call U{gq) the

Q, i-universal model when necessary, and will denote it as

Ui(ﬂ).}

(1) U = C. ()
{2} V(a)

{fr ~Ae U] ac T}, where g ¢ Pru{s}
(3} Let w=T>A¢ U, w' =T > A ¢ 1.

s X ' .
(i 3): {w, w') € R(S, t) 1iff Fsu c 'Y and rOu_E Péu

for any us t,

(1 =4): (w, w')e R(S, t) iff T. c T and T

Su = "8u re

Ous "Qu
for any wu <= t.

(i = 5): (w, w')e R(S, t) iff T

1
]

Su and T = It

sSu Ou

for any us t.

Lemma 3.5, Ui(ﬂ) te a KTi-model.
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Proof. First, since 1L ¢ 1 and A ot {Corollary
3.3), Lemma 3.4 assures us that U = Ci(ﬂ) ¥ 6.
(i = 3a):
(M1) Suppose w =T + A e V{L). Then 1 ¢ T. 8ince
- L + , we have | T + A, which is a contradiction. Hence
V(L) = @.
(M2), (M3) are immediate from the definiticn of R.
(Mk) Let w =T + A e U. Suppose uws t and take any
a€ g . Since [Sulae ' and 8 is closed under sub-
formulés, we have o ¢ Tud, Suppose @ e A, Then, since
- [Sule + @, we have | T + A, which is a contradiction.
Hence o ¢ T. This proves rSu < I'. Since P0u c rDu’ we
gsee R(S, t)} 1is reflexive.
(M5} Let (T = &, Tt =+ A') (T > &' " & A") ¢ RCO, tJ).
ol

~Suppose u < t. Then since Fou € T Oy we have

<
Ou -
Ibu = Iﬁu' We can prove Pgu € ™ as in the procof of (M4),
whence T, < I". Thus we see R(0, t)} is transitive.

The cases (i = 4) and (i = 5) are now easily seen.

The following theorem will play a key role in the

subsequent studies.
Theorem 3.6. (Pundamental Theorem of Universal Model)

For any o e 8 and w =T + 8 ¢ U, wi @ (in U(R)) 4F

ae Tl and w=la {in U{Q)) <if o  A.
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Proof. By induction on the construction of formulas.
(1) « € Pru{i}: Immediate from the definition of R.
(2) o ; goy: Suppose a € T. We must show that w =8 or
w k y. Suppose, by way of contradition, that w E 8 and
w =] y- Then, by induction hypothesis, we have B ¢ I' and
vy € A. Since | B, Bay » v {in GTi), we have F T + A ({in
GTi), a contradiction. Suppose now W = a. We can prove
wkB and w =¥, similarly.
(3) o = [StIB: Suppse o e F and take any w' = I'* = At
such that w St oy, We show B ¢ I''. First, we consider
the cagse i = 3. S8Since B ¢ Tgy S r* we have g € TI'.
Next, we treat the case i = 4, 5. We have gy S rét = o
{see the proof of (Mu) in Lemma 3.5). Hence B €T'.
Thus we see w [ [Stlg = a.

Now suppose o € A.

(i = 3): The sequent {[Suly ¢T | u < t}, {[(Ouly Tl
u 5 t} » [S8tlg is 3-consistent, since it is a restrictien
of P+ a. By (-»u, [St]}a, we see {y ] [Suly eT, u =< t},
{fouly ¢«¢T | u <t} + B is also 3-consistent. Since g is
closed under subformulas, we can extend this sequent to an
{1, 3-complete sequent w' = T' + A', by Lemma 3.4. Then for
any u s t, we have T5u <" and rOu c Pbu. Therefore,
we have w! -§EﬂrW'- Since g ¢ A', by induction hypothesis,
we have w' =|g. Hence w = [Sulg =

(i

-

4): Similar to the case (i = 3).

(i = 58): Since {{Suly ¢TI | u < t}, {IOuly ¢T |

- 43 -



u =t} -+ {[ouly ¢ A |l u=+t}, {[Suly ea | ust}, [Stlg is
5-consistent as a restriction of T - A, we see {[Suly ¢ T |
u < +t}, {[Ouly eT | u-st} + {[Ouly e A | ust],

{fSuly ¢ A | u = t}, B is also 5-consistent. Take an Q, 5-

complete extension w' = T' + A' of this sequent. Clearly,

1 ] |
for any u £ t, we have rSu < rSu 1 ﬁSu c ﬁSu’ POu < rOu
1 - Tt f -
and ﬁOu € hOu’ We have r5u = rSu because PSu c PSu =
-} =A. = imi = It
ﬂSu ﬂSu < RSu ﬁSu rSu' Similarily, we have rOu r0u, By
virtue of the definition of R, we have W —Ex-aue'. Since

B ¢ A', we have by induction hypothesis w' =l 8, which proves

w = [8tlB = w.
From this theorem we at once have the following results,

Theorem 3.7. (Generaliaed Completeness Theorem)

Any i-consistent esequent is i-realisable.

Proof. Let an i-consistent sequent T - A be given.
We put @ = {L}UL_J {Sub(a) | &« € TuA}. We construct the
1, i-universal model Ui(ﬂ). Then by Lemma 3.4 and Theorem

3.6, there exists w ¢ U such that w =T + A.
Corcllary 3.B. (Compaetness Theorem)

Let T < WFf, Then, T ie i-realizable if and only if any

ru = [ {£8 i-realizable.
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Theorem 3.9. (Completeness and Decidability Theorem)
Por any o < WEf, o is a theorem of KTi <f and only if
- - n
a i8 valid in all XTi-models whose cardinality < 2, where

n is the cardinality of the finite set Subladu{i}-

Proof. Let @ = Sub{a)u{1i}. Then the result easily
follows from Lemma 3.4 and Theorem 3.6.
Remark. Our definition of universal models differs from
that of canonical models due to Lemmeon-Scott [18], in the
following points. Firstly, we define models relative to @,
while canonical models are defined only for g = Wff. So
that we need not use filtration method due to Segerberg [34]
to secure decidability of the systems. Secondly, relational
structures are defined differently. The naturalness of

universal models will become clear in the next chapter.

3.4. Cut-free egystem for B85

In this and next section, we give our second proof of
completeness. It is based on cut-free formulations of the
systems, and in this section we first formulate a cut-free
system G55 which is equivalent to GT5 with the language

restricted to |S8p| = [T[ = 1. Hence &S5 1is a cut-free
system for the modal calculus 85. In GS5, a sequent is

defined to be an element of the set 2WffoWffx2Wff22Wff‘

Thus a sequent is of the form (r, I, T, A). However we
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denote this as T3 I + E; A, TFurther we will denote

Iy + 3 A (= (P, @, 0, A)) 6imply as I + A. A sequent of
this form will be called proper. Other sequents will be
called improper. The idea of considering this kind of
sequents is due to Sonobe [36]. 8ince our language is
subject to the condition |8p| = |T| = 1, we will denote

[Stle as (u. GS5 1is defined as follows:

Axions: o+ a

Rules: ' = A
(extension: out)

T', T+ A, A

I n-+21X : A
{extension: in)

rs nt, 1 » £, E'; A

T + 4, & o, Il = E
(cut)
T, T+~ A, E

'y + a3 4

(+exit)
Ty + 53 0o, A
'sOo; T -~ 23 A

{enters+}
I':Oa, I > Z; A
T's I » E; Oo, A

{+enter)

F; M+ I, Oos A
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{>*: out)

rsM+%,a,B;8 T;B,8+¥, 0,48 T;0,8, E>4;4

(5+: in)

=1
L'
—
¥
v
3
=4
U
™=
W
=

e, I' = A

Ou, T = A

Or = DA, a

{»Q: out)
Or - 0a, Oa

The following lemma shows the equivalence of €85 with

GT5 (over the language restricted as above).

Lemma 3.10. Let & + ¥ be a proper sequent, Then
- ¢ + ¥ (in GT5) if and only if ¢ > ¥ (in GS5).

Proof. Only if part: We have only to prove that the
rule (53) in GTS5 is admissible in G55. To see this we

construct the following proof figure:
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r+a, o B, T > I B, I > I

' +4A, o, B g, x+i,a a, B, T +1I

- (=>+: out)
wsB, T, T > A, I
If part: Suppose that | @ » ¥ (in GS5). We note that
Lemmas 1.3 and 1.4 hold also for &85. Then, by Lemma 1.4,
there exists % + ¥ = & » ¥ such that - 25 * ¥y (in
GS5). Let F be a proof figure of 0 > ¥o- Then by Lemma
1.3, any sequent occurring in F is finite, where T; II +
L3 A is finite if so are T, NI, £, A. We convert F to a
proof figure in 6T5 whose end-sequent is ?, ~ ¥g- Let
T's; I - I3 A be any improper sequent occurring in T. We

replace this sequent by the proper sequent [ -+ A, (u, where

o = (Famqacer am Io{ogv »er vovi) (I = fmgs eor 5 mpks
E = {51, e an}). We do this replacement for all improper
sequents in TF. By this replacement, for example, an

application of the rule

F,go; T = &3 A

(enter)
F; Ou, T + Z;5 A

will become

r,s 0o + A, Orog)

(¥
I + A, O0aArR>c) s

where T = TAW A o« AW (2= {my; v, nm}} and ¢ =

01\" [ V.Unv_]_ (E = {0’1: res Un]‘)q We Change (#) to the
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following:

T+ W g+ O
Ou -+ Do T, WRG + O
Be + Oa, © HOaaw, %20 + 0
Oaswm + [Ja, @ T-0 + [JOAT>0
+ Ua, Barm=o O¢(m=d) + Juaf-0d

r, Qa =+ A, g(m=0) + (e, O¢Oaawzo) O(7=20) + O¢Oarr>0)

r - A, OoaoO(w>0) Oa=0(¢w>0)> OCOasrn=0)

I + A, O(0arn>0o)

We must also consider the rules othexr than (enter+)}. But
they can be trested similarly. Therefore we can obtain a
prooi of ¢0 + Tu in GT5. From this we obtain a proof of

? +¥ in GTS by (extenszion).

We say a sequent is sirietly provable (in GS5) if it is
provable in GS85 without using (cut). A sequent is weakly

eongietent if it is not strietly provable. By Lemma 3.10 and

Theorem 3.1, we have

Theorem 3.11. If a proper sequent is provable {(in GS5)

then it is S-vglid.

We now construct a KTS-model M = <W; r, v> which
realizes any proper weakly consistent sequent. For any

o ¢ WEf we put SubD(a) = {08 | DR ¢ Sub(a)). For any
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finite sequent T + A, we say I + A is - saburated if:

(i} T » A is weakly consistent
{(ii) BoY ¢ TuA implies {R.¥} ¢ TuA
(1ii) OB ¢ T implies B e I

(iv) 0B € A implies Subn(B) = Tub

Lemma 3.12. Let a finite sequent T + A be weakly
consistent, Then there existe T = B such that T + A ¢

' X gnd I +E iz satuvated.

Proof. Let Q l_J{Sub(a) f « € Tua}, This is a

finite set. Let @© = {I > X | T + £ is weakly conaistent

and IlvZ = 8}, € is also finite. We construct a sequence

{Tn -+ ﬁn}nzo in € as follows. We put Fg+ Ay =T + 4.

By assumption, we have PO > EU e ©. Suppose that rn + AL
€ has been defined. If Pn > A is saturated, we put
Pn+1'* ﬂn+l = Pn > ﬂn‘ Suppose otherwise. Then one of

(ii)-(iv) in the above definition of being saturated fails.
(1) Suppse there exists some BsY ¢ Pnyﬁn such that

{B, Y} £ PnUﬁn, Suppose 82y ¢ I‘n. Then by (=+: out) we
have that one of T > 4., B, vs ¥> T, + Ay g oF

By vy, I'_ + AL is weakly consistent. We define Toer * Apen

n
as the first weakly consistent sequent among these three

sequents.

{2) Suppose that there exists some OB ¢ rn such that

- 50 -



= +1 t
B¢ T . Weput T *dyy = B, I, ~ 4. By (O+: out},
we have rn+1 - ﬂn+1 e .
(3) Suppose that there exists some [B « A such that
SubD(BJ g T uh,- Let Oy be an element of the set SubD(B)-
(rnuﬁn} with maximal degree, where the degree of a formula
is defined to be the number of logical connectives (i.e, >
and [) occurring in it. Let ([0§ be an element of Pnubn
such that [y ¢ Sub(§) and with minimal degree. The
existence of such [§ is guaranteed by the fact that [8 ¢
Sub(g) and OB ¢ A . Then we have two cases.
0§ € Ty: Since I, + &, = 0&, T, » &, 1S weakly consistent,
so is §, 1, > 4, by {g+: out). Then using {>»: out),

{+>: out) and ({extension: out), we see, by reductio ad

abeurdum , that either Oy, T_ » 4  or T -+ A

n | n n? Oy 1s

weakly consistent. So, we define Fhey * 841 238 the first

weakly consistent sequent of the two.

08 e AL Since T, > 8, =T, ~ A, 0§ is weakly consistent,

so is I3 + 83 A, by (sexit). Then by (=+: in), (+>: in)

»

and (extension: in), we see either I3 Or -3 & or

Ty + Oys Ay is weakly consistent. Since the argument goes

similarly, we suppose the first case. Then by (enter-»),

r,> Oy » 4, ,is weakly consistent. In this case we put
Tael > Bney = Tps OV » 4.

In any of the above three cases, we have Fae1 * Bpap ¢

€ and IPnuanl < lrn+1”5n+1|' Therefore, since C is

finite, we obtain a saturated T

n * A, for some n. Putting
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' + K = Pn > An we have the desired result.

We now define a model M = <W; v, v>. Let W= {I » A|

I+ A is saturated}. W is nonempty since -+ L ¢ W. Let w

=T+ A, w'! =T"'" > A' ¢ W, We define (w, w') ¢ r iff rD
= ra. (8ince |SpxT} = 1, we may consider T : SpxT > "W
as an element of EWXW. FD denotes the set {o | Ou € T}.)

W

v 1 Pruf{t} — 2" 1is defined by that w = T + A evia) iff

o € T The following lemma is proved similarly as Lemma 3.5.
Lemma 3.13. M <& a KTS5-model.

Just like U(Q), M has the following important

property:

Theorem 3.14. Let w =T +A M and o e TuA. Then

WFa({in ¥} Zf e T and w=la Zf ac A.

Progf. By induction on the construction of formulas.
We only consider the case that o = OB € A, since other cases
may be handled similarly as in the proof of Thorem 3.6. Now.
Ty 0
consistent since it is a restriction of T - A. By (-+f]:

+ A = {0y | Ove '} » {051 06 ¢ A}, O8 1is weakly

out), we see I, + A, = {0y | Oy e T} » (058 | D6 < 8}, B is
also weakly consistent. By Lemma 3.12, we can extend this

sequent to a saturated sequent w' = T' » A' € W. By this

- 52 -



]
construction, it is clear that rn < rﬁ. SuppoEe G € PD-TD.
Then b& inspecting the construction method in Lemma 3.12, we
gee that DOo « SubD(Tl) for some Y, € TyuA,. Hence, (o ¢

= let
Subp(y,) for some ¥, ¢ Lyuby < Tud. (If y, = B then le
Yo = 1B € 4y, otherwise let vy, = ¥p+) Since T + A 1is
saturated, we have [Jo ¢ TuA. Since 0 ¢ FD we have [9 ¢
A. Hence we have D00 ¢ I''nA'. This contradicts the
consistency of T' + 4'. Thus we see TD = Pﬁ, s¢ that
(w, w') € v. Now since B ¢ A', we have w' = B8 by induction

hypothesis. Hence we have w =| DB.
It is now easy to establish:

Theorem 3.15., (Cut-elimination Theorem)

If a proper sequent is provable in G3§ <then it is sirictily

provable in GS85.

Proof. By Lemma 1.4 it suffices to consider only finite
sequents. We prove the contraposition. Suppose that a
finite sequent T + A is not strictly provable. T » A has

a saturated extension I + X by Lemma 3.12. Then I + &

is S-realizable by Theorem 3.14, Then I + X is not provable

by Theorem 3.11. Hence T =+ A is not provable.

3.5. Cut-elimination theorem for GT3 and GTy

In this section we consider only KT3 and KT4, so that
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when we refer to XTi or G6Ti, i is always 3 or 4. If
a sequent T + A4 is provable in GTi without cut, we say

I + A is striectly provable. We wish to establish this:

Theorem 3.16. (Cut-elimination Theorem)
If a sequent is provable (im GTi) then it i8 strictly

provable.

We prove this by an argument similar to that in 3.3,
Let § c WEf be closed under subformulas. Let us ecall a
sequent T + A Q, i-maximal if it is maximal in the set
{0+ | N +z% is i-weakly consistent and TMuX c @}, where
a sequent is i-weakly consistent if it is not strictly
provable in 6Ti. We can show that if a sequent is i-weakly
consistent and TFuA < R then it has a maximal extension
P+XcW,)={0~+4|T+2% is 0, i-maximal}, by means
of Zorn's Lemma and Lemma 1.4%. Now, we define a model Mi(ﬂ)
= <Wi(ﬂ); r, v>, Whefe r and v are defined just as in
the definition of U,;(R). That M;{Q) is a KTi-model is
proved similarly as in Lemma 3.5. We now have the following

lemma.
Lemma 3.17. Let w =T » ﬁe:Hi(ﬂ) and a ¢ TuA. Then

wkao (in M;(@)) if a e T and w oo (in M;(R)} if

2 e A.
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Proof. By induction on the construction of formulas,
The base step of a ¢ Ppruli}l is trivial.

@ = B>y: Suppose o €T . Then T = A, B or ¥y, I' + A is
i-weakly consistent. By the maximality of T + A, we have
F+A,B=T=-=+4A or ¥, T+ A =T2=>A. In any case, we
have w B a Dby induction hypothesis and definition of .
The case a ¢ A is similar.

o = [St]B : If a ¢ ', then the result feollows similarly as
in Theorem 3.6. Suppose a € A.

(i = 3): {[Suly eTr | u<t}, {[Ouly eT | u s t} +
[5t1g is i-weakly consistent as a restriction of T = &.
Hence {y | {Suly eT, u < t}, {(Ouly eT | u < %) + 8 is
also i-weakly consistent. Extend this sequent to w' =
P+ 4A' in M,(g@). It is elear that w —§£1-w'. Since
B ¢ A' we have w' B by induction hypothesis. Hence
wa.

(i = 4): Similar to the case (i = 3).

Now we can complete the proof of Theorem 3.18. Suppose
'+ A is i-weakly consistent. Let g = {l}”l ]{Sub(a) ]
o« € TuA}., Let I » X ¢ M.{(Q) be an extension of T » a .

Then by Lemma's.l?, Hi(n) s I » A. Hence by the Soundness

Theorem 3.1, T + A is not provable.

Remarks.

(1) Our method does not work for GT5, because, except for
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the obvious faet that GT5 is not cut—free?)if we construct

a model M, (@) it does not always give w' such that

W —EE—>W' and w' o B for w such that w = [Stlg.
However, as a partial result, we gave a cut-free system for
85 din 3.4.

(2) By Theorem 3.16, we observe that Hi(ﬂ) is identical

with U (@) (for i = 3, 4).

The following theorem will have some significance in

Chapter 6.

Theorem 3.18. (Disjunciton property of XT3 and KT#JS)
Suppose |- [Sltl]qlv veo v[Sntn]an (in XTi) (n =z 1). Then
for some 3§ (1 = 3 s n) we have | [Sth]uj (in KTi), wvhere

i=30ruy,

Proof. Consider a cut-free proof of -+ [Slt1]“1= svr

(™t Jo . Let N = 1{stt,day, »oo , [8"t Ja }|. If N

1
then we see that | =+ [Sltljul. Let N > 1. Then the
last inference rule must be (extension). Furthermore we
may assume without losing generality that the cardinality
|41 of the upper sequent =+ & of the last inference is
less than N. Hence the result follows by induction

hypothesis.
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In this and last 5, we have seen that GS5, GT3 and
GT4 are cut-free., Using this fact, we obtain ocur second

proof of the decidability of these systems as follows.
Theorvem 3.19. KT3, KT4 and 85 are decidable.

Proof. Since the proof goes similarly, we only prove
the theorem for 8S5. We first note that any proof figure
may be represented as a pair (@@, f), where P = (P, sP) is
a tree partially ordered by <p and f 1is a function
f: P ——A-EWffK2Wff!2Wffx2wff. Suppose a formula o ¢ WEE
is given. Let & = Sub{(a) and I8] = n. Suppose a is

provable. Then it has a cut-free proof (P, f). Then we

have

(13 Image(f) < 2“x2“x2“x2“.

(Subformula property of a cut-free procf!) Furthermore, we
may assume without losing generality that f(p) = f(q) if

P <p 4- (For, othewise, we can obtain a smaller proof figure
with the same end-sequent > a.) Thus we see that any
linearly ordered subset Q of P has cardinality less than
2 oM. oM. 5N

or equal to -2 = m. Since the number of the upper

sequents of each inference rule is at most 3, it follows that

(2) |P| < 3™,
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By (1) and (2), we can construct an algorithm which

determines the provability of .
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CHAPTER U

6
CATEGORIES OF KRIPKE MODELS )

4.1. Definition of ZKi(Q)

Let 0 be closed under subformulas. Let us take any
i (3<is<5) and fix it. We define the cafegory X;(Q)

of KTi-models over Q as fallows:

(1) Objects (M) are KTi-models.

(2) Let M, N ¢ M, then Hom(M, N} = [M » N] consists
of homomorphisms (from M to N) as defined below.

(3} Composition of homomerphisms is defined by the
usual funetion composition, i.e., (fog)(x) is

defined by f£f{g(x)).
For any M ¢ M, we define its characteriatic funetion

by xy{w) =T + A, where T ={ae ) wgk a} and A =
{e e 9| w=a)., Itis clear that T + A is f-complete
and hence x, 1is well-defined. (U(Q) means Ui(n) and

{i-complete means &, i-complete.) A mapping
h: MM —sN

is a homomorphism (from M +to N} if the diagram below

commutes:;
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Informally speaking, for w ¢ M, Xp(w) denotes the scene
(restricted to &) as seen from w. Thus a homomorphism is
a mapping which preserves scenes. It is an easy task to
verify that ZKi(R) defined above is indeed a category. As
an example, consider the simplest case of § = {1}. Then

any mapping f : M — N 1is a homomorphism.

4.2, Propertiecs of ]Ki(n)

First of all, by the Fundamental Theorem of Universal
Model, we see that Xjeqy ¢ U(R) — U() 1is the identity
mapping lU(ﬂ)‘ Hence, for any M € M, by the following
commutative diagram we observe that x, itself is a

homomorphism.

> U(Q)

Xy ZXueq)y“lutg)

Ui

On the other hand, let h e [M + U(Q)). Then since the

diagram below commutes, we have h = Xye
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Thus we obtain:

U

> U(R2)

Thecrem 4.1. U(Q) 4is a terminal objeat7gffK(ﬂ).

We now list up several basic properties of XK(R).

Lemma 4.2. If f ¢ [M -~ NJ]

8 an injeetion.

Proef. We prove the contraposition.

such that x # y and

by:

g{z)

Then we have:

£(x) = £(y).
X if z =
N if = =

z otherwise
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4

Define

Let

4

i8 a monomorphism then

X, Yy € M

t: M ——N

be



[ Xy (x) = X (EG0) = xuy(£(y)) = xy(y) if z =y
Xul8€22) = 1 xuy) = xn(£) = Xy (£ = xylx) if z = x
L xy(2) otherwise

Hence, g ¢ [M > M]. ©Now, clearly feg = fulu, but g = lM'

This means f is not a monomorphism,

Lemma 4.3. If f e¢ [M + N] <& ar epimorphism then £

13 a surjection.

Proof. We prove the contraposition. Let N = <W; r, v>.
let % € N be such that x ¢ Image(f)., Take y such that
y ¢ N. We defipe a model N = <W; P, ¥> such that W =

Wu{y} as follows: Let g : W ——>W be defined by:

s if z = ¥y
glz) =

z otherwise

We define P by (w, w') ¢ 2(S, t) iff (glw), glw®)) ¢
r{S, t). We definel! ¥ by w ¢ ¥(p) 1iff g{w) ¢ v(p). It
is easy to verify that N is a KTi-model. We can prove, by

induction, that for any we W and a € WEF,
‘wF o (in N) 4iff g(w) F a (in N).

I.e., g€ {N+N]. Let h : N —— N be the inelusion map,

and let h' : N — N be defined by:
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vy if z = %
h'{(z) =
z otherwise
We have goh = geh' = ly.
f < £ ~
M > N 3 >N
h? "
XN X
Y

Then we have

XN(h(Z)) = }{N(g(hCZ)}) = XN(Z):

so that K e [N« ). Similarly, h' ¢ [N - §]. Now,

clearly, hef = h'ef but h z h'. This means h is not an

epimorphism.

Remark. The reader familiar with the notion of p-morphism
might have noticed that g in the above proof is a
p-morphism. By the p-morphism theorem f34], every p-morphism
is a homemorphism (for any 23, but the converse is not

valid. In this sense ocur notion of homomorphism is move

general than that of p-morphism. Note also that we defined

homomorphisms without referring to the relational structure
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aof models.

Lemma 4.4. If f &« [M + N] 4{s an epimorphism, f 4is
a retraation.

Proof. By Lemma 4.2, £ is onto. Let g : N —=N be
any mapping such that feg = lN‘ Let ® ¢ N. Then
xH(g(x}) = (xnnf)(g(x)} = xN(fog(x)) = xN(x), i.e., XpoE =

XK Hence g ¢ [N » MJ. This means f is a retraction.

We cite the following easy lemma from Mitchell [23].

Lemma 4.5. 7f f ¢ [M + Nl {3 g petraction and alsc a

monomorphism, then it ig an isomorphism,
By Lemmas 4.4 and 4.5, we have

Theorem 4.6. X{(R) <8 balanced, i.e., évery homo-
morphism which is both a monomovphism and an epimorphism is

algo agn isomorphism.

Lemma 4.7. Let M € M. Then the following conditions

are equivalent:

(i} xy is a monomorphist.
(it} For any N e M, [N > M) <1

(i£%Z) End{M) = {1H}
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(iv} Aut{M) = {1H}

where End(M) denctes the endomorphism semigroup of M and

Aut(M) denotes the automorphism group ¢f M.

Proof. The implications (i) => {(ii) => (iii} =>» {(iv)
are trivial, To show {iv) => (i), we prove the contraposi-

tion. Suppose iz not a monomorphism. Then there exist

Ay
NeM and f, g ¢ [N + M] such that f = g and Xy°f =
Xy°&- Take x ¢ N such that F(x) = g{x). We put u =

f(x), v = g(x). We define h : ¥ — M by:

v if z = u
h{z) = u if z = v
% otherwise

It is easy to see that h ¢ Aut(M), so that |Aut(M)| > 1.

4.3, Structure of Ky (Q)

A model M e M is said to be reduced if Xy 1s a mono-

morphism.

Theorem 4.8, Let M = <W; v, v> be any model in W,

and suppose (3, ¥} € v{S, t). Then (xH(x), XM(y)) €
R(S8, t).
Proof. (i = 3): Let Ayix? =T + A and Xyly) =
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' - A'., Suppose, by way of contradiction, that Cxy ()
xM(y)) £ R{8, t). Then, by the definition of R, for some
ust, we have Tg ¢ T' or Toy £ Féu. Suppose TIg ¢ T'.
Then there exists an o such that [Sula ¢« F and o € T'.
Then by the Fundamental Theorem of Universal Model, we have
XM(x) F [Sula and xM(y) =l . Hence, by the definition of
Xy» We have x ¥k [Sula and ¥y s=sla. Since (x,v¥) ¢ r{S, t)
€ r{S, u), this is a contradiction. Next, suppose Tou £
réu. Then, similarly as above, for some o we have X
[Oule and vy =l [Oula. Since (x, vy} ¢ r{0, u) and
r(0, u) is transitive, we have a contradiction.

The cases {i = 4) and (i = 5) may be treated

likewise.

mn

Let M, Ne M. We write M

Image(xN). {We should write xﬁ {or xﬁ) in place of Xy

N (mod Q) if -Image(xM) =

(or XNJ if we wish to emphasize the dependence of ¥ on
1.) We say M is equivalent (modulo Q) to N if M= N
(mod £). Among the models equivalent to M, we will be
interested in finding the simplest one. Let M = <W; r, v
€ M., We define its relational elosure H = <W; T, v by
letting (w, w') € v(S, t) iff (xy(w), x,(w') e R(S, t).
By the above theorem we see r cr (, i.e., r(S, t) ¢
r(S, t} for any S, t.) We can prove by induction that
1, : M —> M is an isomorphiém. Thus, r is the largest

among the relations r' on W such that <W; r', v is
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equivalent to M. We say MeM is relationally eclosed if
M = M. Now, let M = <W; v, v> be relationally closed. An
equivalence ~ on W ig called a congruence if w ~ w'
implies xH(w) = xwﬁw‘). In this case, we can naturally

define its quotient model M/~ = <W: ¥, ¥v» Dby:

(1) W =W~z {[wl]|weW
(2) (Iw), [w']) e B(s, t} iff (w, w') ¢ r{S8, t}
(3) Let p € Pru{i}. If p e @ then [w] ¢ ¥{p) iff

w ¢ v(p), otherwise V(p) is arbitrary

where [w] denotes the equivalence class containing w. It
is easy to see that M/~ is well-defined {(up to the arbitra-
riness of V(p) for p ¢ Q) and M = M/~. (The canonical
map [ 1 : M — M/~ is a p-morphism if @ = WEf, and it is
a homomorphism in any case.)

Suppese M, N are relationally closed, and let f €
[M + NI be an epimorphism. Then, =~ g MxM defined by
w~w' iff f(w) = f(w') is a congruence, and we sea M/~

is isomorphic to N. We write this as M/f = N.

Let M ¢ M. By definition of Xps Xy (= Xﬁ) induces

the largest congruence among the congruences on M. Hence

we hawve:

Theorem 4.8. For any M ¢ M, there uniquely (up to

igomorphism) existe a reduced N € M such that M = N.

Namely, N +ia2 given by N = EIxH.
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Schematically, we have the following diagram:

inclusion
1 - X - map
L M ‘~foH >U{5)

Cur argument in this chapter has been relative to Q.
We end this chapter by giving a definition which does not
depend on fi. Let M = <W; r, v> and M' = <W'; p', v'>
be two KTi-models. We say M and M' are strongly iso-
morphie if there is a bijection f : M —>M' which
preserves the model structure, i.e., f is a bijection such

that

(1) For any %, v € W, (f(x), Tfly}) ¢ £'(3, t)} iff
(x, y} € oS, ). |

(2) For any p e Pru{i} and w e W, w e v(p} iff
f(w) e v'(p).
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CHAPTER %

$5 MODEL THEORY

In this chapter we give a complete classification of 55
models under the equivalence = (mod Wff). First, we need

gome general discussions.

5.1. Lindenbaum albebra of KTi

Let us define a relation <* c WEfxWff by a <* B iff
I «a + 8 (in 6Ti). (As usual, we discuss by fixing a logical
system KTi.) Furthermore, define -~ ¢ WEfxWff by o ~ B
iff o g* B and B <* a. <* is reflexive since F a + o.
<" is transitive since } a + B and |} B + vy implies
I « » B. Hence ~ is an equivalence relation. We may
regard Wff as an algebra <Wff; A, v, —, >, {[St]l
S € Sps t € T}>. By the following lemma, we see that =~ is
4 congruence on the algebra Wff. (For the definition of

algebra and congruence, we refer to Gratzer [ 7 1.)

Lemma 5.1. Suppose o ~ a' and B~B'. Then,

(L) aaB ~ a'ap!
(ii) avf ~ a'vp!
(ii2) “—a ~ —Sqat
(iv}) a>B ~ a'sp’

fv) [Stla ~ {Stla* {for any S ¢ Sp, + € TJ
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Proof. Left to the reader.

By this lemma, one can define the quotient algebra B =
<B; A, Vv, =, >, {[St]1 | 5 ¢ 5p, t € Tl>, where B = WEf/~.
We will call this algebra the Lindenbaum algebra of KTi.
Let [ ] : Wff —»1B denote the canonical homomorphism. We

put 1 = it} and 0 = [1].
Theorem 5.2. <B; a, v, =, 0, 1> +<e& a Boolean algebra.
Proof. Left to the reader.

Let =5 < BXB denote the partial ordering induced by
the Boolean structure of B, i.e., a <p b if and only if
a = asab, Then we can easily verify that for any o, B e WfE,
o <* 8 if and only if [al sg (8]

We will use the term theory as a synonym for a subset
of WEff. Let T be any theory. We say T 1is consistent
{or inconsigtent} if so is the sequent ' = . If T =T =
DC(T), we say I is (deductively) elosed Let C denote

the set of all closed theories, i.e.,

€ ={T c WEf I T =T}.
. s - Wit
C is the set of fixed points of the retract DC : 2 S

Wit

2 © is partially ordered by the set inclusionship

relation <. We define a mapping ¢ : WEf — @€ by ¢(o)
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- TaF. We say I is finitely amiomatizable if T = ¢(a)

for some o ¢ WFf.
Lemma 5.3. [al sp [R} <if and only if d&(a) 2 $(B).

Proof. Only if part: By the assumption we have « <*
B. Hence | o« » B. Take any 7 € $(B) = {8}. Then
- B+ 7. Hence | a + w, so that o | 7. This means
e pla).
If part: Suppose ¢(a) 2 ¢(B8). Since B e ¢(B) < $(a), we

have ¢ | B, i.e., |} e=+8. Hence Ilol sp [B].
From this lemma we see that there uniquely exists an

anti-order preserving injection 1 : B —@ such that the

diagram below commutes:

Wif

We note that 1 is onto iff ¢ is onto. We give a suffi-

cient condition for 1 +to be an anti-order isomorphism.

Lemma §.4. If B sqtisfies the deegcending chain
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condition, then 1 18 an anti-oder isomorphiem.

Proof. Let T be any element in €. Let Gy @py °°

be an enumeration of T. Let Bn T UqA e Aun- Let T ¢
¢(Bn). Then we have [} Bn + 7. Since | T =» di (i = 1,2,
*++ , N}, we have | T » B,- Hence I > 7. This means

% ¢ T =T. Therefore,
{1) ¢(Bn) c T,

Let me¢ I. Then % =a  for some n. Sipce | B =+ a,

we have = = o, € ¢(ﬂn). Hence, together with (1), we have

(2) r = 68 ).

Since |} Bre1 * 84 for any n, we see [Blﬂ 2p [Bn] Zp "t .
Since 1B satisfies descending chain condition, there exists
an m such that [Bm] g [Bnﬂ for any n. Then, by Lemma
5.3, we have ¢(Bm) 2 ¢(B ) for any n. Thus, by (1) and
(2),

(3) rsee) 2 |} o) ar.
m n;l n
This establishes the sujectivity of 1. Thus we see that 1

is an anti-order isomorphism.

§.2. 85 model éheﬂry
For any n 2 1, we let the language Ln = (Pr(n), Sp, T}
be defined by:
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(1) Pr(n} = {pla P29 A pn}:
(2} Sp = {0}:
(3) T = {1}.

Let us take any L and fix it. In this section, we study
KT5 over the language L , which is none other than the
modal calculus S5 as we have seen in Fig. 1.}. Hence a
KT5-model over Ln will be called an S5-model. Our aim is
to determine the structure of the Universal Model O = U(n)
= U (Wff). We employ the more conventional notation Oo ({e)
in place of [0l1ls {(<Q}>a, resp.).

Let {+}" denote the n-fold cartesian product of the
doubleton set {+, -} . For any o ¢ WEf and & ¢ {2} =

{+= -}: we put

We define a mapping

T {i}n — > Wff

E E

- ] n
by w(e) = py 'a *** AP, ", where e = g, ¢ e (e, « {t}).

We put T = Image(s). For any E (= @) = {+}", we define an

S5-model M(E) = <Wps rp, vp> as follows:

(1) WE = Ex{E},
W_xW
(2) ryo, 1) =2 F E

*
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(3) TFor any (e, E) ¢ Wy, (€,E) ¢ v(p;) iff €, = +,

where € = €, °°* €., and vt} = @.

Since rE(O, 1} is an equivalence relation, M(E) dis an
S5~model. We call this model the fragment model on E. We

define. its eharacteristic formula x(E) by:

x{E) = AN o rled)a FAY ‘-m--rr(eﬁ)

e¢E ec{£}"-F
For any (€, E)} ¢ M(E), we define its charcteristic formula

x(e, E)} by:
x(e, E) = w(e)}ax(E).

Now, let (Ml)leﬁ be an indexed family of S5-models,

where HJl = {Wl; Ty s Vi We define their sum

M= <W; r, v» = } H.'k

hed

by:

(1) W= ] W (disjoint unionl,

hel
{2} {w, w') ¢ r(0, 1) iff both w and w' are in
Wy for some A and {(w, w') ¢ rlfo, 1),
(3) wvip) = 1 wv,(pJ.
Ach

An SS5-model M = <W; r, v> is said to be connected if
r(d, 1) = 2wa" It is easy to see that any S5-model M may
be expressed as a sum  } M, of their connected components

hed
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Let S be the sum of the family of all fragment models,

S = } M{E).
p=Fc{z}"

We will show that 5 is strongly isomorphic to U,

Lemma 5.5. Let an SS5-model M = <W; r, v> be connected
and reduced (in the catagory X(WEf)). Then M 1is etrongly

igomorphic to some fragment model M(E).

Proof. Let E = {& ¢ (£} | wE 7(e) (in M) for some
w e M}. Since for any w ¢ W there uniquely exists an ¢ «
E such that w E n(g), we can define ¢ : W — E by ¢{w)
= g¢. Suppose ¢(w) = ¢(w') = €. We show by induction that
for any o ¢ WFf, w f @ iff w' k a. The case o ¢ Pru{i}
is easily ascertained since ¢{w) = ¢{w'). The case a =
B>y 1is trivial by the definition of E and by induction
hypothesis. Finally, we consider the case a = 0Of. Then,

since M 1is connected we see w kE OB iff w' ¥ UBR. Hence,

it follows that yxu,(w) = y,(w'). Since M is reduced, we

have w = w', by Lemma 4.2, Thus we have proved that ¢ is
a bijection. Since both M and M(E} are connected and

vE(¢(p)) = vi(p} for any p ¢ Pru{i}, we see that M and

M(E) are strongly isomerphic.
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Corollary 5.6. Let the assumptions be a3 in Lemma 5.5.

Then the strong isomorphism ¢ : M —> M(E) 1is unique.

Proof. Since M is vreduced, we have Aut(M) = {lM}’
by Lemma Y4.7. Since a strong automorphism is an automorphism,

we see that ¢ is unique.

Theorem 5.7. Let M be connected and reduced. Suppose

wk x(E) for some w e M. Then M ia isomorphic to M(E),

Proof. By Lemma 5.5, we have only to prove:
"If E = E' then (e, E) = x(E') for any (£, E) e M(E)."

Suppose E = E' and (e, E) F x(E') for some (e, E} ¢
M(E). Then we can take a ¢ such that 6 ¢ E-E' or § ¢
E'-E. Suppose § ¢ E-E'. Then (g, E) F ©n(d), But, since
(e, EY E x(E')Y and x(E') |- —< w(§), we have a contra-

diction. The case d§ ¢ E'-E may be treated similarly.

Now, let the Universal Model U be expressed as the

sum § M, of its connected components. Then each M, is
Aeh

reduced because Xy = lU' By Lemma 5.5, HA is strongly
isomorphic to H(EA) for a suitable E,. Let
¢, * My — M(E,) be the unique strong isomorphism. Define

¢ : U ——é-léﬁ M(E,) by ¢(w) = ¢,{w)} where 2 is the
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unique index such that w e M,. Since ¢ is a strong iso-

morphism, we have the feollowing commutative diagram:

U > 1 M(Ey)
Al

X

Hence, Yy is also a strong isomorphism. Suppose EA = Eu

for some A # . Then it is clear that Aut(JM(E,)) 2 {1}.

But, by Lemma 4.7, it is contrary to the fact that Xy is

injective. Thus we have:
EA 2 Eu if A = u.

Now, take any E (= 8} ¢ {+}". By Theorem 4.8, we see
Image(xH(E)) is connected. Hence it is contained in some

M, i.e., Image(xM(E)) € M,. Take any (e, E) ¢ M(E).
Then,

(e, E) F x(E) (in M(E)}).

By the definition of XMCE) ?

‘ XH(E)(E’ E) E x(E) (in U).

Hence,

- 77 -



By applying ¢, we have
¢(xM(E)(e, E}) F x(E) (in M(E, }).

Therefore by Theorem 5.7, we have E = Ey,- Thus we have

proved the following

Theorem 5.8. U <is strongly iesomorphic to 8.
Similarly, we have

Theorem 5.9. ZLet M be reduced. Then M L& strongly

n
igomorphie to ] M(E) for some E ¢ 2{i} -{@a}.

E<E

Proof. Let M = } M,. where M, (A ¢ A) are reduced
Ach

and connected. Since M is reduced we have that Ml and
Mu are nonisomorphic if A = p by considering the auto-
morphism group of M. Hence by Lemma 5.5 we have the

degsired result.

Corollary §.10. An igomorphism ¢ : M —> N between

reduced models M and N is an strong isomorphism.

On the other hand, it is clear that | M(E) is
EcE

n
reduced for any E < 2{1} -{@}. Hence we have
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n
_‘l a *
Covollary 5.11. There are 22 nonigomorphie

reduced S5-models.

Theorem 5.9 gives a complete classification of reduced
models up to (strong) isomorphism. We will further proceed
to define for any model M its characteristic function
X(M).

Let w=T+ A ¢ U, By the isomorphism ¢ : Uu——=8
established in Theovem 5.9, we will identify w with ¢{w).

Hence w may be written as w = T + A < (e, E}Y. We define

a mapping

XU : U — WET

by XU(WJ = y(e, E), where w = (g, E). Furthermore, for

any model M, we define
XM 1t M — WEE

by XM(w) = XU(xM(w)), where Xy is the characteristic

function

Xy ¢ M —>U,

Then the following theorem enables us to replace the seman-

tical relation [F Dby the syntactical one }—.

Theorem 5.12. Let M be any SS-model. Then for any
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we M and o € WEf we have:

wkFa {in M) <if and only if XH(W) F «.

Proof. Bince wk o iff Xy (W) = ¢ (in U), and since
XH = Xuoxﬂ, it suffices to prove the case M = U. So, let

w=T=>4 = (e, E). We prove by induction on the construc-

tion of a that

(a) if wEk a then X (w)  a

and

(b} if w=la then Xylw) | —a.

a ¢ Pru{1}: The case o =1 is trivial. 8o, suppose a =
P; € Pr.

(a): Since (e, E} F P;, we have &; = +. Hence
w(e) |- py, so that X (w) = x(e, E) = m(e)ax(E) - p; (= @).
The proof of (b)) is similar.
a = Bay:

(a): Since w k B2y, it follows that w =B or wk ¥.
Suppose w = B. Then by induction hypothesis, we have
Xu(w) I —-B8. Since -8 |- B>y, we have Xu(w) - a. The
case w F Y may be treated similarly.

{b): Since w = B>y, it follows that w F B and
w =] y. By induction hypothesis, we have 'XU(w) - 8 and
Xy W) I Y. Hence, X (w) - 8r—y. Since BA -y |

—(B>Y), we have X;(w) .
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a = {B:
{a): Since (e, E) F DB, we have for any 6 ¢ E,
(6, E) F B. By induction hypothesis, w(3)}Ax(E) |- 8 for

any ¢ € E. Hence, we have:

F v w(8), x{E) » B (1)
S€E

Now, since | + L T8 and | x(E} » —w(8) for any

Gel{t}
§ £ E, we have

F x(E) ~ VvV w(& (2}
SeE

Hence, from (1) and (2) we obtain

- Xx(E) + B (3)

From this, by (+-) and (-+D), we have x(EY | 08 as
desired.
(b) Since (¢, E) =108, we have for some § ¢ E (68, E)

sl 8. By induction hypothesis, we have
F %(8), x(E) » —g ()

Let x{E) = <:>1r(e:l)n e Acn(ei)h—ww(ziﬂ)h rev A
ﬂ<>ﬂ(ei}. Then frem (4} we can construet the following

proof figure, which proves (b}.
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In the above proof a double line (=) means that several
trivial applications of rules are omitted.

Now it is clear that (b} implies that if w =l o +then
XU{w) b «. This completes the proof of the theorem.

.

Corollary 5.13. Let XU : U —=B be defined by

?U(w} = [X{w)]. Then ?U i8 injeative.

Proof. Take any w = (€, E) and w' = {(¢', E') in U.
Suppose iu(w} = iU(w'). Then, by Theorem 5.12, (€, E) k
w(e')AX(E'). Hence, clearly, £ = €', By Theorem 5.7, we

have E = E'. Therefore w = w', which means XU is

injective.
In the above proof we have also proved

Corollary 5.14. Let w, w' ¢ U. Then

(1) wk Xy{w') if and only if w = w'.
(2) X tw) b Xyw')  if and only if w = w'.

We extend XU U —> Wff to

Xy 2¥ — s

as follows. Let P ¢ WU. Then XU{P)

is defined by:
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XpP) = V. X W),

weP

We note that newly defined Xy may be regarded as an
extension of the old one by identifying w with {w}. Now,

for any o ¢ Wff we can define its normal form norm(a) by
norm{a) = XU(Pu)’

where P = {w e Ul wk a (in W},
Theorem 5.15. For any o ¢ WEf, norm(a) = a.

Proof. Let w e P, . Then by Theorem 5.12, |[-X;(w) -

. Hence we have |} V Xylw) +» o, i.e., }  norm{u) + «,
weP
]

We prove | « + norm{w) by means of the Completeness
Theorem. Consider any S5-model M and w ¢ Ml such that
wFo (in M). Let w' = xu(w ). Then w' F o {in U}, i.e.,
w' e P.. Since w' F XU(W'): we have w' = xy(w) E norm(a).
Hence, by the definition of Xy» W F norm{a). By the
Completeness Theorem, we have |- a + norm{a). Thus, we

have proved norm{a) Z a.

We are now ready to study the mapping

u

h: 2" —B

defined by h(P) = [XU(P}B. First, we define
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g: 2¥ —2Y

by OF = {we Ul (w, ') € v(0, 1) => w’ ¢ P}. Then 2V
W
may bhe considered as an algebra 2“ = <2'U; n, v, O>-

Furthermore, we consider IB as an algebra B = <B; A, v, [>.

u

Theorem 5.16. h : 2° ——IB is an isomorphism.

Proof. Take any [a} ¢ B and let P = {fwelU]l weE
a}. Then by Theorem 5.15, we have h(P. ) = [norm(a)] = [a].
Hence h is injective. Next, take any P, Q £ U and
suppose P # Q. We can take w such that w ¢ P-Q or w ¢

Q=-P. Suppose w ¢ P-Q. Then clearly,
(1) Xgw) |k x,(P).

Suppose XU(w) - XU(Q). Then by Theorem 5.12, we have
w F XU(Q). Hence for some w' Q we have w F XU{w').
Then by Corollary 5.14, we see w = w'. This is a contra-

diction since w ¢ Q and W' ¢ Q. Thus, we see
(2) ' Xy B+ X, Q).
By (1) and (2), we have XU(P) = XU(Q), i.e.,

[Xy(P)1 = [X,(Q)1.

Thus, we see h is injective.

Now, let P, Q ¢ 2U.
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(i) Since X;;(PnQ) [ XU(Pi and XU(PnQ) = XU(Q), we have
(3) I Xy(PnQ) X (PIAX(Q)

On the other hand, suppose w E XUFP)hXU(Q), where w e U.
Then, by a method similarly as above, we can prove w « PnQ.

Hence w ¥ XU(PnQ). Thus we see
(4) - Xy (PIAX;(Q) + X, (PnQ).

By {(3) and (%), we have h{(PnQ) = h(P)ah(Q).

(i1} That h(PuQ) = h{(P)Vh{(Q) is proved similarly.

(iii) First, take any w ¢ U such that wEk KU(DP)- Then
w ¢ P, so that for any {(w, w') ¢ r{0, 1) we have w' ¢ P.
Hence w' E XU(P). Thus, we have w F DXU(P). Therefore,

we have
(5) = Xy(OP) » 0%, (P).

Next, take any w ¢ U such that w E DXU(P). Let w' be
such that (w, w') € r(0, 1). Then we have w' F X,(P).
Hence w' ¢ P, Then by the definition of ([P, we have w ¢

OP. Hence w E XU(DP). Thus, we have
(6) F Ox,(P) » X,(OP).

By (5) and (6), we have h{(0OP) = Oh{P).

Theorems 5.8 and 5.16 determines the structure of

the Lindenbaum algebra of 85. Since the cardinality of U
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{= §8) is easily calculated as

2 n n
lv] = I i-[% ] = oM. 52 —l’
=1

the cardinality of B 1is given by

n
l:lBl = 2|U| = 22“-22 -1

As an example, we illustrate the structure of U for n = 2.
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5.1. Graphic representation of U(2)
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In the above figure, we have put €o = TPiA T Pys B2 S
P12 Pys E2 = T pyAp, and €5 = PyAP,:

Finally, since B is finite, from Lemma 5.4, we have

Theorem 5.17. 1 : B —@© <8 an anti-order isomorphism.

Corollary 5.18. Every theory of B85 (over the language

Ln} £8 finttely axiomatizable.
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CHAPTER 6
APPLICATIONS

In this chapter we study two puzzles, namely, the
puzzle of three wise men and the puzzle of unfaithful wives,

by applying the results we have obtained in the preceding

chapters.

6.1. The wise men puzszle

In this section, as an application of the Completeness
Theorem, we give a model theoretic solution to the well-
known puzzle of three wise men. We will work on the language

L = {Pr, Sp, T), where

Pr = {Pls Pgs P3} )
Sp = {0, 57, Sg»s S}
T = {11}

Since T is a singleton set we will write, for example,
[Sle in place of [Slla. HNow, the puzzle has been modified
as follows by McCarthy [21, 22] so that it may be modelled
in his knowledge system:

Let 8, (i =1, 2, 3) denote the 3 wise men, and let
p; Dbe the sentence asserting that S5; has a white spot on

his forehead. The following are given as assuptions.

(Al) PyAPoAPy === All spots are white.
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(A2) [0](p1Vp2Vp3} -—— They all know that there is at
least one white spot.

(A3) [0]({Sl}pzh{sl}paﬁ{Sz}plh{sz}pah{sa}plﬂ{sa}pz) -—=
They all know that each can see the spots of the others.

(A4) (8,108,]—[8,1p; --—- Sy knows that 8, knows that
Sl doesn't know the color of his spot.

(A5) [53]"[82]p2 --- S5 knows that §, doesn't know

the color of his spot.

The problem is to deduce [83]1:13 (S3 knows that he has a
white spot) from these assumptions.

Let o = (A1)XACA2)A(A3)A(A4)IACASY and T = “3[53JP3-
We will show that | 7 (in X3) by means of the completeness
of K3-models. Namely, we show that w 1is wvalid in all K3-
models. BSo., by way of contradiction, suppose there is a
counter-model M = <W; r, v> for w such that M = m.

This means that there is a world wy € W such that

(1) Wy F a
and
(2) wy =l [5,1p,-
{2) tells the existence of a world Wy such that
53
(3} Wog — > W,
and
() Wy =| Ps3-
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Since w, E (A4)A{AS), we have, by (3),

(5) w) F [8,1-08,7p,
and

() wy =l 18,1p,.

Fror (3) we have, by the definition of r,

0

Hence we have from (1)
(8) Wy E {S?}p3=

that is, w, E [82]133 or w, E [Szl'ﬂps. This, together

with (4), implies
(9) w, F [82]"p3.
By (6) we see that there is a world W, such that

So
(10) W) ——> W,

and

(11) w, =l Dy
From {5}, (9} and (10} we have

and

(13) W, % py.
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By (10}, since P(Sz, 1) € »(0, 1), we have

(14)

From (7} and {(14), using the transitivity of r(J, 1), we

have

(15) W, —2 su,.
Since w5 F (A3), we have

(16) w, F {Sl}pzn{sl}pa-
From {11}, (13) and (16} we have

(17) w, F [5;]—p,

{18) W, F ISll'“pa.

Now, (12) implies the existence of w, € W such that

1
(19) Wy —=> Wy
and )
(20) Wy = pq-

From (17), (18) and (19} we have

(21) w3 = P2

and

(22) Wa = P3-
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We have

0
(23) Wy — > Wy
from {(15) and (19). Then, since v, E (A2}, we have

(24) Wa F P1VP,VPg-

But, this is contradictory to (20)-(22). Thus, we have
proved that w is wvalid.

Note that we did not use the assumptions (Al) and

[01({S,}p,alS)p a{S ip,). We illustrate the above inference

in the following figure.
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For the sake of comparison, we give a formal proof of
m in G6T3. It may be observed that these two proofs are

essentially along the same line.
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§.2. The puzzle of unfatthful wives

We begin by explaining the notions of knowledge base
and knowledge set, which are fundamental for our formaliza-

tion of the puzzle of unfaithful wives.

6§.2.1 Knowledge set and knowledge base
Let L be any language. We consider in XT4 and KT5
over L. We will make the notion of the totality of one's

knowledge explicit by the following definitions.

Definition 6.1. K ¢ Wff is a knowledge set for 5§t if

X satisfies the following conditions:

(KS1) K is consistent.
(KS2) X = [stlK.
(xs3) If K | [Stleyv --- vIStla  then K ooy

for some i {1 < i £ n).

Definition 6.2. B ¢ WEf is a knowledge base for St if

B satisfies the following conditions:

(KBl) B is consistent.
(KB2) B ¢ [St]B.
(kB3) If B |- [Stla,v »=- v[istla  then B - oy

for some i (1 < i < n).

By (XS2) <(or (KB2)) we see that any element in K

(or B, resp.) has the form (Stla. It is easy to see that
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if B is a knowledge base for 8t then [StlB is a
knowledge set for St. We -also note that the above defini-
tions are relative to the logies KTt and KT5.

Let T ¢ WEff be consistent. We compare the following

three conditions.

(1) If T §+ a then T | —[Stle,
(2) I1f T | [St]a1V see V[St]un. then T | a; for
gome i (1 = i s n).

(3 If T } {stle then T F a or T | —uo.

First, we consider in KT4.

Lemma 6.3. In KT4, we have (1) => (2) => (3) but
(23 #> (1).

-,

Proof. (1} ->:E2): Suppese T | [St]&lV .. V[St]un
and T @, for any i. Then by (1), we have T |

—[8tla; for any i. Then we can prove I | 1, which is
contradictory to the consistency of T.

(2) => (3): Trivial.

(2) #> (1): Since the disjunction property holds in KT4
(Theorem 3.12), the empty set @ 1is a knowledge base for

any St. Let ? = @. Then T satisfies (2). Let P € Pr}ﬂ:

Then neither p nor —{[Stlp is provable in KT%. Hence,

' does not satisfy (1).
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In KTS, we have the following

Lemma 6.4. In KT5, (1), .(2), and (3) are

equivalent.

Proof. (1) => (2) => (3) are proved similarly as in
Lemma 6.3.
{3) => (1): We prove the contrapositicn of (1) assuming
(3). Suppose T B —[Stla. Since | [StI[StlavIsSt]—Istlw
in KT5, we have from (3), T } [Stla. Hence T |- a.

Note that @ is not a knowledge base in KT5. We now
study the semantical characterization of knowledge sets. lLet
M= <W; r, v> be any model (adequate for the logical system
we have in mind). TFor any w € W and (5, t} ¢ SpxT, we

define K_(3t) = Wff by:
K, (5t) = {[stla | w E [Stla}.

Since, as we will see below, KH(St} is a knowledge set for

St, we call it the knowledge set for St at w.

Lemma 6.5. Kw(St) ie g knowledge set for St.

Proof. We only prove (KS2). Let [Stle ¢ Kw(St) = K.
Then, we have K | &, i.e., & ¢ K. Hence [Stla ¢ [StIK.

Let [StJe € £5t)K. Then a ¢ K, i.e., K | ©. Since any
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element in X is of the form [8t]B, and the logical system
is KT4 or KT5, we have K I [Stla. Since w F K, we

have w E [Stle, so that {8tla ¢ K.

Let K be a knowledge set for St. We say w e M

characteriaes K 1f KX = Kw(St}.
Theorem 6.6. Any knowledge eet is charactertaable.

Proof. Let X be a knowledge set. Let & = Wif-K...
We show that the sequent K -+ [St]A is consistent. Suppose
otherwise, so that | K + [StlA. Then for some finite set
{ag, *=- an} € A we have, |- K+ [8tla;, =+ , [Stle_.
Hence, by (KS3), there exists an i (1 < i « n) such that
 x = @;. By (XS2), we have [Stla, « K. This is a
contradiction. Thus, K » [StlA is consistent. So, by the
Generalized Completeness Theorem, we can take a model M =
<W; v, v> such that w = K - [St]A, for some w e W. Then,

clearly, we have K = Kw(St).

6.2.2 Informal presentation of the puzzle

The puzzle of unfaithful wives is usually stated like
this:

There was a country in which one million married couples
inhabited. Among these one million wives, U0 wives were

unfaithful. The situation was that each husband knew whether
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other men's wives are unfaithful but he did not know whether
his wife ig unfaithful. One day (call it the 15t day}, the

King of the country publicized the following order:

(i) There is at least one unfaithful wife.
(ii) Each husband knows whether other men's wives are
unfaithful or not.

(iii) Every night (from tonight) each man must do his
deduction, based on his knowledge so far, and try
to prove whether his wife is unfaithful or not.

(iv) ©Each man, who has succeeded in proving that his
wife is unfaithful, must chop off his wife's head
next morning.

{(v) Every morning each man must see whether somebody
chops off his wife's head.

{vi) Each man's knowledge before this order is publi-
cized consists only of the knowledge about other

men's wive's unfaithfulness.

The problem is "what will happen under this situation?”
The answer is that on the 418t day 40 unfaithful wives will
be chopped off their heads. We will treat this puzzle in a

formal manner.

6.2.3 Formal treatment of the puzzle
We will treat this puzzle by assuming that there are

kX (2 1) married couples in the c¢ountry. Then the language
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L = (Pr, 5p, T) adequate for this puzzle will be:

Pr = {pl’ en | ] p]<}’
sp = {0, Sl, e Sk} ’
T = N,
where Si denctes ith husband, pP; means that Si's wife

is unfaithful and t ¢ T denotes t ' day. We employ KT5

over L as our logical system. {Our argument henceforth can
be carried out similarly in KT4 except for one point, where
an essential use of Lemma 6.4 is necessary. This fact seems
to suggest us that the negative introspective character of
KT5 1is essential for the solution of the puzzle.)

As in §5.2, we define

v o2 {£}X S uff

E.

k
by mwle, == €.} = 53 P; Y. We put T = Image(w) and I,

k
= H—{_/; p;}, where ﬁi = Op;. We also use T to denote
i=

arbitrary element in I@I. Now, let T denote what the King
publirized on the 18t day, and B_{(S:n) (i = 1, «++ , X)
denote a knowledge base for Sin under the circumstance
n o= w(el vee Ek) € Hﬂ. Let us put
T i .
o (5, e if Bw(51“) F o

L otherwise
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and

T if B (8;n) } «a
TB (S;n) £ &l =
I otherwise ,

where o ¢ WEf., Then, as a formalization of the puzzle, we

postulate the following identities:
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The informal meanings of the above equations are as

follows:

Eq(®, i, 1): Knowledge base for §;1 under' m con-
sists of the knowledge about what the King says on the 15t

day and the knowledge about whether other men's wives are

unfaithful.

Eq{m, i, n+tl): If Sj could prove Pj in the nth

night, then Si knows on the n+ls't morning that [Sjn]pj,
since 8; sees that Sj chops off his wife's head in the

n+15% th

morning. If Sj could not prove Pj in the n
night, then Si knows in the n+15t morning that'ﬂ[Sjani,
gince Si sees that Sj does not chop off his wife's head

in the n+15t% morning.

Eq(*): The meaning of the 1% line of Eq{*) should be
clear. The 2nd and 379 lines mean that FOOL will know every
morning whether anybody could prove the unfaithfulness of his
wife in the previous night. The last line is an indirect

definition of B“(Sin).

Since the meta-notions such as knowledge base and
provability (|-) cannot be expressed directly in our language,
we were forced to interpret the King's order into T in a
somewhat indirect fashion.

Now, if we read Eq{x) as the definition of T, then we

find that the definition is circular, since in order that T
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may be definable by (#) it is necessary that B"(Sin) are
already defined, whears B“{Sin} are defined in terms of T
in Eqs{v, i, n). 8o, we will treat th?se equations as a
system § = {Eg{m, i, n) | @ € My, i =1, ¢*+ , k, n e Thu
{Eq(*)} of equations with the unkonwns {B_(S;n) | 7 € 0,
i=1, = , kX, neT} and T. We will soclve § under

the following conditions:

(#) For any = ¢ I, Tu{v} is consistent.

(##) TFor any = ¢ H; and S;n, B“(Sin) is a knowledge

base for Sin.

We think these conditions are natural in view of the intended
meanings of T and B (8;n}.
For the sake of notational convenience, we consider E
= {+}* as a k-fold direct product of the vector space
GF(2) = {+ (= 1), ~ (= 0)} with addition ®. ‘Thus, {ei =

= rre —ho e -1 i=1, «»+ , X} forms a basis of E. We
i
define a norm on E by el = |{i | € = +}{, where € =
€yt By For any € = € aee € € E and i = 1, **+ , Xk,

we put

e(+1}

El -5 P E . +E

1-1 i+l -e Ek’

e(-i)

1l

El L ) Ei-l-ei+l L €kl

and for any % = W(e)} ¢ NI, we put
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{+i) = m(e(+i)),
m{-i} = w(e(=i)).

We also put E, = E-{0} = B-{- »+« -},
Now, let us suppose that <<B (S,n) | M e M, i = 1,°°",
k, n e T, I'> is a solution of $ under the conditions

(#) and (##). Then the following lemma holds.
Lemma 6.7. Let m = w(e) e I agnd n ¢ T. Then we
have:

{i} If n2z le(+i)ll then

By(e1)(8im) F Py
and

By(.iy(8;n) F p; (if 7(-i) ¢ My).
(it) If n < le(+i)l then

Beq) (8500 = Bre_zy(8;n),
and hence

Bregy$8im) PPy

and

B,n(_i)(Sin) l‘l" Ei'

Proof, We first show that B ,;,(8;n) = B (s;m)

n{-1i)
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impiies B .,.y(S;n) b p; and B _;y{(5;n) [ P;. Suppose
By (+4y(8;m) - p;- Then B . _;y{(S;n) I p;. Hence
{o1)(m(-iy>CralOn+11[8;nlp;} ¢ T. So,

(1) r | «(-i)=p,.
On the other hand,

(2) m(-i) | p;.
From (1) and (2}, we have

(3) T(~i}, T | 1.

This is contradictory to the condition (#). Therefore we

have Bp(,:,(8;n) | »py. B“(_i)(sin) ¥: p; is proved

similarly.

We now prove the lemma by induction on n.

n = 1:
Procf of (i). Suppose fe(+i)ll = 1. Then, since
— —_ _ k
- Py» """ » Py Pigqpsr °°° 3 Py .Vl Py * P;»
1=
and
k
Brges) 55 VR s

we have B“(+i)(sil) = P;. The rest of (i) is vacuously

true, since TW(-i) e HU'

Proof of (ii). Suppose lle(+i)| > 1. Then,
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B‘“("‘i}(sil) = B.n.(_i)(sil) follows dir‘ectly from Eq<“(+i},
i, 1) and Eq(n(-i), i, 1).

n*® 1l:

Proof of (i), First we show B ¢+i)(8;0) = p; from

the assumpiion that n = [e(+i)ll. Since n » 1, we can take
j = i such that Ey = +. Then ®(+i) = w{+i}{(+3j) and
le(+i)(+j)| = n > n-1. By induction hypothesis, we therefore

m .nl—1IS.n- . .n).
(1) [San [SJn }.]p:I € B )(Sjn)

m(+i

On the other hand, since w{-1) = w(-i)(+3) and Ne{-1){+3)
= n-1, we have by induction hypothesis, Bw(-i)(sﬁn_l) + Pj'

Hence, by Eq(#*)
(5) [Oll(ﬂ(—i)D(TDEOn][Sjn—l]pj}} e T,

From (4), (5 and Eq{(n{(+i}, i, n), we have Bw(+i)(sinJ
F —w{-i). Since B“(+i)(SilJ - m(+i)vm{-i) and
B“(+i)(8in) 2 {Sin] .o [Siszﬂ(+i)(Sil)’ we have
Bresgy(Sin)} | w(+i)vm(-i). Hence we have B ,;,(5;n) +
n(+1i), Therefore, B“(+i)(sin} |_ Pi.

We next show that B (S;n)|- P; from the asdumption

w{-1)
that n = le(+i)i. We can take j = i such that e; = +,
Then fle(-i)(+j)] = n~1. By induction hypothesis,

B“(_i)(sjn-l) - ij Hence,

(6) [Sin][Sjn—l]pj ¢ B )(Sin).

T(-1
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Since le(+i){+j)l = n, we have by induction hypothesis,

Br(+i) b P Hence,
(73 [01](ﬂ(+i}=(TD[0n]“[Sjn-l]pj)).e T.

From (6 and (7)), by an arguement similar”-- as above, we
conclude that By, .(8;n) F op;.

The case n > |e(+i)] is now easy, since we have
B“(Sim+l} = [sim+l]B“CSim):

for any m.

Proof of (ii). We next consider the case n < Je(+i)].
By induction hypothesis, B“(+i)(5in-1) = Bﬂ(_i)(Sin—l).
Since Me(+i)(+jM 2 Ne(-i)(+3) > n-1 for any J, we have

by induction hypothesis,

B“(+i)(+j)(5jn“l) = B,"(_'_i)(_j)(sin-l)
and
B“(hi)(+j}(5jn"l) = B“(_i)(_j)(Sjn-l).
Hence Bw(+i)(sjn'l) k= p; and B“(_i)(sjn—l) ¥4 py- Thus,

we have B“(+i)(sin) = B“(_i)(Sin) by Eq(w(+i)’ i, n) and
Eq{w(-i), i, n).

Summarizing this lemma, we have:

Corollary 6.8, Breey(83ny + P; tf and only if e; =+
and n 2 |lel.
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We next prove the following lemma.

Lemma 6.9, Por any ® = T(€) ¢ Ty, 17}T  is complete.

I.a., for any o € WEf, either

Fow, T
or

L a, 7, T +

Proof. By induction on the ceonstruction of o. Fiﬁét
we note that, by condition (#), it is impossible that both
7, T +a and a, n, T » are provable.

o ¢ Pru{i}:

If a = Py then we have T | piei. Hence, clearly,
F n,T+a or F a, 7, '+ . If a =1 then we have
oy, ®r, T > .

o = Boy:
Suppose | T, I' + y. Then we have | ®, I = a by

the following proof figure:

m, ' + v

Bs“!r+T

m, I' + B2y

Suppose | B, #, T > . Then we have | =, I +a,

gimilarly.
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By induction hypothesis, we see that ‘the remaining case
i b #, 7> B and b v, ", T > . Then, we have
I gay, 1, T + by (3%).
o = [Sin]B:

Suppose + B, T, T + . Then we can costruct the

following proof:

[Sin]B‘ ") P >

Suppese | m, T + B,
(A) We first consider the case n 2 [le(+i}l.
(Al} The case W = w{+i}:
In this case, noting that [01](“(+i)=(TD[0n+l][Sin]pi))

¢ T by Lemma 6.7, we first construct the following proof

figure.

> T fon+13LS;nlp; + [S;nlp;

n{+i) » w(+1) TD[0n+1][Sin]pi + [Sin]pi

ﬁ(+i}b(T=[Dn+1][Siani}, n(+i) » [Sinlpi

[01](ﬂ(+i)=(r=[0n+1][sin]pi)), w(+i) > [8,nlp;

m(+i), I ~ IsS;nlp,
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Let j # i. Then, since [Ul]{Sil}pj € T, we have the
following proof figure.
€. €.

(2) p; ¥+ p, )

w(+i) + p, J

€ £ €5 '
- + L ] E 3 i
Pj Py TPy T, MiHL) 2
£ o €S
[Sillpj > [Sin]pj [Sil]'ﬂpj , wW(+i) =

. g €.
w(+1), [8511p, ]V[Sil]“pj 1. (s;n)p. ]

E .
m(+i), [01}{s;1}p; ~ [Sinlpy J

E.
ﬂ("'i), T » [Sin:lpj 3

From (1) and (2} we have

(3) F ow(+i), T > [S;nln(+i).
{A2) The case w = w{-i):
We treat the critical case of n = lle(+i){. Then we

see Jle(-i)ll = n-1 2 1, since w(-i) = % ¢ 0,. So, we can

take j # i such that €y = +. Then, since [e(+i)(+j)l

n and le(-i}(+33! = n-1, we have

[01](ﬂ(+i)3(T3[0n]’"[Sjn—ljpj) e T
and

[Ollfﬂ(—i)3(T=[0n][Sjn-l]pj) e T.

Hence we obtain the following proof figure.
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ﬂ(-i)’ | [Sin][Sjn—ljpj T » [Sin](F(+i)D"1[Sjn-l]Pj) e

m(-1), T » [Sin]'“w(+i) m{-1), T + [Sin](ﬂ(+i)Vﬂ(-i))

m{~-i), T e—[Sin]n(—i)

From the above proof, for any n 2 fle{+i)ll, it follows

that
(4) F w¢-i), T » [s;nln(-i).
Since T = 7(+1i) or w = m{-i), we have from (3} and
(4),
(5) F v, T = [S;n]m.

Using (5), we obtain the desired proof figure:

", T = B
(5) [Sin]ﬂ, r + g
T, P**[Sin]n [Sin]", r -+ [Sin]B

W, T + [Sin]B

{B) We next consider the case n < le(+idy.

let €' = £ @ e;» Then, by inductien hypothesis, we

have the following two cases.

(B1) }F nm(e"), T » B:

The following proof figure takes care of this case.
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m(e), T +~ B w(e'}, T +~ 8
L n{e}vn{e'), T +~ B
[S;nl(n(e)vnle®)), T » 8

T, T > [S;nl(m(elvn(e’)) [s;nl(n(e)vm(e")),T » [§;nlB

1[,, r + [Sin]B
(B2) | B, m(e'), T =+ :
We first show that
(6) L om, T =+ <§ n>u(e’).

Suppose T = m(+i). Then, by Lemma 6.7, we have B_(§;n) =
p;- Since B,(8:n) 1is a knowledge base by condition (##},
we have B_(S;n) F —{s;nlp; by Lemma 6.4. (Note that we
are considering in KT5. Here we remark that this is the
only point where we use the assumption that our logical

system is KT5.) Then by Eq(*), we see that
[01](T=[01J(n3[8in]"‘{Sin]pi» e I'.

Hence we have

(7) - ®, T =+ <8;n>77p;.

Now, for any 0, T ¢ WIf we have

(8) I <s;n>s, [8.nJt » <S;n>(0AT)
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as can be seen from the following proof figure.

o, T > OGAT

= [CGAT), T + T 0

[Sin]—'(cnr), [Sin]'r + [s;n)™o

<§;n>7, [s;nlt + <§;n>(0AT)

Now we can obtain (B) from (2}, (7) and (8) (where we

EI‘
put ¢ = —p; and T < N Py J3). The case 7 = w(-i) may
3%i
be treated similarly.

We can then construct the following proof figure:

g, n{e*), F =+

B, T » —a(e)

[Sin]B, F > Dnle")

(8) [Sin]B, I -~ [Sin]_1“($'1

m, T+ <g;n>wle’) <S;n>w(e'), [8;nlB, T »

LS;nlB, m, T -

a = [OnlB:
If - B. 7, T > , then we have | [Onl8, %, ' » by

{([On]+). So, suppose | =, I + R, Then we have the follow-
ing two cases (C) and (D).
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(C) The case n = max{lle(+i) | i = 1, - , k}.

as in {A2) it is sufficient to prove the critieal
case of n = max{le(+i)) | i = 1, *»-- , k}. Let us put
I(e) = {i | E; = +}.
(C1) The case I(e) = {1, 2, +++ , k}:

In this case, we have n = el + 1. Consider any i
such that e; = +. Then we have = = w(+i), and since n-1

x hel = He(+i)ll, we have B, (S;n-1) | p; by Lemma 6.7.

Hence we have

[Dl](ﬂﬂ(Tb[On][Sin—llpi)) e T.

S0, we have

{9 }— L l""[On][Sin—-l]pi (if Ei = +}
and hence
(10) p- v, T + [Onlp, (if &; = +)

Let D = {8 ¢ {,t}k | I(e) c I{6)}. Then, by (10) we have

(11) F om, I > [On] ¥V w(8).
deh
Now, take any & ¢ D-{e}. Then we have W&l > llel = n-1.
= +,

8ince w(e) ¢ H,, we can take an i such that e
Then we have 6 = 6(+i). Since |41 > n-1, we have

Bw(s)(sin‘l) b P;» by Lemma 6.7. Hence, we have

[Oll(ﬂ(ﬁ)atT:EOn]‘“[Sin-llpi)) e T.
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From this, together with (%), we have the following proof

figure.
(12)
(g) .IEI.
T, T > [Dn][S;n-lJp; T - [On](w(ﬁ)ﬂ"[sin—llpil
%, I' + [On]{[s.n—l]p-hw(ﬁ)o'ﬂ[Sin—l]pi)
T, T > [On)—7w(s§)
From {11) and (12), we have
(13> F s, r +~ [(Onlx.
(C2) The case I(e) = {1, 2, *+- , k}:
In this ecase, we have € = + ++¢ + and n = |g|| (= k).

Let & ¢ EU—{E}. We can find an i such that §; = +.

Then we have n-1 2 J$8ll = [[§(+i)l. Hence, by Lemma 6.7, we

have B, y(8;n-1) |- p;. Hence, we have
(1) IOl](ﬂ(ﬁ):(T:[Dn][Sin—l]pi)) e T.

On the other hand, since n-1 < e = Ne¢+i)) , applying

Lemma 6.7, we get B (5:n-1) [ P;. 50, we have
[011{w=(T=[0n]-1[Sin—l]pi)) e T.

Hence, we have
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(15) b, T » [0n]=[s;n-1]p,.

From (14%) and (15}, similarly as in (12), we obtain

(16) F o7, T > [0n)=(8)  (if & < Ey-eh.

By (16), tohether with the fact that F T +[onl v ucs),
8<E

we have 0

(17} =, T + [Onln.

Now, by the results of (Cl) and (C2), we can con-

struct the following proof figure:

n, ' = B
(13) or (17) [OnJx, T + B
%, T + [On]n [On)w, T > [OnlR

m, I = [On]BR

(D) The case n < max{fle(+i)| | L = 1, -+« , k}.

Let D= {8 ¢ E_. | n < max{ll&¢+i} | i = 1, == , k}}.

0
Take any § ¢ Ey,-D and choose an i such that Gi +.

Then-since k > n by assumption, we have n > max{ll§(+i)] |

i=1, «+« , k} > |I80 = I6(+iX). Hence, we have
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so that
(18) [01](1(6}3(T:[Dn][sin-l]pi)) eT.
On the other hand, we have
B“{Sin-l) b= p;
regardless of % = w{+i} or ® = w(-i), so that
(19) [01}(wa(72[0n]—[8;n-1]p;)) ¢ T.
From (18) and (19), we have
(20) E 7y T » [On]u(&) (if & ¢ E4-D).

From this, we have

(21) FF v, I' = [On] Vv w{8).
§eD
Next, let &6 ¢ D. Then we can find Tl, vee Y® ¢ D
such that Yl =&, Y2 = § and HTi ® Ti+lﬂ = L {i =1, *+** ,

m-1)., Now, take any i such that 1 £ i s m-1. Let

Tl @ "I':Hl = E_.J. Then we have "fl = Yl(‘l'j) ar Tl = Ylf—j)-

Suppose, first, y* = Tl(+j). Then Yl+l z ?l @ ej = Yl(—i)-
. '+ *

since y'*! ¢ D, we have n < max{lTl+1(+£)H I 2 =1, »++

‘4 '
k} = Iyt 1(+j}“. Then we can apply (B8) and obtain
(22) - owtyh, T oo <sjn>ﬁ(¥i+l).

We can obtain (22) similarly for the case Ti = Yi(—j).

From (22}, we get
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(23) F sevdy, v+ <omsmeyitly,

From (23} we obtain the following proof:

1(72), -+ <0n>1r(~.'3)

{0n]‘1w(73), r + -1n(72)

[onl=m(y®), T + [onI—~w(y?)
Ty, T <oem(y?)  <ommiyl), T+ <onem(yd)
wyRy, T+ <Onem{yS) N
YT, T > <omrty™

sy, T+ <omrty™ ) <onony™ ), T+ <omer Y™
wyD), T + <Oty

Namely, we have
(2u4) F o, I' + <On>w(8) (if & € D).

{Though the above proof applies only for m > 1, (2u)
clearly holds even if m =1 (i.e., € = §).)

Now, by induction hypothesis of the lemma, we have the
following twe cases.
(D) |} n(8), T > B for any § e D:

dy,

Let D be enumerated as It = {61, sae & Then we

have the following proof:
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(25) ‘e s s "¢ o o

e, r+p wshH, r -8

r(68 Lywn(sdy, r > B

@), T+B W e vi(eD, r 4 B

(21) 6:% n{§), T+ B
w, T + [On] V m(&} [On] vV w{&), T = [Onl8
8D §<D
i, T > [OnlR

(D2} |} B, "8}, ' + for some & € D:

In this case, we have the following proof figure:

(262 .

B, m{8), T »

By, T » —w(8)

{24) fonlg, T = [ORnI—n(8)

i, T =+ <On>w(8) <«On>w(é), [OnlB, T »
[OnlB, =, T »

This completes the proof of Lemma §.9.
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Suggested by this lemma, we construet a KTS-model M =

<ED; r, v* as follows:

(i) (e, 8) ¢ r{Si, n) iff

{a) € = &
or
(b e & § = e; and n < le(+id} = B¢+ .
{ii) (e, 6) ¢ v(0, n) iff
(e} € =4
or
(d) n < max{lle(+i)}] 1 1 = 1, +++« , k} and
n < max{]&(+i) | i = 1, +». , k}.
(1ii) € e v(p,) iff €; =+,

{iv) v(l) = @,

As an example, we illustrate M for k = 3
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Fig. 6.3. Structure of M for k = 3
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The following lemma shows that M is a model of T.

Lemma 6.10., Let € ¢ EO and o € WfE. Then we have

F 7¢e), T >« if and only if € E & (in M).

Proof. The proof is obtained by faithfully tracing the
proof of Lemma 6.39. We prove that (a) e F o implies
F #(e), T + & and (b) € =lo implies }o, m(e), I + , by
induction on the construction of a. However, we only prove
the case o = [Onl]B since othercases may be dealt with
similarly by referring to the proof of Lemma 6.9.
Proef of (a).

Suppese € F [On]B. We have two cases.
{A) The case n z maxf{lle¢+i}Il | i =1, -+ , k}:

Since € kE B, we have
F n¢e), T » B

by induction hypothesis. Together with (13) or (17) in

lemma 6.9, we have:

(13) or (17} w(e), T » B
5{e), T » [On]uw(e) (Onlr(e), T = [On]B

n(e), I' = [On]B
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(B) The case n < max{lle(+iMl | i =1, *** , k}:

Let D = {8 ¢ Eq | n < max{l8¢+id t i =1, *++ , k}}.

By the definition of r, we have € On.s for any ¢ ¢ Dn‘

Then we have 6 F B, since € k [On]8. Hence, by induection

hypothesis, we have

F n¢é), I ~ 8

for all 6 ¢ Dn‘ Then we have

I m¢e), T + [OnlB

by (25 in Lemma 6.9.

Proof of (b).
Suppose € =/ [OnlB. We havesare § such that § d 8 and € ALY

(C) The case n 2z maxflle¢+i)Il |1 £ = 1, --- , k}:

In this case, by the definition of r, we have ¢ = €.

So., we have
- 8, w(e), T =+
by induction hypothesis. Hence we have

- [OnlB, m(e), T » .,
(D) The case n < max{le(+i}| | i = 1, «++ , k}:
By the definition of 1, we have § ¢ Dn' Then, by

(26) in Lemma 6.9, we have
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F [onlg, wn(e), T » .

Lemma 6.11. Zet € ¢ ED and 6 ¢ WEF., Then we have

B“(E)(Sin) F a if and only if € E [Sin]a.

Procef. Only if part: Suppose Br¢ey(84m) Fa. Then

we have Bn(e)(sin) = [Sin]u. Hence, we have
[01](T:[01](ﬂ(€}=[sin]a)) e I,
From this we see that
F 7¢e), T+ [5;nle.

Hence, by the above lemma, we have € F [Sin]a.
If part: We have two cases.
£,
(A) n 2 [le(+i)l: Since [Sin][Sin—l] see [Sil3pj 1 e

E.
b N

Ba(e)(8;n) for any j = i, and B y(5;n) | p; (Lemma

6.7), we have
- B, (ey(5;n) > (el

Since € E [S$;nla, we have
I n(e}, T + [S;nla

by Lemma 6.10, ‘Thus we obtain the following proof figure:
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By ey (Syn) * M(e)  W(e), T > [S;nla

Bn(a)(sin)’ r - [Sin]ﬂ

}(Si“)’ [s.17TF = [Sin]G

Ew(e

K

[ XN RN ]

Bﬂ(ﬂ){sin}’ [Sin] o [Sil]f + [Sin]a

(extension)
B'I'(E ) {Sin) 2 [.Sin]a
Sin
(B) n<lle(+idl: Let & = ¢ ® ey - Since € ———2 &, we

have & F [Sin]u. Hence we have the following proof figure:

- - »
> & &

vee n(e}, T + [S;nk (&), T + [S:nln

Bl () (8;n) + w(eIvm(d) w(evn(6), T + [S;nk

BTl'(_E) (Sln) » T+ [Sin]ﬂ

B.F(E)(Sin), [Sin] i [Sil]P - [Sin]u

B“(e)(Sin) > [Sin]a
Combining the above two lemmas., we have

Corollary 6.12. Let € ¢ E

Brey)33m F o if and only if |- w(e), D » {S.nle.
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Let us recall here that we have been arguing by assuming

that <<B_(8;n)>, I'> iz a solution of § satisfying (#)
and (##). By inspecting Eq{(*)}, we see that T is uniquely
determined by Lemma 6.11 {provided that <<B“(Sin)>, T> is
in fact a soluf}on of § under (#) and (##)). So, let

T ¢ WEf be defined by:

k
r ={[01] V pi}u{[ﬁl]{sil}pj | §2#i,i=1, *=» 3 ky =1, ** , Kk}
i=1

{01 ){ma(P(m, i, n, pi):[Onﬁlj[Sin]pi)) | e HD’ i=1, v , X, neT}
w{{01 1> (F(r, 1, n, p;)o(0ml)IS;nlp; ) 17 € T, 321, *++ , ko n € T)

u{[011CP(T, i, n, a)=[01}(mSnla)} | ¥ ¢ T, i=1, *»= , ky b e T, acWffl

where P and P are defined by

T if e E [Sin]u
p(mie), i, n, a)

1 otherwise
and

T if e [Sin]a

Plnle), i, n, o)

L otherwise.

Using this T, we define B_(S;n) inductively by means of

equaticns!

E-l
- - :I 1 > 2 - l L ] ,k},
B (5;1) = [SillTU{[Sll]pj i 321,93 s
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B (S.n+1) = [8;n+1]E,(5;n)
u{[s;n+13(S4nlp; | By(Ssn) - P> 3= 15 0t x}

u{[Sin+l]"‘[Sjn]pj I B‘Il'(sjn) P‘ Pj: Jj=1, **" k}s

where # = w(e).
In order to show that thus defined <<E“(Sin)>, > is
the unique solution of % under (#) and (##), we prepare

several lemmas.

Lemma 6.13. T satisfies (#), i.e., for any € € Eg,

{r(e)}ul 4is eonsistent.

Proof. It suffices to prove that € F {w(e)}vT (in M).
It is clear that € k #w(e)., It remains to show that e k T.
However, we only prove (a) e F [01]1¢a>(P{(w, i, n, pi)=[0n+ll
[S;nlp;)) and (b) e F [01)(w=2(P(m, i, n, p;)}2[0n+11—[S;n]
pi)), and leave the verification of remaining parts to the
reader.

Proof of (a).

Take any ¢ € B0 such that = —gl+ 8 and suppose that

§Ewm and 68 F P(v, i, n, P;). Then we have w = m(8) and
s E [Sin]pi. Suppose, by way of contradiction, that there
isa Yy ¢ ED' sﬁch that 6 —gﬂi£+'y and vy =l [sin]Pi‘ Then
we have v # § and hence nt+l < max{l&6¢+&) | 2 = 1, -++ , k}.
Hence, n < [&6(+i)}i. But, since & E [Sin]pi, we have n =2

15¢+i)ll, whieh is a contradiction.
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Proof of (b).

Take any & such that € O, and suppose that

§dFT™ and & F PF(w, i, n, P;). Then we have 7 = m(4) and

§ =l [Sin]Pi' Suppose further that there is a Y ¢ E;, such
2y

that & —QE—AA-Y and ¥ k [Bin]pi. Then we have Yy = §

and hence n+l < max{ily(+2)1 | ¢ = 1, *++ , k}. Hence, n <

hy{+i){. But, since ¥ F [S$;nlp;, we have n = lly(+i)l.

This is a contradiction. Thus, we see 6 F [On+l}"‘[3in]pi.
Parallel to Lemma 6.9, we have the following lemma.

Lemma 6.1%. Let ¢ ¢ E, and T = w{e), Phen, for any

P -

o ¢ WEF, we have eftther } 7, T »a or | a, 7, T >,

Proof. By a slight modification, the proof goes exactly
parallel to that of Lemma 6.9. For example, in place of (B)

in Lemma 6.9, we obtain
L}
() Fom, T+ <sinew(e’)

by the following reasconing: Suppse 7 = w{(+i). Then, since
n < lle(+i)l, we have € F [8;nI—I[8,nlp; (by the defini-

tion of M). Then, by the definition of T, we see that
[011(T2£011(m=>[8;n]1 [S;nlp;)) « r.

Now the proof of (B) goes completely parallel to the proof

of (6) in Lemma 6.9.
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The following lemma may also be proved parallel to

Lemma 6.10.

Lemma 6.15. ZLet € € EU and o € Wff. Then we have

L n¢ey, T > o if and only if € F a.
We next prove the analogue of Lemma 6.11.

Lemma 6.16. ELet € ¢ ED and o € WEf. Then we have

E“(E:)(Sin) I & %7 and only if € E [Sin]ﬂ:.

Froof. We prove the following three propositions by

induction on n.

(A) E“(E}(Sin) ¢ impies € F [8;nla.

(B.) n z lle(+i)l implies En(+i)(sin)  p; and
Bre_iy(S;m) F Py (f w(-i) e M.

(C» ¢ FE [S;nla implies ﬁw{e){sin) F a.

We first remark that to prove (An) it is sufficient

to prove:
(Aﬁ) e F B“(E}(Sin).

For, suppose € & ﬁ“(e}(sin} and ﬁn(e)(si“} I . Then we

have }+ Bﬂ(E)(Sin) * @, and hence | Bn(e)(sin} - [Sin]a

{by (+n, [Sin]))- Since e k Ew(e}(sin)’ we have ¢ f

[Sin]a by the Soundness Theorem.
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n=1:

Proof of (Ai); ] ﬁ,(e)(sil) is easily verified since
ek T and | B + [8;118 for any B ¢ T.

Proof of (Bl). This is proved just as in Lemma 6.7.

Proof of (CI): This is proved similarly as in Lemma 6.11

by means of (Bl) in place of Lemma 6.7 and Lemma 6.15 in

place of Lemma 6.10.

n > 1;:

Proof of (Aﬁ). That € F [Sinlﬁu(e){sin"l) easily follows
from (A' ;). Next, suppose that ﬁn(e)(sjn-l) I Py By
(A _;) we have

(1) £ k [Sjnpljpj-
Hence, by the definition of M, we have ¢ F Pj and
(2) n-1 2 le{+3 = llell.

Suppose ¢ =l[Sin][Sjn-1]pj. Then, for some & such that

S:n
1 .
€ memws 5§, we have

(3} 3 =I[Sjn-1]Pj'

From (1) and (3), we see that e = &, and hence n <

ke(+i)]. This means
n-1 < llel.,

which contradicts (2). Thus we have shown that
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5. S:n- -
e F L 1n][ 50 1]1:':j
Suppose now ﬁw(e)(sjn'l) b ps. Then we have
= LS:n-1]p.
{4) € = [ 5n ]PJ
by (C__.J). By (4) and by the definition of M, we have

(5) n-1 < le{+iMi.

By way of contradiction, let us suppose € =I[Sin]-ﬂ[8jn-l]pj,

S:n
Then, for some § such that e ——3——&6, we have

(6) $ F [Sjn-l]pj.

By (4) and (6), we have & = £ e e;- By (6) we see
that

(7) n-1 2 j8(+32 .

By (5) and (7)), we have |e(+j)I > 16(+3)). Hence we see

that 1 2 3j and e€(+i) = €. Now, since € = & and

Sin
g ——> 4, we have

(8} n < fe{+idl= Bel .

On the other hand, from (6) we have n-1 =z ||§(+3)]. Hence
nz f8G+HNHED = e+ = Lel,

which contradicts (8). Therefore we see that € k [Sin]—1

[Sjn-l}Pj if Eﬁ(e)(s_jn-l) [?(‘ p_j.
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P .
roof of (Bn). First we show that ﬁn(+i}<sin) - p; from

the assumption that n = fe(+i)l. Since n > 1, we can take

a j =1 such that €5 = +. Then le(+i){(+33} = n > n-1.

Hence we have &£(+i) =|[Sjn-1]pj. So, by (A__,), we have

§“(+i)(5jn~l) bﬁ P;- Hence,

3ince [e(-1i)(+j)l = n-1, we have &e{-i) k £Sjn~l]pj. Hence,

by (C _,), we have ﬁﬁ(—i)(sjn-l) - Py Hence, we have
P(“(-i}g j) n-l, Pj) = T’ 50 that

(10) [013(r(-1)>(T2[0n][8;n-1Tp,)) « T.

From (8) and (10}, we have ﬁﬂ(+i)(3in) F —m(-i),
Since ﬁﬂ(+i)(sin)  n¢+iyva(-i), we see, ﬁﬂ{+i){8in) -
m{+i). Hence E“(+i)(sin)  p;-

The proof of En(-i)(sin) - 5; from the assumption
that n = le(+i)l is obtained similarly by modifying the
coryesponding proof of Lemma 6.7.

The case n > [le{+i) is now easy.

Proof of (C). Similar to the proof of (C,).

Corollary 6.17.

P(n, i, n, @) = T if and only if B (5;n) | o.

By Lemma 6.5, we also have the following corollary.
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Corollary 6.18. B (S;n) s a knowledge base for S5;n.

By Corollary 6.17, we see that <<ﬁ“(Sin)}, t> is
indeed a solution of §. TFurthermore, by Lemma 6.13 and
Corcllary 6.18, we see that €<§“(Sin}>,?> satisfies (#)
and (#4), Since we already know that $ has at most one
solution under <(#) and (##), we have thus established the

following theorem.

Theorem 6.19. Under the conditions (#) and (¥##),

$ has the unique solution <<§“(Sin)>,f>.

Thus we have seen that I may be regarded as the formal
counterpart of the King's order in our formal system. The

puzzle is then reduced to the problem of showing that:

(P)) If lel =n and &g =+, then B ,(5;n) | p, and

B,H(E)(Siﬂ-l) l’L pi.
We note that we can moreover prove the following:

(P,) If lel = n and €. = -, then Brcey(8;ntl) - ﬁ;

i
and By y(8;n) b P; -

Though Lemma 6.16 gives us a solution to the problems (Py)

and (Pg}, we show below a sample proof for the case k = 3

and E = 4+~
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We put = = m(e) = p,Ap,Ap;. Noting that [5,2]171[5,1]

P, € ﬁﬂ(812) since Entszlj B Py and [OL1(n{-+-)>(T>5[02]

[S,11py)) ¢ I' since B ., 4(5,1) | p,, we can costruct a
proof of

B (S,2) = py

as follows.
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T3 . (zls)'a go jooad ‘h'9 *31d

T« 2oy

Td v (2l ¢ (-+)umu - (-+-yuat + (25)'g
Td « (zTo)"g *(-+=)u Tq « (zls)'g “u Egldvid Edvlavid « (2'e)'g
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The model M = <Ey; P, ¥v> has played a crucial role
for the solution of §. We wish to point out that M may
be considered as essentially the unique and hence the inher-
ent model of T. Let us consider any KT&-model N = <Wy3
Tys V> such %hat Wy E T (in N} for some wy € Wy. Let
Wy = {w e Wy | {wg> W) € ry(0, 1)}, Then by restricting ny

and vy to W,;, we obtain a model Ny = <Wg3 rgs vp> and

still have w3 F T {(in ND). Let Ny = NUIxND (where we

take relational closure and characteristic function in the

category X (Wff)). Then by Theorem 4.9, we have that ﬁo

is reduced and GD E T (in Ng). We also have fu(ﬁ, 1) =
anﬁo. Hence we have w k T {in ﬁD) for all w e ﬁu. We
will prove that ﬁﬂ is strongly isomorphic to M.

First, we define a function

by letting h(w} be the unique € ¢ E;, such that w F w(g)

=]

?, we gee that h

4

(in ﬁn). Since w F T and (011V p;

is weli-defined. Let w ¢ ﬁﬂ and € hi{w). Take any
formula a. Suppose € E o (in M). Then we have | n(e), T
+ & by Lemma 6.15. From this, since w kT and wk n(e),
we have w F o. Thus, we see that h is a homomorphism (in
:Es(Wff)}.

Let £ Dbe any element in Eu. Take any W < ﬁO' Since

- I + <p1>n({e), we have w kF <01>m(e). Then there is a w'
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P WD such that w' E w(c}. Hence we have h{w') = €. Thus
we see that h is onto.

Since ﬁﬂ is reduced, xﬁﬂ = xy°h is an injection by

Lemmas 4.2 and 4.7. Hence h dis also an injection.

Take any S € S5p and nme T. Let w, w' ¢ ﬁg. Suppose
W —§Eﬂrw'. Then w k <Sn>n(h(w')) {(in NO)' Hence h(w) E
<Sn>m(h(w')) (in M). This means h{(w) —§£4sh(w'). Next,
sSuppose h(w)-jﬁL;h(w'). Then h(w) F <Sn>nw(h(w')) (in M),

-1

Since h is a homomorphism, we have w F <Sn>w(h{w')} (in

ND). Hence there is some wW" such that w —Eﬁq-w" and
w" F w(h{w')). 8So, we have h(w") = h{(w'), 8Since h is
injective, we have w" = w', so that w —§£4»w'.

Thus we have proved that ﬁn iz strongly isomorphic to

Remark. We can analyze the wise men puzzle furthermore by a
method similar to the one we used in this 5. We wish to

discuss it in a paper ito be published jointly with McCarthy

at al.
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1)

2)

3}

4)

5)

6)

NOTES

Page 13, line +5.

%= denotes the usual ordering of natural numbers.
Page 19, line +11.

Our definition of GTi are motivated by Ohnishi-Matsumoto

f24].

Page 32, line +2.

We will abbreviate this to isinconsi.

Page 56, line +1.
For example, the sequent =+ p, [8t]—EStlp (where p «

Pr) is not provable without cut.

Page 56, line +10.
Using the completeness of KT3, Y-models, Hayashi [9]
obtained a model theoretic proof of this theorem by a

method due to Kripke [15].
Page 59, line +1.

Elementary. terminology of category theory in this chapter

mostly follows Mitchell [23].
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7}

8)

3)

1a)

11)

Page 61, line +2.
Mitehell [23) uses the term null object instead of

termianal objeot.

Page 74, line +6.
For a finite set A of wifs, we define f;-u by
Qe
BgA ¢+ Ao, where oy, *-- , O  is any enumeration of

A.

Page B8, line +1.

Define a relation R, by that (Ei, Ek) Ry (Ej, Ek)

iff the two points (Ei, Ek) and (sj, Ek) are connec-
ted by a line in this figure. Then the reflexive and
transitive closure of this relation gives the accessible

relation of U.

Page 99, line +43.
We need to assume that Pr 1is non-empty. In faet, if

Pr = @, we have Lemma 6.4 in place of this lemma, since

in this case KT4 is equivalent to KTS.

Page 107, line +5.

For any € ¢ E, we will employ the convention of denoting

the ith coordinate of &£ by €s.

- 149 -



	R110_0
	R110a



