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                      INTRODUCTION 

     The main objective of the present paper is to clarify a 

close relationship between  Gentzen-type sequential formula-

tion of formal systems (especially of modal calculi) and 

Kripke-type semantics. Though the investigations by Schutte 

[31], Maehara [20], Fitting [3], Prawitz [27], etc. have 

suggested this relationship either explicitly or implicitly, 

the usefulness of Gentzen systems for the semantical studies 

of modal calculi seems to be less recognized that it deserves. 

In this paper, we wish to establish its usefulness in a 

decisive way. We now proceed to explain the background 

motivation for our study. 

      When an interpretation, or semantics, of a formal system 

is given, we are always interested in the question: "Is it 

complete?" Indeed, the completeness of the semantics is 

essential so that it is really useful for the study of the. 

formal system in question. The naturalness of the semantics 

is fundamental as well. For instance, in the case of modal 

calculi, we know such semantics as algebraic, topological 

and Kripke-type. (See Cresswell [2], Lemmon [18], Rasiowa 

[28], Rasiowa-Sikorski [29], Segerberg [34] etc.) Among 

these, Kripke-type semantics introduced by Kripke [15, 16] 

has proved to be most successful. 

     On the other hand, the method of formulating a formal 

system is not unique. Formulations such as Hilbert-type 
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natural deduction, Gentzen's sequent system and Smullyan's 

analytic tableau are well-known. And each formulation has 

its own merits for both syntactical and semantical study of 

formal systems. (See, e.g., Kreisel  [13, 14], Prawitz [25, 

26], Zucker [39], Takeuti [38] and Smullyan [35].) In this 

paper, however, we take the standpoint of regarding that 

Gentzen-type sequential formulation is best fitted for the 

Kripke-type semantical study of formal systems. We have 

slightly modified the notion of a sequent in order to 

establish the natural correspondence between Gentzen systems 

and Kripke models. I.e., we define a sequent as a pair of 

two (possibly infinite) sets of well formed formulas. 

     Though our method is general enough to admit applications 

to, for example, intermediate logics and other modal calculi, 

we will, in this paper, only concentrate on three modal 

systems KT3, KT4 and KT5 of knowldge as introduced by 

McCarthy [21, 22]. However, since these systems are 

generalizations of bi-modal logics S4-T., S4-S4 and S5-S5, 

which in turn are generalizations of T, S4 and S5 , our 

results applies directly to these modal calculi. In fact , we 

have so designed the languages that our argument will always 

be relative to a particular choice of the language , and that 

by a suitable choice of the language we will be able to 

obtain the specific result for any one of these logics . We 

leave applications of our method to other logics to the 

interested reader. 
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     There are many known proof-techniques of completeness 

results. See, e.g.,  Godel [6], Henkin [10], Takahashi [37], 

Fitting [3], Smullyan [35], Kripke [15, 16], Lemmon-Scott 

[18], Segerberg [34], Schiitte [31] and Maehara [20]. In the 

present paper, we prove the completeness theorem in two 

different ways. The first one is the so-called Henkin-style 

proof. However, our proof is new in that it is relative to a 

set S2 of wffs which is closed under subformulas, so that we 

can at the same time prove compactness by letting 2 to be 

the whole set of wffs and decidability by letting 2 to be 

the set of subformulas of a certain formula.. Our second 

proof is based on cut-free formulations of the systems. 

Especially, a cut-free system for S5 is obtained by a close 

inspection of the first proof. The cut-elimination theorem 

of these systems yields our second proof of the decidability 

of KT3, KT4 and S5. For KT3 and .KT4, it also gives a 

proof of the disjunction property of these logics. 

     As we mentioned above, in our first proof of the 

completeness theorem, we construct a model U(S2), called the 

universal model over 0, for any. S2 which is closed under 

subformulas. By means of this fundamental model, we will 

define a category IK(0) of Kripke-type models over 2. In 

this category, U(0) will be characterized as "the" terminal 

object of the category. The classification problem of models 

will also be conveniently treated in this category. For the
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modal logic  S5, we can obtain a complete classification of 

models. This result easily shows the normal form theorem for 

S5, and the structure of Lindenbaum algebra of S5 will also 

be determined. 

     We now briefly sketch the content of each chapter. 

     In Chapter 1, we first define the languages upon which 

our formal systems will be built. The main reason for 

introducing many languages rather than a single language is 

that we can explain the difference between certain logics 

(such as S4 and S4-T) as the mere difference of languages. 

We then define Hilbert-type axiomatizations of the three 

modal systems KT3, KT4 and KTS. Corresponding to these, 

three equivalent Gentzen-type sequential systems GT3, GT4 

and GT5 will be defined. Though our notion of a sequent 

admitts an infinite set of wffs both in the antecedent and in 

the succedent, a theorem to the effect that this generalization 

is superficial will be proved. Nevertheless, the importance 

of the generalization will be fully exhibited in the subsequent 

chapters. 

      In Chapter 2, we introduce a topology, which is 

homeomorphic to Scott's Pw topology, on the whole set Wff 

of wffs. Several syntactic notions concerning deducibility 

will be expressed in topological terminology-

      In Chapter 3, we define the Kripke-type semantics for 

KTi (i = 3, 4, 5). Two completeness proofs will be given 

there. Compactness, decidability and cut-elimination theorem 
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will be proved as by-products. The first completeness proof 

furnishes us with a basis for subsequent studies, while the 

importance of the second proof lies in giving cut-free systems 

as by-products. 

     Chapter  4 is devoted to the category theory of Kripke 

models. In contrast to the notion of p-morphism due to 

Segerberg [34], which is defined by referring to the relational 

structure of models, our notion of homomorphism is defined 

without any explicit reference to the relational structure of 

models. Roughly speaking, we define an (0-) homomorphism as 

a mapping which preserves the semantics in U(0) of a model. 

Thus for each 2, we obtain a distinct category IK(2). In 

case 2 is equal to Wff, our notion of homomorphism contains 

the notion of p-morphism. 

     In Chapter 5, we study the modal calculus S5 as an 

application of the results obtained in Chapter 4. A complete 

classification of S5 models under a certain equivalence 

relation on models will be given. Our metho.d gives another 

proof of normal form theorems by Itoh [12] and the result of 

Bass [1] which determines the Lindenbaum algebra of S5 with 

finite generators. 

     The final chapter, Chapter 6, is devoted to the study of 

two well-known puzzles, the puzzle of wise men and the puzzle 

of unfaithful wives. It was McCarthy [21] who first attacked 

these puzzles in a formal manner. The second puzzle, however, 

remained almost untouched. The difficulties which arise in 

- 8 -



 the formal presentation of the puzzle are twofold. Firstly, 

the puzzle involves the self-referential statements. Secondly, 

the totality of  one's knowledge is difficult to characterize. 

We will present a solution which we think successfully gets 

over these difficulties. The notion of knowledge set and 

knowledge base to be defined in this chapter will play an 

important role in characterizing the totality of one's 

knowledge. A model-theoretic solution of the puzzle of wise 

men will also be given there.
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THE

CHAPTER 1 

FORMAL SYSTEMS

1.1. Basic 

     The b

 Zanguage 

asic Zanguage L is a triple ( Pr; Sp , I I +)

where

                    = p
l, p2 ,... 

Sp = S
o, Sl , .. . 

Ig+ = 1, 2, ••- 

are denumerable sequences of distinct symbols. Ne is the 

set of numerals denoting the corresponding positive integers. 

But, for simplicity, we will identify n with its denotation 

E. So E Sp will also be denoted by 0 and will be called 

"FOOL ."

1.2. Languages 

A Zanguage L is a

Pr c 

Sp c 

T c

triple 

Sp ; 

N+ .

(Pr, Sp, T) where

Elements in 

persons and 

will, unless 

language L.

 Pr, Sp and T denote propositional variables, 

time, respectively. Our arguments henceforth 

 stated otherwise, always be relative to a 

  So the reader may choose any language he likes 
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and read the following by fixing his favorite language. For 

example, if he is only interested in the classical 

propositional calculus, he should take L  = ( fir, 0, 0 )• 

When an explicit mention of the language L to be considered 

is necessary, we will express it by explicitly writing L 

somewhere as a suffix etc.

1.3. WeZZ formed formulas 

     The set of well formed formulas is defined to be the 

least set Wff such that: 

(W1) 1 E Wff 

     (W2) Pr c Wff 

     (W3) a, E Wff implies Dar3 E Wff ; 

     (W4) S E Sp, t E T, a E Wff implies Sta E Wff. 

The symbols 1 and D denote "false" and "implication", 

respectively. 

     We will make use of the following abbreviations: 

aDs = Das read "a implies f3" 

= aplread "not a" 

T = ~l read "true" 

ays =  read "a or f3" 

an13 _ read "a and g" 

[St]a = Sta read "S knows a at time t" 

<St >a = [St]' a read "a is possible for S 

                                at time t" 
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 {St}a = [St]av[St]-1 a read "S knows whether a at 

                                    time t" 

Remark. If L is the simplest language ( 0, 0, 0 ), the 

conditions (W2) and (W4) in the definition of Wff become 

vacuous, so that we have Wff = { 1, iDi, 1D(iDi), (1D1)DI, 

•••} . We will not repeat this sort of remarks in the sequel . 

However, the reader should always be alert and notice that 

the definitions or proofs may become simpler for a particular 

choice of L. We also remark that the cardinality of Wff 

is w irrespective of L. 

     For any a E Wff, we define Sub(a) c Wff inductively 

as follows: 

(S1) a E Pru{1} _> Sub(a) = {a} ; 

     (S2) a = BDY => Sub(a) = {a}uSubWuSub(y) ; 

(S3) a = [St]iii => Sub(a) _ {a}uSub0). 

We say S is a subformula of a if S E Sub(a). 

1.4. Hilbert-type systems 

     We now define three modal systems KT3, KT4 and KT5 

of knowledge due to McCarthy [22]. We begin with the 

definition of KT3. 

     The axiom schemata for KT3 are: 

      (Al) -,-, aDa 
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     (A2)  aD(BDa) 

     (A3) (aD(R'Y))D((a')D(C 1)) 

(A4) [St]apa 

     (A5) [Ot]aJ[Ot][St]a 
                                          1) 

      (A6) [St](aDO)D([Su]aD[Su]R), where t<u 

     In (Al)-(A6), a, y denote arbitrary wffs, S 

denotes arbitrary element in Sp, and t, u denote arbitrary 

elements in T. 

      The notion of a proof in KT3 is defined by: 

      Definition 1.1. Let a E Wff. A finite sequence of 

wffs ai, ••• , an (n ? 1) is a proof of a in KT3 if 

a= a and for each i one of the following three conditions 

 n holds: 

(i) ai is an instance of (Al)-(A6) 

(ii) there exist j, k < i such that ak = a.pai(In this 

       case, we say ai is obtained from aj and ajDai by 

         modus ponens.) 

(iii) there exists j < i such that ai = [St]aj for some 

       S E Sp and t E T (In this case, we say [St]a, is 

        obtained from ai by ([St]-) necessitation.) 

       We write k-a if there exists a proof of a. When we 

wish to emphasize that it is a proof in KT3, we write 
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 }- a (in KT3). Furthermore, for any r c Wff we write 

r }- a if I- f3.1D(2D( ••• D(1mDa) ••• )) for someP.1, •• 

m E F. 

      As an exercise we show the following 

     Lemma 1.2. Let KT3* be the logical system obtained 

from KT3 by replacing (A6) by the following two axiom 

schemata: 

      (*) [St]aD[Su]a , where t <_ u 

     (**) [St]an[St](aDs)J[St]R 

Then KT3 and KT3* are equivalent. I.e., for any a E 

Wff, 

}- a (in KT3) iff }- a (in KT3*), 

where the notion of a proof in KT3* is defined similarly 

in Definition 1.1. 

     Proof. It is sufficient to show }- (*), }- (**) (in 

KT3) and }- (A6) (in KT3*). Now, suppose t < u. Then, 

putting T = -,lDl, we have 

 1 [St](TDa)D([Su]TD[Su]a) (instance of (A6)) 

2 ([St](TDa)D([Su]TD[Su]a))D(([St](TDa)J[Su]T) 

D([St](TDa)D[Su]a)) (instance of (A3)) 

3 ([St](TDa)D[Su]T)D([St](TDa)D[Su]a)

as
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                                 (modus ponens (MP) from 1, 2) 

4 T(instance of (Al)) 

5  [Su]T([Su]-necessitation from 4) 

6 [Su]TD([St](TDa)D[Su]T) (instance of (A2)) 

7 [St](TDa)D[Su]T(MP from 5, 6) 

8 [St](TDa)J[Su]a(MP from 7, 3) 

9 aD(TDa)(instance of (A2)) 

10 [St](aD(TDa))([St]-necessitation from 9) 

11 [St](aD(T3a))J([St]aD[St](TJa)) 

                                (instance of (A6)) 

12 [St]aD[St](TDa)(MP from 10, 11) 

13 ([St](TDa)J[Su]a)J([St]aJ([St](TDa)D[Su]a)) 

                                (instance of (A2)) 

14 [St]aD([St](TDa)D[Su]a) (MP from 8, 13) 

15 [St]aD([St](TDa)D[Su]a)D(([St]aD[St](TDa))D([St]ap[Su]a)) 

                                (instance of (A3)) 

16 ([St]aJ[St](TJa))D([St]aJ[Su]a) 

                               (MP from 14, 15) 

17 [St]ap[Su]a(MP from 12 , 16) 

     This is a proof of (*) in KT3 . We now give an 

outline of a proof of (**) in KT3 . Let a' = [St]a, (3' _ 

[St]8 and y = [St](aDs)_ We wish to prove 

(YD(a'DR'))J((a'Ay)JR'), i .e., 

(YD(a'JI'))J(((a'J(yD1))Dl)D13') 

in KT3. We will make use of the following rul
es which may 
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be easily asecrtained. 

 'y => (aDO))(aDy) 

         H a' R , H R'y => H a'y 

We then proceed as follows. 

1 ((a' DS')) D (a' D (y V) ) 

2 (a' D (yDs') D (a' J( 1? D i y) ) 

3 (a'J(~ S'D ~y))J(_V3( a'Dy) 

4 ( - 'D( -y))( -1(a'3-, f3') 

5 ((tD (3')D(-, (a,'D y)Dfi' ) 

6 (yD(a'DV)D(' (a'p y)DV ) 

In the above proof we have omitted several easy steps of the 

derivation. The proof of (A6) in KT3 is left to the 

reader. 

     Now, KT4 is defined to be the system obtained from 

KT3 by adding the following 

     (A7) [St]aD[St][St]a 

This axiom will be referred to as the positive introspective 

axiom. 

     KT5 is obtained by adjoining the following 

(A8) -'[St]aD [St] --, [St]a 

This axiom will be called the negative, introspective axiom. 
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Remarks. 

(1) Axioms (A1)-(A3) give an axiomatization of classical 

propositional calculus. (See, e.g., Lyndon [19].) Axioms 

 (A4)-(A6) may be intuitively understood as follows. 

(A4): What is known is true. 

     (A5): What FOOL knows at time t, FOOL knows at 

            time t that everyone knows it at time t. 

     (A6): The meaning of (A6) is better explained in 

             terms of (*) and (**) in Lemma 1.2. 

               (*): What is known remains to be known. 

              (**): Everybody can do modus ponens. 

(2) If Sp contains 0, the condition (iii) of Definition 

1.1 may be restricted to: Infer [Ot]a from a. 

(3) The relation of the systems KTi to the other modal 

system may be illustrated as below- We do not include 

Hintikka's knowledge system [11] in the following figure. 

However, we note that it is a special case of K4 with the 

language so restricted as not to contain 0 in Sp. For any 

set S, ISM will denote its cardinality.
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PC

 S5

PC

PC

S4

Sp = 0 

ITI = 1

 ISpI = 1 

ITI = 1

S5-S5

S4-S4

S4-T

K5

K4 

I

          K3

ISpI = 2 

Sp 9 0 

ITI = 1

ITI = 1

KT5

KT4

KT3

Fig. 1.1. Relation of KTi to other modal logics
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In the above diagram, K3,  K4 and K5 are the systems in 

McCarthy [21], Sato [30], and PC denotes the classical 

propositional calculus. The restrictions imposed on the 

language to obtain a desired logical system is shown below 

the name of the system. Furthermore, an arrow A B 

indicates that A is a subsystem of B. For example, the 

modal system S4 is obtained from KT4 by restricting Sp 

and T to be singleton sets. The systems on the same 

vertical line are arranged according to their deductive power. 

Thus, for exaple, anything provable in S4 is provable in 

S5. 

(4) Hayashi's remark [ 8] is still valid. Namely, KT3+ 

(A8) is already equivalent to KT5 (= KT3+(A7)+(A8)) . 

1.5. Gentzen-type systems 

     We now define Gentzen-type systems GTi (i = 3
, 4, 5)2) 

which are equivalent to KTi . By a sequent we will mean an 

element in the set 2WffX2Wff . Namely, it is a pair of 

(possibly infinite) sets of wffs . Note that our notion of a 

sequent differs from the original one due to Gent
zen [ 4] at 

least in the following points . Gentzen defines a sequent as 

a finite figure of the form a
l, ' am l' ••• ' sn 

while we define a sequent more abstractly a
nd admits infinite 

sets of wffs. 

     In order to match with Gentzen's notati
on, we will 

denote a sequent by r i A r
ather than by (r , A), where 
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r, A  E Wff. Like this, subsets of Wff will be denoted by 

Greek capitals. Furthermore, we will employ the abbreviations 

such as: 

 r A,ri = r Aun , 

a, r, f -> _ {a}urn{R} -> 0 . 

Thus, for example, a, R - y, S, y , 13, a -> S, S, y and 

a, a, S, } y,S denote the same sequent ({a, }, {y, S}). 

     We will also use the following notation: 

     (1) r0 - Ao r - A iff ro s r and A0c A.(In this 

           case, we say r0 -; A0 is a restriction of 

r -> A, or r A is an extension of r0 ; A0.) 

    (2) r0 r iff r0 c r and r0 is finite. 

(3) ro  A0r -> A iff r0 a r and A0 a A. 

     Now, we give the definition of GT3. 

Axioms: a -> a 

          1 ; 

Rules: F ; A 
                              (extension) 

ri, r A, E 

r -> A, a a, II - E 
                                   (cut) 

r, n ->A, E 

        r ; A, a ~, II - E 
(D-) 

cep a, r, II -> A, E 
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         a,  r A, 
 (+D) 

r + A, aDR 

           a, r A 
([St]+) 

CSt]a, r A 

r, [Ou]ll , a 
(+u, [ St ]) 3, where u <- t 

[Su]r, [Ou]II + [St]a 

     In the above, the rules ([St]+) and (+u, [St])3 are 

rule schemata, where S is an arbitrary element in Sp and 

t, u are arbitrary elements in T. One may apply the rule 

(+u, [St])3 only when u <_ t. Also in the above for any 

r c Wff, S E Sp and t E T, [St]r denotes the set { [St]a I 

a E r}. The notion of a proof in GT3 is defined similarly 

as in Gentzen's LK [ 4]. Note, however, that we allow the 

sequent 1 + as a beginning sequent. We write b-r + A (in 

GT3) if it is provable in GT3. 

     The following inference rules are easily seen to be 

admissibe in GT3: 

r + A 

(thinning-0 
        a, r A 

          r + A 

(+thinning) 
           r + A, a 

           a, a, r + A 

(contraction+) 
              a, r + A 
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 r  -- A, a, a 

(-}contraction) 
r -- A, a 

F, a, 3, II -> A 
(interchange) 

r, f3, a, II -> A 

r + A, a, 3, E 
(-;interchange) 

r -> A, 3, a, E 

                 r -> A, a 
(-,4-) 

-, a 
, r -s A 

          a, r } A 
(-},) 

r -> A,--, a 

a, r - -A 3, r4-A 
(v-) 

av s , r , A 

r4-A, a r->o, s 
(÷v) 

r -- A, ays r -> A, av3 

a, r -> A R, r -> A 
(A-0 

aA3, r ± A aA3, r -- A 

r -)- A, a r } A, 3 
(;A) 

r 4- A, aAR 

For example, the following proof figure shows 

admissible in GT3: 
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that (v}) is



a, F A 

a,  r  -> A, 

   r -'- A,

1 

aJI

(extension) 

(÷D) 
r- A

(aJI)DR, r -> 

This means that, in spite of the 

of a sequent, every proof figure 

itself be considered as one in 

     Now, GT4 is obtained from 

(4-u, [St])3 by the following: 

[Su]F, [Ou]ll - a

[Su]r, [Ou]ll - [St]a 

is obtained from GT4 

4to: 

[Su]r, [Ou]ll } [Ou]E,

A 

 difference in the 

 in (propositional) 

GT3. 

  GT3 by replacing

(->u 

by

(D-4-) 

    in the

, [St])4, 

changing

definition 

 LK may 

 the rule

(--u,

GT5 

[St])

[Su]A, a

where u < t 

the rule

(-*u, [St])5, 
[Su]r, COu]T[ -> [Ou]E, [Su]A, [St]a 

where, u < t 

1.6. Some metatheorems 

    Let us call a sequent rA finite if both r and 

A are finite. Then the following lemma is easily obtained . 

     Lemma 1.3. If a finite sequent r A is provable (in 

GTi) then each sequent occurring in any proof of r - A is 

finite. 
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     Theorem  1.4. If F- r -} A (in KTi) then there exist 

some r0cc r and A0ccA such that I- r0-~A0(in KTi) . 

     Proof. By induction on the number n of sequents 

occurring in the proof of I' A. 

(n = 1): Since P - A is a beginning sequent, F -- A itself 

is finite. 

(n > 1): We consider the case that the last (i.e., downmost) 

inference is (D±). The proof then is of the form: 

II E, aB, 0 -; T 
04-) 

aD R, II, 13 -- E, `Y 

By induction hypothesis, we have finite IIO, E0, 00, 'YO such 

that 

       II0-E0i! 
                         (extension) and 
II -> E, a 

0TO 
                       (extension) 

S, -- T 
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Then we construct the following proof figure. 

     IT-EO~0i T 

         n0÷ EO-a,a~,(I)---;`YO 

 aD  , no, (i)0- ÷ E0-a, `o 

apR, n5 0 -> E, 'i' 

We see that (1D, Ho, 00-13 } E0 -a5 TO serves as the desired 

sequent. Other cases may be dealt with similarly. 

     Theorem 1.5. For any a E Wff, I— a (in KTi) if and 

only if I-- -- a (in GTi) . 

     Proof. We only prove the case i = 5. 

Proof of only if part: We prove by induction on the 

construction of a proof of a in KTS. Namely, we assume 

that we are given a proof of a. Then each formula occurring 

in the proof is either an axiom or the result of an 

application of an inference rule to previously obtained 

formula(s). We first show that every axiom of KT5 is 

provable in GT5.
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(Al):

 ->  a, -,a

-~-~a -} a

-, —,aia

(A2): a - a

   a -> a

a -> RDa

-> ap(13 D a )

(A3): Y ~' Y

->- R, RDY 4- Y

a ÷ a a, aDs, 13D } Y

a, aD R, aD( RDY)i Y

aD , aD( 13D y)-± a~ y

ate ( 13D ) -' (aD3)D(aDy)

+ (aJ( R-Y))D((aJ )J(aDY) )

(A4): a 4" a

a } 6, a

÷ aD   a a ->-

.(aD3)Da -} a

((aJ3)Da)Da
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(A5):  a  a

 [St]a - a

} [St]apa

(A6): -} a

[Ot]a - a

[Ot]a [St]a

[Ot]a -4- [Ot][St]a

} [Ot]aj[Ot][St]a

(A7): a 4- a 13--13

a, ape + e

aD R ape [Su]a, ape -3 13

[St](aDB) i ape [Su]a, [Su](aP0) -- S

[St](aDR) [Su](aDe) [Su]a, [Su](aD3) [Su]13

[St](aps) CSu]a [Su]S

[St](aDR) -~ [Su]aD[Su]S

} [St](ats)J([Su]aD[Su]S)

We now consider 

ponens (~-- a , i- 

I-[St]a) in GT5

the 

ape 

  as

inference rules. We can 

=>—e) and necessitation 

 follows:

express 

(~— a =>

modus
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(modus ponens): 

 a  s r3 4- f3 

} aD fi ap 8 , a S 

-- a a S 

(necessitation): 

• -. a 

-> [St]a 

Proof of if part: We prove that if a finite sequent r + A 

is provable in GT5 then TAa1A... AamJ f3lV •• ' v snvl is 

provable in KT5, where al, .•• ' am 41' " ' ' fin) is any 

enumeration of r(p, resp.) with possible repetitions. 

First note that (TAa1A "' Aam'i3ly "' vi3nvl)D 

(TAaIA ... AaPJ8jV ... vVgv1) is provable in KT5 if 

{al, ... , am} = {al, ... , aP} and {gl, ... , Sn} _ 

{q, •.• , P.q}. The proof is carried out by induction on the 
construction of the proof. We only deal with the rules 

([St]+) and (+u, [St])5. Suppose [St]a, al, ... , am 4- 

Sl' ''' , f3n is obtained from a, al, '' • ' am } ea, ... ' p.n 

by an application of ([St]-).Then by induction hypothesis, 

I— (TAanaln • • • '^am)J Olv ... v f3nvi) (in KT5) . Since 

1-- [St]aDa, we have [-- (TA[St]analA • • • Aam)D (Tnanaln • • • nam) . 

Hence, 1-- (TA [St]aAalA • • • Aam)D (Slv ... v nv1) . Next, 

suppose [St]a1, ••• , [St]am, [Ot]yl, ••• , COt]yp 

[Ot]S1, • • • , COt]aq, [St]81, • • • , [St]13n, [Su]cc is obtained 
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from  [St]al, • • • , [StJam, [0t]Y-, • • • , [Ot]y -> 

COt]S., • • • , [Ot]Sq, [St]R1, • •. , CSt]Rn, a by an 

application of (;u, [St])5. By induction hypothesis, 

(Tn [St]aln . • • n [St]amn [Ot]Yln • • . n [Ot]Yp)' 

([0t]Sly ••• v[Ot]Sgv[St]Riv ••• v[St]Rnv1) 

Noting that 

j— [St](aDR)D (CSt]ap[St]R) 

and 

1-- [St]oln • • • n [St]OkD [St] (6ln • • • Aak) 

we have from (1), by necessitation and above, 

I-TA[St][St]aln ••• n[St][St]amn[St][Ot]Y1n "' A 

       [St][Ot]Yn [St]-, [Ot]SlA • • • n [St]'[0t]S
gA 

[St] -'[St]Rln • • • n[St]-' [St]R nD[St]a. 

Since 

~-- [St]aiD[St][St]ai, 

COt]y1 [st][Ot]Yi, 

— Cot]B1 [St] Cot]d
i 

and 

[St]R . [St] ~CSt]Ri 

we have
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         TA[St]a1A  •  •  • A[St]a
mn[Ot]y1A • • • A[Ot]yp~ 

        [Ot]61v•••v[Ot]Sgv[St]Rly•••v[St]Rmv[St]avl , 

which was to be proved. 

     Corollary 1.6. Let P c Wff and a E Wff. Then 

F I- a (in KTi) if and only if I- F a (in GTi). 

     Proof. Only if part: By definition, r i- a implies 

the existence of some 6 , 6
n r such that 

S1i(623 ... nDa) ... ). Hence I-- 6l, ... ,6n -~ a. By 

(extension) we have f-- P a. 

If part: By Lemma 1.4, there exist some 61, ••• , 6
n such 

that I-- S  • • • , 6n a. Hence I- 61(132D 

(BnDa) ... ). By Theorem 1.5, I- 61D(32 ... ~(RnDa) ... ). 

This means F a. 

     For any t c Wff, we let - i r = { a a E t } . The 

following lemma is easy to ascertain. 

      Lemma 1.7. 

~-- t -> A (in GTi) 

         iff A,-,r (in GTi) 

iff ~-- -,0 , r± (in GTi) . 
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                        CHAPTER 2 

                    TOPOLOGY ON 2Wff 

     Scott [33] has introduced  Pw as a model for type-free 

lamda calculus. It is also designed as a universal domain 

of computation. In this chapter we introduce a topology on 

2Wff which is homeomorphic to Pw topology- We then show 

that several syntactical properties of our logical systems 

may be conveniently expressed in terms of topological 

languages. The result in this chapter tells us the 

naturalness of considering infinite sequents. This chapter 

is independent of the remaining chapters. 

2.1. Definition of topology 

     We now define a topology on 2Wff. For any finite r 

Wff, we put Ur = { A E 2Wff I r s A}. {U I F: finite} 

forms a basis of open sets. I.e., X c 2Wff is , by definition 

open if and only if it may be written as a union of some U
r's 

Since Wff is a denumerable set it is clear that under this 

topology 2Wff is homeomorphic to Scott's Pw . Following 

Scott, we write T for Wff and 1 for the empty set 0
, 

since these are top and bottom elements of the Boolean lattice 

2Wff (under the inclusionship (c) ordering) . We define 

several functions on 2Wff as follows . 

          not : 2Wff —> 2Wff 

     is defined by: 
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(2)

(3)

 (4) 

(5)

(6) 

(7)

not (r) _ 

     isinconsistent3) 

is defined by: 

isinconsistent 

where i = 3, 4, 5. 

      istheorem. : 2Wf 
                  1 

is defined by: 

istheoremi(r) = 

DC. : 2Wff —> 2 

is defined by: 

DCi(r) = Y = {a 

isprovablei : 2W 

is defined by: 

isprovablei(r -~ 

     left : 2Wffx2Wff 

is defined by: 

left (r ; A) = 

right : 2Wffx2Wf 

is defined by:

r) = 

f

Wff

 2Wff 

 a I r 

2Wffx 21 

÷ A) = 

ff _> 

-•Aur . 

Wff

 :----

T (if I— alv 

   some {a1, 

1 (otherwise) 

(deductil, 

r J- a (in h 

)4 2Wff _> 2Wf

 --> 2 

1'. 

-> 2 

- 32

   y 2Wff 

T (if r (in KTi)) 

t (otherwise), 

2Wff 

f J- a1•••van (in KTi) 
ome laan} c r) 

therwise) 

(deductive closure) 

a (in KTi)} . 

 _>,Wff 

T (if GTi r A) 

1 (otherwise) 

Wff 

Wff

for



 right(r -- A) _ Au -'I'. 

2.2. Topological characterization of syntactical properties 

2Wff, with the above topology, is a continuous lattice 

in the sense of Scott [32], and so is 2WffX2Wff with 

product topology. Then the functions defined in 2.1 are all 

continuous functions. More precisely, we have the following: 

     Theorem 2.1. The following diagrams are commutative in 

the category of continuous lattices with continuous maps. 

                           2Wff  1s 

                                                               1' 

                2WffX2Wffisprovable1 2Wff 

2Wff tip° 

                                  2Wff 1s ..

not

 2Wf

        '~s 
1' 

not 2Wff 

,ce• 
goy 

              •
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                           2 

 DC.  i 

                            2 

     Proof. Commutativity fol 

Continuity is also immediate. 

isprovablei(r } p) =l_JO-
                  =I {i 

by Lemma 1.4. Then by definit 

isprovablei is continuous. 

     The following result is 

definition of retracts and the 

we refer to Scott [33]. 

      Theorem 2.2. 

(1) istheoremi, isinconsiste 

(2) Y(DC) is equal to the s 

Remark. Theorem 1.4 is equiva 

isprovablei.

Wff .ZS, 

A 12,S, 

2Wf f 

        ~5y 

Wff yid` 

lows from results in 1.6. 

 For example, 

sprovablei(r6 A) I r6 r} 

sprovablei(r p6) 1 p6 oc A} 

ion in Scott [33], we see 

lso straightforward. For the 

 least fixed point operator 

nti, and DCi are retracts. 

et of theorems in KTi. 

lent to the continuity of 

34 -

      2Wff  y~ 

ity follows from 

diate. For exam 

 =1 {isprovable 
=1 1 {isprovable 

definition in Sc 

ous. 

It is also strai

isinconsistenti, 

ual to the set  o 

 .4 is equivalent

Y



                         CHAPTER 3 

                   KRIPKE-TYPE SEMANTICS 

3.1. Definition of Kripke-type  models 

     Let W be any nonvoid set (of possible worlds )• A 

model M on W is a triple 

                               <W; r, v>, 

where 

                     r : SpxT -----> 2WxW 

and 

                      v : Pru{1} ----->2W. 

Given any model M, we define a relation k c WxWff as 

 follows: 

      (El) If a E Pru {1 } then w k a iff w E v(a) 

     (E2) If a = Bpi then w k a iff not w k s or w kY 

      (E3) If a = [St]f3 then w k a iff for all w' E W 

            such that (w, w') E r(S, t), w' k a 

 We will write "w k a (in M)" if we wish to make M explicit. 

 An informal meaning of (E3) is that [St]a is true in w 

 if and only if a is true in any world accessible to S at 

 time t from w. A formula a is said to be valid in M, 

 denoted by M k a, if w k a for all w E M. (By w E M, we 

 of course mean w E W.) We will write wStyw'instead 

 of (w, w') E'r(S, t) When r is understood. Furthermore, 
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we will employ the following notations: 

     w  h r (read "w  realizes p") iff w k a for all a E F 

    w =I a iff not w k a 

     w =1 t iff w =1 a for all a E r 

w =1 t -- A (read "w realizes P -} A ") iff w k r and 

                                                w =1 A 

w k F÷ 0 iff not w =I F -> A 

M k t- Aiff w kr -> A for all w E M 

     A model M is a KT3-model if 

(M1) r(-i-) _ 0 

(M2) r(0, t) 2 r(S, t) for any S E Sp and t E T 

(M3) r(S, u) ? r(S, t) for any S E Sp and u, t E T 

      such that u < t 

(M4) r(S, t) is a reflexive relation for any S E Sp and 

      t E T 

(M5) r(0, t) is a transitive relation for any t E T 

     A model M is a KT4-model if it satisfies (Ml)-(M3) 

and 

(M6) r(S, t) is a reflexive and transitive relation for 

      any S 'E Sp and t E T 

     A model M is a KT5-model if it satisfies (Ml)-(M3) 

and 

(M7) r(S, t) is an equivalence relation for any S E Sp 
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     and t  ET 

3.2. Soundness of KTi-models 

     We now wish to show that each formula provable in KTi 

is valid in any Ki-model. First we prepare some terminology. 

We say r A is i-provable (i-consistent, resp.) if it is 

provable (unprovable, resp.) in GTi. We say r A is 

i-realizable if there exists some Ki-model M and w E M 

such that w d r -r A. r A is said to be i-valid if it is 

not i-realizable. 

     Theorem 3.1. (Soundness Theorem) Any i-provable 

sequent is i-valid. 

     Proof. The proof is by induction on the construction 

of a proof of the given sequent. That any beginning sequent 

is i-valid is immediate from the definition. As for the 

inference rules, we only treat (--u, [St])5 of GT5, since 

other cases are either similar or easier. So, consider: 

CSu]r, [Ou]l [Ou]E, [Su]A, a

[su]r, , [ou]ll -- [ou]E , [Su]A, Cst]a , 

where u < t 

By induction hypothesis, the upper sequent is 5-valid . 

Suppose, for the sake of contradiction, that the lower 

sequent is not 5-valid . Then there exist some KT5-model M 
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and w E M such that 

         w  =I[Su]r, [Ou]ll [Ou]X, [Su]A, [St]a. 

This implies w d [St]a. Hence, for some w' such that 

w -----St>w'~ 

(1)w' =I a 

holds. Since u s t, we have 

(2)w  Su >w 1 

                    by (M3). Then, we have 

(3)w Ou  >w t 

                   by (M2). Let S E r and take any w" such that 

w'Suw". Since r(S, u) is transitive by (M7), we have 

w ------Su>w". Since w k [Su]s, we have w" k g. This means 

w' k [Su]8by (E3). Hence 

(4) w' k [Su]r. 

Next, take any S in A. Then, since w =1 [Su]8 there 

exists some w"' such that 

(5)w Sew"'. 

Since r(S, u) is an equivalence relation we have 

w'  Su  >w m  from (2) and (5) . Hence, w' _1 [Su] S by 

(E3), so that 
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(6)  w' =1 CSu]A. 

From (3) we obtain, similarly as above, 

(7) w' k COu]II, 

(8) w' =1 COu]E. 

 (1), (4), (6), (7) and (8) means 

w' =1 CSu]r, , [Ou]l -~ COu]E, CSu]p,a,. 

This is a contradiction. 

Corollary, 3.2.If 1-a (in KTi) then M a 

Ki -mode./ M. 

     Corollary 3.3.(Consistency of KTi and 

 empty sequent }is not provable in GTi. 

3.3. Completeness of Ki-models 

     We begin by a syntactical result, which is 

Lindenbaum's Lemma. 

     Lemma 3.4. Let be that ,- r -* A (in GTi) 

    ruA. Then there exist r ,A such that 

(i) 14- r ; A (in GTi) 

(ii) r -> A p r- A 

  (iii) ruA 
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GTi) The

a kind of

and



 Proof. Let a : 7N+ 

ai for a(i). We define 

            ro-~A0=r--A 

rn+1 -- An+l = 

We show by induction that 

n = 0 is verified by the 

the case n = m+l, and st 

the definition of rm+1 -' 

and a m+l, rm -> Am F 

(cut), which contradicts 

    Now we put r A _ 

r -} A p r -> A and ruA = 

that r A is i-consist 

by Lemma 1.4, we have r' 

~- r' - A'. Now, let D 

n(s) = min{ i I S = ai }. 

prove r, c r N . Suppose 

have ai E r and a i E 

r' c rN.Similarly, A' 

F- rN -4- AN, which is a cc 

     A set S2 of wffs iE

tion that 

 ed by the 

1, and  suppose 

f rm+l ; 

-~ A
m_ From 

tradicts the inducti 

r A _          rn I 

nd ruA = 

i-consist 

have r' 

w, let N 

= ai } . Then we h 

 Suppose 

d aiEAcA.But 

rly, A' 

h is a contradiction 

f wffs is said to be

>4) be a surjection. We write 

rn ± An (n >_ 0) as follows: 

 rn -> An, an+l (if ,$ rn -~ An,an+l) 

 an+l, rn i An (otherwise) 

 /11 Fn An                (n >_ 0). The case 

 assumption of the lemma. Consider 

 ppose m+l Am+l. Then, by 

have I- rm , Am, am+1 

rom these we obtain I- rm } Am by 

the on hypothesis. 
'j 

A . Then we have 
=o 

 cp. What remains to be shown is 

se the contrary- Then 

-> A such that 

) 1 a E r'uo' }, where 

  Then we have r'uA' C rNuA^. We 

and ai FN. Then we 

rnA = 0. This proves 

e - r' > we we have 

 said to be closed under subformulas 
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if  1  E 0 and Sub(a) c SZ for all a E Q. Now take any 

such SZ and fix it. We say a sequent F - A is R, i-

complete if r -> A is i-consistent and ruA = Q. We denote 

by Ci(Q) the set of all S2, i-complete sequents. I.e., 

Ci(0) _ {r - A I rub, = S2, r , A is i-consistent} . 

We observe that rnA = 0 since r -- A is i-consistent. 

For any r c Wff, S E Sp and t E T, we put rSt = {a 

[St]a E r}- We now define the universal model U(i) = 

<U; R, V> over SZ as follows. (Since our definition will 

depend on the logical system KTi, we will call U(c) the 

S2, i-universal model when necessary, and will denote it as 

U.(0).) 

1 

     (1) U = Ci(0 

     (2) V(a) = {r -; A E U I a E r}, where a E Pru {1 } 

     (3) Let w = r -} A E U, w' = r' - A' E U . 

(i = 3): (w, w') E R(S, t) iff rS
ucr'and rcFtou 

          for any u < t. 

(i = 4): (w, w') E R(S, t) iff r
Su,r,andand rou,F'ou 

          for any u < t. 

(i = 5): (w, w') E R(S, t) iff r
Su = r,andand rou= r~u 

         for any u t. 

     Lemma 3.5. Ui(c) is a KTi _model.
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     Proof. First, since  1  E Q and A l (Corollary 

3.3), Lemma 3.4 assures us that U = C1(Q) 0. 

(i = 3): 

(Ml) Suppose w = r } A E V(1). Then le F. Since 

E- 1 -* , we have r -* A, which is a contradiction. Hence 

V(1) = 0. 

 (M2), (M3) are immediate from the definition of R. 

 (M4) Let w= r -* 0 E U . Suppose u <- t and take any 

 a E rS
u.Since [Su]a e r and Qis closed under sub- 

 formulas, we have a E Fu A. Suppose a E A. Then, since 

~- [Su]a i a, we have I- r A, which is a contradiction. 

Hence a E r. This proves rSu ` r. Since r0u ` r0u' we 

 see R(S, t) is reflexive. 

(M5) Let (r -^ A, r, ; A,), (r, A' , 1" A") e R(0,  t) . 

Suppose u <_ t. Then since r0u c 11.1 c r3u, we have 
 r0uEr0u_We can prove r3uc r" as in the proof of (M4), 

whence ro u` r". Thus we see R(0, t) is transitive. 

 The cases (i = 4) and (i = 5) are now easily seen. 

      The following theorem will play a key role in the 

 subsequent studies. 

      Theorem 3.6. (Fundamental Theorem of Universal Model) 

For any a E St and w= r -; A e U(Q), w k a (in U(Q)) if 

 a E r and w =1 a (in U(0)) if a e A. 
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     Proof. By induction on the construction of formulas. 

(1) a  E  Pru{1}: Immediate from the definition of R. 

(2) a = apy: Suppose a E r. We must show that w =1 a or 

w k y. Suppose, by way of contradition, that w k a and 

w =1i_ Then, by induction hypothesis, we have a E r and 

y E A. Since 1- a, 133y y (in GTi) , we have r -~ A (in 

GTi), a contradiction. Suppose now w =1 a. We can prove 

w k a and w =1 y, similarly. 

(3) a = [St](3: Suppse a E r and take any w' = r' A' 

such that wSt'w'.We show a E r'. First, we consider 

the case i = 3. Since R E rSt c- r' we have a E r'. 

Next, we treat the case i = 4, 5. We have rSt rSt E r' 

(see the proof of (M4) in Lemma 3.5). Hence a E r'. 

Thus we see w k [St]a = a. 

      Now suppose a E A. 

(i = 3) : The sequent {[Su]y E r I u <_ t}, {[Ou]y E r l 

u < t} [St]S is 3-consistent, since it is a restriction 

of r -' A. By (-emu, [St])3, we see {y I [Su]y E r, u _< t}, 

{[Ou]y E r I u < t} -' a is also 3-consistent. Since Q is 

closed under subformulas, we can extend this sequent to an 

0, 3-complete sequent w' = r' -> A', by Lemma 3.4. Then for 

any u <_ t, we have r Su c r' and r ou c r ou . Therefore, 

we have w'Stw'. Since a E p', by induction hypothesis, 

we have w' =1 a . Hence w =1 [ Su ] a = a. 

(i = 4): Similar to the case (i = 3). 

     (i = 5) : Since { [Su]y E r I u < t} , { [Ou]y E r I 
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 u t} {[Ou]Y E A I u< t}, {[Su]y E A I u _< t}, [St]p.is 

5-consistent as a restriction of r - A, we see {[Su]y E r I 

u s t}, {[Ou]y E r I u< t} -- {[Ou]y E A I u <- t}, 

{[Su]Y E A I u <- t1,0 is also 5-consistent. Take an 0, 5-

complete extension w' = r' i A' of this sequent. Clearly, 

for any u <- t, we have rS
ucrSu,ASucA', r0u c F'Ou 

and AOucA'.. We have rS urSubecause rSuc rSu 

0S
uASuc QSu-ASurSu.Similarly,we have r0ur0u.By 

virtue of the definition of R, we have w ------St>w'. Since 

E A', we have by induction hypothesis w' which proves 

w =1 [St] = a. 

      From this theorem we at once have the following results. 

      Theorem 3.7. (Generalized Completeness Theorem) 

Any i-consistent sequent is i-realizable. 

     Proof. Let an i-consistent sequent r } A be given. 

We put St = { 1 } u I  I {Sub (a) I a E r uA } . We construct the 

1, i-universal model U.(0). Then by Lemma 3.4 and Theorem 

3.6, there exists w E U such that w =1 r A. 

      Corollary '3.8. (Compactness Theorem) 

Let r c Wff. Then, r is i-realizable if and only if any 

r6F is i-realizable. 
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     Theorem 3.9.  (Completeness and Decidability Theorem) 

For any a e Wff, a is a theorem of KTi if and only if 

a is valid in aZZ KTi-models whose cardinality < 2n where 

n is the cardinality of the finite set Sub(a)u{1}-

     Proof. Let S2 = Sub(a)u{1}. Then the result easily 

follows from Lemma 3.4 and Theorem 3.6. 

Remark. Our definition of universal models differs from 

that of canonical models due to Lemmon-Scott [18], in the 

following points. Firstly, we define models relative to S2, 

while canonical models are defined only for sl = Wff. So 

that we need not use filtration method due to Segerberg [34] 

to secure decidability of the systems. Secondly, relational 

structures are defined differently- The naturalness of 

universal models will become clear in the next chapter-

      3.4. Cut-free system for S5 

      In this and next section, we give our second proof of 

completeness. It is based on cut-free formulations of the 

systems, and in this section we first formulate a cut-free 

system GS5 which is equivalent to GT5 with the language 

restricted to ISPI _ DTI = 1. Hence GS5 is a cut-free 

system for the modal calculus S5 . In GS5, a sequent is 

defined to be an element of the set 2Wffx2Wffx2Wffx2Wff . 

Thus a sequent is of the form (F , ]I , E, A). However we 
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denote this as r;  II  + E; A. Further we will denote 

r; + ; A (_ (r, 0, 0, A)) -simply as F + A. A sequent of 

this form will be called proper. Other sequents will be 

called improper. The idea of considering this kind of 

sequents is due to Sonobe [36]. Since our language is 

subject to the condition ISpI = DTI = 1, we will denote 

[St]a as Oct. GS5 is defined as follows: 

Axioms: a + a 

1 •+

Rules: r + A

(extension: out)
r,, r + A, A'

r; TI + E A

(extension: in)
r; II' , II -' E, 

F + A, a

E'; A 

a, II + E

(cut)
F, II +A, E

r; + a; A

(+exit )
r;+ ;Da, A 

r, Da; II + E; A
(enter+)

F; Da, II + E; A 

F; II + E; Da, A
(+enter)

r; II + E, Da; A
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 r  -' A, a, S S, (1) -> T, a a, S, E -} A

aDR, r, (1), E - A, ', A

out)

a, r A, S

r;

r 

H } E, a, S

(}7 : out)
-> A

, aD13 

A r; 0, 0 ` , a; A r; a, Q,

r; aD0 II, 0, E i E, `Y, A; A

r; a, n E, S ;A

in)

(4.D: in)

GT5

r; 

 a, 

Oa, 

Or

-i 

r A 

 r i A 

-* ^ A , a

E, ap13 ;A

Or -> ^A, ^a 

The following lemma 

(over the language

(^--: out)

(4^: out)

 shows the 

restricted

equivalence of 

as above).

GS5 with

Lemma 3.10. Let i 'V be a proper sequent
. Then 

I- 0 -> T (in GT5) if and only if I- -- T (in GS5) . 

     Proof. Only if part: We have only to prove that the 
rule (n-,-) in GT5 is admissible in GS5. To see this we 

construct the following proof figure:
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r A,  a 

r A, a, 0

0, II } E 

0, II E, a a,

II E 

0, II E

aD0, r, II - A, E 

If part: Suppose that T (in GS5). We note th, 

Lemmas 1.3 and 1.4 hold also for GS5. Then, by Lemma 

there exists (Do 4- To cc } T such that I-- 

GS5). Let F be a proof figure of 00 3 TO 

1.3, any sequent occurring in F is finite, where r; 

E; A is finite if so are r, II, E, A. We convert 

proof figure in GT5 whose end-sequent is 

r; II --> E; A be any improper sequent occurring 

replace this sequent by the proper sequent 

a = (TATr1A... ATrm)D (61v ••• vcjnvl) (II = {Tr 

E = {c51, • • • , can}) . We do this replacement for all 

sequents in F. By this replacement, for example, 

application of the rule 

                  r, Da;II;E;A 
     (enter) 

r; ^a, II-~E; A 

will become 

r, ^a A, ^(TrDcs) 
 (#)

- r- A,^(Oa ^TrDa) , 

where Tr = TATr1A • . • nom(II={~l'•••Trrn}) and a 

61v...Vcnvl•(E _ {a•..,Qn}). We change (#) 

                              - 48 -

   (D±: out) 

Wenoteat 

,byLemma1.4, 

         (in 

.ThenbyLemma 

 wherer; II+ 

            to a 

           Let 

            We 

             where 

m}, 

  forallimproper

to the



following:

 r, ^a A, ^ (7rD6) 

F A, ^aD0(7rDa)

^a - ^a 

^a -; Oa, 6 

^aA7r -- ^a, a 

-~ ^a
, 0aA7rDa 

^a, ^(^an7rDa)

IT 7TCS -> 6 

7T, 7TDQ 3 a 

^an7r, 7rDa -} a 

1T,Q i ^aA7rDO 

^ (7rD a)i ^ aA TrD 

^(7rDa)-- ^(^aAirDcs)

^app(7TJQ)-3- ^(^aAUrDC)

r -; A, ^(^aAIrDa) 

  We must also consider the rules other than (enter-*). But 

they can be treated similarly- Therefore we can obtain a 

proof of 00 > TO in GTS. From this we obtain a proof of 

0 Y' in GT5 by (extension). 

     We say a sequent is strictly provable (in GS5) if it is 

provable in GS5 without using (cut). A sequent is weakly 

consistent if it is not strictly provable . By Lemma 3.10 and 

Theorem 3.1, we have 

     Theorem 3.11. If a proper sequent is 
provable (in GS5) 

then it is 5-valid . 

  We now construct a KTS-model M = <W; r, v> which 

realizes any proper weakly consistent s equent. For any 

a E Wff we put Sub
^(a) _ {0i3IE Sub(a)}. For any 
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finite sequent r  -- A, we say r A is saturated if: 

(i) r -^ A is weakly consistent 

(ii) RDY E ruA implies {R,y} c ruA 

   (iii) ^R E r implies R E F 

    (iv) ^R E A implies Sub^(c rup 

     Lemma 3.12. Let a finite sequent r -> A be weakly 

consistent. Then there exists r ; A such that r ; A c 

r + A and r + A is saturated. 

     Proof. Let Q = l-J {Sub(a) I a E ruA}. This is a 

finite set. Let C= {II -* E I II -> E is weakly consistent 

and IIuE c }. ( is also finite. We construct a sequence 

{r n -> An}n?0 in C as follows. We put r0+A0= rA. 

By assumption, we have r0 3 A0 E C. Suppose that r
n 4- An 

C has been defined. If r n 4- A n is saturated, we put 

r
n+l A n+l rn - An. Suppose otherwise. Then one of 

(ii)-(iv) in the above definition of being saturated fails. 

(1) Suppse there exists some Bny E rnu0n such that 

{S, y} r
nuAn. SupposeR'Y E F. Then by (D-: out) we 

have that one of r n An, R, y, y, rn + An R or 

y, rn An is weakly consistent. We define rn+l 4- An+1 

as the first weakly consistent sequent among these three 

sequents. 

(2) Suppose that there exists some ^B E rn such that 
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 B  F. We put rn+1 4- An+l = R, rn-An.By (0}: out), 

we have rn+l -> An+l E C 

(3) Suppose that there exists some OR E An such that 

Sub0(0¢rnupn. Let Oy be an element of the set Sub0(0)- 

(rnuAn) with maximal degree, where the degree of a formula 

is defined to be the number of logical connectives (i.e, D 

and ^) occurring in it. Let OS be an element of rnuAn 

such that ^y E Sub(S) and with minimal degree. The 

existence of such ^S is guaranteed by the fact that OS E 

Subs) and E A. Then we have two cases. 

OS E rn: Since rn ' An = OS, rn  An is weakly consistent, 

so is S, rn An by (0-,-: out) . Then using (Di: out) , 

(4.3: out) and (extension: out), we see, by reductio ad 

absurdum , that either Oy, r n-^Anor rn-4-An, ^y is 

weakly consistent. So, we define rn+lAn+l as the first 

weakly consistent sequent of the two. 

^S E An: Since rn An = rn An OS is weakly consistent, 

so is rn; S; An by (+exit) . Then by (D4-: in) , (-D: in) 

and (extension: in), we see either r
n,Oy ; An or 

rn; Oy; An is weakly consistent. Since the argument goes 

similarly, we suppose the first case. Then by (enter -), 

rn, Oy ; An is weakly consistent. In this case we put 

rn+l } An+l = rn, ^y -. An. 

      In any of the above three cases, we have r
n+l pn+1 E 

C and Ir
nupn1 < Irn+lupn+ll. Therefore, since C is 

finite, we obtain a saturated r
n , An for some n. Putting 

                               - 51 -



r  A =  r
n  -- An we have the desired result. 

     We now define a model M = 4d; r, v>- Let W = {r - A I 

F A is saturated}. W is nonempty since -} 1 E W. Let w 

= F -- A, w' = r' -; A' E W. We define (w, w') E r iff r0 

= ro. (Since ISpxTI = 1, we may consider r : SpxTWxW 
as an element of 2WxW. r0denotes the set {a I ^a E r}.) 

v : Pru{.i} --->2W is defined by that w= r + A E v(a) iff 

a E r. The following lemma is proved similarly as Lemma 3.5. 

      Lemma 3.13. M is a KT5-model. 

     Just like U(S2), M has the following important 

property: 

     Theorem 3.14. Let w= r -- A E M and a E ruA. Then 

w k a (in M) if a E r and w =1 a if a E A. 

     Proof. By induction on the construction of formulas. 

We only consider the case that a = ^f3 E A, since other cases 

may be handled similarly as in the proof of Thorem 3.6. Now, 

r6A = {^y I ^y E r} {^S I ^S E A}, 0(3is weakly 

consistent since it is a restriction of r -4- A. By (41D: 

out), we see r1 i Al = {^Y I ^Y E r} } {06 I 06 E A}, R is 

also weakly consistent. By Lemma 3.12, we can extend this 

sequent to a saturated sequent w' = r' 3- A' E W. By this 
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construction, it is clear that  1'0 E ro. Suppose a E ro-rJ. 

Then by inspecting the construction method in Lemma 3.12, we 

see that ^o E Sub0(y1) for some yi E riuAl. Hence, Do E 

Sub0(y0) for some y0Er0up0 s FuA. (If yi =then let 

y0 = 0(3 E p0, otherwise let y0 = yi.) Since r -- A is 

saturated, we have Do E FuA. Since a 1'0 we have ^a E 

A. Hence we have Oc E F'nA'. This contradicts the 

consistency of r' -; A'. Thus we see r0 = ro, so that 

(w, w') E r. Now since R E A', we have w' =1 R by induction 

hypothesis. Hence we have w =1 N. 

      It is now easy to establish: 

      Theorem 3.15. (Cut-elimination Theorem) 

If a proper sequent is provable in GS5 then it is strictly 

provable in GS5. 

      Proof. By Lemma 1.4 it suffices to consider only finite 

sequents. We prove the contraposition. Suppose that a 

finite sequent r } A is not strictly provable. r A has 

a saturated extension r 3 A by Lemma 3.12. Then r -+ A 

is 5-realizable by Theorem 3.14. Then r 4 A is not provable 

by Theorem 3.11. Hence r ± A is not provable. 

 3.5. Cut-elimination theorem for GT3 and GT4 

      In this section we consider only KT3 and KT4 , so that 
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when we refer to KTi or  GTi, i is always 3 or 4. If 

a sequent r + A is provable in GTi without cut, we say 

I' -; A is strictly provable. We wish to establish this: 

      Theorem 3.16. (Cut-elimination Theorem) 

If a sequent is provable (in GTi) then it is strictly 

provable. 

     We prove this by an argument similar to that in 3.3. 

Let 52 c Wff be closed under subformulas. Let us call a 

sequent I' - A Q, i-maximal if it is maximal in the set 

{II E I H -4- E is i-weakly consistent and IIuE c S2} , where 

a sequent is i-weakly consistent if it is not strictly 

provable in GTi. We can show that if a sequent is i-weakly 

consistent and PuA c S2 then it has a maximal extension 

r } a E Wi (Q) _ {ll -- A I II -0- E is Q, i-maximal} , by means 

of Zorn's Lemma and Lemma 1.4.Now, we define a model Mi(Q) 

_ <Wi(S2); r, v>, where r andv are defined just as in 

the definition of U1(Q). That M.(Q) is a KTi-model is 

proved similarly as in Lemma 3.5. We now have the following 

lemma. 

     Lemma 3.17. Let w = r - A EMi(S2) and a E FuA. Then 

w k a( in 1,1i (Q)) if a E I' and w =I a (in 1.1.(Q)) if 

a E A.
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      Proof. By induction on the construction of formulas. 

The base step of  a  E Pru{1} is trivial. 

a = P.Dy: Suppose a Er . Then r A, B or y, r } A is 

i-weakly consistent. By the maximality of r A, we have 

r -> A, C3 = r A or y, r A = r A. In any case, we 

have w k a by induction hypothesis and definition of k. 

The case a E A is similar. 

a = [StD : If a E r, then the result follows similarly as 

in Theorem 3.6. Suppose a E A. 

(i = 3): {[Su]y E r I u< t}, {[Ou]y E r I u< t} 

[St]3 is i-weakly consistent as a restriction of r A. 

Hence {y I [Su]y E r, u s t} ,{ [Ou]y E r I u s t} } g is 

also i-weakly consistent. Extend this sequent to w' = 

F1->4 'inMi (Q) . It is clear that wStw' . Since 

E A' we have w' =1f3 by induction hypothesis .Hence 

w =1 a . 

(i = 4): Similar to the case (i = 3) . 

      Now we can complete the proof of Theorem 3 .16. Suppose 

r } A is i-weakly consistent. Let S2 = {1}ulJ{Sub(a) I 
a E ruA}. Let r -; A E M.(Q) be an extension of r A 

Then by Lemma 3.17, Mi(c) =1 r i A . Hence by the Soundness 

Theorem 3.1, r -- A is not provable . 

Remarks. 

(1) Our method does not work for GT5
, because, except for 
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the obvious fact that GT5 is not  cut-free,/)if we construct 

a model M5(c) it does not always give w' such that 

wSt---->w' and w' =1 f3 for w such that w [St]. 

However, as a partial result, we gave a cut-free system for 

S5 in 3.4. 

(2) By Theorem 3.16, we observe that Mi(c) is identical 

with U. (Q) (for i = 3, 4) . 

     The following theorem will have some significance in 

Chapter 6. 

     Theorem 3.18. (Disjunction property of KT3 and KT4)5) 

Suppose H CS1t1]aly ••• vCSntn]an (in KTi) (n ? 1). Then 

for some j (1 < j < n) we have H CS-4.]c. (in KTi), where 

i = 3 or 4. 

      Proof. Consider a cut-free proof of ; [Sit1]a 1, ••• , 

CSntn]an. Let N = I { [S1t1]a1, • • • , [Sntn]an} I . If N = 1 

then we see that I- -- CS1t1]a1. Let N > 1. Then the 

last inference rule must be (extension). Furthermore we 

may assume without losing generality that the cardinality 

IAI of the upper sequent } A of the last inference is 

less than N. Hence the result follows by induction 

hypothesis. 
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     In this and last §, we have seen that GS5, GT3 and 

 GT4 are cut-free. Using this fact, we obtain our second 

proof of the decidability of these systems as follows. 

     Theorem 3.19. KT3, KT4 and S5 are decidable. 

     Proof. Since the proof goes similarly, we only prove 

the theorem for S5. We first note that any proof figure 

may be represented as a pair UP, f), where IP = (P, �p) is 

a tree partially ordered by sp and f is a function 

f : P --->2Wffx2Wffx2Wffx2Wff. Suppose a formula a c Wff 

is given. Let 0 = Sub(a) and IQ! = n. Suppose a is 

provable. Then it has a cut-free proof CP, f). Then we 

have 

(1)Image (f)c 2Qx2E2x2Qx2Q. 

(Subformula property of a cut-free proof!) Furthermore , we 

may assume without losing generality that f(p) x f(q) if 

p <P q. (For, othewise, we can obtain a smaller proof figure 

with the same end-sequent -} a .) Thus we see that any 

linearly ordered subset Q of P has cardinality l ess than 
                 n,n ,n,n 

or equal to •22222 = m . Since the number of the upper 

sequents of each inference rule is at most 3
, it follows that 

(2)IPI s 3m .
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By (1) and 

determines the

(2), we can 

provability

construct 

 of a.

an algorithm which
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                        CHAPTER  4 

               CATEGORIES OF KRIPKE  MODELS  6) 

4.1. Definition of 1i(Q) 

     Let S2 be closed under subformulas. Let us take any 

i (3 < i <_ 5) and fix it. We define the category Ki (S2 ) 

of KTi-models over Q as follows: 

     (1) Objects OM) are KTi-models. 

     (2) Let M, N EE, then Hom(M, N) = CM --> N]consists 

          of homomorphisms (from M to N) as defined below 

     (3) Composition of homomorphisms is defined by the 

           usual function composition, i.e., (fog)(x) is 

          defined by f(g(x)). 

For any M E]M, we define its characteristic function 

                    XM•M>U(0) 

by XM(w) = t - A, where r= {a E S2 I w k a} and A= 

{a E S2 I w =1 a} . It is clear that t ± A is SZ-complete 

and hence XM is well-defined. (U(Q) means U
i(S2) and 

S2-complete means 0, i-complete.) A mapping 

h : M —>N 

is a homomorphism (from M to N) if the diagram belo w 

commutes: 
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 h 

-------------- >N 

                     XM  /XN 
U(Q) 

Informally speaking, for w E M, XM(w) denotes the scene 

(restricted to 0) as seen -from w. Thus a homomorphism is 

a mapping which preserves scenes. It is an easy task to 

verify that 1Ki(0) defined above is indeed a category. As 

an example, consider the simplest case of S2 = {1}. Then 

any mapping f : M —>N is a homomorphism. 

4.2. Properties of 1Ki(0) 

     First of all, by the Fundamental Theorem of Universal 

Model, we see that XU(St) : U(0) --->U(Q)  is the identity 

mapping lu(2). Hence, for any M E I'1, by the following 

commutative diagram we observe that XM itself is a 

homomorphism. 

       M XM  >11(0) 

XM XU(Q)=1U(Q) 

U(0) 

On the other hand, let h E CM U(Q)]. Then since the 

diagram below commutes, we have h = XM' 
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Thus we obtain: 

      Theorem 4. 

We now list up 

      Lemma 4.2. 

is an injection 

     Proof. We 

such that x  � 

by:

Then we have:

             h  
M ---------------------> U(Q) 

  XM / 
           U(Q) 

1. UM) is a terminal object7of IK(Q) . 

several basic properties of IK(0). 

  If f E EM -^ N] is a monomorphism then 

• 

 prove the contraposition. Let x, y E M 

y and f(x) = f(y). Define g : M —>N

g(z) _

 X 

 Y 

z

if z = y 

if z = x 

otherwise
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f 

be



 XM(g(z)) = 

Hence, g E 

This means 

     Lemma 

is a surjec 

      Proof. 

Let x E N 

y N. We 

Wu{y} as 1 

We define 

r(S, t). G 

is easy to 

induction, 

I.e., g E 

and let h'

Lemma  4 

surject 

Proof. We prove 

x E N be such th 

. Wed 

  as follows: 

          g(z) _ 

fine r by (w, 

t). We definel. 

sy to verify that 

tion, that for an 

          w k a 

g E CN } N]. L 

et h' : N > N

XM(x) = XN(f(x)) = XN(f(y)) 

XM(y) = XN(f(y)) = XN(f(x)) 

XM(z) 

EM - M]. Now, clearly fog = 

f is not a monomorphism. 

           E EM - N] is an e 

 We prove the contraposition. 

be such at x Image(f). 

del N = <W; r, v> 

t g : W >W be

 

,  w 

v at 

any 

(i 

Le

x 

z 

be

(x)) = XN(f(y)) = XM(y) if z = y 

(y)) = xN(f(x)) = XM(x) if z = x 

                               otherwise 

, clearly fog = folM, but g x 1M. 

onomorphism. 

[M N] is an epimorphism then f 

 contraposition. Let N = <W; r, v>. 

x Image(f). Take y such that 

  N = <W; r, v> such that W = 

g : W> W be defined by: 

    if z = y 

     otherwise 

E r(S, t) iff (g(w), g(w')) E 

by w E v(p) iff g(w) E v(p). It 

  is a KTi-model. We can prove, by 

w E W and a E Wff, 

N) iff g(w) k a (in N). 

 h : N — N be the inclusion map, 

 defined by: 
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We have  gob

h'(z) _ 

= goh' =

 Y 

z

 = goh' =  1N. 

       f 

M > 

XN

if z = x 

otherwise 

   g - 
N> N

 U(Q) 

Then we have 

XN(h(z)) = XN(g(h(z))) = XN(z), 

so that lh E [N -)- FT]. Similarly, h' E [N -4- N] . Now, 

clearly, h°f = h'of but h x h'. This means h is not an 

epimorphism. 

Remark. The reader familiar with the notion of p-morphism 

might have noticed that g in the above proof is a 

p-morphism. By the p-morphism theorem [34], every p-morphism 

is a homomorphism (for any Q), but the converse is not 

valid. In this sense our notion of homomorphism is more 

general than that of p-morphism. Note also that we defined 

homomorphisms without referring to the relational structure 
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of models. 

     Lemma  4.4. If f E CM N] is an epimorphism , f is 

a retraction. 

     Proof. By Lemma 4.2, f is onto. Let g : N >N be 

any mapping such that fog = 1N. Let x E N. Then 

XM(g(x)) _ (XNof)(g(x)) = XN(fog(x)) = XN(x), i.e., XMog = 

XN. Hence g E [N M]. This means f is a retraction. 

     We cite the following easy lemma from Mitchell [23]. 

      Lemma 4.5. If f E [M 4- N] is a retraction and also a 

monomorphism, then it is an isomorphism. 

      By Lemmas 4.4 and 4.5, we have 

      Theorem 4.6. ]K(Q) is balanced, i.e., every homo-

morphism which is both a monomorphism and an epimorphism is 

also an isomorphism. 

      Lemma 4.7. Let M E E. Then the following conditions 

are equivalent: 

      (i) XM is a monomorphism. 

    (ii) For any N E ]M, I [N -> M] I <_ 1 

   (iii) End(M) = {1M} 
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   (iv) Aut(M) =  {1M} 

where End(M) denotes the endomorphism semigroup of M and 

Aut(M) denotes the automorphism group of M. 

     Proof. The implications (i) => (ii) => (iii) _> (iv) 

are trivial. To show (iv) => (1), we prove the contraposi-

tion. Suppose XM is not a monomorphism. Then there exist 

N E ]M and f, g E[ N } M] such that f x g and XM o f = 

XM°g. Take x E N such that f(x) x g(x). We put u = 

f(x), v = g(x). We define h : M — > M by:

              h(z) = u 

z It is easy to see that h 

4.3. Structure of ]Ki .(Q) 

Amodel M E]M is so 

morphism. 

     Theorem 4.8. Let M 

and suppose (x, y) E r(S , 

R(S, t). 

     Proof. (i = 3): Let

 v 

 u 

z 

h

   if z = u 

   if z = v 

    otherwise 

E Aut(M), so

said

M = 

r(S,

to be

<W; 

t).

that IAut(M)I > 1.

reduced if XM is a

r, v> 

Then

be any 

(XM(x),

XM(x) = r i A 
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and

model 

XM(y))

mono-

in 1'I, 

E

XM(y) =



 F' A'. Suppose, by way of contradiction, that (x (x), 

XM(y)) R(S, t). Then, by the definition of R, for some 

u s t, we have rSu r' or r0
u r0u. Suppose rsu ¢ r'. 

Then there exists an a such that [Su]a E r and a j r'. 

Then by the Fundamental Theorem of Universal Model, we have 

XM(x) k [Su]a and XM(y) =la. Hence, by the definition of 

XM, we have x k [Su]a and y =1 a. Since (x,y) E r(S, t) 

  r(S, u), this is a contradiction. Next, suppose r0u 

r~u. Then, similarly as above, for some a we have x 1= 
[Ou]a and y =1[Ou]a. Since (x, y) E r(0, u) and 

r(0, u) is transitive, we have a contradiction. 

     The cases (i = 4) and (i = 5) may be treated 

likewise. 

     Let M, N E E. We write M = N (mod S2) if Image(XM) 

Image(XN). (We should write X M (or XN) in place of X M 
(or XN) if we wish to emphasize the dependence of x on 

P.) We say M is equivalent (modulo S2) to N if M - N 

(mod 0). Among the models equivalent to M, we will be 

interested in finding the simplest one. Let M = <W; r, v> 

E ]4. We define its relational closure M = <W; r, v> by 

letting (w, w') E r(S, t) iff (XM(w) , XM(w' )) E R(S, t) . 

By the above theorem we see r c r (, i.e., r(S, t) E 

r(S, t) for any S, t.) We can prove by induction that 

1W:M --> Mis an isomorphism. Thus, ris the largest 

among the relations r' on W such that <W; r', v> is 
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equivalent to M. We say M E 11 is relationally closed if 

M  =  M. Now, let M = <W; r, v> be relationally closed. An 

equivalence - on W is called a congruence if w w' 

implies XM(w) = XM(w'). In this case, we can naturally 

define its quotient model M/' _ <W; r, v> by: 

     (1) W= W/^' _ {[w] I W E W} 

     (2) ([w], [w']) E r(S, t) iff (w, w') E r(S, t) 

     (3) Let p E Pru{1}. If p E 0 then [w] E v(p) iff 

           w E v(p), otherwise v(p) is arbitrary 

where [w] denotes the equivalence class containing w. It 

is easy to see that M/' is well-defined (up to the arbitra-

riness of v(p) for p I Q) and M - M/-. (The canonical 

map [ ] : M --->M/- is a p-morphism if 0 = Wff, and it is 

 a homomorphism in any case.) 

      Suppose M, N are relationally closed, and let f E 

 EM - N] be an epimorphism. Then, - c MxM defined by 

 w ^' w' iff f(w) = f(w') is a congruence, and we see M/^' 

 is isomorphic to N. We write this as M/f .= N. 

Let M E]M. By definition of XM, XM (= XM) induces 

 the largest congruence among the congruences on M. Hence 

 we have: 

       Theorem 4.9. For any M E im, there uniquely (up to 

 isomorphism) exists a reduced N E 1,1 such that M = N. 

 Namely, N is given by N = M/XM. 
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     Schematically, we have the following diagram: 

                                              inclusion 
     1W  _  XM_map 

M ------------ >  M ------------- >  M/X --------------->U(Q) 

     Our argument in this chapter has been relative to Q. 

We end this chapter by giving a definition which does not 

depend on Q. Let M = <W; r, v> and M' _ <W'; r', v'> 

be two KTi-models. We say M and M' are strongly iso-

morphic if there is a bijection f : M -> M' which 

preserves the model structure, i.e., f is a bijection such 

that 

     (1) For any x, y E W, (f(x), f(y)) E f'(S, t) iff 

           (x, y) E r(S, t). 

     (2) For any p E Pru{1} and w E W, w E v(p) iff 

           f(w) E v'(p).
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                        CHAPTER 5 

                    S5 MODEL THEORY 

     In this chapter we give a complete classification of S5 

models under the equivalence E (mod Wff). First, we need 

some general discussions. 

5.1. Lindenbaum  aZbebra of KTi 

     Let us define a relation <* c WffxWff by a < (3 iff 

I- a R (in GTi). (As usual, we discuss by fixing a logical 

system KTi.) Furthermore, define - c WffxWff by a 

iff a <* B and B <* a. <_* is reflexive since I- a - a. 

<* is transitive since I-- a -- S and I-- } y implies 

I- a -- B. Hence - is an equivalence relation.We may 

regard Wff as an algebra <Wff; A, v, -', D, {[St]I 

S E Sp, t E T}>. By the following lemma, we see that - is 

a congruence on the algebra Wff. (For the definition of 

algebra and congruence, we refer to Gratzer [ 7] .) 

     Lemma 5.1. Suppose a - a' and 13-V . Then, 

           (i) ans a^Af31 

          (ii) av13 a^vs^ 

       (iii) - -,a' 

          (iv) aDB a^DS^ 

          (v) [St]a [St]a' (for any S E Sp, t E T) 
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Proof. Left to the reader.

<B; 

We 

Let 

put

 By 

n, 

will 

II 

 1

 this lemma, one can define the quotient algebra IB = 

 v,  — D, {[St] I S E Sp, t E T}>, where B= Wff/~_ 

 call this algebra the Lindenbaum algebra of KTi.  

:  Wff —SIB denote the canonical homomorphism. We 

 _  ITD and 0 = ill .

Theorem 5.2. <B; A, v, , 0, 1> is a Boolean algebra.

Proof. Left to the reader.

      Let <_Bc BxB denote the partial ordering induced by 

the Boolean structure of B, i.e., a <B b if and only if 

a = anb. Then we can easily verify that for any a, S E Wff, 

a s 13 if and only if Qal `B Igo. 

     We will use the term theory as a synonym for a subset 

of Wff. Let r be any theory. We say r is consistent 

(or inconsistent) if so is the sequent r ; . If r = r = 

DC(P), we say r is (deductively) closed Let C denote 

the set of all closed theories, i.e., 

               CC = {r c Wff I r = t}. 

c is the set of fixed points of the retract DC : 2Wff 

2Wff. ( is partially ordered by the set inclusionship 

relation c. We define a mapping : Wff -->e by (a)
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 _ ThT. We say  r is finitely axiomatizable if I' _ Ca) 

for some a E Wff. 

     Lemma 5.3. [al <B BBD if and only if Ca) 2. $(R). 

     Proof. Only if part: By the assumption we have a <* 

S. Hence 1— a -> R. Take any IT E 003) _ {(3}. Then 

B 3 ff . Hence I- a --> 'ir , so that a R. This means 

Tr E Ca) . 

If part: Suppose Ca) D 00). Since B E 0(13) E. Ca), we 

have a 1— R, i.e., I- a } S. Hence [al <B [Bl. 

     From this lemma we see that there uniquely exists an 

anti-order preserving injection t : IB -->e such that the 

diagram below commutes: 

                           Wff 

Q DN 

IB ----------------------->c 
                              1 

We note that t is onto iff is onto . We give a suffi-

cient condition for t to be an anti -order isomorphism . 

      Lemma 5.4. If IB satisfies the descending chain 

                              - 71 -



condition, then  t is an anti-oder isomorphism. 

Proof. Let F be any element in C. Let al' a2'  • • - 

be an enumeration of r. Let f3
n = a 1n • • • nan _ Let Tr E 

4(). Then we have l- f3n -; Tr . Sincei-- r -> a . (i = 1,2, 

••• , n), we have I- r S
n. Hence i- F } Tr. This means 

Tr E r = r. Therefore, 

(1)Wn) E F. 

Let Tr E r. Then IT = an for some n. Since I-- ~n -~ an, 
we have it = an E q(R n). Hence, together with(1), we have 

                        II~ (2)r =l _J(1)n).n=1 

Since I- Sn+1 -- n for any n, we see QS1D iB Q(3.nD >B ••• 
Since ]B satisfies descending chain condition, there exists 

an m such that Q0mI <_B E131.11 for any n. Then, by Lemma 

5.3, we have cp(Sm) D 40n) for any n. Thus, by (1) and 

(2), 

00 

(3)F ? (PO )?l —j~(Rn) ? t. 
                                   n=1 

This establishes the sujectivity of t. Thus we see that t 

is an anti-order isomorphism. 

5.2. S5 model theory 

     For any n ? 1, we let the language Ln = (Pr(n), Sp, T) 

be defined by: 

                               - 72 -



          (1) Pr(n)  =  {p1, p2, ...,pn}' 

        (2) Sp = {0}, 

        (3) T = {1}. 

Let us take any Ln and fix it. In this section, we study 

KT5 over the language Ln, which is none other than the 

modal calculus S5 as we have seen in Fig. 1.1. Hence a 

KT5-model over L will be called an S5-model. Our aim is 

to determine the structure of the Universal Model U = U(n) 

= U5(Wff). We employ the more conventional notation Oa (ua) 

in place of [O1]a (<O1>a, resp.). 

     Let {±}n denote the n-fold cartesian product of the 

doubleton set {+, -} . For any a E Wff and S E {±} = 

{+, -}, we put

               a = 

We define a mapping 

by Tr(E) = p1 In ... Ap
n 

We put H = Image (Tr) . 

S5-model M(E) _ <WE;r 

     (1) WE = Ex{E}, 

W      (
2) rE(0, 1) = 2

 7 

 E  n 

5 

For 

E' 

E"W

  a 

a

if S = + 

if S = -

{±}n ---> Wff 

where e = el e
n (ei E {±}) 

 any E (x 0) c {±}n, we define 

vE> as follows: 

E 

5 
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     (3) For any  (e, E) E WE, (e,E) E v(pi) iff Ei = +, 

           where c = el ••• e
n, and v(1) _ 0. 

Since rE(0, 1) is an equivalence relation, M(E) is an 

S5-model. We call this model the fragment model on E. We 

define its characteristic formula X(E) by: 

X(E) = Ao Wr(e)nA8) 
EEEEE{±}n-E 

For any (E, E) E M(E), we define its charcteristic formula 

X(6, E) by: 

x(e, E) = 7(e)AX(E). 

     Now, let (MX)A EA be an indexed family of S5-models, 

where MA = <WA;rA,vA>. We define their sum 

              M = <W; r, v> _ MA 
AEA 

by: 

     (1) W = X WA (disjoint union), 
AEA 

     (2) (w, w') E r(0, 1) iff both w and w' are in 

WA for some A and (w, w') E rA(0, 1), 

     (3) v(p) _ y vX(p). 
AEA 

     An S5-model M = <W; r, v> is said to be connected if 

r(0, 1) = 2WxW It is easy to see that any S5-model M may 

be expressed as a sum y MA of their connected components 
AEA 

(MA)A
EA'
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     Let S be the sum of the family of all fragment models, 

i.e., 

 S  =M(E). 

OEc{±}n 

We will show that S is strongly isomorphic to U. 

     Lemma 5.5. Let an S5-model M = <W; r, v> be connected 

and reduced (in the category IK(Wff)). Then M is strongly 

isomorphic to some fragment model M(E). 

     Proof. Let E _ {c E {±}n I w k Tr(c) (in M) for some 

w E M}. Since for any w E W there uniquely exists an c E 

E such that w k Tr(E), we can define 4 : W ---->E by (w) 

= E. Suppose (1)(w) = q(w') = c. We show by induction that 

for any a E Wff, w k a iff w' k a. The case a E Pru{i} 

is easily ascertained since c(w) = (1)(w'). The case a = 

Dy is trivial by the definition of k and by induction 

hypothesis. Finally, we consider the case a = D. Then, 

since M is connected we see w k ^S iff w' k N. Hence, 

it follows that XM(w) = XM(w'). Since M is reduced, we 

have w = w', by Lemma 4.2. Thus we have proved that is 

a bijection. Since both M and M(E) are connected and 

vE(4(p)) = v(p) for any p E Pru{1}, we see that M and 

M(E) are strongly isomorphic.
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     Corollary 5.6. Let the assumptions be as in Lemma 5.5. 

Then the strong isomorphism  (I) : M --->M(E) is unique. 

     Proof. Since M is reduced, we have Aut(M) = {1M1' 

by Lemma 4.7. Since a strong automorphism is an automorphism, 

we see that 4) is unique. 

     Theorem 5.7. Let M be connected and reduced. Suppose 

w k X(E) for some w E M. Then M is isomorphic to M(E). 

      Proof. By Lemma 5.5, we have only to prove: 

"If E x E' then (c , E) =1 X(E') for any (c, E) E M(E)." 

Suppose E x E' and (c, E) k X(E') for some (c, E) E 

M(E). Then we can take a 6 such that 6 E E-E' or 6 E 

E'-E. Suppose 6 E E-E'. Then (c, E) k oTr(S). But, since 

(c, E) k X(E') and X(E') i.- 'ir(6), we have a contra-

diction. The case 6 E E'-E may be treated similarly. 

     Now, let the Universal Model U be expressed as the 

sum MA of its connected components. Then each MA is 
AEA 

reduced because XU = lU. By Lemma 5.5, MA is strongly 

isomorphic to M(EA) for a suitable E. Let 

clpA : MA --> M(EA) be the unique strong isomorphism. Define 

4) : U ---> X M(EA) by 4)(w) = 4A(w) where A is the 
AEA 
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unique index such that  w  E MA. Since is a strong 

morphism, we have the following commutative diagram: 

     

U ---------------------> y m(Ex) 

   \/m 
                             U Hence, XM is also a strong isomorphism. Suppose EA 

for some A x p. Then it is clear that Aut(XM(Ex)) 

But, by Lemma 4.7, it is contrary to the fact that XM 

injective. Thus we have: 

                     Ex x E
pif A x p . 

Now, take any E (x 0) c f±}n, By Theorem 4.8, we see 

Image(XM(E)) is connected. Hence it is contained in 

MA, i.e., Image(XM(E)) S MA. Take any (c , E) c M(E) 

Then, 

                (e, E) k x(E) (in M(E)). 

By the definition of X
M(E)' 

XM(E)(e, E) k X(E) (in U). 

Hence, 
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{1} 

  is 

some

U



 XM(E)  (s' E) k X (E) (in MA) . 

By applying (I), we have 

(XM(E) (e , E)) k X(E) (in M(EA)) . 

Therefore by Theorem 5.7, we have E = EA. Thus we have 

proved the following 

     Theorem 5.8. U is strongly isomorphic to S. 

     Similarly, we have 

     Theorem 5.9. Let M be reduced. Then M is strongly 

                                                n isomorphic to X M(E) for some IE c 2{±} -{0}. 
EFT 

     Proof. Let M = X MA. where MA (A E A) are reduced 
AEA 

and connected. Since M is reduced we have that MA and 

M are nonisomorphic if A p by considering the auto-

morphism group of M. Hence by Lemma 5.5 we have the 

desired result. 

     Corollary 5.10.An isomorphism 4) : M --->N between 

reduced models M and N is an strong isomorphism. 

     On the other hand, it is clear that M(E) is 
E E1R 

                             n 
reduced for any g c 2{±}-{o}. Hence we have 
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                                        n 

     Corollary 5.11. There are 22-1 nonisomorphic 

reduced  S5-models. 

     Theorem 5.9 gives a complete classification of reduced 

models up to (strong) isomorphism. We will further proceed 

to define for any model M its characteristic function 

X(M). 

     Let w = r -> A E U. By the isomorphism $ : U —> S 

established in Theorem 5.9, we will identifyw with c(w). 

Hence w may be written as w = r -> A _ (e, E). We define 

a mapping 

                      X:U—>Wff 

 by XU(w) = x(e, E), where w = (e, E). Furthermore, for 

 any model M, we define 

                     XM•M—>Wff 

 by XM(w) = XU(XM(w)), where XM is the characteristic 

 function 

XM : M --> U. 

                                        Then the following theorem enables us to replace the seman-

 tical relation k by the syntactical one I--. 

       Theorem 5.12. Let M be any S5-model. Then for any 
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w  E M and a  E Wff we have: 

         w k a (in M) if and only if X
M(w) 1- a. 

     Proof. Since w k a iff XM(w) k a (in U), and since 

XM = XUOXM, it suffices to prove the case M = U. So, let 

w = F - A = (E, E). We prove by induction on the construc-

tion of a that 

     (a) if w k a then XU(w) F- a 

and 

     (b) if w =1 a then XU(w) I-- -la. 

a E Pru{1}: The case a = 1 is trivial. So, suppose a = 

piE Pr. 

     (a): Since (E, E) k pi, we have Ei = +. Hence 

rr(E) E- pi, so that XU(w) = X(E, E) = 7T(E)AX(E) I--- pi (= a). 

The proof of (b) is similar. 

a = SDy . 

     (a): Since w k RDy, it follows that w =1 13 or w k y. 

Suppose w =1 R. Then by induction hypothesis, we have 

XU(w) I- -1S. Since R 1-- ,iy, we have XU(w) I- a. The 

case w k y may be treated similarly. 

     (b): Since w =1 R'y, it follows that w k R and 

w =1 y. By induction hypothesis, we have XU(w) 1-- R and 

XU(w) I- —'y. Hence, XU(w) I- (3n —i. Since BA -Y F- 

-,(3,y) , we have XU(w) 1-- -.a. 
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 a=^S: 

     (a): Since (c, E) 1= 08, we have for any S E E, 

(6, E) k B. By induction hypothesis, Tr(S)AX(E) 13 for 

any S E E.Hence, we have: 

I--- V Tr(S) , X(E) -> R(1) 
SEE 

Now, since F- - V Tr(S) and I-- X(E) -~ -17(S) for any 
SE{±ln 

S E, we have 

I- X(E) V Tr(S)(2) 
SEE 

Hence, from (1) and (2) we obtain 

X(E) ->(3) 

From this, by (-4---1) and (.4-0), we have x(E) J- ^f3 as 

desired. 

     (b) Since(c, E) =108, we have for some S E E (S , E) 

=18 . By induction hypothesis, we have 

F- Tr(S), x(E) -> -g(4) 

Let X(E) = o Tr(c1)n ... no Tr(c
i)A -,oTr(ci+l... A 

10 T(6 .). Then from (4) we can construct th
e following 

proof figure, which proves (b).
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In the above proof a double line  (-----) means that several 

trivial applications of rules are omitted. 

     Now it is clear that (b) implies that if w  =1 a then 

XU(w) 17L a. This completes the proof of the theorem. 

     Corollary 5.13. Let XU : U —>IB be defined by 

XU(w) = EXU(w)D. Then XU is injective. 

     Proof. Take any w = (E, E) and w' = (E' , E') in U. 

Suppose ?{U(w) = XU(w'). Then, by Theorem 5 .12, (E, E) k 

1r(E')AX(E'). Hence , clearly, E = E'. By Theorem 5.7, we 

have E = E'. Therefore w = w' , which means XU is 

injective. 

      In the above proof we have also proved 

     Corollary 5.14. Let w, w' E U. Then 

     (1) w k Xu(w') if and only if w = w' . 

     (2) XU(w) XU(W) if and only if w = w' . 

     We extend X
U•U -->Wff to 

XU : 2U —~ Wff 

as follows. Let P E W . Then XU(P) is defined by: 
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 XU(P) = V XU(w). 
wEP 

We note that newly defined X may be regarded as an 

extension of the old one by identifying w with {w} . Now, 

for any a E Wff we can define its normal form norm(a) by 

                     norm(a) = XU(P
a)' 

where Pa = {w E U I w k a (in U)). 

     Theorem 5.15. For any a E Wff, norm(a) = a. 

     Proof. Let w E Pa. Then by. Theorem 5.12, 1--X (0 -~ 

a. Hence we have F-- V XU(w) --> a, i.e., 1- norm(a) ; a. 
WEP a 

We prove F- a - norm(a) by means of the Completeness 

Theorem. Consider any S5-model M and w E M such that 

w k a (in M). Let w' = XM(w ). Then w' k a (in U), i.e., 

w' E P
a. Since w' k XU(w'), we have w' = XM(w) k norm(a). 

Hence, by the definition of XM, w k norm(a). By the 

Completeness Theorem, we have a norm(a). Thus, we 

have proved norm(a) E a. 

     We are now ready to study the mapping 

                       h :2U-> 113 

defined by h(P) = (XU(P)D. First, we define 

                               - 84 -



 0 :2U—~2U 

by  OP = {w E U I (w, w') E r(0, 1) => w' E P}. Then 2U 
                                    W 

may be considered as an algebra 2 = <2 U; n, u, 0>-

Furthermore, we consider IB as an algebra IB = <B; n, v, O>. 

     Theorem 5.16. h : 2 >IB is an isomorphism. 

     Proof. Take any Qall E B and let Pa = {w E U I w k 

a}. Then by Theorem 5.15, we have h(Pa) = [norm(a)1 = [al. 

Hence h is injective. Next, take any P, Q c U and 

suppose P Q. We can take w such that w E P-Q or w E 

Q-P. Suppose w E P-Q. Then clearly, 

(1)XU(w) I- XU(P). 

Suppose XU(w) XU(Q). Then by Theorem 5.12, we have 

w k XU(Q). Hence for some w' E Q we have w k X
U(w'). 

Then by Corollary 5.14, we see w = w' . This is a contra-

diction since w Q and w' E Q. Thus , we see 

(2)XU(w) / X
U(Q). 

By (1) and (2), we have X
U(P) x XU(Q), i.e., 

[XU(P)l x [XU(Q)D. 

Thus, we see h is injective . 

     Now, let P, Q E 2U, 
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(i) Since  XU(PnQ) XU(P) and X
U(PnQ) H XU(Q), we have 

(3)1- X(PnQ) -4 XU(P)AXU(Q) 

On the other hand, suppose w k X
U(P)AXU(Q), where w E U. 

Then, by a method similarly as above , we can prove w E PnQ. 

Hence w k XU(PnQ). Thus we see 

(4)1- XU(P)AXU(Q) -> XU(PnQ) . 

By (3) and (4), we have h(PnQ) = h(P)Ah(Q). 

(ii) That h(PuQ) = h(P)vh(Q) is proved similarly_ 

(iii) First, take any w E U such that w k XU(OP)_ Then 

w E OP, so that for any (w, w') E r(0, 1) we have w' E P. 

Hence w' k XU(P). Thus, we have w k OXU(P). Therefore, 

we have 

(5)1-- X(^P) -~ OX (P). 

Next, take any w E U such that w k ^XU(P). Let w' be 

such that (w, w') E r(0, 1). Then we have w' k XU(P). 

Hence w' E P. Then by the definition of OP, we have w E 

^P. Hence w k XU(^P). Thus, we have 

(6) OXU(P) -~ XU(OP). 

By (5) and (6), we have h(OP) = Oh(P). 

     Theorems 5.8 and 5.16 determines the structure of 

the Lindenbaum algebra of S5. Since the cardinality of U 
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the 

As

S) is easily calculated as 

          2n(22)lul =i. 
i=1 

 cardinality of ]B is given 

I]BI = 21U1 _ 22n 

an example, we illustrate the

 = 2n-22n-1 

by 

-22n-1 

• 

 structure of U for n = 2.
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Fig. 5.1. Graphic representation of U(2)9

- 88 -



In the above figure, we have put  Co = —1p1n—'p2, El = 

pin p2 sz = pinp2 and e3 = pinp2. 

     Finally, since IB is finite, from Lemma 5.4, we have 

     Theorem 5.17. t :IB —>(C is an anti-order isomorphism. 

     Corollary 5.18. Every theory of S5 (over the language 

Ln) is finitely axiomatizable.
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                        CHAPTER 6 

                       APPLICATIONS 

     In this chapter we study two puzzles, namely, the 

puzzle of three wise men and the puzzle of unfaithful wives, 

by applying the results we have obtained in the preceding 

chapters. 

6.1. The wise men puzzle 

     In this section, as an application of the Completeness 

Theorem, we give a model theoretic solution to the well-

known puzzle of three wise men. We will work on the language 

L = (Pr, Sp, T), where 

                     Pr  = {p1, p2, p3} 5 

                     Sp = {0, Si, S2, S3} 

                   T = {1} 

Since T is a singleton set we will write, for example, 

[S]a in place of [Sl]a. Now, the puzzle has been modified 

as follows by McCarthy [21, 22] so that it may be modelled 

in his knowledge system: 

     Let Si (i = 1, 2, 3) denote the 3 wise men, and let 

pi be the sentence asserting that Si has a white spot on 

his forehead. The following are given as assuptions. 

(Al) p1Ap2Ap3 --- All spots are white. 
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(A2)  [O](plvp2vp3) --- They all know that there is at 

      least one white spot. 

(A3) [0]({Sl}p2A{S1}p3A{S2}p1A{S2}p3n{S3}p1A{S3}p2) ---

      They all know that each can see the spots of the others 

(A4) [S3][S2] ~CS1)p1 --- S3 knows that S2 knows that 

      S1doesn't know the color of his spot. 

(A5) [S3]' [S2]p2 --- S3 knows that S2 doesn't know 

      the color of his spot. 

The problem is to deduce [S3]p3 (S3 knows that he has a 

white spot) from these assumptions. 

     Let a'= (Al)A(A2)A(A3)A(A4)A(A5) and Tr = aD[S3)p3' 

We will show that J- Tr (in K3) by means of the completeness 

of K3-models. Namely, we show that Tr is valid in all K3-

models. So, by way of contradiction, suppose there is a 

counter-model M = <W; r, v> for Tr such that M =1 Tr . 

This means that there is a world w0 E W such that 

  (1)w0 k a 

and 

   (2)w0 =1 CS3]p3. 

(2) tells the existence of a world w1such that 

                           S 
(3)w0> wl 

and 

(4)w1 =1 p3. 
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Since  w0 k (A4)A(A5), we have, by (3), 

   (5)wlkCS2] '[S1]pl 

and 

   (6)w1=1CS2]p2. 

From (3) we have, by the definition of r, 

  (7)w0'w1. 

Hence we have from (1) 

   (8)w1k {S2}p3, 

that is, w1 k [S2]p3 or w1 k CS2] 'p3• 

with (4), implies 

   (9)wl k [S2]-'p3. 

By (6) we see that there is a world w2 

  (10)wl ------S2 >W2 

and 

   (11)w2 =1 p2 

From (5), (9) and (10) we have 

    (12)w2 =1 CS1]p1 

 and 

    (13)w2 =1 p3. 
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By (10), 

 (14) 

From (7) 

have 

    (15) 

Since w0 

    (16) 

From (11) 

    (17) 

and 

    (18) 

Now, (12) 

    (19) 

and 

    (20) 

From (17) 

    (21) 

and 

    (22)

since r(S2, 1) c r(O, 1), we have 

      wl2' 

 and (14), using the transitivity 

               0 
      w0rw2' 

k (A3), we have 

           w2 k {S1}p2A{S1}p3. 

, (13) and (16) we have 

w2 k ES1l p2 

            w2 k ES17— p3. 

 implies the existence of w
3 E W 

               S 
          w2—'w3 

             w3 =1 p1. 

, (18) and (19) we have 

           w3=1p2 

             w3 =1 p3. 

                   - 93 -

of r(O

such

, 1), we

that



We have 

     (23)w00->  w3 

from (15) and (19). Then, since  w0 (A2), we have 

(24)w3 k p1vp2vp3. 

But, this is contradictory to (20)-(22). Thus, we have 

proved that n is valid. 

     Note that we did not use the assumptions (Al) and 

[0]({S2}p1A{S3}p1A{S3}p2). We illustrate the above inference 

in the following figure.
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6.2. The puzzle of unfaithful wives 

     We begin by explaining the notions of knowledge base 

and knowledge set, which are fundamental for our formaliza-

tion of the puzzle of unfaithful wives. 

6.2.1 Knowledge set and knowledge base 

     Let L be any language. We consider in  KT4 and KT5 

over L. We will make the notion of the totality of one's 

knowledge explicit by the following definitions. 

     Definition 6.1. K c Wff is a knowledge set for St if 

K satisfies the following conditions: 

(KSl) K is consistent. 

     (KS2) K = [St]K. 

     (KS3) If K [St]aly•••v[St]an then Ka. 

            for some i (1 s i s n). 

     Definition 6.2.B c Wff is a knowledge base for St if 

B satisfies the following conditions: 

      (KB1) B is consistent. 

     (KB2) B c [St]B. 

      (KB3) If ,B I- [St]aly ••• v[St]an then B a. 

             for some i (1 s i s n). 

     By (KS2) (or (KB2)) we see that any element in K 

 (or B, resp.) has the form [St]a. It is easy to see that 
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if B is a knowledge base for St then [St]B is a 

knowledge set for St. We also note that the above defini-

tions are relative to the logics  KT4 and KT5. 

     Let F c Wff be consistent. We compare the following 

three conditions. 

     (1) If r F/- a then F F-[St]a. 

     (2) If F F- [St]a1v• • •v[St]an ' thenF F- a. for 

          some i Cl < i < n). 

     (3) If F F- {St}a then F F- a or F F- -ia. 

First, we consider in KT4. 

     Lemma 6.3. In KT4, we have (1) => (2) => (3) but 

(2) #> (1). 

     Proof. (1) _> (2): Suppose F [St]a
1v•••v[St]an 

and F V ai for any i. Then by (1) , we have F F- 

~[St]a
i for any i.Then we can prove F F- 1, which is 

contradictory to the consistency of F . 

(2) _> (3): Trivial. 

(2) *> (1): Since the disjunction property holds in KT4 

(Theorem 3.12), the empty set 0 is a knowledge base for 

any St. Let F = 0. Then F satisfies (2) . Let p E pr10; 

Then neither p nor --[St]p is provable in KT4 . Hence, 

F does not satisfy (1) . 
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     In  KTS, we have the following 

     Lemma 6.4. In KT5, (1), .(2), and (3) are 

equivalent. 

     Proof. (1) => (2) => (3) are proved similarly as in 

Lemma 6.3. 

(3) => (1): We prove the contraposition of (1) assuming 

(3). Suppose r ~[St]a. Since [St][St]av[St] —1[St]a 

in KT5, we have from (3), t i- [St]a. Hence P }- a. 

     Note that 0 is not a knowledge base in KT5. We now 

study the semantical characterization of knowledge sets. Let 

M = <W; r, v> be any model (adequate for the logical system 

we have in mind). For any w E W and (S, t) E SpxT, we 

define Kw(St) c Wff by: 

Kw(St) _ {[St]a I w k [St]a}. 

Since, as we will see below, Kw(St) is a knowledge set for 

St, we call it the knowledge set for St at w. 

     Lemma 6.5. Kw(St) is a knowledge set for St. 

     Proof. We only prove (KS2). Let [St]a E Kw(St) = K. 

Then, we have K a, i.e., a E K. Hence [St]a E [St]K. 

Let [St]a E [St]K. Then a E K, i.e., K i.- a. Since any 
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element in K is of the form  [St]B, and the logical system 

is KT4 or KT5, we have K [St]a. Since w k K, we 

have w k [St]a, so that [St]a E K. 

     Let K be a knowledge set for St. We say w E M 

characterizes K if K = Kw(St). 

      Theorem 6.6. Any knowledge set is characterizable. 

     Proof. Let K be a knowledge set. Let A = Wff-KSt. 

We show that the sequent K -> [St]A is consistent. Suppose 

otherwise, so that I--- K [St]A. Then for some finite set 

{al, ••• ,an}c A we have, E-K}[St]al,•••, [St]an. 

Hence, by (KS3), there exists an i (1 i < n) such that 

    K ; a.. By (KS2), we have [St]a. E K. This is a 

contradiction. Thus, K - [St]A is consistent. So, by the 

 Generalized Completeness Theorem, we can take a model M = 

 <W; r, v> such that w =1 K CSt]A, for some w E W. Then, 

 clearly, we have K = Kw(St). 

 6.2.2 Informal presentation of the puzzle 

      The puzzle of unfaithful wives is usually stated like 

this: 

       There was a country in which one million married couples 

 inhabited. Among these one million wives, 40 wives were 

 unfaithful. The situation was that each husband knew whether 
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other  men's wives are unfaithful but he did not know whether 

his wife is unfaithful. One day (call it the 1st day) , the 

King of the country publicized the following order: 

(i) There is at least one unfaithful wife. 

    (ii) Each husband knows whether other men's wives are 

           unfaithful or not. 

   (iii) Every night (from tonight) each man must do his 

           deduction, based on his knowledge so far, and try 

           to prove whether his wife is unfaithful or not. 

    (iv) Each man, who has succeeded in proving that his 

           wife is unfaithful, must chop off his wife's head 

            next morning. 

(v) Every morning each man must see whether somebody 

           chops off his wife's head. 

    (vi) Each man's knowledge before this order is publi-

           cized consists only of the knowledge about other 

            men's wive's unfaithfulness. 

     The problem is"what will happen under this situation?" 

The answer is that on the 41st day 40 unfaithful wives will 

be chopped off their heads. We will treat this puzzle in a 

formal manner. 

6.2.3 Formal treatment of the puzzle 

     We will treat this puzzle by assuming that there are 

k 1) married couples in the country. Then the language 
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L  = (Pr, Sp, T) adequate for this puzzle will be: 

                  Pr = {p1, ... Pk}, 

Sp = {O, S1, ... , Sk} 

               T = l+, 

where Si denotes ith husband, pi means that Si's wife 

is unfaithful and t E T denotes tth day. We employ KT5 

over L as our logical system. (Our argument henceforth can 

be carried out similarly in KT4 except for one point, where 

an essential use of Lemma 6.4 is necessary. This fact seems 

to suggest us that the negative introspective character of 

KT5 is essential for the solution of the puzzle.) 

     As in §5.2, we define 

                     IF :{±}k —> Wff 

k c. 
byTF(C1...Ek) = A pi'. We put H = Image(w) and Ho 

i=l 

      k 
= n_{ A p

i}, wherepi1–'p.. We also useTito denote 
i=1 

arbitrary element in H. Now, let r denote what the King 

publicized on the 1st day, and BI(Sin) (i = 1, ••• , k) 

denote a knowledge base for Sin under the circumstance 

_ lr(E1 ---
k) E n6.Let us put

1-137(Sin) 1— al =
T 

 1

if B7(Sin) I— a 

otherwise
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     1B1T(S.n) V 

where a  E  Wff  . 

postulate the fc

al =

  Then, as 

following

T if Bu(Sin) 

 1 otherwise 

 a formalization of 

identities:

 V  a
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5 
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     The informal meanings of the above equations are as 

follows: 

 Eq(Tr, i, 1): Knowledge base for S
il under Tr con-

sists of the knowledge about what the King says on the 1st 

day and the knowledge about whether other men's wives are 

unfaithful. 

Eq(Tr, i, n+l): If S, could prove p , in the nth 

night, then Si knows on the n+lst morning that CS.n]p~, 

since Si sees that S~ chops off his wife's head in the 

n+lst morning. If S, could not prove p, in the nth 

night, then Si knows in the n+lst morning that_1CS~n]p., 

since Si sees that S, does not chop off his wife's head 

in the n+ 1st morning. 

     Eq(*): The meaning of the 1st line of Eq(*) should be 

clear. The 2ndand 3rd lines mean that FOOL will know every 

morning whether anybody could prove the unfaithfulness of his 

wife in the previous night. The last line is an indirect 

definition of B(Sin). 

     Since the meta-notions such as knowledge base and 

provability q-) cannot be expressed directly in our language, 

we were forced to interpret the King's order into r in a 

somewhat indirect fashion. 

     Now, if we read Eq(*) as the definition of F, then we 

find that the definition is circular, since in order that r 
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may be definable by (*) it is necessary that  B7(Sin) are 

already defined, whears Bff(Sin) are defined in terms of r 

in Egs(Tr, i, n). So, we will treat these equations as a 

system $ = {Eq(Tr, i, n) I Tr E n0, i = 1, • • • , k, n E T}u 

{Eq(*)} of equations with the unkonwns{BTT(Sin) ITr En0, 

i = 1, ••• , k, n E T} and r. We will solve $under 

the following conditions: 

      (#) For any if E n0, Fu{Tr} is consistent. 

    (##) For any Tr E n0 and Sin, B1(Sin) is a knowledge 

            base for S.n.                            i 

We think these conditions are natural in view of the intended 

meanings of I' and B,f (Sin) . 

      For the sake of notational convenience, we consider E 

{±}k as a k-fold direct product of the vector space 

GF(2) = {+ (= 1), - (= 0)} with addition (D. Thus, {ei = 

 - ••• -+- ••• - I i = 1 , ••• , k} forms a basis of E. We 
i 

define a norm on E by Ilell = I{i I ei = +}I, where e = 

11) 
el ••• ek. For any e = el ••• ek E E and i = 1 , ••• , k, 

we put 

                    60-1) = e1 ... E1 -l+ei+l...gk' 

e(-i) = el ...ei -l-ei+1 eke 

and for any Tr = Tr (e) E II , we put 
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We also put E 

     Now, let 

k, n  E T>,  r> 

(#) and (##) 

      Lemma 6.7 

have: 

(i) If n

and

(ii)

and

If n <

hence

        Tr(+i) _ n(E(+i)) , 

iT(-1) _ ff(E(-1)). 

0 = E-{0} _ E-{- ... -}. 

us suppose that << BTr
1(S.n) I 

  is a solution of$ under 

. Then the following lemma 

. Let 7 = Tr(e) E II and n

II e(+i)II

Bir(+i) 

Bi(+i)

Bar(+1)

  then 

(S.n) Pi 

(Sin) 

  then 

(Sin) = B1r( -1)

(Sin) V pi

Tr E 

 the 

holds 

E T.

II0, i = 1,—, 

conditions 

  Then we

(if n(-i) E Ito).

(Sin),

and

Proof.

BIT( -i) 

We first

(Sin) V pi. 

show that B 1r(+i) (S.n) = B~( -i) (S.n)
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implies Bi(+i)(Sin) 14 pi and B71.(_i)(Sin) 14 pi. Suppose 

B7r(+i) (Sin) 1-- pi. Then BTr(-i) (Sin) H pi. Hence 

 [O1](T(-i)D(TD[On+l][Sin]pi) E r. So, 

(1)r TIC-i)Jpi. 

On the other hand, 

(2)Tr (-i) pi. 

From (1) and (2), we have 

(3)'F(-i), r . 

This is contradictory to the condition (#).Therefore we 

have B.R(+i)(Sin) I.-f pi. B" _i)(Sin) EA pi is proved 

similarly. 

      We now prove the lemma by induction on n. 

n = 1: 

     Proof of (i). Suppose IIE(+i)II = 1. Then, since 

 __ k 
F Ply ... , Pi-1' Pi+1' ... ' Pk' V Pi -> Pi' 

i=1 

B.(+i)(Si1) 1- [Sil]pj (j x i) 

and 

k 
B1T(+i)(Si1) I- 

iV Pl 

we have N(+i)(Sil) I-- pi . The rest of (i) is vacuously 

true, since Tr(-i) E II0. 

     Proof of (ii) . Suppose 11 s (+i )11 > 1 . Then, 
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 Bff(+i)(Sil) = Bir( _i)(Sil) follows directly from Eq(Tr(+i), 

i, 1) and Eq('rr(-i), i, 1). 

n > 1: 

     Proof of (1). First we show B,Tr(+i)(Sin) F- pi from 

the assumption that n = Ile(+i)II. Since n > 1, we can take 

j x i such that ej = +. Then Tr(+i) = Tr(+i)(+j) and 

Ile(+i)(+j)II = n > n-1. By induction hypothesis, we therefore 

get B,f(+i)(Sjn-1) p..Hence, 

(4)[Sin]' [Sjn-l]pj E B,Tl.(+i) (Sjn) . 

On the other hand, sinceTr(-i) = Tr(-i)(+j) and IIe(-i)(+j)II 

= n-1, we have by induction hypothesis, B1J(_i)(Sjn-l) F- pj_ 

Hence, by Eq(*) 

(5) [01_1(7r(-i)D(TD[On][S.n-lip.)) E I'. 

From (4), (5) and Eq(Tr(+i), i, n), we have BR(+i)(Sin) 

              Since B71-(+i)(S.1)F-Tr(+i)vff(-1) and 

B.r(+. (Sin) 2 [Sin]•••[Si2]BTr(+i)(S.1), we have 

B,f(+i) (Sin) F- Tr(+i)vir(-1) . Hence we have B7(+i) (Sin) F-

Tr(+i). Therefore, BW(+i)(Sin) H pi. 

     We next show that BTr(-i)1-pifrom the assumption 

that n = Ile(+i)II. We can take j x i such that e.J_ +. 

Then Ile(-i)(+j)II = n-1. By induction hypothesis, 

BTF(-i)(Sjn-1) F- pj. Hence, 

(6)[Sin][S.n-1]p. EBff( _i)(Sin). 
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Since  Ile(+i)(+j)II = n, we have by induction hypothesis, 

B,F(+i)V p.. Hence, 

(7)[01](Tr(+i)D(TJ[On]-,CS.n-17pj)) E T. 

From (6) and (7), by an arguement similar.- as above, we 

conclude that B,1(-i)(S.n)F-pi. 

     The case n > Ile(+i)II is now easy, since we have 

                BTr(S.m+l) 2 [Sim+l]B~(Sim), 

for any m. 

     Proof of (ii). We next consider the case n < Ile(+i)II. 

By induction hypothesis, B,F(+i)(Sin-1) = B,f( -i)(Sin-1). 

Since Ile(+i) (+j )II ? II e (-i) (+j )II > n-1 for any j, we have 

by induction hypothesis, 

               BTr(+i)(+j)(Sjn-1) = BT(+i)(-j)(Sjn-1) 
and 

                 BTr(-i)(+j)(Sjn-1) = BTr(-i)(-.)(S.n-1). 

Hence B,f(+i)(S.n-1) V p. and BTr(-1)(S.n-1) p.. Thus, 
we have B

ii(+i)(Sin) = BT.(-i)(Sin) by Eq(Tr(+i),i,n) and 

Eq(Tr(-i) , i, n) . 

      Summarizing this lemma , we have: 

     Corollary 6.8. B,F(e)(Sin) l- piif and only if e. _+ 

i and n ? II ell . 
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We next prove the following lemma.

     Lemma 

I.e., for

 6.9. For any 

any  a  E Wff, 

I- Tr

It = Tr (e) E H 0' 

either 

, r ÷ a

{T}ur is comp Ze to .

or

      Proof. 

we note that, 

Tr,-ra and 

a E Pru{1}: 

    If a = 

I- Tr, r } a 

I- 15 7r5 r 

a = f3Dy . 

     Suppose 

the following

By 

by 

  a

pi 

or

I-- a, Tr, r ->

induction on the construction of 

 condition (#), it is impossible 

, Tr, r - are provable. 

                                            e. 
 then we have TrFpi1. Hence, 

I- a, Tr, r -> . If a = 1 then

F- Tr , 

proof

r -; y. 

figure:

Then we have

. 

'r
, r ÷ y

, 7, r -- Y

Tr, r -> RDY 

-> . Then we

a. 

that

First 

both

     Suppose 

similarly.

 clearly, 

we have

I- Tr, F - a by

,Tr , r have I- Tr, F -> a ,
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     By induction hypothesis, 

 is I--5r(3 andF- Y,Tr, 

By, Tr, r -~ by (D--). 

a = [S.n]B: 

     Suppose F- f3,  Tr , r ± . 

following proof:

we see 

r .

that 

 Then

Then we can

the 

, we

remaining 

 have

costruct the

case

B5 Tr ,  

            • 

 r -~

[Sin]B, Tr, r 4-

     Suppose F- Tr , r 

(A) We first consider the case n ? II e(+i)II . 

(Al) The case Tr = Tr(+i): 

     In this case, noting that [O1]01-(+i)D(TD[On+1][Sin]pi)) 

E r by Lemma 6.7, we first construct the following proof 

figure.

(1) 1 -> 

     T

[Sin]pi [Sin]pi

[On+l][Sin]pi [S.n]pi

Tr(+i) -> Tr(+i) TD[On+l][Sin]pi [S.n]pi

Tr(+i.)D (TD[On+l][Sinipi), Tr(+i) i [Sin]pi

[O1](Tr(+i)D (TD[On+l][Sin]pi)), Tr(+i) [Sin]pi

Tr(+i) r -^ [Sin]pi
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     Let 

following 

(2)

j  x i. 

proof

  Then, 

figure.

E. E. 

P-J-*Pj7

since [Ol]{S

[Si 1]p;
E

.1}p
3E

r, we 

E. 

 P. 

Tr(+1)

have

P. 

P.

E 

E

the 

1

E. 

~pj 3 Tr(+i) -~

E. 

           [Sin]p. is

E.

Tr(+i) -

Tr(+i) , [Sil]p;
3v [S

i1] p

E E. 

j [S
in]p; 3

Tr(+i) , [Ol]{S.l}p. [S_•n]p•
E

3
        -J -J 

E. 

Tr(+i), r [Sin]p.3                                     3 

    From (1) and (2) we have 

(3) Tr(+i), r -> [Sin]ir(+i). 

(A2) The case IF = Tr (-i) 

     We treat the critical case of n = IIE(+i)II. Then we 

see lie (-i)11 = n-1 ? 1, since Tr (-i) = Tr E Ho_ So, we can 

take j x i such that C. = +. Then, since IIE(+i)(+j)II = 

n and pc(-i)(+j)II = n-1, we have 

[Ol](Ir(+i)D(T3[011.].'[Sjn-l]p.) E r 

and 

[Ol](Tr(-i)D(T'[0n][Sjn-l7p.) E r. 

Hence we obtain the following proof figure. 
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 Tr(-i), r [Sin][S.n-lip r -} [S.n](Tr(+i) [S.n-1]p.)

r [Sin] 'Tr(+i) Tr(-1) r [Sin](Tr(+i)vir(-i))

that 

(4)

(4), 

(5) 

Using

From

Since

r CSin]Tr(-i) 

the above proof, for any n > II E (+i )II , it 

r -. [Sin](-i). 

Tr = Tr (+i) or Tr = Tr (-i) , we have from

(5),

I- 

we obtain

Tr, 

the

r 4- [S.n]Tr. 

desired proof 

Tr, r 

[Sin]Tr, r

figure: 

   •

follows

(3) and

  (5) 

7, r -' CSin]Tr [Sin]Tr, r [S.n]S

(B) 

have 

(B1)

We 

Let 

the 

I- 

The

7, r [Sin]B 

next consider the case n < IIE(+i)II 

c' = c ® ei. Then , by induction 

 following two cases . 

Tr(E') , r s: 

 following proof figure takes care 
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hypothesis, we

of this case.



               • 

 Tr(E), r s ir(E' ), r 0

• 

• 

Tr, F [Sin](Tr(E)vlr(E'))

Tr(E)v1T(E' ), r S

[Sin](Tr(E)vTr(E')),r--R

[SinE"R(E)vir(E' )),r i [S1n]8

Tr, r -3- [S.n]R 

(B2) I- R, Tr(e'), r -- : 

     We first show that 

(6)I- Tr, F -' <Sin>Tr(E' ). 

Suppose IF = Tr(+i). Then, by Lemma 6.7, we have B,1(Sin) V 

pi. Since Bi(Sin) is a knowledge base by condition (##), 

we have B1(S1n) I-- -1[Sin]pi by Lemma 6.4. (Note that we 

are considering in KT5. Here we remark that this is the 

only point where we use the assumption that our logical 

system is KT5.) Then by Eq(*), we see that 

[01](TJ[01](TrJ[Sin]-' [Sin]pi)) E r. 

Hence we have 

(7)E- Tr, r } <Sin>-'pi. 

Now, for any o, T E Wff we have 

(8)- <Sin>a, [S1n]T <Sin>(6AT)
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as can be seen from the following proof figure.

 a, T GAT

(OAT), T } ~G

[Sin]
—' (OAT)

 [Sin]T
-)" [S

in]'

Now 

put 

be

<S.n>e 
  1 , [Sin]T

we can obtain (6) from 

 a = -pi and T = A p. 1 

treated similarly. 

  We can then construct the

-<S

(2), 

E. 
3) .

i
n>(GAT)

(7) 

The

following

and (8) 

case if =

proof

(where 

Tr(-i)

figure:

we 

 may

S, Tr(E' ), r

S, r - -' Tr(e' )

[Sin]R, r -~
-1 Tr (E' )

      (6) 

Tr' r } <Si

CSinJR, r CSin]'IT (6 )

n>Tr(E' ) <S.n>TT(E' ) 

  1

, [Sin]R, r

CSin]6, Tr, r -~

a = [On]R: 

     If I- S, 

([On]--) . So, 

ing two cases

Tr, F 

suppose 

 (C) and

then 

I- Tr, 

  (D).

we 

r

 have 

  13. Then

[0n]R, Tr, 

we have

r-~ 

the

  by 

follow-
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(C) The case n  >_ max{IIc(+i)II I i = 1, ••• , k}. 

     As in (A2) it is sufficient to prove the critical 

case of n = max{Ile(+i)II I i = 1, ••• , k}. Let us put 

I(6) _ {i I Ei = +}, 

(Cl) The case I(c) x {1, 2, ••• , k}: 

     In this case, we have n = Hell + 1. Consider any i 

such that Ei = +. Then we have Tr = Tr(+i), and since n-1 

Hell = II E(+i)II , we have Bw(Sin-1) I- pi by Lemma 6.7. 

Hence we have 

CO1](TrD(TD[On]CSin-1]p1)) E r. 

So, we have 

(9)~-Tr, r -~ [On]CSin-l]pi(if Ei = +) 

and hence 

(10) i- Tr, r [On]pi(if Ei = +). 

Let D = {S E {±}k I I(c) c I(6)}. Then, by (10) we have 

(11)I-- Tr, r } [On] V 'rr(s). 
SED 

Now, take any S E D- { c } . Then we have II SII > II Ell = n-1. 

 S.   inceTr(c)EII0,wecantakeanisuchthatEi=+ 

Then we have S = S(+i). Since II611 > n-1, we have 

BTr(S)(Sin-1) pi, by Lemma 6.7. Hence, we have 

CO1](7(S)D(TD[On]-1[Si1-1-1]pi)) E F. 
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From this, 

figure. 

(12) 

 T<, r ,

together with

 (9) 

[On][Sin-1]pi

(9), we have the following proof

. 

r , [On](ir(S)» [Sin-l]pi)

Tr, r -; [On]([Sin-1]piAn(S)D-n[Sin-l]pi)

TT, r , [On] 'Tr(S) 

From (11) and (12), we have 

(13)I— Tr, r - [On]Tr. 

(C2) The case I(e) _ {1, 2, ••• , k}: 

     In this case, we have e = + ••• + and n = Ilell (= k) . 

Let S E E0-{c}.Wecanfindanisuch that S.= +_ 

                                                               i Then we have n-1 - II dll = II 6 (+i) II • Hence, by Lemma 6.7 , we 

have B11(d)(Sin-1) l- pi.Hence , we have 

(14)[0l](Tr(d)D(TJ[On][S
in-1]pi)) E r. 

On the other hand, sincen-1 < Hell = II e(+i)II , applying 
Lemma 6.7, we get B

i(Sin-1) L pi. So, we have 

[01](TrD(TD[On]-1[Sin-1]p
i)) E r. 

Hence, we have 
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(15) 

From  (14) 

(16) 

By (16), 

we have 

(17) 

      Now, 

struct the

ir, r } COn) CSin-1]pi . 

  and (15), similarly as in (12) , we obtain 

Tr, r -} [On]-17(6) (if 6 E E
0-{c}). 

tohether with the fact that I-- I' [On]  V n(6) 
) (EE0 

Tr, r -4- [On]Tr. 

by the results of (Cl) and (C2), we can con-

 following proof figure: 

•.. 

Tr, t -- 

  (13) or (17)[On]ir, P -' B 

Tr, r -- [On]Tr[On]n , t ; [On]f3

(D) 

Take 

Then' 

i = 1

The case 

Let D = 

any 6 E 

since k

n 

 {6 

E0 

 > 

k}

E 

-D 

n 

>

Tr, r COn]~ 

max{IIs(+i)II I i = 1, 

EO I n < max{IIs (+i)II I i 

and choose an i such 

by assumption, we have 

11 611 = IIs (+i)II . Hence, we 

  BTr(6)(S.n-1)I-pi

, k}. 

= 1, ... , k}}. 

that 6 = +. 

n > max{IIs(+i)III 

 have
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so that 

(18)  [O1](1r(6)D(TD[On][Sin-1]pi)) E F. 

On the other hand, we have 

                       B~(S.n-1)[71-pi 

regardless of Tr = Tr(+i) or Tr = Tr(-i), so that 

(19)[O1](TrD(T3[On]—'[Sin-l]pi)) E r. 

From (18) and (19), we have 

(20)I- Tr, r i [On]'Tr(6) (if 6 E E0-D). 

From this, we have 

(21) r } [On]  V Tr (6) . 
                               6ED 

     Next, let 6 E D. Then we can find yi, ••• , ym E D 

such that yl = s, ym = 6 and Ili' e yi+111 = 1 (i = 1, ••• 

m-1). Now, take any i such that 1 i s m-1. Let 

yle yi+l = e.. Then we have yi = yi(+j) or yi = yi(-j). 

Suppose, first, yi = yi(+j), Then yi+1 = yi e e. = y1(-1) 

Since yi+1 E D, we have n < max{Ilyl+1(+Q)II I Q = 1, ••• 

k} = Ily1+1(+j)II. Then we can apply (6) and obtain 

(22)~- Tr(yl), r <S.n>Tr(yi+1). 

We can obtain (22) similarly for the case yi = yi(-j) 

From (22), we get 
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(23) ~-  n(y1), r <On>n(yi+1) . 

From (23) we obtain the following proof: 

• ••• 

Tr(Y2), r <On>Tr(y3) 

COn7-17(Y3), r —Tr(Y2) 

COnThIn(y3), r Coni—'Tr(y2) 

n(il), r <On>Tr(y2) <On>Tr(y2), r <On>n(y3)

n(y) , r <on>Tr(y3) 

Tr(yl), r <on>Tr(yl)

 Tr(ym-1) 

<0n>Tr (ym-1

r 

),

 <On>Tr (ym) 

r -0- <on>Tr (Ym)

Tr(y1), F -+ <On>Tr(Y) 

Namely, we have 

(24)F- Tr, r 4- <On>n(6) (if 6 E D). 

(Though the above proof applies only for m > 1, 

clearly holds even if m = 1 (i.e., E = 6).) 

     Now, by induction hypothesis of the lemma, 

following two cases. 

(Dl) F- Tr(6), r S for any 6 E D: 

     Let D be enumerated asD = {61, •.• , dd 

have the following proof: 
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we

(24) 

have 

  Then

the 

 we



(25)

 Tr((S

• 

d-1)
, r } Tr(S

• 

d

• • 

r

Tr(S1),  

              •  r

Tr(S2)v

Tr(Sd-1)vTr(Sd), r s 

••• vTr(Sd), r s

     (21) 

rr, r}[On]

V 
SED

Tr(S), F -> s

V 
SED

Tr(S) [On] V 
SED

Tr(S), r i [On]0

Tr, r [On]6

(D2) I-

In

(3, Tr(S), r -+ 

this case,

 for some 

we have the

S E D: 

following proof figure:

(26)

R, Tr(S), r 4-

s, r Tr(S)

(24) 

Tr, r ± <On>Tr(S)

[On]0, r -~ [On] 'Tr(S)

<On>ir(S), [On]R, r -~

[On]R, Tr, r -*

This completes the proof of Lemma 6.9.
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 <Eo; 

 (i) 

(ii)

(iii) 

(iv) 

As an

Suggested by this lemma, we 

r, v> as follows: 

(E, 6) E r(Si, n) iff 

  (a) E = 6 

or 

  (b) E $ 6 = ei and n < 

(E, 6) E r(0, n) iff 

(c) E = 6 

or 

  (d) n < max{II E(+i)II I i = 

      n < max{II8(+i)II I i = 

  E E v(pi) iff E. = +. 

  v(1) = 0. 

 example, we illustrate M

construct a KT5-model M =

IIE(+i)II = 116(+i)II. 

 1, • • • , k} and 

 1, ... , k}. 

for k = 3
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 -+i

S31 

/ 01 

c

S21 

01

--+

11 

02

Si' 

Ol

Si' 

01

       S32 

02 

+++

S22 

02

++-

S21 

01

+--

    S31              3 

Ol

+-+

Fig. 6.3. Structure of M for k = 3
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     The following lemma shows that M is a model of  r . 

     Lemma 6.10. Let e E E0and a E Wff . Then we have 

F- ¶(C), r -; a if and only if 6 k a (in M). 

     Proof. The proof is obtained by faithfully tracing the 

proof of Lemma 6.9. We prove that (a) e k a implies 

F- TT(e), r -} a and (b) 6 =1 a implies I-a, 7(e), r -> , by 

induction on the construction of a. However, we only prove 

the case a = [On]3 since other cases may be dealt with 

similarly by referring to the proof of Lemma 6.9. 

Proof of (a). 

     Suppose E k [On]. We have two cases. 

(A) The case n > max{II e(+i)II I i = I, . • • , k}: 

     Since e k R, we have 

F-- 7(6), r -> 13 

by induction hypothesis. Together with (13) or (17) in 

Lemma 6.9, we have: 

. 

           (13) or (17)7(6), r -> R 

7(6), r ; [On]n(s) [On]r(e), r } [On]P

7(c), r -> [On]13, 
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(B) The case n <  max{II  e  (+i)II I i = 1, • • • , k} 

     Let Dn {S E E I n< max{II6(+i)III i =- 1,•••, k}}.    n0 

By the definition of r, we have EOnSfor any 6 E Dn. 

Then we have 6 k P., since E k [On70. Hence, by induction 

hypothesis, we have 

1T(6), r 

for all 6 E Dn. Then we have 

Tr(E), r -' [On]fi 

by (25) in Lemma 6.9. 

Proof of (b). 

      Suppose E =1 [On]B.  We have some 6 such that 6 =1 P. and ES-r--->16. 

                                                         (C) The case n >_ max{II E (+i)II I i = 1, • • • , k} : 

      In this case, by the definition of r, we have 6 = E. 

So, we have 

I-  1r(E), r 

by induction hypothesis. Hence we have 

~- [On]R, 1r(6), r > . 

(D) The case n < max{II E (+i)II I i = 1, • • • , k} : 

      By the definition of r, we have 6 E D. Then , by 

(26) in Lemma 6.9, we have
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 [OnD, 1r(c), r . 

     Lemma 6.11. Let E E E
Oand a E Wff. Then we have 

B7(c)(Sin) 1- a if and only if E k CS.n]a. 

     Proof. Only if part: Suppose B,T(e)(Sin)}-a.Then 

we have BTr(c)(Sin) J- [Sin]a . Hence, we have 

[O11(TJ[01](lr(c)D4 .S.n]a)) E F. 

1 From this we see that 

ir(c), r - [Sin]a. 

Hence, by the above lemma, we have E k [Sin]a. 

     If part: We have two cases. 

E. 
(A) n >- IIc(+i)II: Since ESin][S.n-l] [S.l]p.I c 

                                                                            1

E. 

B.1(E)(Sin) for any j x i, and B,1(E)(Sin) f- pi 1 (Lemma 

6.7), we have 

~- B1(E)(Sin) 7(E). 

Since E k [Sin]a, we have 

~- ir(E), r [Sin]a 

by Lemma 6.10. Thus we obtain the following proof figure:
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                                                                                                                     • 

                                                                                                               . 

                 (S.n) -> n(e) Tr(e), r->[Sin]a   Bff(e) 

                  B,lT(e)(Sin),rCSin7a 

             B7 (e) (Sin) , [SintCSin7a 

: 
: 

    BlT(£)(Sin),[Sin]•••[Sil]r-'-CSin7a 
                                                (extension) 

                     B.R(e)(Sin) } CSin7a 

                                                Sin 

(B) n < Ile(+i)II : Let 6 = e®ei. Since e>6, we 

have 6 k [Sin]a. Hence we have the following proof figure: 

                            Tr(e),r->CSin]aTr(6),r-'-[Sin]a              •

BTr(e)(Sin)-Tr(e)v7(6) Tr(e)vir(6),r-> CSin7a 

                   BTr(e)(Sin),r ~CSin]a 

                   B~(e)(Sin),CSin] ••• CSi17rCSin7a 

                    B~(e)(S-n) - CSin7a 

      Combining the above two lemmas, we have 

     Corollary 6.12. Let e E E0and a e Wff. Then we have 

Bea(e)(Sin) j- a if and only if l- Tr(e), r , [Sin]a . 
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    Let us recall here that we have been arguing by assuming 

that <<B (S.n)>, I'> is a solution of $ satisfying (#) 
         Tr 1 

and (##).By inspecting Eq(*), we see that  r is uniquely 

determined by Lemma 6.11 (provided that  << BIT(Sin)>, r> is 

in fact a solution of $ under (#) and (##)). So, let 

c Wff be defined by: 

k 
={[01] V pi}u{[01]{Sil}p. I j x i, i = 1, ... , k, j = 1, ... , k} 

i=1 

u{[O1](1TJ(P(Tr, 1, n, Pi)D[On+l][Sin]pi)) I Tr E 110, i = 1, ••• , k, n E T} 

u{[01](7(P(T, i, n, p )D[On+l]—'[Sin]pi)) I Tr E II6, i=1, ... , k, n E T} 

u{[Ol](P(Tr, i, n, a)D[01](TrD[Sin]a)) I Tr E 110, i = 1, ••• , k, n E T, aEWff} 

where P and P are defined by

and

Using this 

equations: 

B~(S.1) _ [Si

P(1T(s), i, n, a) =

 P(Tr(e), i, n, a) _ 

, we define BTT(Sin) 

e. 

17T'u{CSilbj 3 I j x 
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 T if  e  k [S.n]a 

1 otherwise 

 T if c =1 [S._la 

 Iotherwise. 

inductively by means of 

  j =      1~, k}, 



 B(Sin+l) _ [Sin+17B7(Sin) 

            u{CS.n+l]CS~n]pjIBiT(Sjn) f--pj, j = 1,•••,k} 

u{[Si11+27—'CSjn7pj I B,Tr(Sjn) V pj, j=1, ••• , k}, 

where Tr = Tr(s). 

     In order to show that thus defined << B,r(Sin)>,r'> is 

the unique solution of $ under (#) and (##), we prepare 

several lemmas. 

      Lemma 6.13. I satisfies (#), i.e., for any c E E0, 

{ir(c)}uI' is consistent. 

     Proof. It suffices to prove that c k {ir(c)}ur (in M). 

It is clear that c k Tr(c). It remains to show that c k I. 

However, we only prove (a) c k [01]0rD(P(Tr, i, n, pi)D[On+1] 

[Sin]pi)) and (b) c I [0]7(Tr~(P(Tr, i, n, pi)~COn+l]~ CSin7 

pi)), and leave the verification of remaining parts to the 

reader. 

Proof of (a). 

     Take any 6 E E0 such that c 01>6 and suppose that 

6 k Tr and 6 k P(Tr, i, n, pi). Then we have Tr = Tr(6) and 

6 k [S.n]pi. Suppose, by way of contradiction, that there 

is a y E E0 such that 6  On+1 > y and Y =1 [Sin]pi. Then 

we have y x 6 and hence n+1 < max{il 6 (+Q )il I 2. = 1, • • • , k} . 

Hence, n < II6(+i)II. But, since 6 k [Sin]pi, we have n >_ 

il6(+1)II, which is a contradiction. 
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Proof of (b). 

    Take any 6 such that e 01 > 6 and suppose that 

6  k Tr and 6 k P (Tr , i , n, pi) . Then we have Tr = Tr (6) and 

6 =I [Sin]pi. Suppose further that there is ay E E
psuch 

On+l  that 6 >y and y k [Sin]pi. Then we have yx6 

and hence n+1 < max{ II y(+2,)II I Q = 1, • • • , k} . Hence, n < 

Ily(+i)II. But, since y k [Sin]pi, we have n Ily(+i)II. 

This is a contradiction. Thus, we see 6 k [0n+1]—(Sin]pi. 

      Parallel to Lemma 6.9, we have the following lemma. 

     Lemma 6.14.  Let e E E0and Tr =Tr(e) . Then, for any 

a E Wff, we have either 1-- Tr, P -4- a or a, Tr, r . 

      Proof. By a slight modification, the proof goes exactly 

parallel to that of Lemma 6.9. For example, in place of (6) 

in Lemma 6.9, we obtain 

(6)}- Tr, r <Sin>11- (e' ) 

by the following reasoning: Suppse Tr = Tr(+i). Then, since 

n < IIE(+i)p , we have e k [Sin]-, [Sin]pi (by the defini-

tion of M). Then, by the definition of f, we see that 

[017(TJ[0l7(TrD[Sin][Sin7pi)) E r. 

Now the proof of (6) goes completely parallel to the proof 

of (6) in Lemma 6.9. 
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Lemma

The following lemma may also be proved 

 6.10.

parallel to

     Lemma 

I- 7r(e), I'

6.15. Let e E E0 and a 

-> a if and only if e k a .

E Wff. Then we have

We next prove the analogue of Lemma 6.11.

     Lemma 6.16. Let e E E0and a E Wff. Then we have 

     (Sin) ~- a if and only if ek[Sin]a. Bn(e) 

     Proof. We prove the following three propositions by 

induction on n. 

(An) B,r(e)(Sin) l- a impies e k [Sin]a. 

(Bn) n > IIC(+i)II implies BJ1(+i)(Sin) l- piand 
Bar(-i) (Sin) ~- pi (if 'rr(-i) E 11 ) . 

(Cn) C k [Sin]a implies B
T(C)(S.n)- a. 

     We first remark that to prove (A
n) it is sufficient 

to prove: 

(An) e k B11.(C) (Sin) . 

For, suppose e k B
Tr(C)(Sin) and BTi-(C)(Sin) I- a. Then we 

have I- Bf (C) (Sin) a, and hence I- Bff (C)(S . n).4-[Sin ]a 
(by (}n, [Sin])). Since ekB

ff(e)(S.n),we have e 

[Sin]a by the Soundness Theorem .
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n  = 1: 

Proof of (A'). e k B7(E)(Sil) is easily verified since 

E k I' and I-- R } [S.11]3 for any E r. 
Proof of (B1). This is proved just as in Lemma 6.7. 

Proof of (C1Y. This is proved similarly as in Lemma 6.11 

by means of (B1) in place of Lemma 6.7 and Lemma 6.15 in 

place of Lemma 6.10. 

n > 1: 

Proof of (An). That E k [Sin]B,ff(E)(Sin-1) easily follows 

from (An_l). Next, suppose that B7(E)(Sjn-1) l-- p. By 

(An _1) we have 

(1)E k [S.n-lip.. 

Hence, by the definition of M, we have E k pj and 

 (2)n-1 >- Il E(+j )II = II EII . 

 Suppose E =1 [Sin][Sjn-1]pj. Then, for some S such that 

      S.n     1--------
> S , we have 

(3)S =1 [S.n-lip.. 

 From (1) and (3), we see that C x 6, and hence n < 

IIC(+i)II. This means 

n-1 < Ha, 

, 

 which contradicts (2). Thus we have shown that
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 e  k [Sin]CSjn-l]pj. 

     Suppose now B,T(E)(Sjn-1) 1fP3— Then we have 

(4)e =1 [Sjn-1]pj 

by (0n -1). By (4) and by the definition of M, we have 

(5)n-1 < Ile(+j)II. 

By way of contradiction, let us suppose e =1 [Sin] '[Sjn-l]pj. 
                     S.1--------n 

Then, for some 6 such that e>6, we have 

(6)6 k [Sjn-l]pj. 

By (4) and (6), we have 6 = e ® ei. By (6) we see 

that 

(7)n-1 116(+j)11. 

By (5) and (7), we have Ile(+j)II > I16(+j)II. Hence we see 

that i x j and e(+i) = E. Now, since e x 6 and 

    S.n 
e  1 >6, we have 

(8)n < 11e(+i)11= Haaa . 

On the other hand, from (6) we have n-1 >_ 116(+j)11. Hence 

             n z II6(+j)(+i)11 = Ile(+j)11 = 11 0, 

which contradicts (8). Therefore we see that e k CSin]-~ 

[Sin-l]pj if Bl.(e)(Sjn-1) V pi. 
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Proof of (B
n). First we show that Bn(+i)(Sin)I- pi from 

the assumption that n = Ile(+i)II . Since n > 1, we can take 

a j x i such that cj = + . Then Ilc(+i)(+j)II = n > n-1. 

Hence we have c(+i) =1 [Sjn-1]p.. So , by (An_1),we have 
BTr(+i)(S.n-1)1/- 7pj.Hence, 

(9)[Sin]—'[S•n-1]p.E B
Tr(+i)(Sin). 

Since Ile(-i)(+j)II = n-1, we have c(-1) k [S
jn-1]p.. Hence, 

by (C n_1),we have BT.(-i)(S.n-1)p. Hence, we have 

P(Ti(-i), j, n-1, p5) = T, so that 

(10)[Ol](Tr(-i)D(TD[On][S.n-1]p.)) E I'. 

From (9) and (10), we have B,f(+i)(Sin) 

Since B7(+i)(Sin) F- Tr(+i)VTr(-i), we see, Bff(+i)(Sin) F-

Tr(+i). Hence BTr(+i)(Sin) f- pi. 

     The proof of B,r(_i)(Sin) F- pi from the assumption 

that n = Ilc(+i)II is obtained similarly by modifying the 

corresponding proof of Lemma 6.7. 

     The case n > lIc(+i)II is now easy. 

Proof of (C
n). Similar to the proof of (C1). 

      Corollary 6.17. 

P(n, i, n, a) = T if and only if B,1(Sin) F- a. 

      By Lemma 6.5, we also have the following corollary. 
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     Corollary 6.18.  137T(Sin) is a knowledge base for Sin. 

     By Corollary 6.17, we see that << B11(Sin)>, r> is 

indeed a solution of $. Furthermore, by Lemma 6.13 and 

Corollary 6.18, we see that << B71.(Sin)>,F> satisfies (#) 

and (##). Since we already know that $ has at most one 

solution under (#) and (##), we have thus established the 

following theorem. 

     Theorem 6.19. Under the conditions (#) and (##), 

$ has the unique solution << Bir(Sin)>,r>. 

     Thus we have seen that r may be regarded as the formal 

counterpart of the King's order in our formal system. The 

puzzle is then reduced to the problem of showing that: 

(P1) If IIEII = n and Ei = +, then Bff(E)(Sin)piand 

           (Sin-1)pi.   B~(E) 

We note that we can moreover prove the following: 

(P2) If IIEII = n and Ei = -, thenB ir(E)(Sin+l) F pi 
      and Bff(e)(Sin) pi. 

Though Lemma 6.16 gives us a solution to the problems (P
1) 

and (P2), we show below a sample proof for the case k = 3 

and E _ ++-: 
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    We put  • 

p2 E B7I-(S12) 

[S21]p2)) E r 

proof of

 = n(E) 

since B 

 since

plAp2Ap3. Noting 

1(S21) V p2, and 

B1T(-+-)(S21) V p2,

that CS12_1-1[S217 

CO1](r(-+-)D(TD[02] 

we can costruct a

B
.(S12) } p1

as follows.
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     The model  M  = <E
0;r,v> has played a crucial role 

for the solution of $ . We wish to point out that M may 

be considered as essentially the unique and hence the inher-

ent model of P. Let us consider any KT5-model N = <W
N; 

rN, vN> such that w0kI'(in N) for somew
0E WN. Let 

W0= {w E WNI (w0,w) E r
N(0, 1)}. Then by restricting rN 

and vN to W0, we obtain a model N
0= <W0;r0,v0> and 

still have w0kI'(in N0).Let N0= N0/XN(where we 
0 

take relational closure and characteristic function in the 

category IK5(Wff)). Then by Theorem 4.9, we have that N0 

is reduced and w0k I' (in N0).We also haver0(0, 1) _ 

W0xW0.Hence we have w kI'(in N0) for all w EW0.We 

will prove that N0 is strongly isomorphic to M. 

      First, we define a function 

                   h : W0—>E                                  0 

by letting h(w) be the unique e E E0 such that w k fr(e) 

(in N0). Sincewk I' and [Ol]V pi E I', we see that h 

is well-defined. Let w E 1;10 and e = h(w). Take any 

formula a. Suppose e k a (in M). Then we have 1-71-(e), t 

a by Lemma 6.15. From this, since w k f and w k ir(e), 

we have w k a. Thus, we see that h is a homomorphism (in 

IK5(Wff)). 

     Let e be any element in E0. Take any w E W0. Since 

t -> <01>Tr (e) , we have w k <0l>Tr (e) . Then there is a w'
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E W0such that  w' k rr(e). Hence we have h(w') = E. Thus 

we see that h is onto. 

     Since NOis reduced, XN = XMoh is an injection by 

0 Lemmas 4.2 and 4.7. Henceh is also an injection. 

     Take any S E Sp and n E T. Let w, w' E W0. Suppose 

Sn 
w w'. Then w k <Sn>Tr(h(w')) (in N0). Hence h(w) k 

<Sn>1r(h(w')) (in M). This means h(w)Sn>h(w'). Next, 

suppose h(w) Sn>h(w'). Then h(w) k <Sn>Tr(h(w')) (in M). 

Since h-1 is a homomorphism, we have w k <Sn>Tr(h(w')) (in 

N0). Hence there is some w" such that w>w" and 

w" k ¶r(h(w')). So, we have h(w") = h(w'). Since h is 

injective, we have w" = w', so that w Sn >w'. 

     Thus we have proved that NO is strongly isomorphic to 

M. 

Remark. We can analyze the wise men puzzle furthermore by a 

method similar to the one we used in this §. We wish to 

discuss it in a paper to be published jointly with McCarthy 

et al.
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1) 

2) 

3) 

4) 

5) 

6)

                      NOTES 

Page 13, line +5. 

   denotes the usual ordering of natural numbers . 

Page 19, line +11. 

Our definition of  GTi are motivated by Ohnishi-Matsumoto 

[24]. 

Page 32, line +2. 

We will abbreviate this to isincons.. 

1 Page 56, line +1. 

For example, the sequent p, [St] 1[St]p (where p 

Pr) is not provable without cut. 

Page 56, line +10. 

Using the completeness of KT3, 4-models, Hayashi [9] 

obtained a model theoretic proof of this theorem by a 

method due to Kripke [15]. 

Page 59, line +1. 

Elementary terminology of category theory in this chapter 

mostly follows Mitchell [23]. 
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7) Page 61, line +2. 

    Mitchell [23] uses the term null object instead of 

     termianal object. 

8) Page  74, line +6. 

    For a finite set A of wffs, we define A a by 
                                                       aEA 

a1A ••• n' where a1, ••• ,an is any enumeration of 

       A. 

9) Page 88, line +l. 

    Define a relation ROby that (Ei, Ek) RO (E~, Ek) 

     iff the two points (Ei,Ek) and (ej, Ek) are connec- 

     ted by a line in this figure. Then the reflexive and 

     transitive closure of this relation gives the accessible 

     relation of U. 

10) Page 99, line T3. 

     We need to assume that Pr is non-empty. In fact, if 

     Pr = 0, we have Lemma 6.4 in place of this lemma, since 

     in this case KT4 is equivalent to KT5. 

11) Page 107, line T5. 

     For any E E E, we will employ the convention of denoting 

     the ith coordinate of E by E. . 

                                                    i
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