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                   §1 Introduction  

     In recent years there has been increasing interest in 

analyzing the computational complexity of programs. The 

multitape Turing machine has become the standard model used 

for evaluating time and storage complexity, even though such 

machines are not much like any existing comupters. Some 

authors, however, implement there algorithms not on Turing 

machines but on random access machines. In 1972 S.A. Cook 

introduced a formal model of a random access machine. This 

model is closer to real computer, for real computers have to 

calculate the address of desired storage cell before fetching 

its content. 

     Notation. Let N denote the set of natural numbers and 

let [k] =  {0,1,...,k-1} for each k E N. Hence [0] = q. 

We regard [k] as an alphabet consisting of k symbols. 

Thus, a language is a subset of [k]* for some k E N. 

     Let I and 0 be sets. We denote by [I}0] the set of 

all partial functions from I to 0. 

     Definition 1.1. A computing machine is a 3-tuple M = 

(L,I,t), where 

(i) L is a language, 

(ii) I is a function from L to [Ii0], and 

(iii) t is a function from L to [IAN] satisfying the 

        following condition: for each PE L and x E I , 

(3.1) I(P)(x) is defined iff t(P)(x) is defined. 
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     The function I is called the interpretation of  M and 

 I(P) is the partial function realized by P under M. We say 

that t(P) is the time complexity of P, and sometimes write 

t(P,x) instead of t(P)(x). The set I is the input domain  

and 0 is the output domain. 

     Definition 1.2. Let M = (L,I,t) and M' = (L',I',t') 

be computing machines with the same input domain I and output 

domain 0. Let f:N N be a function. Then M is said to be 

f(n)-translatable to M' if and only if for each Pe L, there 

exist P'EL' and constant c satisfying the following 

conditions: 

(1.2) I(P) = I'(P'), 

(1.3) for each x CI, if t(P,x) is defined, then 

t'(P',x) cf(t(P,x)), 

that is, if a program P in L takes time T(x) for its 

execution, then there is a program P' in L' which computes 

the same partial function as P within time cf(T(x)). If 

f(n) = n, we say that M is linearly translatable to M'. 

If f is a polynomial, then M is polynomially translatable  

to M'. 

     In this paper, we consider the following types of 

computing machines: 

      RAM ... the random access machine with indirect addressing, 

      RAMR... the random access machine without indirect addressing 
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     SM  ... the step machine with indirect addressing, 

     SMR ... the step machine without indirect addressing, 

     TM ... the multitape Turing machine. 

     We compare these models on the basis of their ability to 

reflect the complexity of an algorithm. The results obtained in 

this paper are summarized in Fig 7.1. In [7 ], Cook has shown 

that the RAM is n2-translatable to the TM. In Section 5, we show 

that this upper bound cannot be improved, that is, we show that 

the RAM is not n2-£-translatable to the TM for any E > 0. This 

yields a negative answer to an open problem suggested by Borodin 

[ S ] and Aho, Hoperoft and Ullman [ 2 ]. 

     One of the purpose of this paper is to construct a good model to 

use in the theory of computational complexity. We maintain that the 

SM is a good model, since both RAM and TM (and hence, any restricted 

type of these machices) are linearly translatable to SM. 

                     §2 Random Access Machine  

• 

      Definition 2.1. Let D be the set of functions d:N -} N. 

Each element d of D is called a memory. For each i N, d(i) 

represents the contents of register i. For each d ED and 

i,j EN, let d(i t j) be the memory defined by 

                   d(k)if k / i 
     d(i{-j) (k) = 

j if k = i 

For each n EN, let 

r log2 n if n > 2 

     Log n = 
          1if n < 2. 
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Definition

meanings and 

is an element

 execution 

 of

2.2. The RAM 

 cution times, 

and d

 instructions 

 are given in 

represents a

, together with their 

 Table 1.1, where n 

current memory.

Instruction next memory execution time for RAM

1. LOAD  n  d(0+-d(n)) Leg n+Log d(n)

2. SETC n d(0+-n) Log n

3. STORE n d(n±d(0) ) Log n+Log d(0)

4. READ n d(0-"input") Log n+Log "input"

5. WRITE n d Log n+Log d(n)

6. JZERO n d Log n

7. ADD n d(0<-d(0)+d(n)) Log n+Log d(0)+Log d(n)

8. SUB n d(0td(0)-d(n)) Log n+Log d(0)+Log d(n)

9. INCR n d(0Fd(0)+1) Log d(0)

10. DECR n d(04-d(0)-1) Log d(0)

11. LOAD *n d(0÷d(d(n)) ) Log n+Log d(n)+Log d(d(n))

12. STORE *n d(d(n)±d(0) ) Log n+Log d(n)+Log d(0)

RAM 

the 

is 

is 

it

                        TABLE 2.1 

            RAMA Instructions and Execution Times 

  Definition 2.3. (a) A RAM program is a finite sequence of 

 instructions. (b) A RAMR program is a RAM program without 

 instruction types LOAD *n and STORE  *n. (c) A SM program 

a RAM program with neither ADD nor SUB. (d) A SMR program 

a RAM program without ADD, SUB, LOAD *n and STORE *n. Thus, 

is a SM program without LOAD *n and STOR *n.



                                                               * 
     Definition  2.4. An element (i,x,y,d) of NxN XN xD is 

called a configuration  of random access machines. Let P = s1s2_..s 

be a program with si being instructions. Let 17 be the relation 

over the configurations defined as follows. We write 

(i,x,y,d)  (i',x',y',d') 

if and only if the following conditions are satisfied: 

(1) 1 < i < k, 

(ii) if si is JZERO n and d(0) = 0 then i' = n else 

          = 1+1, 

(iii) if si is READ n then x = a-x' for some a E N else 

       x' = x 

(iv) if si is WRITE n then y' = y•d(n) else y' = y, 

(v) d' is the next memory determined by Table 2.1. 

Let IP be the reflexive transitive closure ofP.If al; 
and there is no y such that 0-pY, then we write a p. 

     Let d0 be the memory defined by 

d0(i) = 0 for all i E N. 

     Let I(P):N* 3 N* be the partial function defined by 

I(P)(x) = y iff (l,x,x,d0) (i,x,y,d') 

for some iE N and d'E D. i(P) is called the partial function  

realized by P.

k
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     Definition 2.5. (a) Time complexity of RAM and RAMR: 

The time complexity of a RAM program (or a RAMR program) P 

is the function  tRAM(P):N } N such that tRAM(P)(x) is the sum 

of the execution time taken by each instruction executed on input 

x, where the time required by each instruction is shown in Table 

2.1. 

     (b) Time complexity of SM and SMR: The time complexity 

of a SM program (or a SMR program) P is the function 

tSM(P):N-N such that tSM(P)(x) is the number of instruction 

steps executed by P on input x. That is, in these machine, 

each instruction requires one unit of time. 

     Henceforth , the subscript M on tM is dropped whenever 

M is understood. 

      Definition 2.6. Let x = x1•x2...x
nbe an element of N 

with eachxibeing in N. The proper length of x, denoted by 

ln(x), is defined by 

n 

           ln(x) = y Log x.. 
                                  1 i=1• 

      Let f:N 3 N be a monotone increasing function and let P 

be a program. Then P executes within time f (alternatively, 

P is said to be f(n) time bounded) if and only if 

          t(P,x) < f(ln(x)) for all x E-N*. 

     A language L [[k] is recognized by a program P if 

L = Dom I(P). L is recognizable within time f, abbreviated 

f-recognizable, if there is a program P recognizing L which 

executes within time f. 
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     Definition 2.7. Let f be a partial function from N* to 

N*.  Then f is said to be of rank k if 

         Dom f C [k]* and Im f C [k]* . 

A program P is said to be of rank k if the partial function 

realized by P is of rank k. In this paper, unless stated 

otherwise, any program is supposed to be of finite rank. 

     Remark. Note that any partial function realized by a Turing 

machine is of finite rank. Now we show that the condition of 

Definition 2.7 is not too severe, that is, we show that any 

RAM program of infinite rank can be simulated within an n log n 

factor by a RAM program of finite rank. Let A = (l(0 U l)*2V 02)* 

Let :N* i A and v:A -- N* be the functions defined by 

C(x1.x2•...xn) = x12x22...xn2 

                 v(x12x22...xn2) = x1•x2•...x n, 

where xi is the binary representation of the integer xi. 

     Then, by the proof of Theorem 4.1 in Section 4, it follows 

that for any RAM program P, there exist a constant c and a 

RAM program P of rank 3 such that 

I(P) = v.I(P)•, and 

t(P,C(x)) < c•t(P,x)•log t(P,x). 

            §3 Relationship between the RAM and the SM

     Theorem 

a constant

3.1. 

                  such

Let P be a SM program. 

that

Then there exists
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          tBAM(P,x) <  c tsM(P,x) log tSM(P,x). 

     Proof. Let q be the largest constant appearing as the 

argument of SETC instruction in P. Let P be of rank k. 

Then, a number appearing in  any  register during the computation 

is less than q+k+t3M(P,x). Hence one instruction costs at most 

O(log tSM(P,x)) time under the logarithmic cost criterion. 

     Corollary 3.1. The SM is n log n translatable to the 

RAM. The SMR is n log n translatable to the RAMR. 

     Notation. Let Lo be the language defined by 

Lo = {w2wR2 I we {0,1} } 

where wR denotes the reveral of word w. 

     Lemma 3.1. Lo is recognizable by a SM program which executes 

within time f(n) = cn for some constant c. 

      Proof. Evident 

From Theorem 3.1 and Lemma 3.1, we have the following: 

      Corollary 3.2. L0 is recognizable by a RAM program which 

executes within time f(n) = cn log n for some constant c. 

      The SMR can be views as a Neuman-type model realization 

for counter machines [10,11]. The following lemma is an immediate 

consequence of the result obtained by Fischer, Meyer and Rosenberg 

[ 11 ]. 
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     Lemma 3.2. If L0is recognizable by a SMR program which 

executes within time f(n), then f(n) >  cn for some constant 

c > 1 and for all n. 

C.ombining__Lemmas _ 3.1_.and_ 3. 2, we have the following__ result. 

     Corollary 3.3. The SM is not polynomially translatable 

to the SMR. 

     Lemma 3.3. If L0is recognizable by a RAMR program P 

which executes within time f(n), then f(n) > cn2 for some 

constant c and for all. n. 

     Proof. Let q be the largest constant appearing as the 

argument of a SETC instruction in P. First we show that if 

m is the largest number appearing in any register after a computa-

tion of duration T, then 

(3.1) T > 2(Log2m-Log2q). 

      The proof will proceed by induction on the length of a computa-

tion . It is trivially true for computations of length 0, since 

a computation begins with all registers set to zero. Assuming 

that it is true for a computation 

(l,u,a,d0) (i,v,X,d), 

consider the next move of this computation. We may assume that 

the i-th instruction of P is of the form ADD p. Since 

T > 2(Log2max{d(0),d(p)}-Log2q), 

- 9 -



it follows that 

         T+Log  d(0)+Log d(p)+Log p 

          > 2(Log2max{d(0),d(p)}-Log2q)+Log d(0)+Log d(p) 

          > ({Log max{d(0),d(p)}+1}2-Log 2q) 

> 2(Log2(d(0)+d(p))-Log2q) 

Therefore (3.1) holds for all computations. 

     Let Q be the length of P and let k be the number of 

registers used in P. Let m be the largest number appearing 

in any register after reading a word of length 2. Then, for two 
distinct binary word u and v of length n21, if 

(l,u2uR2,d0) (i,uR2,X,d) and 

(1,v2uR2,d0) (i',uR2,~,d'), 

then either i / i' or d / d'. Hence we have 

(3.2) Q•(m+l)k > 22 

From (3.1) and (3.2), it follows that 

            T > cn2 

for some constant c > 0. 

      Corollary 3.4. If the SM is f(n) translatable to the RAMR, 

then 

              n) 
           supf(2> 0 . 

                      n-4-00n                2 
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If the RAM is f(n) translatable to RAMR, then 

          supf(n)log2n > 0 
 n}00 n2 

     Since the language L0 can be recognizable in real time by 

a Turing machine, we have the following result. 

     Corollary 3.5. If the TM is f(n) translatable to RAMR, 

then 

         supf(2) > 0. 
n}co n
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 §4. Linear Simulation of the RAM by the SM

     In this section, we show that the RAM is linearly 

translatable to the SM. Since the SM programs to do this are 

intolerably long, it will be convenient to describe them in a 

higher-level language called SM-ALGOL, instead of the "machine 

language" given in Senction 2. 

     Definition 4.1. A SM-ALGOL program can contain one-

dimensional infinite array. 

(a) An atomic statement is one of the followings 

   read vwrite vgoto label 

v -- wv ± w + cv÷w_c 

where c is a constant and v and w are either simple variables 

x or subscripted variables of the forms 

a[x]a[x + c]a[x = c]. 

(b) A condition is one of the followings 

v = cv c 

where c is a constant and v is a simple variable or a 

subscripted variable. 

(c) A SM-ALGOL program is a statement of one of the following 

types. 

     (1) atomic statement 

      (2) if condition then statement else statement 

                                  - 12 -



      (3) if condition then statement 

 (4) while condition do statement 

      (5) repeat statement until condition 

      (6) label: statement 

      (7) begin statement: ...; statement end  

      (8) procedure name (list of parameters): statement 

       (9) procedure-name (arguments) 

(d) Recursive procedures are not allowed in SM-ALGOL programs, 

and any procedure statement of type (9) should be previously 

defined by a procedure declaration of type (8). 

     The time complexity of a SM-ALGOL program P is the 

function t(P): N* i N: such that t(P)(x) is the number of 

executions of atomic statements and conditions executed by P 

on input x. 

     Lemma 4.1. Every SM-ALGOL program is linearly translat-

able to a SM program. 

     Outline of proof. Let P be a SM-ALGOL program. 

Without loss of generality we may assume that P contains 

no procedure call. To prove the lemma, it suffices to show 

that there exist a SM-ALGOL program P with exactly one 

array and constant c such that 

t(P, x) < ct(P, x) 

for all inputs x. 

      Let the arrays used in P be A0,A1,...,Ak -1,and 

let simple variables used in P be X1,..., Xt. The program 

P uses a single array A and simple variables x1,..., x
t,
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X',..., X.The program P computes values v and 2kv 

simultaneously whenever P computes the value v, that is, 

the program P can be constructed such that the following 

relations are satisfied during execution: 

          X! =  2k-X. 
   1 1 

A[2ki + j ] = Aj [i]0 < j < k - 1 

        A[2ki + j + k] = 2k•Aj[i]0 < j < k - 1. 

To do this, for example-, the statement Xi F X.+c in P is 

translated into 

begin Xi -- Xj + c; X! { X' + 2kc end, 

the statement Aj[X.] F Xt is translated into 

        begin A[Xi+j ]fXt; A[Xi + j + k] *- XL end, 

and the statement Xt t Aj[X.] is translated into 

        begin Xt F A[XI + j]; XL ± ADC' + j + k] end. 

It should be evident that the program P can be designed to 

simulate P faithfully within a constant factor_ 

      Definition 4.2. Let m be a positive integer, and let 

m0,m1, ...,mtbe elements of {0,1} such that 
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                          t 
      m= 1, m = m.2t.   t 

i=0 

In this paper, the binary representation for m means the 

word m0m1•••mt2. The binary representation for zero is the 

word consisting a single letter 2. 

     Theorem 4.1. The RAM is linearly translatable to 

the SM. 

     Outline of proof: Let P be a RAM program. We 

now construct a SM-ALGOL program P which linearly simulates 

P. The program P uses arrays ACC, TEMP, INDEX, DATA and 

CONSm for each constant m appearing as argument of instruc-

tions in P. Initially, for each constant m appearing in 

P, the binary representation mOm1...mt2 for m is stored 

in the array CONSm[0],..., CONSm[t+l]. 

      The array ACC represents the register 0. The binary 

representation a0al•••au+l for the contents a of register 

x is stored in DATA in a contiguous set of subscripted 

variables 

DATA[eJ = a0,DATA[e+l] = al,_..,DATA[e+u+l] = a
u+1. 

The integer e is called the _entry corresponding to x. If 

a register x has been used thus far in the computation, 

then the entry e corresponding to x can be found by means 

of the array INDEX and the binary representation xOx1•••xv+1 
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for 

such

x, 

that

 e0 

ev+x 

ITOP

that is, the 

INDEX[x0] = 

INDEX[e0 + 

                         • INDEX[ev + 

01

x0 

+x1 

v+1

integers 

e0 

xl] = el 

xv+11 = e

e0e1 — ev+l can

e. 
v+1

1 

e

be found

 a0

au+1=2

 ITOP  iDTOP -} 

                                Fig. 4.1. 

     The procedure FIND(X,e) finds the entry e correspond-

ing to X. The procedure LOAD(X,e) brings the binary 

representation aQal•••au+l to the array X. Precisely, 

these programs are not SM-ALGOL programs, since they contain 

                           - 16 -



the statement of the form e  f e + X[j]. This type of 

statement, however, can be easily translated into a SM-ALGOL 

program, since X[j] < 2 holds whenever this statement is 

executed. Clearly, the time complexity of FIND(X,e) is 

0(v), and hence 0(Log x). The time complexity of LOAD(X,e) 

is 0(u), and hence 0(Log a).

notused: 

 return:

procedure FIND(X,e): 

begin  

   e F 0; .j 4 0; 

   repeat  

      begin  

         e f e + X[j]; 

         if INDEX[e] = 0 

         e f INDEX[e]; 

          j <- j.+ 1 

      end  

   until X[j - 1] = 2; 

   goto return; 

   e t 0;

then goto notused;

end

Fig. 4.2. Procedure FIND

procedure LOAD(X,e):
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begin  

 j 

  if

0; 

e / 0 then  

 repeat  

    begin  

X[j] 

      j f j 

e t e 

    end  

 until X[j -

DATA[e]; 

+ 1; 

+ 1 

 1] = 2;

end

                   Fig. 4.3. Procedure LOAD 

     To complete the proof, it suffices to illustrate the 

simulation of indirect addressing. The statements LOAD *m 

and STORE *m are simulated by the following SM-ALGOL 

statements. Now, it should be clear that these statement 

simulate faithfully within a constant factor-

begin  

   FIND(CONSm, e); 

   if e / 0 then  

        begin  

          LOAD(TEMP, 

          FIND(TEMP, 

          if e / 0 
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e); 

e); 

then LOAD(ACC, e)



end

end

Fig.  4.4 Simulation of LOAD *m by SM

begin  

   FIND(CONSm, e) 

   if c / 0 then  

        begin  

           LOAD(TEMP, e); 

           e t TEMP[0]; j 1; 

            if e = 2 goto return; 

             repeat  

begin  

                    if INDEX[e] = 0 then 

                  e INDEX[e] +TEMP [ j ] ; 

                    j t j +1 

                   end  

           until TEMP[] - 1] = 2; 

             goto store; 

 notused: repeat  

                  begin  

                   INDEX[e] t ITOP; 

                   e ITOP + TEMP [ j ]; 

                   ITOP t ITOP + 3; 

                   j t j + 1 

                   end  
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goto notused;



 store:

 return: 

end

  until X[j - 1] = 2; 

  INDEX[e] t DTOP; j 

   repeat  

         begin  

           DATA[DTOP] f 

           DTOP DTOP + 

         end  

   until ACC[j - 1] = 2 

end

0; 

ACC[j] 

l; j + j + 1

   Fig. 4.5. Simulation 

§5. Relationship between

of 

 the

STORE 

  TM

aim 

and

by 

the

SM 

 SM

     In this section we show that the SM is not n2-e 

translatable to the TM for any e > 0. 

     Definition 5.1. Let U be the subset of [41* defined 

recursively as follows: 

(5.1) 3 E U, 

(5.2) If a is in U, then Oa and la are both in U, 

(5.3) If a and 13 are in U, then 2a13 is in U. 

    For each a E U, let be be the language over {0, 1} 

defined as follows: 

                             - 20 -



 (5.4) Cf(3) = 

(5.5) (P(0a) = 092(a),TO-a) = 1 7"(a), 

(5.6) c(2a13) = 0)(a) U 1 f (a), 

where a and p. are elements of U. 

     Lemma 5.1. Let V be any nonempty subset of {0, 1}1 

Then there exists an element a in U such that 

           V =~(a) and lal< 21+1 - 1 

     Proof. The proof will proceed by induction on i. It 

is trivially true for i = 0, since T(3) = A = {O, i}O, 

Suppose that the lemma is true for all j < i, i > 0. 

Let VO = {vl Ov 6 V} and ,V1 = {vl lv E V}. Then, Vk C 

{0, 1}i-1 for k = 0, 1. Thus, by the induction hypothesis 

there exist a and P. in U such that 

VO = tf(a), V1= 92(0 

            lal < 21 - 1, lal < 21 - 1. 

Hence 

V =OVoUlVI = 0na) U159(0 = 5(2a13), 

and 

12a0 = lal + lal +1<21+1-1. 
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Therefore the lemma holds for all i. 

     Definition 5.2. Let L1 be the 

defined by L1 =  U(4(0 U/ l))*4. Let 

partial function such that 

(5.7) g(y) is defined if and only 

(5.6) g(a4x14---4xk4) = b1b2...bk,

b0 = 

where a E U, x~ 

      Theorem 5.1. 

by a SM progran 

     Proof. Cor 

The program MAKI 

is in U. If the 

condition is sat: 

execution: 

(5.9) a string 

and only if then

program 

 Consider 

m MAKETREE 

 If the 

is satisfied 

string 

f there

?. Let L1be the language over C5J 

;4(0 U 1))*4. Let g: [5]* -> [21* be the 

zch that 

defined if and only if y E Ll, 

..4xk4) = b1b2...bk, 

0 if x. E f(a) 

1 if x,J((a) 

E [2]*. 

  The partial function g can be realized 

in linear time. 

 ider the program MAKETREE in Fig.5.2. 

TEE terminates if and only if the input a 

program terminates, then the following 

     at the completion of the program 

     • • • b
k,biE{0, 1}, is in)01) if 

exist integers e0, e1,..., ek such that 

 TREE[2 + b0] = e0 

TREE[e0 + b1] = e1 
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with 

time 

loop  

while

 TREE[ek -1 + bk] ek 

             TREE[ek] = 1 

The program MAKETREE uses two stacks 

pointers TRTOP and TOP. It should 

complexity of MAKETREE is 0(1a1). 

means "dead-end", that is, loop is an 

  0 = 0 do.

 TREE and STAK 

be clear that the 

In this program, 

abbreviation of

procedure MAKETREE: 

   begin  

        TRTOP f 2; TOP t l; 

       while TOP ¢ 0 do 

           begin  

               read x; 

              if x= 0 V x= 1 then  

                   begin  

                     TREE[TRTOP + x] {- TRTOP + 2; 

TREE[TRTOP + Ix - 11] 0; 

                    TRTOP F TRTOP + 2 

                    end 

                else  

                  if x = 2 then  

                      begin  

                       TREE[TRTOP] {- TRTOP + 2; 

STAK[TOP] <- TRTOP + 1; 

                         TRTOP <- TRTOP + 2; 
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end

   end 

read  

if x

x; 

 /  4

      TOP  t TOP + 1 

   end  

else  

   if x = 3 then  

      begin  

        TREE[TRTOP] f 1; 

        TOP TOP — 1; 

         if TOP / 0 then 

            begin  

               temp {- STAK[TOP] y 

--TREE[t
emp] F TRTOP 

              TRTOP t TRTOP + 1; 

             end  

       end 

   else loop; 

 then loop;

1;

is 

if 

The 

be 

SM 

an

Fig.5.l. Procedure, MAKETREE 

The procedure TEST tests whether a given input x~ 

in y(a) or not, that is, writes 1 on the output tape 

x is in T(a), and writes 0 if x. is not in (a). 

 time complexity of VEST is O(1xj.0. Now it should 

clear that the desired function g can be realized by a 

 program within time 0(n), where n is the length of 

input string. 
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procedure  

begin  

   e  t 2; 

repeat  

       read 

      if

TEST:

x; 

x = 0 

begin  

e 

   if 

end

V x = 1 then

TREE[e + 

e = 0 V e

x]

1 then write 1;

else

if x 

if

= 4 then  

TREE[e] = 1 then 

else

write 

write

0 

1

until x =

else  

4V

loop  

e = 0 V e= 1

end

Fig.5.2. Procedure TEST

     Now we show that any Turing machine realizing the partial 

function g requires at least n2/log n steps. The Turing 

machine which we shall use is an ordinary on-line deterministic 

machine with a one-way read only input tape, a one-way write 

only output tape and a finite number of two-way, read and write 

working tapes of unbounded length. 

     A configuration of a m-tape Turing machine P is a 

4-tuple
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                      (q, x, y, d), 

where q is a state, x is a input tape, y is a output 

tape and d e (N x N*)m. A pair (q, d) is called tape  

configuration. We denote by the relation over the 

configurations which represents one move of the computation 

of P. For each  i  E N and configurations c and c', we 

write c c' if there exists a computation from c to c' 

of length i, that is, if there exist configurations co,.. 

.., ci such that 

c = c0 }- C.l IT••• hF ci = c'. 

We write c.-- c' iff c c' for some i, c 177 c' iff 

c c' and c' /rp c" for all c" , c 11^ c' iff c c' 

and c c'. The partial function I(P): N* - N* realized 

by a Turing machine P is defined by 

     I(P)(x) = y iff 

(q0, x, A, d0) (q, A, y, d')for some q and d', 

where q0 is the initial state of P and d0 = (0, A)m. 

     The time complexity of P is defined by t(P)(x) = i 

if and only if there exists a configuration c such that 

(q0, x, A, d0) 11^ c. 

      Therem 5.2. If a Turing machine P realizes the partial
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function g within time f(n), then

2

f(n) > 
_ c ------- 

 log  n

for some c > 0 and for all n.

     Proof 

realizes 

U defined

g

  Let P be an m-tape Turing 

 within time f(n). Let Ai 

by 

Ai = {al 7'(a) C {0, 1}1}.

machine 

 be the

which 

subset of

By Lemma 5.1,

(5.10) 

where #A denotes 

     For each a E 

rations defined by

where 

Now we

(5.11)

Ca = {(q,

q0 

show

is the 

that

A. 

the 

Ai,

   i 
= 22 - 1

, 

 number of 

  let C a

d)I (q0, 

 (q, X, b

initial 

for a, S

if a / S,

a4x1 

17.

elements in A 

be the set of

4... 

Q,

xQ 

d)

state of P 

E A1,

4  A,d0) 

x1,

then C
a n C = (/). 

- 27 -

and

tape

i

configu-

E {0, 1)i)

d0 = (0,X )m.



 Assume 

E Ca

, for 

n C.

iff

iff

contradiction, 

 Then for each

x E 

 (q, 

 xE

(f(a ) 

x, A, d) 

`P(a) .

that 

x E

(q'

C
an CS 

{0, 1}1,

, A, 0, d') for

Let

some

(q, d)

q' and d'

Therefore, (19(a) = (0(13).By definition, it should 

that `7 (a) = 2(13) if and only if a = 13. Hence, 

a = (3, contrary to assumption. 

     Let P have s states and at most ksymbols 

square. We may assume that k > 2. Let    

2------------------------                          i (5.12) h(i) =- 1. 
                   2m log k + log s 

     Let H be the set of all tape configurations 

which satisfy the following conditions:

be clear 

we have

per tape

(q, d)

(5.13)

(5 

a

(q, d) E Ca

.14) for every 

configuration c

y E 

such

for some a E A.,

{0, 1}1, 

that

them

and

exist t < h(i) and

Next we show that

(q, Y, X.d)11'' c.

(5. 15) there exists a E A. such that CaflF = c•

- 28 -



Assume, for contradiction, that  C
a  n  F / $ for all a E Ai. 

The only information in storage available to P in next t 

moves is the present state and the tape information within 

t squares of the head. From this information, at most 

sk(2t+1)m configurations can be distinguished in t moves. 

Hence, by (5.10) and (5.11) we have 

                 s.k(2h(i) +1)m221 - 1.

This , however, contradicts (5.12) 

Now, consider the following

• 

input for P:

(5. 15)

where 

{0, 1}1

(5.16)

C
a

F 

Then

z = a4x14•••xQ4,

= (1), 

, by

Q= 

Lemma

Izi < 21+1 +

[21/i] 

 5.1,

and x1, ..., xQ

[21/i] x i < 2
i+2

are in

Consider the following computation:

(q0, a4x1... 4xQ4,A,d0)

Ito

I 

P

(q1, x
1

(q2, x2

14 •••

4•••

A, 

29

x04 ,A,d1)

xQ4, b1, d2)

b1... bQ, d
Q+1

).



Since  Can F = 4, (q ) is not in F for each j. 

Hence we have 

f(1z1) > t1 ++ tQ 

> h(i)[21/i] 

                   > c022i/i 

for some constant c0and for all i. Hence 

f(1z1) > c1I zl 2/log I zi 

for some c1 and for all z. Since f(n) is monotone 

increasing with n, we get 

             f(n) > c1n2/log n . 

     Corollary 5.1. If the ST is f(n) translatable to the 

TM then 

sup f(n)logn > O. 
n4c0n2 

      Combining Corollary 3.1 and Corollary 5.1, we have the 

following result. 

      Corollary 5.2. If the RAM is f(n) translatable to the 

TM then 

supf(n)log3 n > o. 
           n-~W n2 

      Remark. Since it is proved by Cook and Reckhow that the 

 RAM is n2 translatable to the TM we can assert that this 

bound is close to best. 
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§6. Simulation of the TM by the RAMR

     In this section we show that the TM is n2 translatable 

to the RAMR. 

     Definition 6.1. The tape complexity of a  turfing machine 

P is the function sTM(P):N* N such that s
TM(P)(x) is 

the number of tape squares used in the computation on input 

x. 

     Definition 6.2. A multi-pushdown tape machine is a 

Turing machine with 
.a read only input tape, a write-only 

output tape and a finite number of storage tapes with two 

storage tape symbols 0(blank) and 1. Whenever a head 

moves left on any one of its storage tape , a "blank" is 

printed of that tape. Thus, each multi-pushdown tape machine 

can be viewed as a finite sequence of the following statements 

(we call this a MPDM program): 

(i) PUSHb[i] 

(ii) POP[i] 

(iii) IF TOP[i] = b THEN GOTO n 

    (iv) IF INPUT = c THEN GOTO n 

(v) WRITE c 

where i,n,c E N and b E{0,1}. 
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     The effect of most of the instructions should be evident. 

For example,  PUSHb[i] causes to print the symbol b on top 

of the stack i. The instruction POP[i] causes to remove 

the top symbol of the stack i, that is, a "0" is printed 

on the tape cell scanned and then the head is moved left one 

cell. 

     Lemma 6.1. Let P be a Turing machine. Then there 

exists a multi-pushdown tape machine (a MPDM program) P 

such that 

I(P) = I(P) 

                    tTM(P,x) < c tTM(P,x) 

                     sTM(P,x) < c sTM(P,x) 

for some constant c and for all x. 

      Proof. Evident. 

     Definition 6.3. Let top:[2]* {0,1,X}, pop:[2]* -* [2]* 

push° : [2]* -* [2]*, push 1: [2]* [2]* be functions.defined 

as follows:

top(w) =

pop(w) =

b 

A 

 v 

A

if w = vb, 

if w  = A, 

if w = vb, 

if w = A, 

  - 32 -

b E [2], v E [2]*

b E [2], v E [2]*



     Definition 

be the integers

 (i) 

(ii)

above

0_1i)  

XX = 

if

if

The follow 

definition._

Lemma

push0(w) 

push1(w)

w0 

wl

6.4. For each w E[2]*, let xw and 

 defined recursively as follows: 

 0, yx = 1 

w = v0 then 

    x w = xv + 2yv 

    yw = xv+yv 

w = vl then 

    xw = xv + yv 

    yw = xv + 2yv. 

     results are immediate consequences

6.2.

Lemma 6.3.

 For each 

xw > yw 

xw= 0 

0<x <y   w w

w

If w = vb

E 

iff 

iff 

iff

[2]*, 

  top 

w = 

  top

with

[w] = 0 

X 

[w] = 1.

b G [2] and

yw

of the

v6[2]*,
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then 

    xv = if xw> yw then 2yw - xw else 2xw - yw 

    yv= if xw> yw then xw - yw else yw - xw 

     Lemma 6.4. For every w E [2]*, 

                xw< 31w1,yw<3Iwi, 

     Theorem 6.1. For any Turing machine P, there exists 

a RAMR program P such that 

I(P) = I(P) 

tRAM(P,x) < ctTM(F,x)sTM(P,x) 

for some constant c and for all x. 

     Proof. By Lemma 6.1, we may assume that P is a MPDM. 

Let P have m stacks. If the contents of i-th stack is 

w, then the integers xw and y w are strored in registers 

2i + 1 and 21 + 2. Let Xi denote the contents of register 

i. The simulation of P proceeds as follows: 

(i) PUSHO[ij is simulated by 

X21+1fX2i+1+ 2X2i
+2 

                    X2i+2`X2i+l+ X2i+2
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    (ii)  PUSH1[i] is simulated by 

X2i+l t X2i+l + X2i+2 

X2i+2 <- X21+1 + 2X21+2 

    (iii) POP[i] is simulated by

-X
2i+1{if X2i+1> X2i+2 then 2X21+2X2i+1 

                                     else 2X21+2 - X21+1 

       X2i+2fif X21+1> X2i+2 then X21+1X2i+2- 

                                    else X2i+2 - X21+1 

     (iv) the condition TOP[i] is simulated by 

X2i+1 > X21+2. 

     By Lemmas 6.2 and 6.3, it should be clear that the 

simulations above work correctly. By Lemma 6.3, each 

simulation requires at most 0(s(P,x)) time. Hence the 

total time spend by P is 

0(tTM(P,x)•sTM(P'x)). 

     Corollary 6.1. The TM is n2 translatable to the 

RAMR. 

     Proof. The proof follows from the fact that 

                 sTM(P,x) < tTM(P'x). 
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     In [  /7 ], Cook and Reckhow show that for each RAM 

program P, there exist a Turing mach P and a constant 

c > 0 such that 

I(P) = I(F) 

                tTM(P,x)<c tRAM(P,x) 

sTM(P,x) < c tRAM(P,x). 

From this fact, we have the following result. 

     Corollary 6.2. The RAM is n3 translatable to the 

RAMR. 

                           §7. Conclusion 

      In this section, we summarize the results obtained in 

this paper-

     Notation. Let M and M' be computing machines. We 

write (i) M --f M' if and only if M is nk+e translatable 

to M' for any e > 0, but not nk-e translatable to M' 
                    (1) 

for any c > 0, (ii) M ---------> M' if and only if M is 

linearly translatable to Mt (iii) M(2,3)> M' if and only 

if M is n3+etranslatable to M' but not n2-e trans- 

latable to M' for any e > 0, (iv) M —T M' if and only 

if M is not polynomially translatable to M'. 
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     Remark. Since 

small, the relation 

the gap between n2 
  (2,3) 

--------------- > must be 

      Open problem. 

bound 0(n2) on the 

RAM be improved?

    Fig. 7.1 

the gap between nk+sand  nk  £is 
k 
       is practically optimal. However 

and n3is still wide, and the relation 

improved. 

Can the upper bound 0(n3) or the lower 

time for the RAMR to simulate the
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