
Iif t 47 t,-)A ,i-* _')--

1 1- gc &

Computational Complexity

 of

Multitape Turing Machines

 and

 Random Access Machines

 by

Takumi KASAI

 §1 Introduction

 In recent years there has been increasing interest in

analyzing the computational complexity of programs. The

multitape Turing machine has become the standard model used

for evaluating time and storage complexity, even though such

machines are not much like any existing comupters. Some

authors, however, implement there algorithms not on Turing

machines but on random access machines. In 1972 S.A. Cook

introduced a formal model of a random access machine. This

model is closer to real computer, for real computers have to

calculate the address of desired storage cell before fetching

its content.

 Notation. Let N denote the set of natural numbers and

let [k] = {0,1,...,k-1} for each k E N. Hence [0] = q.

We regard [k] as an alphabet consisting of k symbols.

Thus, a language is a subset of [k]* for some k E N.

 Let I and 0 be sets. We denote by [I}0] the set of

all partial functions from I to 0.

 Definition 1.1. A computing machine is a 3-tuple M =

(L,I,t), where

(i) L is a language,

(ii) I is a function from L to [Ii0], and

(iii) t is a function from L to [IAN] satisfying the

 following condition: for each PE L and x E I ,

(3.1) I(P)(x) is defined iff t(P)(x) is defined.

- 1 -

 The function I is called the interpretation of M and

 I(P) is the partial function realized by P under M. We say

that t(P) is the time complexity of P, and sometimes write

t(P,x) instead of t(P)(x). The set I is the input domain

and 0 is the output domain.

 Definition 1.2. Let M = (L,I,t) and M' = (L',I',t')

be computing machines with the same input domain I and output

domain 0. Let f:N N be a function. Then M is said to be

f(n)-translatable to M' if and only if for each Pe L, there

exist P'EL' and constant c satisfying the following

conditions:

(1.2) I(P) = I'(P'),

(1.3) for each x CI, if t(P,x) is defined, then

t'(P',x) cf(t(P,x)),

that is, if a program P in L takes time T(x) for its

execution, then there is a program P' in L' which computes

the same partial function as P within time cf(T(x)). If

f(n) = n, we say that M is linearly translatable to M'.

If f is a polynomial, then M is polynomially translatable

to M'.

 In this paper, we consider the following types of

computing machines:

 RAM ... the random access machine with indirect addressing,

 RAMR... the random access machine without indirect addressing

- 2 -

 SM ... the step machine with indirect addressing,

 SMR ... the step machine without indirect addressing,

 TM ... the multitape Turing machine.

 We compare these models on the basis of their ability to

reflect the complexity of an algorithm. The results obtained in

this paper are summarized in Fig 7.1. In [7], Cook has shown

that the RAM is n2-translatable to the TM. In Section 5, we show

that this upper bound cannot be improved, that is, we show that

the RAM is not n2-£-translatable to the TM for any E > 0. This

yields a negative answer to an open problem suggested by Borodin

[S] and Aho, Hoperoft and Ullman [2].

 One of the purpose of this paper is to construct a good model to

use in the theory of computational complexity. We maintain that the

SM is a good model, since both RAM and TM (and hence, any restricted

type of these machices) are linearly translatable to SM.

 §2 Random Access Machine

•

 Definition 2.1. Let D be the set of functions d:N -} N.

Each element d of D is called a memory. For each i N, d(i)

represents the contents of register i. For each d ED and

i,j EN, let d(i t j) be the memory defined by

 d(k)if k / i
 d(i{-j) (k) =

j if k = i

For each n EN, let

r log2 n if n > 2

 Log n =
 1if n < 2.

- 3 -

Definition

meanings and

is an element

 execution

 of

2.2. The RAM

 cution times,

and d

 instructions

 are given in

represents a

, together with their

 Table 1.1, where n

current memory.

Instruction next memory execution time for RAM

1. LOAD n d(0+-d(n)) Leg n+Log d(n)

2. SETC n d(0+-n) Log n

3. STORE n d(n±d(0)) Log n+Log d(0)

4. READ n d(0-"input") Log n+Log "input"

5. WRITE n d Log n+Log d(n)

6. JZERO n d Log n

7. ADD n d(0<-d(0)+d(n)) Log n+Log d(0)+Log d(n)

8. SUB n d(0td(0)-d(n)) Log n+Log d(0)+Log d(n)

9. INCR n d(0Fd(0)+1) Log d(0)

10. DECR n d(04-d(0)-1) Log d(0)

11. LOAD *n d(0÷d(d(n))) Log n+Log d(n)+Log d(d(n))

12. STORE *n d(d(n)±d(0)) Log n+Log d(n)+Log d(0)

RAM

the

is

is

it

 TABLE 2.1

 RAMA Instructions and Execution Times

 Definition 2.3. (a) A RAM program is a finite sequence of

 instructions. (b) A RAMR program is a RAM program without

 instruction types LOAD *n and STORE *n. (c) A SM program

a RAM program with neither ADD nor SUB. (d) A SMR program

a RAM program without ADD, SUB, LOAD *n and STORE *n. Thus,

is a SM program without LOAD *n and STOR *n.

 *
 Definition 2.4. An element (i,x,y,d) of NxN XN xD is

called a configuration of random access machines. Let P = s1s2_..s

be a program with si being instructions. Let 17 be the relation

over the configurations defined as follows. We write

(i,x,y,d) (i',x',y',d')

if and only if the following conditions are satisfied:

(1) 1 < i < k,

(ii) if si is JZERO n and d(0) = 0 then i' = n else

 = 1+1,

(iii) if si is READ n then x = a-x' for some a E N else

 x' = x

(iv) if si is WRITE n then y' = y•d(n) else y' = y,

(v) d' is the next memory determined by Table 2.1.

Let IP be the reflexive transitive closure ofP.If al;
and there is no y such that 0-pY, then we write a p.

 Let d0 be the memory defined by

d0(i) = 0 for all i E N.

 Let I(P):N* 3 N* be the partial function defined by

I(P)(x) = y iff (l,x,x,d0) (i,x,y,d')

for some iE N and d'E D. i(P) is called the partial function

realized by P.

k

- 5 -

 Definition 2.5. (a) Time complexity of RAM and RAMR:

The time complexity of a RAM program (or a RAMR program) P

is the function tRAM(P):N } N such that tRAM(P)(x) is the sum

of the execution time taken by each instruction executed on input

x, where the time required by each instruction is shown in Table

2.1.

 (b) Time complexity of SM and SMR: The time complexity

of a SM program (or a SMR program) P is the function

tSM(P):N-N such that tSM(P)(x) is the number of instruction

steps executed by P on input x. That is, in these machine,

each instruction requires one unit of time.

 Henceforth , the subscript M on tM is dropped whenever

M is understood.

 Definition 2.6. Let x = x1•x2...x
nbe an element of N

with eachxibeing in N. The proper length of x, denoted by

ln(x), is defined by

n

 ln(x) = y Log x..
 1 i=1•

 Let f:N 3 N be a monotone increasing function and let P

be a program. Then P executes within time f (alternatively,

P is said to be f(n) time bounded) if and only if

 t(P,x) < f(ln(x)) for all x E-N*.

 A language L [[k] is recognized by a program P if

L = Dom I(P). L is recognizable within time f, abbreviated

f-recognizable, if there is a program P recognizing L which

executes within time f.

- 6 -

 Definition 2.7. Let f be a partial function from N* to

N*. Then f is said to be of rank k if

 Dom f C [k]* and Im f C [k]* .

A program P is said to be of rank k if the partial function

realized by P is of rank k. In this paper, unless stated

otherwise, any program is supposed to be of finite rank.

 Remark. Note that any partial function realized by a Turing

machine is of finite rank. Now we show that the condition of

Definition 2.7 is not too severe, that is, we show that any

RAM program of infinite rank can be simulated within an n log n

factor by a RAM program of finite rank. Let A = (l(0 U l)*2V 02)*

Let :N* i A and v:A -- N* be the functions defined by

C(x1.x2•...xn) = x12x22...xn2

 v(x12x22...xn2) = x1•x2•...x n,

where xi is the binary representation of the integer xi.

 Then, by the proof of Theorem 4.1 in Section 4, it follows

that for any RAM program P, there exist a constant c and a

RAM program P of rank 3 such that

I(P) = v.I(P)•, and

t(P,C(x)) < c•t(P,x)•log t(P,x).

 §3 Relationship between the RAM and the SM

 Theorem

a constant

3.1.

 such

Let P be a SM program.

that

Then there exists

- 7

 tBAM(P,x) < c tsM(P,x) log tSM(P,x).

 Proof. Let q be the largest constant appearing as the

argument of SETC instruction in P. Let P be of rank k.

Then, a number appearing in any register during the computation

is less than q+k+t3M(P,x). Hence one instruction costs at most

O(log tSM(P,x)) time under the logarithmic cost criterion.

 Corollary 3.1. The SM is n log n translatable to the

RAM. The SMR is n log n translatable to the RAMR.

 Notation. Let Lo be the language defined by

Lo = {w2wR2 I we {0,1} }

where wR denotes the reveral of word w.

 Lemma 3.1. Lo is recognizable by a SM program which executes

within time f(n) = cn for some constant c.

 Proof. Evident

From Theorem 3.1 and Lemma 3.1, we have the following:

 Corollary 3.2. L0 is recognizable by a RAM program which

executes within time f(n) = cn log n for some constant c.

 The SMR can be views as a Neuman-type model realization

for counter machines [10,11]. The following lemma is an immediate

consequence of the result obtained by Fischer, Meyer and Rosenberg

[11].

- 8 -

 Lemma 3.2. If L0is recognizable by a SMR program which

executes within time f(n), then f(n) > cn for some constant

c > 1 and for all n.

C.ombining__Lemmas _ 3.1_.and_ 3. 2, we have the following__ result.

 Corollary 3.3. The SM is not polynomially translatable

to the SMR.

 Lemma 3.3. If L0is recognizable by a RAMR program P

which executes within time f(n), then f(n) > cn2 for some

constant c and for all. n.

 Proof. Let q be the largest constant appearing as the

argument of a SETC instruction in P. First we show that if

m is the largest number appearing in any register after a computa-

tion of duration T, then

(3.1) T > 2(Log2m-Log2q).

 The proof will proceed by induction on the length of a computa-

tion . It is trivially true for computations of length 0, since

a computation begins with all registers set to zero. Assuming

that it is true for a computation

(l,u,a,d0) (i,v,X,d),

consider the next move of this computation. We may assume that

the i-th instruction of P is of the form ADD p. Since

T > 2(Log2max{d(0),d(p)}-Log2q),

- 9 -

it follows that

 T+Log d(0)+Log d(p)+Log p

 > 2(Log2max{d(0),d(p)}-Log2q)+Log d(0)+Log d(p)

 > ({Log max{d(0),d(p)}+1}2-Log 2q)

> 2(Log2(d(0)+d(p))-Log2q)

Therefore (3.1) holds for all computations.

 Let Q be the length of P and let k be the number of

registers used in P. Let m be the largest number appearing

in any register after reading a word of length 2. Then, for two
distinct binary word u and v of length n21, if

(l,u2uR2,d0) (i,uR2,X,d) and

(1,v2uR2,d0) (i',uR2,~,d'),

then either i / i' or d / d'. Hence we have

(3.2) Q•(m+l)k > 22

From (3.1) and (3.2), it follows that

 T > cn2

for some constant c > 0.

 Corollary 3.4. If the SM is f(n) translatable to the RAMR,

then

 n)
 supf(2> 0 .

 n-4-00n 2
 - 10 -

If the RAM is f(n) translatable to RAMR, then

 supf(n)log2n > 0
 n}00 n2

 Since the language L0 can be recognizable in real time by

a Turing machine, we have the following result.

 Corollary 3.5. If the TM is f(n) translatable to RAMR,

then

 supf(2) > 0.
n}co n

- 11 -

 §4. Linear Simulation of the RAM by the SM

 In this section, we show that the RAM is linearly

translatable to the SM. Since the SM programs to do this are

intolerably long, it will be convenient to describe them in a

higher-level language called SM-ALGOL, instead of the "machine

language" given in Senction 2.

 Definition 4.1. A SM-ALGOL program can contain one-

dimensional infinite array.

(a) An atomic statement is one of the followings

 read vwrite vgoto label

v -- wv ± w + cv÷w_c

where c is a constant and v and w are either simple variables

x or subscripted variables of the forms

a[x]a[x + c]a[x = c].

(b) A condition is one of the followings

v = cv c

where c is a constant and v is a simple variable or a

subscripted variable.

(c) A SM-ALGOL program is a statement of one of the following

types.

 (1) atomic statement

 (2) if condition then statement else statement

 - 12 -

 (3) if condition then statement

 (4) while condition do statement

 (5) repeat statement until condition

 (6) label: statement

 (7) begin statement: ...; statement end

 (8) procedure name (list of parameters): statement

 (9) procedure-name (arguments)

(d) Recursive procedures are not allowed in SM-ALGOL programs,

and any procedure statement of type (9) should be previously

defined by a procedure declaration of type (8).

 The time complexity of a SM-ALGOL program P is the

function t(P): N* i N: such that t(P)(x) is the number of

executions of atomic statements and conditions executed by P

on input x.

 Lemma 4.1. Every SM-ALGOL program is linearly translat-

able to a SM program.

 Outline of proof. Let P be a SM-ALGOL program.

Without loss of generality we may assume that P contains

no procedure call. To prove the lemma, it suffices to show

that there exist a SM-ALGOL program P with exactly one

array and constant c such that

t(P, x) < ct(P, x)

for all inputs x.

 Let the arrays used in P be A0,A1,...,Ak -1,and

let simple variables used in P be X1,..., Xt. The program

P uses a single array A and simple variables x1,..., x
t,

- 13 -

X',..., X.The program P computes values v and 2kv

simultaneously whenever P computes the value v, that is,

the program P can be constructed such that the following

relations are satisfied during execution:

 X! = 2k-X.
 1 1

A[2ki + j] = Aj [i]0 < j < k - 1

 A[2ki + j + k] = 2k•Aj[i]0 < j < k - 1.

To do this, for example-, the statement Xi F X.+c in P is

translated into

begin Xi -- Xj + c; X! { X' + 2kc end,

the statement Aj[X.] F Xt is translated into

 begin A[Xi+j]fXt; A[Xi + j + k] *- XL end,

and the statement Xt t Aj[X.] is translated into

 begin Xt F A[XI + j]; XL ± ADC' + j + k] end.

It should be evident that the program P can be designed to

simulate P faithfully within a constant factor_

 Definition 4.2. Let m be a positive integer, and let

m0,m1, ...,mtbe elements of {0,1} such that

 - 14 -

 t
 m= 1, m = m.2t. t

i=0

In this paper, the binary representation for m means the

word m0m1•••mt2. The binary representation for zero is the

word consisting a single letter 2.

 Theorem 4.1. The RAM is linearly translatable to

the SM.

 Outline of proof: Let P be a RAM program. We

now construct a SM-ALGOL program P which linearly simulates

P. The program P uses arrays ACC, TEMP, INDEX, DATA and

CONSm for each constant m appearing as argument of instruc-

tions in P. Initially, for each constant m appearing in

P, the binary representation mOm1...mt2 for m is stored

in the array CONSm[0],..., CONSm[t+l].

 The array ACC represents the register 0. The binary

representation a0al•••au+l for the contents a of register

x is stored in DATA in a contiguous set of subscripted

variables

DATA[eJ = a0,DATA[e+l] = al,_..,DATA[e+u+l] = a
u+1.

The integer e is called the _entry corresponding to x. If

a register x has been used thus far in the computation,

then the entry e corresponding to x can be found by means

of the array INDEX and the binary representation xOx1•••xv+1

 - 15 -

for

such

x,

that

 e0

ev+x

ITOP

that is, the

INDEX[x0] =

INDEX[e0 +

 • INDEX[ev +

01

x0

+x1

v+1

integers

e0

xl] = el

xv+11 = e

e0e1 — ev+l can

e.
v+1

1

e

be found

 a0

au+1=2

 ITOP iDTOP -}

 Fig. 4.1.

 The procedure FIND(X,e) finds the entry e correspond-

ing to X. The procedure LOAD(X,e) brings the binary

representation aQal•••au+l to the array X. Precisely,

these programs are not SM-ALGOL programs, since they contain

 - 16 -

the statement of the form e f e + X[j]. This type of

statement, however, can be easily translated into a SM-ALGOL

program, since X[j] < 2 holds whenever this statement is

executed. Clearly, the time complexity of FIND(X,e) is

0(v), and hence 0(Log x). The time complexity of LOAD(X,e)

is 0(u), and hence 0(Log a).

notused:

 return:

procedure FIND(X,e):

begin

 e F 0; .j 4 0;

 repeat

 begin

 e f e + X[j];

 if INDEX[e] = 0

 e f INDEX[e];

 j <- j.+ 1

 end

 until X[j - 1] = 2;

 goto return;

 e t 0;

then goto notused;

end

Fig. 4.2. Procedure FIND

procedure LOAD(X,e):

- 17 -

begin

 j

 if

0;

e / 0 then

 repeat

 begin

X[j]

 j f j

e t e

 end

 until X[j -

DATA[e];

+ 1;

+ 1

 1] = 2;

end

 Fig. 4.3. Procedure LOAD

 To complete the proof, it suffices to illustrate the

simulation of indirect addressing. The statements LOAD *m

and STORE *m are simulated by the following SM-ALGOL

statements. Now, it should be clear that these statement

simulate faithfully within a constant factor-

begin

 FIND(CONSm, e);

 if e / 0 then

 begin

 LOAD(TEMP,

 FIND(TEMP,

 if e / 0

 - 18 -

e);

e);

then LOAD(ACC, e)

end

end

Fig. 4.4 Simulation of LOAD *m by SM

begin

 FIND(CONSm, e)

 if c / 0 then

 begin

 LOAD(TEMP, e);

 e t TEMP[0]; j 1;

 if e = 2 goto return;

 repeat

begin

 if INDEX[e] = 0 then

 e INDEX[e] +TEMP [j] ;

 j t j +1

 end

 until TEMP[] - 1] = 2;

 goto store;

 notused: repeat

 begin

 INDEX[e] t ITOP;

 e ITOP + TEMP [j];

 ITOP t ITOP + 3;

 j t j + 1

 end

 - 19 -

goto notused;

 store:

 return:

end

 until X[j - 1] = 2;

 INDEX[e] t DTOP; j

 repeat

 begin

 DATA[DTOP] f

 DTOP DTOP +

 end

 until ACC[j - 1] = 2

end

0;

ACC[j]

l; j + j + 1

 Fig. 4.5. Simulation

§5. Relationship between

of

 the

STORE

 TM

aim

and

by

the

SM

 SM

 In this section we show that the SM is not n2-e

translatable to the TM for any e > 0.

 Definition 5.1. Let U be the subset of [41* defined

recursively as follows:

(5.1) 3 E U,

(5.2) If a is in U, then Oa and la are both in U,

(5.3) If a and 13 are in U, then 2a13 is in U.

 For each a E U, let be be the language over {0, 1}

defined as follows:

 - 20 -

 (5.4) Cf(3) =

(5.5) (P(0a) = 092(a),TO-a) = 1 7"(a),

(5.6) c(2a13) = 0)(a) U 1 f (a),

where a and p. are elements of U.

 Lemma 5.1. Let V be any nonempty subset of {0, 1}1

Then there exists an element a in U such that

 V =~(a) and lal< 21+1 - 1

 Proof. The proof will proceed by induction on i. It

is trivially true for i = 0, since T(3) = A = {O, i}O,

Suppose that the lemma is true for all j < i, i > 0.

Let VO = {vl Ov 6 V} and ,V1 = {vl lv E V}. Then, Vk C

{0, 1}i-1 for k = 0, 1. Thus, by the induction hypothesis

there exist a and P. in U such that

VO = tf(a), V1= 92(0

 lal < 21 - 1, lal < 21 - 1.

Hence

V =OVoUlVI = 0na) U159(0 = 5(2a13),

and

12a0 = lal + lal +1<21+1-1.

 - 21 -

Therefore the lemma holds for all i.

 Definition 5.2. Let L1 be the

defined by L1 = U(4(0 U/ l))*4. Let

partial function such that

(5.7) g(y) is defined if and only

(5.6) g(a4x14---4xk4) = b1b2...bk,

b0 =

where a E U, x~

 Theorem 5.1.

by a SM progran

 Proof. Cor

The program MAKI

is in U. If the

condition is sat:

execution:

(5.9) a string

and only if then

program

 Consider

m MAKETREE

 If the

is satisfied

string

f there

?. Let L1be the language over C5J

;4(0 U 1))*4. Let g: [5]* -> [21* be the

zch that

defined if and only if y E Ll,

..4xk4) = b1b2...bk,

0 if x. E f(a)

1 if x,J((a)

E [2]*.

 The partial function g can be realized

in linear time.

 ider the program MAKETREE in Fig.5.2.

TEE terminates if and only if the input a

program terminates, then the following

 at the completion of the program

 • • • b
k,biE{0, 1}, is in)01) if

exist integers e0, e1,..., ek such that

 TREE[2 + b0] = e0

TREE[e0 + b1] = e1

 - 22 -

with

time

loop

while

 TREE[ek -1 + bk] ek

 TREE[ek] = 1

The program MAKETREE uses two stacks

pointers TRTOP and TOP. It should

complexity of MAKETREE is 0(1a1).

means "dead-end", that is, loop is an

 0 = 0 do.

 TREE and STAK

be clear that the

In this program,

abbreviation of

procedure MAKETREE:

 begin

 TRTOP f 2; TOP t l;

 while TOP ¢ 0 do

 begin

 read x;

 if x= 0 V x= 1 then

 begin

 TREE[TRTOP + x] {- TRTOP + 2;

TREE[TRTOP + Ix - 11] 0;

 TRTOP F TRTOP + 2

 end

 else

 if x = 2 then

 begin

 TREE[TRTOP] {- TRTOP + 2;

STAK[TOP] <- TRTOP + 1;

 TRTOP <- TRTOP + 2;

 - 23 -

end

 end

read

if x

x;

 / 4

 TOP t TOP + 1

 end

else

 if x = 3 then

 begin

 TREE[TRTOP] f 1;

 TOP TOP — 1;

 if TOP / 0 then

 begin

 temp {- STAK[TOP] y

--TREE[t
emp] F TRTOP

 TRTOP t TRTOP + 1;

 end

 end

 else loop;

 then loop;

1;

is

if

The

be

SM

an

Fig.5.l. Procedure, MAKETREE

The procedure TEST tests whether a given input x~

in y(a) or not, that is, writes 1 on the output tape

x is in T(a), and writes 0 if x. is not in (a).

 time complexity of VEST is O(1xj.0. Now it should

clear that the desired function g can be realized by a

 program within time 0(n), where n is the length of

input string.

 - 24 -

procedure

begin

 e t 2;

repeat

 read

 if

TEST:

x;

x = 0

begin

e

 if

end

V x = 1 then

TREE[e +

e = 0 V e

x]

1 then write 1;

else

if x

if

= 4 then

TREE[e] = 1 then

else

write

write

0

1

until x =

else

4V

loop

e = 0 V e= 1

end

Fig.5.2. Procedure TEST

 Now we show that any Turing machine realizing the partial

function g requires at least n2/log n steps. The Turing

machine which we shall use is an ordinary on-line deterministic

machine with a one-way read only input tape, a one-way write

only output tape and a finite number of two-way, read and write

working tapes of unbounded length.

 A configuration of a m-tape Turing machine P is a

4-tuple

- 25 -

 (q, x, y, d),

where q is a state, x is a input tape, y is a output

tape and d e (N x N*)m. A pair (q, d) is called tape

configuration. We denote by the relation over the

configurations which represents one move of the computation

of P. For each i E N and configurations c and c', we

write c c' if there exists a computation from c to c'

of length i, that is, if there exist configurations co,..

.., ci such that

c = c0 }- C.l IT••• hF ci = c'.

We write c.-- c' iff c c' for some i, c 177 c' iff

c c' and c' /rp c" for all c" , c 11^ c' iff c c'

and c c'. The partial function I(P): N* - N* realized

by a Turing machine P is defined by

 I(P)(x) = y iff

(q0, x, A, d0) (q, A, y, d')for some q and d',

where q0 is the initial state of P and d0 = (0, A)m.

 The time complexity of P is defined by t(P)(x) = i

if and only if there exists a configuration c such that

(q0, x, A, d0) 11^ c.

 Therem 5.2. If a Turing machine P realizes the partial

- 26 -

function g within time f(n), then

2

f(n) >
_ c -------

 log n

for some c > 0 and for all n.

 Proof

realizes

U defined

g

 Let P be an m-tape Turing

 within time f(n). Let Ai

by

Ai = {al 7'(a) C {0, 1}1}.

machine

 be the

which

subset of

By Lemma 5.1,

(5.10)

where #A denotes

 For each a E

rations defined by

where

Now we

(5.11)

Ca = {(q,

q0

show

is the

that

A.

the

Ai,

 i
= 22 - 1

,

 number of

 let C a

d)I (q0,

 (q, X, b

initial

for a, S

if a / S,

a4x1

17.

elements in A

be the set of

4...

Q,

xQ

d)

state of P

E A1,

4 A,d0)

x1,

then C
a n C = (/).

- 27 -

and

tape

i

configu-

E {0, 1)i)

d0 = (0,X)m.

 Assume

E Ca

, for

n C.

iff

iff

contradiction,

 Then for each

x E

 (q,

 xE

(f(a)

x, A, d)

`P(a) .

that

x E

(q'

C
an CS

{0, 1}1,

, A, 0, d') for

Let

some

(q, d)

q' and d'

Therefore, (19(a) = (0(13).By definition, it should

that `7 (a) = 2(13) if and only if a = 13. Hence,

a = (3, contrary to assumption.

 Let P have s states and at most ksymbols

square. We may assume that k > 2. Let

2------------------------ i (5.12) h(i) =- 1.
 2m log k + log s

 Let H be the set of all tape configurations

which satisfy the following conditions:

be clear

we have

per tape

(q, d)

(5.13)

(5

a

(q, d) E Ca

.14) for every

configuration c

y E

such

for some a E A.,

{0, 1}1,

that

them

and

exist t < h(i) and

Next we show that

(q, Y, X.d)11'' c.

(5. 15) there exists a E A. such that CaflF = c•

- 28 -

Assume, for contradiction, that C
a n F / $ for all a E Ai.

The only information in storage available to P in next t

moves is the present state and the tape information within

t squares of the head. From this information, at most

sk(2t+1)m configurations can be distinguished in t moves.

Hence, by (5.10) and (5.11) we have

 s.k(2h(i) +1)m221 - 1.

This , however, contradicts (5.12)

Now, consider the following

•

input for P:

(5. 15)

where

{0, 1}1

(5.16)

C
a

F

Then

z = a4x14•••xQ4,

= (1),

, by

Q=

Lemma

Izi < 21+1 +

[21/i]

 5.1,

and x1, ..., xQ

[21/i] x i < 2
i+2

are in

Consider the following computation:

(q0, a4x1... 4xQ4,A,d0)

Ito

I

P

(q1, x
1

(q2, x2

14 •••

4•••

A,

29

x04 ,A,d1)

xQ4, b1, d2)

b1... bQ, d
Q+1

).

Since Can F = 4, (q) is not in F for each j.

Hence we have

f(1z1) > t1 ++ tQ

> h(i)[21/i]

 > c022i/i

for some constant c0and for all i. Hence

f(1z1) > c1I zl 2/log I zi

for some c1 and for all z. Since f(n) is monotone

increasing with n, we get

 f(n) > c1n2/log n .

 Corollary 5.1. If the ST is f(n) translatable to the

TM then

sup f(n)logn > O.
n4c0n2

 Combining Corollary 3.1 and Corollary 5.1, we have the

following result.

 Corollary 5.2. If the RAM is f(n) translatable to the

TM then

supf(n)log3 n > o.
 n-~W n2

 Remark. Since it is proved by Cook and Reckhow that the

 RAM is n2 translatable to the TM we can assert that this

bound is close to best.

 - 30 -

§6. Simulation of the TM by the RAMR

 In this section we show that the TM is n2 translatable

to the RAMR.

 Definition 6.1. The tape complexity of a turfing machine

P is the function sTM(P):N* N such that s
TM(P)(x) is

the number of tape squares used in the computation on input

x.

 Definition 6.2. A multi-pushdown tape machine is a

Turing machine with
.a read only input tape, a write-only

output tape and a finite number of storage tapes with two

storage tape symbols 0(blank) and 1. Whenever a head

moves left on any one of its storage tape , a "blank" is

printed of that tape. Thus, each multi-pushdown tape machine

can be viewed as a finite sequence of the following statements

(we call this a MPDM program):

(i) PUSHb[i]

(ii) POP[i]

(iii) IF TOP[i] = b THEN GOTO n

 (iv) IF INPUT = c THEN GOTO n

(v) WRITE c

where i,n,c E N and b E{0,1}.

 - 31 -

 The effect of most of the instructions should be evident.

For example, PUSHb[i] causes to print the symbol b on top

of the stack i. The instruction POP[i] causes to remove

the top symbol of the stack i, that is, a "0" is printed

on the tape cell scanned and then the head is moved left one

cell.

 Lemma 6.1. Let P be a Turing machine. Then there

exists a multi-pushdown tape machine (a MPDM program) P

such that

I(P) = I(P)

 tTM(P,x) < c tTM(P,x)

 sTM(P,x) < c sTM(P,x)

for some constant c and for all x.

 Proof. Evident.

 Definition 6.3. Let top:[2]* {0,1,X}, pop:[2]* -* [2]*

push° : [2]* -* [2]*, push 1: [2]* [2]* be functions.defined

as follows:

top(w) =

pop(w) =

b

A

 v

A

if w = vb,

if w = A,

if w = vb,

if w = A,

 - 32 -

b E [2], v E [2]*

b E [2], v E [2]*

 Definition

be the integers

 (i)

(ii)

above

0_1i)

XX =

if

if

The follow

definition._

Lemma

push0(w)

push1(w)

w0

wl

6.4. For each w E[2]*, let xw and

 defined recursively as follows:

 0, yx = 1

w = v0 then

 x w = xv + 2yv

 yw = xv+yv

w = vl then

 xw = xv + yv

 yw = xv + 2yv.

 results are immediate consequences

6.2.

Lemma 6.3.

 For each

xw > yw

xw= 0

0<x <y w w

w

If w = vb

E

iff

iff

iff

[2]*,

 top

w =

 top

with

[w] = 0

X

[w] = 1.

b G [2] and

yw

of the

v6[2]*,

- 33 -

then

 xv = if xw> yw then 2yw - xw else 2xw - yw

 yv= if xw> yw then xw - yw else yw - xw

 Lemma 6.4. For every w E [2]*,

 xw< 31w1,yw<3Iwi,

 Theorem 6.1. For any Turing machine P, there exists

a RAMR program P such that

I(P) = I(P)

tRAM(P,x) < ctTM(F,x)sTM(P,x)

for some constant c and for all x.

 Proof. By Lemma 6.1, we may assume that P is a MPDM.

Let P have m stacks. If the contents of i-th stack is

w, then the integers xw and y w are strored in registers

2i + 1 and 21 + 2. Let Xi denote the contents of register

i. The simulation of P proceeds as follows:

(i) PUSHO[ij is simulated by

X21+1fX2i+1+ 2X2i
+2

 X2i+2`X2i+l+ X2i+2

-34-

 (ii) PUSH1[i] is simulated by

X2i+l t X2i+l + X2i+2

X2i+2 <- X21+1 + 2X21+2

 (iii) POP[i] is simulated by

-X
2i+1{if X2i+1> X2i+2 then 2X21+2X2i+1

 else 2X21+2 - X21+1

 X2i+2fif X21+1> X2i+2 then X21+1X2i+2-

 else X2i+2 - X21+1

 (iv) the condition TOP[i] is simulated by

X2i+1 > X21+2.

 By Lemmas 6.2 and 6.3, it should be clear that the

simulations above work correctly. By Lemma 6.3, each

simulation requires at most 0(s(P,x)) time. Hence the

total time spend by P is

0(tTM(P,x)•sTM(P'x)).

 Corollary 6.1. The TM is n2 translatable to the

RAMR.

 Proof. The proof follows from the fact that

 sTM(P,x) < tTM(P'x).

- 35 -

 In [/7], Cook and Reckhow show that for each RAM

program P, there exist a Turing mach P and a constant

c > 0 such that

I(P) = I(F)

 tTM(P,x)<c tRAM(P,x)

sTM(P,x) < c tRAM(P,x).

From this fact, we have the following result.

 Corollary 6.2. The RAM is n3 translatable to the

RAMR.

 §7. Conclusion

 In this section, we summarize the results obtained in

this paper-

 Notation. Let M and M' be computing machines. We

write (i) M --f M' if and only if M is nk+e translatable

to M' for any e > 0, but not nk-e translatable to M'
 (1)

for any c > 0, (ii) M ---------> M' if and only if M is

linearly translatable to Mt (iii) M(2,3)> M' if and only

if M is n3+etranslatable to M' but not n2-e trans-

latable to M' for any e > 0, (iv) M —T M' if and only

if M is not polynomially translatable to M'.

- 36 -

 Remark. Since

small, the relation

the gap between n2
 (2,3)

--------------- > must be

 Open problem.

bound 0(n2) on the

RAM be improved?

 Fig. 7.1

the gap between nk+sand nk £is
k
 is practically optimal. However

and n3is still wide, and the relation

improved.

Can the upper bound 0(n3) or the lower

time for the RAMR to simulate the

- 37 -

- 38 -

Acknowledgements

 The author wishes to express his gratitude to Professor

Satoru Takasu for his advice. The author is also indebted

to Professor Shigeru Igarashi and Mr. Takeshi Hayashi for

their suggestions toward this paper_

- 39 -

 [1)

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

 References

Aho, A.V., Hoperoft, J.E., and Ullman, J.D., Time and

tape complexity of pushdown automaton languages. Infor-

mation and Control 13:3, 186-206 (1968).

Aho, A.V., Hoperoft, J.E., and Ullman, J.D., The design

and analysis of computer algorithms. Addison-Wesley

(1974).

Book, R.V., On languages accepted in polynomial time.

SIAM J. Computing 1:4,(1972).

Book, R.V., Greibach, S.A., and Wegbreit, B., Time- and

tape-bounded Turing accepters and AFL's JCSS 4:6, 606-

621 (1970).

Borodin, A., Computational complexity: theory and practice.

In "Currents in the theory of computing'.' (Aho, ed.).

Prentice-Hall, Englewood Cliffs, N.J. (1973).

Cook, S.A., Linear time simulation of deterministic two-

way pushdown automata. Proc. IFIP Congress 71, TA-2.

Horth-Holland, Amsterdam, 174-179 (1971).

Cook, S.A., and Reckhow R., Time-bounded random access

machines. JCSS 7, 354-375 (1973).

Fischer, P.C., Predecessor Machines JCSS 8 , 190-219

(1974).

Miller, R.E., and Thatcher, J.W. (eds.), Complexity of

Computer Computations. Plenum Press.

 Clo]

[11]

Minsky,

Machines

Fischer,

Counter

Systems

M.[1967], Computation: Finite and Infinite

, Prentice-Hall, Englewood Cliffs, N.J. 1967

 P.C., Meyer, A.R. and Rosenberg, A.L.,

machines and counter languages, Mathematical

Theory 2:3, 265-283.

- 141 -

	R112_0
	R112a

