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Abgtract -

Canonical flelds 9,(f) on the Fock space with an indefinite
metric <, >=( ,8 } and their canonical linear %ransformations
{Bogolyubov transformations )} are investigated.

Let T be a bijective real linear operator preserving the
¢-symplectic form < ,J > =Real ( ,PF } in one particle Hilbert
space A , where ¥ is unitary and hermitian and J=/-1. It 1is
shown that, under some conditions, T has a decomposition T=
VIS TI2 » Where ‘.'1 are =-=unitary andS is a generalized ¥-

NI :
scaling, namely 8 7=ps%=3, sso-ls™?

=5 ", SKC(K 2nd SJKCXK for
a decomposition =K &JK.

T 15 ¢alled O-unitarily implementable if there exists a
g-unitary ( bounded bijective O-~isometric ) operator Up on
the Pock space ¥ such that Ugdy(f) Up'=8,(T). This definition
is too restrictive. Xt is shown that T is @~unitarily implew
mentable if and oély if [T,#1=0 and anti~linear part T of T
ts of Hilbert-S chmiat class.

We Introduce a less restrictive notion: T is called weakly
é-unitarily implementable 1If there exist a 9-isometric operator
UEl (not neceasarily bounded) and a eyelie vector QT_Ef suéh that
U o, (P.) . 0,( TE ) Q=0,( £1) ... 8,( £ )Ry , where 2 1s the Fock
vacuum. A necessary and a suffielent eondition for this lmple-
mentability are obtained.

As an application, a mass-shift model of the vector field
of an indefinite metric formalism (S tllckelberg formalism }1s
discussed. A time-evolution of the system by the model Hamil-

tonian iz lnvestigated.
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§1. Introduction.

Let £ be a Hilbert sapce equipped with usual(l.e. positive
definite ) hermitian inner product {(.,.), and let n be a unitary
and hermitian operator: n¥=nf1=n . We define a new (indefinite )
gesgullinear form <,,.»>= (.,n.) on£, This is a "Hilbert
space equipped with an indefinite inner product < , >", and
dencted {£, < »>}.

One familiar example of this space 1is our Hinkowski-space
H='L£=Rh, ne=diag(1,-1,-1,-1) } . Historically speaking, Pontryagin
first investigated this space in order to study differentlal
equationa, and physlcist also investigated this_space in order
to deseribe quantum electrodynamics (QED).

Some examples of indefinite metrie formalism in physics are:
(1) An indefinite metric is needed to describe a massless veottor
field ( photon fleld ) in a manifestly covariant way.
(2) In the Stuckelberg formalism of the massive vector field,
an Indefivnite metriec 1s used to cancel divergences due to
p"p“/u2 in the propagator of the Praca field (=vector field of
positive metric formalism }.

Iﬁ these-éxamples, a Pock space with an indefinite metric
< ,>={ ,8 ) is constructed by the usual tensor algebra construc-
tions from the { one-particle ) Hilbert sapce £ with an indefinite
metric ( ,§ ). In this space, flelds are defined in terms of
c¢reatlon annihilation operators in a similar manner as the definite
metrlc case.

Real linear transformations on H which preserve the commutation

relations of these fields are called ¥-gymplectic transformations

gand the corresponding transformations of fields are called Bogolyubov
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transformatlons.

In this paper, we study the implementabillity of such Bogclyubov
transformations B by linear transformations UB preserving the
indefinite metriec { ,9) in the Fock space,

Our maln results are about three different kinds of implemen=-

tability:

Definition 0-1: B is said to be &-unitarily implementable

if Uy and its inverse are bounded in éﬁdiﬁion to.ﬁeingﬁa-isomatr;c.
We shall Sshow ( Theorem 11) that B 1s &-unitarlily implementab-

le¢ if and only if UB is unitary wlth respect to the definite

Inner product which we use to give the topology for tne Fock

space, This shows that the restriction of bounded UB { and Ugl)

is too restrictive for our purpose.

Definition 0-2: B is saild to be weakly O-unitarily implemen-
table 1if the PFock vacuum state is transformed by B to a state
glven by a eyclic vector in the original Fock space.

This includes a wlder c¢lass of B compared with Def.0-1, and
UB may be unbouded though i1t wlll preserve the indeflnite sesqul-
linear form in the Fock space. We obtain some conditions on B
which are necessary or sufficient for the implementability
{( Theorems 12,13). However it is shown that this notion is not
invariant under #-unitary transformations ( bljective linear
transformations preserving ( ,# )} of the space # . We introduce
a weaker notlon called B-unitary quasi-implementablility, which
1s Invariant under ¢-uniltary transformations . For thls purpose,
we study a decomposition of canonical linear tranaformationa B:
A caninical linear tranasformation B is a bijective real llinear
transformations of X, which preserves the symplectlc form given
by the imaginary part of the indefinite lnner product <
={ ,¥ ) on XK.

* >
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Under some conditions, such B has the followlng decompositlon:

(1-1) B=V, SV,

where Vl and V2 are ¢Y-unitary and S is a generalized ¥-scaling
In the gense that S 1s a y-selfadjolint cancnical linear tranaf-
ermation commuting with C for some fixed complex conjugation
operator ( Theorems 9,10).

Definition 0-3: A canonical linear transformation B 1s said
to be B-unitarily guasi-implementsble i1f S5-1 is of Hilbert-

Schmidt class and its eligenvalues A satlsfy

R
(1_2) . w011 J_.l_'.-l_-}_'.._l. > 0

A 2

It 1s shown that B is 9-unitarily guasi-implementable in
cases Definitions 0-1 and 0-2 and that the 8-unltary quasl-imple-
mentabllity is invariant under ¢-unitary transformations.

The O-unitary quasi-implementabllity is shown to be equlivalent
to the fequirement that 8 kind of non-zero finite Inner product
between the Fock vacuum state and 1ts transformed state can be
defined 1n a~cértain senge. It 1is shown, however, that there
exists an example of O-unitary guasi-implementable Bafor which

-the cycllec space for the transformed vacuum has no intersection

with the orilginal Fock space.

The organization of this paper is as follows: In §2, we
define a Hilbert space equipped with an indeflnite metric,and
construct a Fock space with an indefinite metric. In §3, we
study a w-symplectlc transformation which is a bijective real
linear transformation preserving the CCH.

In 54—56, we consider polar and spectral rescluticns of a



P-symplectic transformation. In 5§7-810, the implementability
i3 discussed. Examples are in §11.

An application 1s dlscussed in 812, where a mass-shift model
of the vector field of an indefinite metric formalism ( Stllck-

elberg formalism ) is investigated. The $ime-evolution by the

P-selfadjoint Hamiltonian is also discussed.

Coneluding remarks are in §13.
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§ 2. Fock 3pace with an Indefinite Mefric

In this section we define notation for the Fock space
with an indefinite metric. Let £, (i=+,~) be a Hilbert space
with ( positive definite hermitian ) inner produect ({ , )1, and
let £=£+€B,C_ be a Hilbert space with inner product { , )=21( s )1.

Let P, be projection operator to ‘C':L’ and let

We consider an indefinite hermitian inner product

(2-2) ) < s >E( a7l )’

and we call the pair {£, < , >}" a Hilbert space with an
indefinite metrie". See Refs.[4,16-17,21].

The set of bounded linear operators C: ‘ci -*.CJ is denoted
by #(Ly,4y), and  B(LL) by B(L). )
Any AeR(L) is decomposed as

A A
(2-3) ( $4 - )

on &£ =£+®f_ where

(2-14) By g=PyAP € ﬁ(-fi,lj)

Its n-adjoint A(n)fﬁ' ) is uniquely defined by

(2-5) <¢,M>=<A(“)¢,¢>

It is given by * *
A -A

(2-6) Tt (A )
-.A. A -
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Definition 1: A€¢& (L) 1s said to be
(1) n-selfadjoint 1f A=a("),

(2) n-unitary 1f a~1=a{M),

Remark 1: Even if an operator preserves <,> , 1t is not
necessarily a bounded oPerator. Note that our definition of an
n-unitary operator requires the boundedness. In thils cgse, 1f
U is n-unitary, then

jof=knu’nl= Jui.
This alsc means 1<fU§, and i1t is easily confirmeq that fuh=1

if and only if U commutes with n

We want to introduce a Fock space & over a Hilbert sapce
# with an indefinite metric { ,? ). The space X is deflined
by

o {n)
®,.=0 -~ s

Ao an), s, @nft"]saiat’ )

Here Sn is the fellowlng symmetrlzation operator:

_ -1
sn[¢1e...ewn]-(n!) zperm_yi(l)@...awwtn).

Definition 2: FPor A€ (X), T'(A) is defined by

T(A) [‘ﬁtnLA@. «+BA {n-times),

and dr{a) by
dP(A}F§5H)=Aala...@1 +.o.... + 1®...818A .

Their domalins of definition are extended by linearity and closure.

Remark 2: T(A) is a bounded operator if and only if

12]<1, and 4r(a) is unbounded whenever A#0.
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The Fock space # has a positive definite hermitian inner
product { , ) naturally constructed from { , } in X . We now

Introduce on & the following indefinite inner product

< , >=( ,8 ) , 0=T(¥).
Note that © 1s unitary and hermitlan.
' *
The usual creation operator a (f) for f¢X 1s defined by

1/2 '
Spep[FOV @8 T,

¥
a (f)(Sn[¢l@---@¢n])=(n+1)
and the selfadjoint ( Segal ) field by

(2-7) o(r)= () V2 (n)+ia (2’1

»
Though a {(f) is complex linear for feX, 3{f) 1s not complex

linear for rei.

The ©&-selfadjoint field 1s deflined by

(2-8) a()=(2)" 212" (024 (2" (£)) )77

* % ¥
where the bar denotes the closure. Since {a (f))(e)=6(a (f)) ©
¥ *
=(a (£f)) by the definition of ©, we have the following

commutation relaﬁion :
(2-9) [¢,(r),2,(g)]= 1 In(f,Pg)=1 Im <f,g >.

*
The c¢reation operator a (f) can be expressed in terms of ®,(f)

by
(2-10) a (£)=(2) % 2[8p(£)-18, (1)1

where J is the multiplication operator of i=/-1.



Remark 3: ¢,(f) 1s &-selfadjoint but not * selfadjoint.

Then exp[i®,(f)] is unbounded in general.

§3. Canonic¢al Linear Transformstion

Definition 3 : A real linear bounded operstor B on ¥ shall
be calléd a canonical linear transformation if the commutation

relation is preserved, namely if
(3-1) Im({Bf,#Bg)=Im(f,¥g) .

A canonical linear transformation B shall be called a %-symplec-

tic transformation 1f B 1s& bljJective.

From the definition, 1t feollows that cancnical linear trans-
formatlons: form a seml-group, and ¥-symplectic transformation
(= ¥-Bogolyubov transformation ) a group.

Po obtain an operator form of the condition for B, we intr-

oduce a real bilinear inner product on # by

(3-2) (£,8) =Re(f,g),

and dencte the multiplication of i by J. The adjoint of real
linear operator B with bespect to ( , }r will be also denoted
by B*. It conincides with ordinary * if B 15 complex linear
{namely 1if [B,J1=0).We define B(?)-?B*? .

Lemma 1 : B is canonlcal linear transformation if and

only if
(3-3) 8% yp= 3.

~10-



Proof : (3-1) i3 equivalent to

(Bf IBg) = (£,£Tg), ,

which is equlvalent to
(f,T[B(?)JB—J]g)rﬂﬂ

for all f,ge}.
Q.E.D.

Any real llnear operator B can be uniquely decomposed

as a sum of complex linear and sntl-linear opetrators:

B=B+B_ , B,= -3—(B :JBI ).

When B i3 a $-symplectic operator, B_ is called as 1ts " off-

diagonal part"”.

Lemms 2: B iz 2 canonieal 1linear transformation if and

only if
{ 8{¥)p, p{%)p m,
(3-4)
8#¥)p_3*)p,

Proof: {3-3) 1s equivalent to
(#) (¥) (#) (Pln 1o
(8,"’8,-B."'B_)+(,¥'B_-B!" B )=1.

Complex linear and anti-linear parts of two sldes of thls equation

are the two equatlons in this lemma.

Q‘ElDo

We are interested in the transformation of the fileld under

Bogolyubovy transformation, which is given by

(3-5) 150, (20)= 0B (2)ze (pe) .
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§4. Polar Decomposition of ¥-Symplectie Transformation

The main purpose in this section 1s to prove the followling

theorem:

Theorem 3: A ¥-symplectic operator T such that 0 is not an

eigenvalue of T )T +|T|(?}|T| has the following decomposition:

(4~1) T=06¢ | T|

where 0,8 and |T| are ¢-symplectic opeartor such that IT| 1s
gelfadjoint positlve,

(1) 8 13 orthogonal and ¥-selfadjoint,

(2) 0 is complex linear and unitapy.

This decomposition 1s unigque up to the transformation

(0,8)~(ov,v 1o)

by selfadjoint ,unltary cperator V commuting with « .
We prove this theorem through several lemmas [20,24,277].

Lemma U: Let T be & ¥-symplectlc operator. Then there is a

unique decomposltion of T as follows:

(4-2) T=Q|T| ,

where ]T| and § are ¥-symplectlc and
# £ .

(4-3) |r|"=|T|>0, @ =q~2.

Proof: Let
r=q|T|

pe the unique polar decompositlon of an invertible operator in

a real Hilbert space. Sinece T 1s ¥=-symplectic, we have

-] 2=



#* - -
errip s t=p1,

Hence
¢1|rleatesq” wr7i= |07 q7t,
By the unigueness of the decomposition, we have
v3Q37Y¢=q, #3|T|3" =T

Q.E.D.

Lemma 5: Let Q be an orthogonal operator commuting with
%Y. Assume that =1 1s not an eigenvalue of Q(¢)Q. Then there
is the followlng decomposition of Q:
(4-4) Q=08 ,
where

1 1

#
=? - = = =
(q_s} [ B* GF=T0JY 8 ’
0 =0"1, Jo5 l=¥o¥=0.
This decomposition is unique up %o a unitary and hermitian
operator commuting with Y.

Proof: We explieitly construct o=(Q¥)q)172,
Let
1 1oy
p= ——(f+1)=FP, , p'=Q pPQ
be two projection. operators. For any two prolJeetions E and F,

we define [2]

EAF=1im (EF)D .

=
We first note that p'A(1l-p)+pA(l-p')=0 due to the absence of
the eigenvalue -1 for Q‘w)Q=[p-(l-p)][P'-(l—p')].
Let

8={(1-p)A(1-p*)+pip' +A(1l-pAp'-(1-p)A{1-p'))

where

-13~



1/2

&=(pp'p) +[(1—p)(1~p')(1—p)]1f2+ﬁpp'p)1/2pp'{l-p)

«[{1-p) (1-p*}{1-p)1*?(2-p)p'p.

Then by the construction [2],

"L, e lopep=e~l | 42=q¥g .

*
e =8
Next let

0=Qa~1

Then 0 1s again orthogonal and commutes with ¥J. Further O
also commutes with + ( then also with J):

...13

0"19’ 0= eq'lsﬂqﬂ'laﬂ?‘e 23 ¥ .

Q.E.D.

§5. Another Decompositlon of ¥$-Symplectic

Transformations

We first introduce several notions [16-~18,21]:
Definittion 4: A eclosed subspace ﬁ# of a Hilbert space X
equlpped with an Indeflinite sesqui-llinear form < , » 1s said
to be
{1} non-negatlve { resp. non-positive )} 1f and only if
<x,x>>0 ( resp. <0 ) for any x¢ Ay s
{2) positive ( reap. negatlve ) I1f and only if
<x,x>>0 (resp. <0 ) for any x(#ﬂ)eé,
{3) uniformly positive (resp. uniformly negetive ) if
and only if there 13 a non-zero positive conatant
T such that

<x,x>;ﬁtx,x)< resp. <-yu(x,x)) for any Xe Ay ,

~14-



{4} -complementary if and only if

4N =(0)

where —ﬁ;L> is the orthogonal complement of Ax

in¥# wlth respect to < , >.

Definition 5: A ¢-selfad]Joint cperator A is said to be
{1). non-negative (resp. non-positive ) if and only if
<x,Ax>>0 (resp. <0) for any xe¢#,
{2) positive { resp. negative )} if and only if
<x,Ax>>0 (resp. <0) for any =x(F0)e¥ ,
{3) uniformly positive (resp. uniformly negative ) 4f and
only if there is a hon-zero positive constant p suéh

that

<x,AX> gﬁ(x,x) {resp. ;rﬁ(x,x)) for any =xe¢ ¥

We study absolute value |T| of a ¢¥-symplectic operator
T on # relative to the real indefinite inner product
£, >r= ( ,¥ }I' . Let

(5-1) . B=¥|7|.

Then thizs satisfles

(5-2) ¥y |, surl-gl.

Morecver H is uniformly positlive wilth respect to < , >r
(5-3) <x,Hx> =(x, |7 [x)20(x,x)

with w=ll|v|~Y"t.

Por a uniformly positive n-selfadjolnt operator A

-15-



on a complex Hilbert space X with an indefinite metrie 0, A bas
the following spectral resolutionin terms of n-selfadjoint

projection operators {E(R}; fc(-=,»)} ( see for example [16-181):

(5-1) A=Smth(1)

where E(f) 1s o-additive,
E(n)(ﬂ}=E(ﬂ), E(@)E(@')=E{ana"),

(5"‘5) E(-—m,m)‘:l

and E(Q) 1is& uniguely determined by A.
We take the complexification of X to be ﬂ;. Define the complex

conjugation operateor C on ﬂ; by
(5-6) c(felig)=fo-ig .

We extend H toc be an operator on ifg satisfying CHC=H. Then
H satisfles the requirement for A above and hence we have a

spectral resclution

(5-7) H= { “WE(R) . 5

FProm CHC=C anhd the uniqueness of of E(R), we have CE(R)C=E(R)
and hence E(f) leaves the real linear subspace K of ch
invariant. Hence we can restrict the sbove resolution to 2.

1 1

Sinece JHI “=H ', we 8}sc have

(5-8) JEM@)I =21y,

Lemma 6: Let H be a ¥ -selfadjolint $-symplectic operator
which 18 uniformly posltive wlth respect to ¢ , >pt Then there
exlsts a real subspace K'(X such that KnJK'={ 0}, £=K'®JK"

with respeet to < >r and

=16-



(5-9) HE'C K', H({(JK') C(JK!

Proof : We use the spectral resolution (5-7). Let
H{{:1)=g({a1} ¥
Then JH({#11)=# ({21} ). SBince < , > >u( , ), on X ({z1}), 1t
is possible to find a subspace T(%l) of K {{tl}) satisfying
I(31)nJI(1)={0} ,
H ({21 1)=1(2)e5I{*1),

where dlrect sum referes to the orthogonallty with respeed to

S
r
Let
K'=E{(~1,1) WeI(+1)eI(-1).
Then
JK'= (E(~=,-1)+E(1,*} ¥eJI(+1)aJI(~-1),
and

HK'C X' , H(JK')CJK' , KNJK'={0},
K =x'eJx!
Q.E.D.

To state the main result of this section, we introduce

the following termiﬁology:
Definition 6: In a 2%2 operator entry representation of
an operator on X relative to the given decomposition # =K&8JK

where.direct sum referes to the ocrthogonallty wlith respect to

(,),and ¢, » , an operator
A 0 '
{5-10) S= ( _1)
-0 A

with ¥$-selfadjoint uniformly positive coperator A iIs called

-17-



a yv-scaling. { The unique J-linear extension of A to b4 will
be denoted by the same letter A. ).

Our discussion above yields the following maln result
in this section:

Theorem 7: A ¢ -symplectic operator T, such that the or-
thogonal part @ in the poler decomposition of T commutes with

¥ { or equivalently commutes with J), has the decomposition

{(5-11) - T=U, 80,

with #-unitary Ui and a #-scaling S.
Proof : Let
X'=K,eK_ ,
where
K ~E(0,1W8I(+1) , K_=E(~1,0)%¢I(-1)
Since for x€ K} ,

(x,x)P; T<X,X>24%, Ha> 2u(x,x),

there exists a bijective #Pisometric { namely 9%-orthogonal )}
operator U on X which maps K and JK onto K' and JK! respectively.
-1_

Then U is $-unitary and T=Q?H=Q?U-lSU 'UlsUE'

- " . Q-E-Da

A notion of ¥-sealing 18 an extension of the notion
of sc¢caling operator in symplectic space [15,27]. When ¢#=1,
this decomposition is in [24].

The operator T of Theorem 6 corresponds to the case ©6=1

in Theorem 3. On the other hand, the opeprator 8 i1tself has a

similar diagonalization as above.
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Lemma 8: Let & be an orthogonal operator such that

paP=JoJ = 9”1 .

Then there exists é. 8—-invariant real subspace K" such that

K"n JK"={0}, K" and JX" are mutually orthogonal with respect

to both <, > and { , )r and

(5-12) H =x"@JK".
In this case

(5-13) u= X" , u la 8[JK"

are orthogonal operators suech that ?u'l’=u_1

*

Proof: After the complexification, we have

w
(5-14) eug elfar(r)

et ]

where {P{(Q); QC[-m,1] } are selfadjoint projections such that

PPQW=IP(Q)T 1=P(-R) for QC[0,T)
(5-15) {

PLE (-7 )+P{n) IP=T[P (=7 )+P (1) 1T Lup (—a ) +P(w).

Since P(g) ccﬁmutes with ¢J for all nC(b,n},-there exists a
decomposition H()=P(QH=k(Q)0FTk(22) into subspaces k(L) and
2Tk(N) whiech are P(f)-invariant for ail Q: P(RW 1s decomposed
as

k(2)e¥Ik(Q)
where k{(R) _|$Tk(Q) with respect to ( , )r' ILet Pl(n) and Pz(ﬂ)

be selfadjoint projectilons to k(@) and #Tk(f) respectively.
They satlsfy

(5-16) P, (@)=FIB (DFI™T, B (R, (2)=0,

and

(5-17) P(n)=P1(n}+P2(n)

~19-



Define
(5-18) P, (-0)=¥P, (R} i=1,2.
Then'{Pi(—ﬂ)} again satisfy (5-16) and (5-17), and

(5-19) TP, (RIT =P, (~0) , TP, (R)T =P, (-0) for acl0,n).

By the construction Pi(ﬂ)+P1(-n) with 1=1,2 are selfad]oint
projection operators commuting with .
For X(1)=P({0)Y¥ and H(-1)=(P(¥)+P{-1))# , there are

similar decompositions as Lemma 6:

(5-20) H(zx1)=1,071, ,

where I, are orthogonal to JI, with respect to both { , )r and

< >,
T
Let )
{5-21) K"=[P((-7,0+P, ((0,7) ) HOL oI_
Then
(5-22) JK"=[P,((-m, 0))+P,{{0,n)) HeIT &JI_
and
) LI
{5-23) u= ( ( + { )= aP, (T 4P -P_
-T 0
where P, are projections to I1 .

Q.E.D.
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§ 6. ¥-polar Decomposition of ¥-symplectic Operator

We sghall discuss thé polar décomposition of a #-symplectic
opeartor relative to the ¢-inner product

T=UH

where U should be P-unitary cperator and H ?-aelfadjoint;
$-symplectic with spectrum in the right half plane. Even in
a finite dimensional case, there are examples of T for which
such a decompositidn is not possible. Tﬁerefore we lmpose a

condltion in the spectrum of T in the following theprem:
Theorem 9:

Let T be ¥-symplectic, Ty = —%—(Ti JT371) be its complex
linear and anti-linear parts . Assume that T_1s of Hilbert-
Sehmidt class and the closed negative real axis [-=, 0] belongs
to the resolvent set of TE?)T+ . Then fthere exists a ¥-unltary
operator U and #=-selfadjoint ¥-symplectic H with its spectrum
in the right half plane satiafying
(6-1) T=UH .

Suech a palr (U,H) Is unique and satisfies
(6-2)  _ JusuJ, JHI t=w"%,
Definition T: Relative to a glven orthogonal and ¥-orthogonal

decomposition H =K&JK , a ¢¥-selfadjoint “¥-symplectie operator
S is ealled a Eeneralized ¢-scaling 1if S has the form

(6-3) ( 2 1:1)

1n the 2x2 matrix representation of an operator on X relative
to the decomposition H =K®JK , where h is a y-selfadjoint operator

leaving K and JK invariant.
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Theorem 10: For an orthogonal and #-orthogonal decomposition
X =XoJK ,
assume that a ¥-symplectic operator T léaves K and JK invarliant
and satisfies the easumption of Theorem 9. Then T has the follow-
ing unique decompoaition:

{6-4) T=US8

where U 1is y-unitary and 8 is a generélized ¥-scaling with its

spectrum in the right half plane.

Proof of Theorem G: Let

PR ASES STEL s RS TE )l I

By assumption, A has the fellowing prepertles:

(1) &-1 1s compact because T 1 -1=T'")0_ (eq.(3-4)) 1s
of trace class and T_ 1s of Hilbert-Schmidt class.

(2) A does not have a negative or zero eigenvalues. This is
an Immediate coﬁsequence of the assumption about“the spectrum

of T_f_’a)T+ and the 1dentity

2-(ara~=20Fr 2

-

1

which follows from JAJ 1=a"1

AP =1 (P)
and JTS ‘T_J ~=-T~°T_.

We construct the operator
He ~(271) 1A [ (a-z)" 157172 gy
r

in the complexificatlon of the real Hilbert space {#, ( , )f} .

2~1/2 i5 defined on the complex plane with the cut onthe

1/2

where
negative real axis such that z_ >0 for positive real z and
contour T may be taken to be the union of the upper side of the

cut from -« to 0 and the lower side of the cut from 0 to —«
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Due to the two properties eof A, the cperator calculas in
Chap.7 of [B] is applicable. By Theorems 10 and 11 in that
Chapter, H°=A and the spectrum of H lies in the right half plane.
By a straightforward calculation, we have

H=. -%—- .'-"° Ch+12)~ld'r .
—
Hence H can be considered as a real llnear operator on A . By

$-selfadjointness of A, we have

o

L)
%) _.%__... I a2yl oy,

-

Since A 1s ¥-symplectic,

-1 -]
gar~t= 2 (" (1) e

. o .
= —i-f (A+c2) lag =a"lm

by the change of variable t=¢"1 . Since A=H2, we have JHI l=

H-l. Hence H 1s a ?Lselfadjoint;sﬂ-symplectic operator wlth
its spectrum { on the complexified space } in the right half
plane.

1

Let U=TH —. We have

Hence

0 lyag oo 5l w2y lag.

Since U is invertible, U 1s #unitary. Sinece T(y) and H are

¥-symplectic, U 1s also ¥-symplectic, which implies
Jusrtaui?y 1oy,

Thus we have the desired decomposition T=UH.
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Tc show the uniqueness , let UlHl be another decompoaition.
Then H§=T(¢)T=H2. By the uniquénéss of the sgquare-root with
the spectrum In the right half plane ( sée, for example, Chap.T

=H, and hence U.=U.

in [8] }, we have Hy 1

Q.E.D.
Proof of Theorem 10: We define

TiK="T TP JK=T

1’ 2’

Since T is ¥-symplectic,

-1.-1_.0 (%)
JTl J T2

and hence

Let
h={T{?}Tl)1/2I%J(TE?)Tl)l/zJ-l
and let .

Then for féJK
(Té?)T2)1/2f=h*1f

and

=i In e 1r~ur

Tg(h"l}'1f=T nZn

Q-E-D-

Qur question 1s whether the ¥-selfadjoint,¥-symplectic
operator H is always similar to a generalized %-scaling S via

suitable ¢¥-unitary operator V:

M



H=vsvV ™1,

This is affirmative for dim H<», and T in Theorem 9 always has
a decomposition

T=V13?2

where 8 1ls a generalized #-scalling with its spectrum in the
right half plane and vi are ¢-unitary operators. But for
dim #=w,¥-isometric operator V seemes to be unbounded Iin general.
As we have already proved in Theorem 7 and Lemma 8§, this dia-
gonalization is always posasible if H is uniformly positive or
orthogonal,
For given generallzed ¢¥-scaling S, let ¥-symplectic operator
T be glven by VISVé whers Vi are ¥-unitary. By the boundedness
of Vl and V,, |

-1

T 1is H.3. +— &-8 is H.S.

« 8%.1 1s H.S.

The role of condition that (-=,0] is in the resolvent set
of TE?JT+ In Theorem 9 is necessary by the following example

which does not have a ¥-polar decomposition as (6-1):

- [ 0 cosh T,+Csinht,

cosh T,+Cslinht

2 > 0

on ?f=02 where 'r:l_;'i"-"f2 SHF=A4iag(l,~1) and ¢ denotes the complex

conjugation. ~



§7. e-Unitary Implementability

Recall that a ?-sympléctic opérator T i 9~uynitarily imple-
mentable 1f there éxists a aaﬁnitary opérator UT such that

. UT'IF,,(f)‘Ual= §(Tf}. The main result in this section is the following:

Theorem 11: T is 6&-unitarily implementable if and only if
T commutes with ¢ and T_ is in the Hilbert-schmidqt c¢lass.
Proof: We first prové that 1f T does not commute with ?;
then Ual does not exist. Let re€F =P # . Then $,(r) 1s
selfadjoint and expli1#,{f)] 15 a bounded operator with norm

one. UT Implements
...1 -
UT-:a,,(f)UT =¢ ,(TF )= g;P+Tf)+ g;P_Tf) s

where ¢,(P . TT) and 19,(P_Tf) are selfadjoint and commute
each other. Thus $,(Tf) is a normal operator. If Unp is

O-unitary, then- j U = UEII <o and

o)y
T T

19, (P T£) 1¢¢fP_Tf)
U e
must be a bounded operator. But | exp[id'?(P_Tf)ﬂ = « whenever
P_Tf#0. Then P_TP, =0 1f U, is O-unitary. Next let feX_.
Then 1#4 (f) is selfadjoint in this case. By similar reasons,
we see that P+TP_=D if UT ig B-unitary. Thus T commutes with

¥ whenever T 1is 6-unitarily implementable.

We may rfstrict our attentlion to the case where T comnutes
with ¥ . We use the decomposition X =?f+9,ﬁ accerding to the
eigenvalue t1 of ¥. Correspondingly we have T=T1$T2, ﬁ{;’f}=
,"E(}f_[_)a}i(.*{_). Each T, is symplectic as well as being $-symplectic.

if T 1is of Hilbert-Schmidt class, then (Ti)_ is of Hilbert-
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Schmidt ¢lass and hehce the corresponding Bogolyubov transform-
ation is unitarily implementable by & result of Shale [24,27].
Furthermore the unitary operator implementing the Bogolyubov
transformation commutes with @ ( ©=T(¥) being identity on
?G@;) and (-1)¥ for & number operator N on & (#_)) and hence
is ©G-unitary.

Next we assume that T_ 1s not of Hilbert-Schmidt class,
Since T is symplectic, the result of Shale [24] implies. that the
Fock wvacuum state 1z transformed to a state which yields a re-
presentétion of the canorliczl commutation relations dlsjoint from
the original one and hence has pg non-zeroc intertwinling operator.
Thus there is no bounded invertible UT ( be it unitary or
@-unitary J.

Q.E.D

58. Weakly 6-Unitary Tmplementabllity

Recall that a Bogolyubov tranaformation TB

weakly 9-unitarily implementable 1f there exist a complex

=B, +B_ is
linear ©O-lsometriec operator UEJ‘ on A) and a cyelic vectof .

-nhe?{?f) guch that

(8-1)  US'B(a,(Bf ),..., 8(Bf_ )R =P(3(f 1), 0y (F )Ry

for any pulynomial P of (non-commutative ) fields and any test
functions fj ( Uﬁl i1s not necessarily a bounded operator ).

For this implementabllity, we do noet have a complete criterion.
A necessary condition and a sufficient condition are given by the

follgwing theorems:
-27-



Theorem 12: If a Bogolyubov transformatlion 'I'B is weakly
B-unitarily implementable; then B_ 1is of Hilbert-Schmidt
class and the negative real axis and zero is in the resoclvent
set of BEP)B+ .

Theorem 13: Bogolyubov transformations Tg and Ts'l are
weakly O-unitarily implementable if the following conditlons
aré all satisfied:

(1) §_ is of Hilbert-Schmidt class,
(41) 3 1s a generalized ¥-scaling:
(h 0 )
= % nt
on X =K®JK where K is a real linear subspace of A such thalt

K |JK with resect to ( , ), and <, > ..

: *
(111) The spectrum of the selfadjoint part ur=(u+a /2

of a=h'2 18 in [c,c"lj for some 1>c>0.

Hemark 4: For the necessity of the positivity of o, see

Theorem 27.

In connection with the discussion of O-unitary guasi-
implementablility, we compute the overlap of the vacuum & and

the transformed vector ﬂs as follows:

Theorem 14: Under the condition of Theorem 13, the

gverlap |<ﬂ,ﬂs>| of the Fock vacuum & and the transformed

vacuum QS is given by

1

(8-2) det™1/2(hth " )

which is non-vanlshing finite. Further for B=V15? with V

2 i
¥-unitary, if QB exlsts, then
1

- +h-
(8-3) ]<q, Rp>|= [<@ , 25>| = det 172 hzh )
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=daet ™/ (1488 )=aet™ 4 (3B, ).

Remark 5: When ?=1; from Theorems 12 and 13, we see
that symplectic operator Ty 1s unitarily implementable if and
only 1f B 1s in the Hilbert-Schmidt class [Shale]. Further

%
1 <det{1+B_B_) <=

if and only 1f B_ is in the Hilbert-Schmidt class, and hence
TB is unitarily implementable if and only i1f the overlap is

non-vanishing.

In these theorems §§, 18 well defined by the following

3
lepma:

Lemma 15: Under the assumption of Theorem 13, a vector
ﬂs in the Fock space, which 1s cyclic for the polynomials of
fields and satisfies

g, P(eplfy),. 00,20 (f ))0g>

=<f, P(8,(Sf)),...,0, (5, ))a>
for all polynomials P and test functions fl,...,fn 1s unlique
up to a multiply of identity.

The following theorem means that the vacuum (., 1s in

3
the domain of the number operetor N.

Theorem 16: Under the assumption of Theorem 13,

i€ D(N)

where N ig the number operator.

The proof of Theorem 13 invelves the "Q-space method,

which we shall discuss in the next section. The proofs'of
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Lemma 15, which 1s related to Theorem 13, and Theorems 13 ,14
and 16 will be given in  §10, We shall prove Theorem 12 in
this section.

Proof of Theorem 12; We shall use the following

well known property of the Foek vacuum vector Q:

(8-1)  [a (£)1%% = L (s, (£)+1 8,(32))a =0

for mll feX. By definition Q satisfies

B

(8-5) ( 8,87 r)+18,(871ar) Yo =0

for all fex.

To show that B_ is of Hilbert-Schmidt class, let

)
€ ?Jm

QB- & l'.l.'l(m) * m(m}
where ﬁ(n)r-sn( @nﬁ') is the n-partiecle space. Then (8-5)

implies
(8“’6) <(B-‘1]’+f: W(l)>=0=
(8=7) VAL Wy, - (BTH), 0 /A 8 L((B™) _fheu, o410

where mz1 and W is the following mapping of # into S(m—l)
x(@m_lﬂ'f) defined by the vector 9 (m) in Sm(am}f} through the

characterizing equation

<S.m_1(gl°' . '@gm_l} :wm8> -<Sm(gla' . 'egm—,l@g) s W (m)>

relatlive to the inner product < , »={( ,0 ). In particular

W., 18 in the Hilbert—-Sehmidt class.

2
First we show that the kernel of B, is {0}. Assume B, £=0

for feX. Then
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o' (£)ag= 3-8, (0)-10,(37))ay
47%U51(¢¢(Bf)—1¢¢(BJf))n

m2UZ (8, (B_£)+1¢,(JB_))e=0

due to B,f=0 and the equation (8-5) ( with f replaced by B_f).

A vector in the Fock space which 1s annihilated by & creation
»

operator a {(f) must vanish, which contradicts to

(8-8) <ﬂ,ﬂ>=<RB,nB> =1 .

The first consequence of this result is that the range
of. (B'l)+ is dense because
1

<f,(B"7),g >=0

for all gex Implies
- -1y (¥}
0= [(871), 1" r=B ¢

where we have used B"lﬂJBtij_1=B£¢)—B£¢)

As a consequence w(ﬁ)-o for all odd m: For, (8-6)
implies m{1)=0 by the density of the range of (B_1)+. The
relation (8-7) then recursively implies wmy=0 for all odd
m again due to the density of the range of (B_1)+.

Since m0=0 would imply m(m)=0 for all even m by the same
recursive argument and this would contradiet with (8-8).
Hence w,#0.

We can now use (8-4) for m=1 to obtain

-1y oo |
wo(BT1)_f= /2, (B77) .

Since W, is in the Hilbert-Schmidt class , so 1s (B™%)_. Hence
B_=(3(e™H_a ¥

is also in the Hilbert-Schmidt class.
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Now we assume that BEP)B

+8=-Ag with 220, Jg|=1 and we shall
derive a contradiction. First we consider the case A>0,
Let L be the set of all vectors satisfying BiP}B+g=—Ag.

For gel, we have
(#) (PIn uen(®ln ol¥)

B, ‘B, B B_g=B. ‘B,B)" ‘B.g

n(#l alPy ()

=B," ‘B_B," ‘B g= -AB. ‘B g
and hence B¥'s in bel L. Nemely B¥’B 1s = Hilbert-

+ _g agaln belongs %o L. Namely B/ B 1is = er
Schmidt cperator leaving L invariant. Furthermore

(#), y2_o(#) ()
(B,” 'B_)"=B," "B, (B;" "B -1)

Hence
#8011V AL

(%)

1s in the eigen space of B

B_ belonging to the elgenvalue
t[h(1+1)]1/2, and at .least one of them 1s non-zero. Let g be
a non-zero vector in one of these spaces, Then fiEBiP)f,

fEB_g has the following property:
£t (1)1 %
f_=-(1+1}g.

By (8-5), we have

(8-9) [@P(B_lf)+i¢P(B-ljf}]RB=O.

By the canonical commutation relatlon
. . _

(8-10) [2,(8)) >80 (8,) 1=[04(g)) ,0,(%E,)]

e] Im<g1,‘f’g2 >= l"i (gls'JFj-a)

r!

we cobtain
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(8-11) ({0, (87 e)+10,(8"1an)}, (8B r)+is, (B™51)1 ]
worn—1 -l.y o (#) =3. o(#)ay o _
=2(B7JL,TB7 ) =2(gBY 3TV, BY V8 m2(r T, 0 4 ),

=2(] r,] 2 £_) ®)=-2242)] gf ®

where we have used (h,Jh}r=0 for any hé# and JB—lJ-1=B(?)-

(%) (¥)
By BT

Combining (8-9} and (8-11), we obtain the following

cohtradletlion:

qﬂ]{¢?(B“lf}+1¢P(B"1Jf)}*nBH2=-2(1+A)HsﬂEHRBH2<0 .

This proves that B(F)

B does not have negative eligenvalues.
Finally consider the case A=0. By the same computation as
the previous case, we obtaln

for g, =(B i )B )g. Because Biv}B_=B£¢}B+ » Wwe obtain

(B-E-? )+B-(-i'p ) )B+51'B(9.}B+51=0 .

By the invertibllity of B(P}, we obtain B+gl=0. Since KerfB+}=

{0}, g,=0. Thus

(P}

B_g=0 Bi”)B

+8=0

The same argument as above now shows that g=0. Therefore 0 is
(#)g (#)

@
not an eigenvalue of B B,- Since B+ B+—1=B£ )B_ is compact,
this shows that the negative axis and zero dre in the resolvent
(@)
set of B "B .

Q-E-D-
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§9. G@G-Space Method.

As a preparation of the full procf of Theorems 13, 14 and 16,
we prove them for a speclal case of finite dimensional X using
the following Q-space method.

Corresponding to any directorthogonal decomposition X =K ®JK,
with respsct to the positive definite inner product ( , ), , we
have a maximal abelian algebra generated by {( the apectral

projections of ) selfadjolint flelds

s(e)=2"2* o)+ (e,

and hence we can identify the Fock space as a certain L2 space
where fields 4 (f) with fe Ky are mutiplieation of certain
funetions. We shall use such @structure in this section to
discuss #(#) with indefinite metric < , > =( ,0 ) and the
e-selfadjoint fields ¢,(f).

If we fix en orthconermal bagie e in ﬁ)relative

1,---,en

to the definite metric, there exists a unitary map W from

F(#) onto LE(Q,duO) such that

WE( 6(e ), ¥(e;), .., 9{(e, )00 =P(q;,05,---,9,)

for any polynomizl P where QﬂRn and

“n/2

(9-1) du0= i exp (- Eqi ) qui.

Let X=K®JK, K and JK be #-invariant and mutually orthogonal,
K,=P,X and K0=K+$JK_. W should implement

q; {resp. —15%;+iqi}for e €K,

H]

(9~-2) w¢?(ei){resp.@P(Jei)}W-l= {

i

-

_1q1 {resp. - 5%;+qi }for e ,6K_
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* -
Let ¢=F_+iP_. Then ¥ commutes with @« and ¢ =¥ 1 ,¢2=92
’ ¥ _
Por the decomposition of § relative to K&JK, ¢ h ~¢ is #-self-

adJoint and gymmetric in the sense that Atr

ECA*C=A for the
* -
complex econjugation C=(+1)®{-1) on K&K and A=¢ 'h 1¢
We introduce a matrix o by (gq,0q)= Eij uijqigj where
- ¥ -
uij=(ei’w*h 2lpej) 1s symmetric due to (¢ h 2¢)tr=¢ h 2¢ and Cej
=ey.

We claim that

{(9-3) ﬂs=[deta]l/uexp[— -%f(q,(a—l)q)]

has the following two properties:

(1) Por n >0, and any polynomlal P,
2 .
(9-'“} P(qls"':qn}nse L (Qsdvo) ]

{11) For fe€X ,
. -1 _I;r'
(9-5) ( 0 (87 L)+10u (8 7J1))0R=0 .
The property (i) 1s immediate from the definition due to the
aaéumption that zero and negative real number are not eigenvalues
- % - _ .
of qu(a+u y/e . and hence Q has Gausgsian fall-

3
off for large lq|. The property (ii) follows immediately

Proof of Theorem 13 and Lemma 15 for fiﬁite dimensional A :

We define an operator US1 by

-1
{9-6) Ug P(2,(f)),...,0,(f ))0
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where the polynomial P and test functions f fn are arbitrary.

12000
Since any polynomlal annihilating £ is known to belong to the
left ideal generated by annihilation operators ﬁ£f)+i¢¢(Jf),
(9-5) guarantees that zero vectors are mapped to zero vecbors
by Ugl and hence Uél is a well-defined linear operator.

Since Qo#0 for all q and Rsexp[—%zqi ] has a Gaussian
decrease at g=«, ﬂs 1s eyeclic for the polynomial P in LE(Q,dﬁo)-
Hence the image of Uglia dense in LE(Q,duG).

Next {(9-5) and the canonlcal commutation relations uniquely

determine

<95’P(¢r(f1)s"'s°w{fn))9§>

because  ( @,(S"lf)+i¢?{5'13f)) and its €§-adjoint
{ g;s'lf}—i¢p(s"1Jf1) generate the polynomial algebra. Hence

it must be equal to

<@,P(2,(Sf ),...,0,(8F )R>
which means that U~ is 6-isometric.
Flnally %o prove that S_l is also weakly 6-unitarily implement-
able, let
-2

.h T= d=ar+iai

where o and iui are gelfadloint and skew-gelfad)]oint parts of

a respectively. For 5'1, we have

-

-1 -1_ -1 -1 -1 -1 -1
o -(ur+iu1} —(ur+miar ui} -l ui(ur+aiar ui) .
Since (a'l) ={0_+0 o~ Lla }—1 is again a positlve operator g1
r r 1'r "1 ’ )
is also weakly g-unitarily implementable.
QoEtDc
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For the purpose of our proof for the infinite dimensional
case, Wwe need a few more eatimate about RS. First we mentilon

the following two lemmas due to Klein {15,27]:

Lemma 17: Let (Qi,dﬁi) be a sequence of probability
' 2
measure spaces. Assume £, >0, f,€L (Qi,dui), and Ifil2=l
= J oo '
for all 1. Let Fy=Ny_,f,. If LS| filpﬂo for some p>2, then

2

for some FeLnLP s

) o

3 F

in 12,
_ 1 2 2
Lemma 18: Let fl(q)- Yaexp[- T(J\ -1}q°1, and let ulp
be the norm of f with respect to the probability measure

dy o= w'lfzexp(-qz}dq. Let 12¢>0 be given so that c;lz £c

-1
Then there 1s a constant n for some p>2 {(any p<2(1—c)'1) such
that

|f1(Q)Ipiexp(n(12—1}2).

These two -lemmas imply that a formal vacuum given by
_ 1,2 o2
RS-foi expl- —E—(li-qui]
ts in L% 1r £(15-1)%w, and can be directly applied to our

cage 1f ¥=1, becguse S8 is a selfadjoint scaling operzator

in this case ({li} are elgenvalues of ¢ in this casze ).

In order to prove the following theorem-and as & prepa-
ration of the next section, we briefly dicuss the compact
operators and determinant of Hilbert space operators [ see, for
example, 6,23,25,26]. |

Let }§ be a separable Hilbert space and let & (#) be the

R
¢ -algebrg consisting of the bounded operators on #. For a
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complete orthonormal basis {¢i;i=1,2,..} in ¥ relative to

the inner produet ( , ), the trace of cperators is defined by
(9-7) Tr{A)= Z,(¢,,49,)-

If A is positive, selfadjoint, then Tr{A) does not depend on the

choice of the basia.

%
Let |A]l=(a ﬂ)lfg, and define

(9-8) e, =l KEU); Tr (14]P)<ol},
and
(9-9) ||A|p=(Tr(|A|p}}1/p

Especially 52 1s ecalled the Hilbert-~3chmidt class and is a two-
sided ideal in &(X).

We summarize several inequallties without proof [16,25,26].

If A¢C,, B€C, with p l+q t=1, p,q,21, then both AB and BA are
in Cl and HSlder inequality holds:
(9-10) |Tr(AB}|;||AB|13 fal _fs] .

p' g
If Ac¢p (), B¢ Cp ,then

(9-11) ﬂABIp ;IAIIBIP , [BAlpg|A||B|p.

Let {liih};1=1,2,.} be a listing of all the non-zero eigenvalues

of A counted up to ( algebraic ) multiplicity. We define
det (1+A)= M(14r,(R)).

Let {yi(A);i=l,2,.} be a listing of all the non-zero eigenvalues

of |A| counted up to multiplicity. Then

~38—



(9-12) 1 <det(1+]A])= H(1+pi(ﬂ)) ;exp“ﬂll P

and det{1+|A|)<®if and only if A€C.., The following ineguality is

1
due to Weyl [£,26]:

_ : 3 Pog st P
(9-13) T [a (R} Te Ty wy (A)7] A
for p>1l. Therefore det(1+A) exists for Aféi. Further [6,26]

{9-14) |det{1+A}|< det(1+]A] ).

Our final theocrem 1n this sectlon 1Is the fellowing that

is a generalization of Lemmas L7 and 18:

Theorem 19: Let & and B be bounded symmetric operators{ of
arbitrarily large but finlte rank n } such that

(1) O<esga <c™l, 130> 0,

r’ Br
{11} -m<e; , Bi <m ,

(331) fa-1f ,,|8-1] ;¢k , for some k<=  independent of n.

Here 6., and iai ( resp.BP and iai} are selfadjoint
and skew-selfadjoint parts of a{resp. g) respectively.
Let

£ =(det 0y Pexpl- —3(a,@-1)@)],

£=(det 8 Yexpl- 3(a,(68-1)0),

and let ﬂ"-ﬂp be the norm with respect to a probability measure

-1/2

= ﬂzal T exp[-qijdqi . If “a—Bﬂe is sufficlently small,

then there is a constant n such that
2 2
nfu— BII 2 _i_ Tln a'.BIz

for an appropriate choice of the quadratic root of det{a) and det{g)
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For the proof of thls theorem, following lemmas are useful:

Lemma 20: Under the same assumption of Theorem 19,
e P - 1ﬂet’a[pxu
e’ P 1/2
(det (1+ Z—(a_-1))1]

for p <2(1-c)-1. Further in this case, there is a finite

constant nt' such that

I g,) piexpish:-luillg o~ 3 1.
C

I.emma 21: Lef o, and Br be the operators defined in Theorem

19. Then

1/2 ,1/2 1 -1/2
lop -8 Ao 2 5l b,

172 , %p*By 1,2 1 -1/2
I“r —( '2—) 25_ -5 ﬂar-ﬂrlz ,

1/2_, @ ptfy y1/2

185 5

1 -1/2
2= T C l]m':c'“B::'lE ]

Lemma 22: Let “r and Br be as above: Then

¢+ B
det™/H—E 55 by i
1 <k= zexpl(2c) Ja~8,15]
1/4 174 r
det (ar) det (Br)

Lemma 23: Let asar+1ai, B=Br+iﬁi be as in Theorem 19.

Let

~1/2
r

_-172.  =1/2 _
A=a ™ Tago, s B=8

-1/2
™ >

E;B
and let
m=laet /8 (1447)-aet1/8 (148%)72.
Then there is a constant cg, for sufficiently small nu-Bﬂz such that
M;eﬂﬂa—ﬁﬂg ]
K2 2.2
{(For example, °0=exp(-]_;?_')Y e

{a-8] pia. )

Y v=ame l(mg +e L) , for
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Proof of Lemma 20: Since

2,1 =l deta| Y ¥expl- —Ha,(a,~1)a)]

the first equation is obvious, while
| deta]“=det (a ,tia, )det{a ~1a,)

- 2 =1/2 =1/2
—det(qr)det(1+ur ui“r qiu )

-1/2 -1 -1/2
sexplle ™ “ae 00 7 4] det (a2 o)

cexpliazZ fa 2}, et (a2)=exple o | 51det (a2)

Then p/ Y
1 2 {dEt (GI‘)) ]1/13
[l 2expl= oyl ] 72
(det (1+ —5—(a-1))
Hence | we obtain the desired inequality:

1 2 2
i£,l < expl 7480 layll 5 +n'l (e -1)i5].
Q.EID.

Proof of Lemma 21: Let {¢i} be the complete orthonormal

eigenvectors of ui/2+gif2, and let {Ai}be the elgenvalues. Then
2c1/%gli 520_1/2 . Since
we have

2_ 2
a8 5= 24,1 |(¢i,{ur—8r)¢3) |

A +l

T G L N PPN O S TR

1,J

1 2 l 2
ST N TP I b TIS R ETT i b E

Other inequalities follow by substitution.

Q-EvD.
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-1/2, -1/2
r Byl

Proof cof Lemma 22: Let z= o

1/4

Lak=aet™ (14 T}:_l(x-l)z) cexpl—3 ="M | (x~1)%] ;]

exp LA a2 208 10T /3 2]

I

1 o Iy =2 2 -4 2
¢ expl—3x 1“% e, ~6.151 ¢ expl(2e)” o, -6, 5]
Q.E.D.
Proof of Lemma 23:
M=det1/”(1+n2){ det[1--{1+A }“1/2(A H Y(1+4 )“1/2]-1}2
1 2 2 2 2
<expl —ﬁ—ﬂﬂlz][93p|ﬂ -B 'l -11°,
Note A,B¢C,. By H8lder inequality,
2 2 -1
j A“-B 1,2l a+8] | a~B] ;< 2me™ 7| A-B), .
Further
-1/2 =172 _=1/2
i a- Bﬂz I& 1ar / Br / Biﬂr / I2
'"m;lIE(_aiIZ 1/238-1/2 oy ;1/2+B-1f2( ay ﬂ Yot —1/2
-1/2, =Y/2, 1/2 1 244 1 2
+Br Bi T ( “r/ / / l2
1/ a=1/2 =1/2 “1/20 0 .=1/2 =1/2
<UaZt A8 200 4+l Y 87 %8502

=1/2 =1/2

xlar

*3f2"u1/2 l/2|2+c l"ﬁ 'Bil
Then by Lemma 21, we finally have

- | A-B] jxme P a_=B | +e" a8, < (mc'?+c‘1)|a-s|[ .
Thus

{expll-Az-B-Ell 2..—1} 2 ;(exp[zmc_l(mc_2+c_l Ma-g) 2:I--l} 2 R

Yo

¥ 0, Then ]x'lﬂi ¢

-2

]



and then there is s suitable econstant d such that

sala-812

We set ¢ =dexp[¥%—lh|§]to complete the proof.

D
Q.E.D,

Proof of Theorem 19:

121 12 2 (3 oo (e
Loy -l S £ 5H LGNS —fF £ paug-(£, Fodn,

et @) (M aesqry MYy

det (ur) det(ﬁr}

'+2|det(a}dét(ﬁ)det_l(ur]dét"l(ﬁr)l1f"

~{aet ¥ @raett/H (8)aes /2 ()i (ara , BB))

Let

L1720 2172 aam1/2, a2 o SptBn T1/2 ay-By @Bl Ly
A=o_ aga 5, B=p_ BB ", C= () (=) (==

Phen these are in 52 , and

2 1] =2 2
Iclgi § ¢ Iui_silg .
We have

1/8 1/8 1/8 1/8

I £ -r ) 5={det (1+2%)-aet 1/ (148%)1 7 +2det /¥ (1+4%)det VP (148°)

detl/u(ar)detlfntsr)
- ' o TB_ det
det/ (LT

'1/2(1+02)

1/4

«[detX ¥ (1-1n)aet 2 Y (1+1B)aet /2

(1+iC)+{(A,B,C>~A,-B,~C)]

Let

1/4 1/2

g=det /M (1-18)detT (1448 )aet Y 2 (1+10).

_43-



Then

1/8

12)=aet 8 (14a%)aet 1% (1482 )aet 1 H (14¢2)

and 2 1s given as
|2]w, |uw|=1.
Let wr=Re w. Then we finally have

nfu_fsﬂ§=m+2|L|det‘1f2(1+ca)ﬁ'l[detlf“(1+02)K— wr],

where M and K are quantities given in Lemmas 22 gand 23. By
previous lemmas, it suffices to prove that, 1if “u-BIS is

sufficiently small,

4
jo~1]<n; [ a-8] 2

for some constant n -

For this purpose, note that

1/4

2=det (1+1C)(1-1A)(1+iB)(1+1C)

1/4

=det (l+ﬁ2+H }

where
H=A(B-A)-1i(A-B-2C)+1CAB+1iABC+{A-B)C+C(A-B)
—¢2+1¢(A~B)C~CABC.
We prove Héfi and "H"lg nzﬁu-ﬁﬂa for some constant n, - Since

A,B and C are in €,, °

IA(A-B}Hli“AHEEA—Bﬂz < const.Ja-gl, ,

I aBCj lﬂl ABJ 2'] Clz‘i const .| a-BE 2

Thus 1t suffices to prove HA-B-ECHL5n3' lﬂ-Bﬂz for some constant

: A-B-2C
ﬂ3 _

_3;1/2aiu;1/2_ﬁ;1/2ﬂis; __2(

“r+ﬁv '1/2(a1 Bi ){ar+3r ~1/2
2 2 )

_hY.



=q-1/2¢g 1/2_, 1/2y4=1/2 -1/ -1/2,,1/2_ 1/2 ~1/2
r r

2
L L +a 81 r

+B'1/2(( o +Br) 1/2 1{2}(“r+3r V172

(8, )8,
-1/2
Bi) r

448 a_ 48 12 1/2 anthy, y-1/2
( T I’) l/Z(G B }u—1/2(( I' I') )( 5

@ #B .
¢ r2 r)1/2_a1/2

Here @y B 562, and by Lemma 21, -

“r*ﬂr 1/2 '
(—5=)-g," " are of Hilbert-Schmidt class whose Hilbert-Schmidt

and

norms are dominated by const.ﬂé-ﬁﬂg. Then there is a sultable
constant . such that HA—B-EC 4N .. duﬂ

Let Hr and IH, be the selfadjoint and skew-selfadjoint paris

1
of H respectively, and let

det (1+A°+H)=det (1+A +H_)det (1+1H] ),

where

_ 2 -1/2 2 =-1/2
Hi-(1+A +Hr) Hi{1+A +Hr)

15 a selfadjoint cperator such that
-1 -1
[B:H <M1+A +H )TN H], <n J (1+4° HH D7 | o8 5

Then

2)-1/2

1},

det(l+iHi)=det (1+H' }Exp{iTr[Sin Hi(l+Hi

and

-1/2

w,=cos —%—'{Tr[Sin—lHi(1+Hi2) 13,

which completes the pfoof.
QhEoDn

§10. Proof of Maln Theorems In §9.

For a generalized ¢-scaling S given by (6-7), S_ is

-—45-—-



glven by
1 (h—h‘1 0 )
(10-1) N -1,

on K&JK, Then

-1

(10-2) §_ is H.S.+* h-h"! 1s H.S. +> 0-1=h"2-1, o~ -1 are H.S.

el o, (a'l)r—l, (a-l)i are H.S.

Let En be an inecreasing sequence of finite dimensional

orthogonal projections commuting with ¢ and tending to 1 as n+e,

}*-1/2

- _ -1
Let hn-(Ena_.En +(1—En) and Sn_hnehn on K&JK. Then {Sn}is

a sequence of generalized ¥$-scalings of finite rank with un=h'2

n
satisfying ﬂun—lﬂgcm . ci(an)r;c'l for 211 n and
|um—an|2+0

as m,n>« . The sequence of transformed vacua {Rg } with
n

2 =[aet(an)11/”

exp[- —%—(q,(an-l)q)]
n

is Cauchy in LE(Q,duQ) by Theorem 19:

2
(10-3) nsn + RSEL (Qsduo)-

1/4 V2

The phase of (det(un)) iz chosen s¢ that (det(un)}
det {an)> 0. Thus we can prove Theorem 13 and Lemma 15 through
Lemmas 24-26:

Lerma 24 : Let P be a polynomial of the fields {%jfi)} .
Then

(10-4) Sup, ]IPS‘ISDHE-:oo

Proof: It suffices to prove the lemma for a polynomial of

{q;}. In fact derlvative terms {3/3q,} 1n ¢{f:) are only to

45—



induce linear terms of { qi} as in P, which stay

FAR YEFLY :
in & bounded set of LP(Q,dw)) with p2: 5, f(m) ] " (1)

for any n and 1.

By H3lder inequality
2 2.
| g | =[|Pﬂ ] “du
S, 2 8, 0

2 2
sIe S Jag |
2q" n 2p!
where p',q' >1 and (p')'l+(q')'1-1'. By Lemma 20, there is a

constant p in (2,2(1~c)-l) such that
lag 1 cexpl—25d (@ ) 0 34 (o) -] 5
Sn = P 8o nif2 "M np E2 7

We put p'=p/2 >1 , which completes the proof.
Q.E.D.

Lemma 25:

(10-5) <0g,PRg>= <@, 14(P) 2> ,

where PaP(d,(f1),...,0,(f,)) and 1g(P)=P(@y(Sf)),...,8,(S ).

Proof: Let ?nsPnS . By the above lemma, wh has a &eg=-
0 : .
uence converging to a vector ¥, Sihnce P 13 a closed operator,

{QS, ¥ }egraph P

Then ¥ does not depend on the subsequence and Tn weakly converges to

¥Y=Pio , @ € D(P)

3

For finlte rank Sn 3

PRe > = <@,mg (P)R>
n n I

Then

47—



<Rg,Plg>=<q,T (P)2>

Lemmg 26: g is a cyclic vector for F .

Proof: First note that {ang) ={Pﬂs} . where {Q 2} denotes

the set of Q(Q)RS with Q(q) polynomials of {q}. As we have already

proved,

{QQS} ? Qg
0
ir O-tx is of finite rank and ci(a}r, (osﬂ)P ép-l for some 12>e>0.
Let En be an increasing sequence of finite dimensional orthogonal
projections tending to 1 as n+e and commuting with ¢ . Let
= -1/2 -1
= + — - = =
o En (1 En}u(l En). Let h, (un) and Sn h ®h = on K&JK.
Therefore {QRg}2Q, and Je ~1],+0 a8 n>=, which implies R, +Q
n

2 Sn

{
_ Qgl=a
By the explicit evaluation of ﬂq?QﬂS|2 as a function of n,
it ia seen that Qﬂs for any polynomial Q of {q} is an (entire)

——

analytle vector of qy- Hence exp(iaqj)QﬂséF{Qﬂs} for any real

a . This shows that {Qﬁs}is invariant under the commutative von

Neuman algebra M generated by'{exp(iaqj)}. Since the Fock vacuum

is known to be eyecliec for M, {Qﬂs}aa implies that {QQS} is the

whole Foeck space & .

Q.E.D.

To complete the proof of Theorem 12, it suffices to
prove that T -1 is again weakly O-unitarily implementable. This
is obvious gince if o1 is H.S. ,then oto1 is again H.S.
(see eq.(10-2)) and if o, is strietly positive , then (afljr

is agaln striectly positive as we have already proved in filnite

18-



dimensional case.

Q.E.D.
Proof of Theorem 14
For finite rank Sn,
o ‘daq.
<{} i }= 1/“ 1
> sn det {un) f exp[-—g—(q,(un+l)q] I =
_ o+l
= aet? Mo ) aet™1/2(BT )
-1
—1/4 Bpth -1/4

=det ™/ (B y2aget ™1/ A r1r f(n_-n71H%1.

Take the limit n-+«. Since (lst‘?"' and h-h"l is H.S. this

- J

is non-vanishing finite . { Moreover this is positive since

det (A) >0 1if A is symmetric ¥-selfadjoint operator such that

A 30 ).
If Tp=V, 3V, with V, ¥-unitary, then
-1
-1 h+h 2 n(Ply o (%)
Vo ( ——)"V, =B, ‘B, =1+B_"'B_,

For the above Ty, UB=ITV1)USIT?2). Since {r(vi)} do not change
the Fock vacuum, 1f Qg € D{ P(Vgl)} ., then -

Q05> =<Q, 4>

Procf of Theorem 16

The number operator N is given by

' 1 3 D
L2 (ey)ale,)= E“Ei(“'aqi'gqi} Ba;

in the Q-space. Let

=lg.



o gl1)
Rys  Nig g, 9.t

where

. : 5 > _
at)- 5-Loy~1+ag- 2y 05a,)718% £ ()0 -

1

Since o-1€C, and @™~ 1s bounded, it is explleitly shown that

by - 5
=L o0
haghs =z, f Fye,l0g1%au <=
Q.E.D.

Remark 6&: By similar method, it wlll be proved that
QS€ N for n=1,2,.. . This is the "locally Fock properfy"

of the vacuum defined by Glimm and Jaffe (7,8].

Finally in this sectlion, we prove that the condition
spec o, >0 1s necessary to ensure RS§?§
Theorem 27: Let S be a generalized $-scaling. The vectop

., such that

3 .
fﬂ,wS(P)n>=cRS,Pﬂg>

iz not in the Fock space if inf spec a, < 0.
Proof. a=h_2 takes the following form on JK+EUK_=JK. due to
the #-selfadjocintness of o
(‘“r}++ (ai)+_)
(ag)_ 4 (o) __ ;
namely ¢ =(a ), @ ) _ on JK&JK . TFirst assume that inf spec
(ur)++=—l < 0. Then there is an elgenvector f€JK, of'ar belonging
to the elgenvalue -X. In this case p(f) is selfadjoint and flexp 18(f)|

=1l. HNow
<ﬂ,ns[exp(i¢¢(f1Hn>=<ﬂ:exp(i¢?(3f))n>

=expl[- —%—<Sf,5f>j=exp[- —%*(f,(ur)++f)]
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=exp[ ——(,1)].

If >0, then the right hand side can be made arbltralily large,
2
which contradiets [<fg,exp(18,(£))0g>[<fng]5e .

The case of inf spec (ur)__(ﬂ is similarly discussed.

Q:E.D.

We remark that the stéte'pB= <0, nB(.)ﬂ> cannot be extended
in general to a state on the ﬂ'—algebra generated by

{exp 13(f); fe€X } , as can be immediately seen from the above

proof.

§11 Examples of 9-unitary Quasi-Implementability

For weakly @-unitary implementabllity of a Bogolyubov trans-

formation B, we obftailned the following sufficient condition
in Theorem 13:

S_ € H.8. , and speé (u)r >0
and the followlng necessary cendltlon 1n Theorems 12 and 27:
S_€H.S3. , and spec (Ot)r > 0.
We now want to present two examples of B where this necessary
condltion is not satisfied and yet 2 guantity which can be
interpreted to be the overlap ‘n, an is non-vanishing finite
in contrast to the situation of positive definite metric where
the last condition 1s equivalent to the unitary implementability
" [Remark 51.
The first simple example provides the case where B_ 1s
H.8. but spec a, can become negative. The second example

provides a case with B_ non H.S.
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Let {#, ;2=1,2,..} be a sequence of two-dimensional Hilbert
space .H£=02 equipped with an indefinite sesquilinear form
<, >=(,¥, ) vhere ¥ =diag(l,-1). Let X=® X, be
a Hibert space equipped with an indefinite sesquilinear form
< 5 =), =8 ¥ . Let {T(ﬂ); 2=1,2,..} Dbe a sequen-
ce of p-symplectic opeartor on ﬂ% , and let {?E, < 4, >)}be
a Fock space equipped with an ilndefinite sesquilinear form
<, > =( ,fa(yi) ) constructed from {ﬁ;, < , >} Wwith the Foek

vacuum QF.. . The Pock space over /£ 1s identified with

F=e, (F,0, ), 6=T(#£)=0,T,(#)

Example 1:

hy 0 )
(2)_
. (S

on KLEUKE, where K£=Ki$KE and tmm is such that the corres-
ponding matrix aij is given by

. =l2 ( cos29£ 1sin28£) = Iiu(eﬂi)
e isin2B£ cosEBa

with  0£6,<7/2, 0<A, for all & .

The formal vacuum ﬂéﬂ) is given by

D1 (2)4

[det(a expi- —%—(q(L};(ﬂi—l)q
= agexpl- ——(a'*), (A2u(2e,)-1)¢ My

where (%)

]
(2)_ (
q =
oS
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Then ﬂén)é # only for 0% 28,<7/2 and
L

(2} P -p/2 *p
Qe ‘| = [cos 28,1 :
: T 'p 2 1+ —-g—(xi-l)

with
L 1/2
. 9 Aa(cos2eﬁ)

for 0O<p< 2(1_;)'1 {c= cos2g ,xmin {lg ,_352} Y. The transformed

total wvacuum 1s given by ’
agnéli
T = $£T££) is Hilbert-Schmidt if and only 1if
EL[ coshzra sinzea +sinh212 cos? ex] <o

-1 2 2
T LT S R L

where A, =exp(r,) and 2z, =r,exp{ig, } . Z, 18 one of the eigenvalues
A 2 2 2 A

of h, . T is weakly ®-unitarily implementable if 0 iﬂz<wﬂﬂ

for all & and T_¢ H.S.

The overlapping of the vacua . 1s

h +h‘1

L ~-1/2 -1 -
<n(£), ﬂé R =[det(—£§—&—)] /2.2 |z£+zll| 1

where ¢ %) is the Pock vacuum in ﬁi.' The formally defined
overlapping 1, 2!z£+z;}|_1can converge to a non-vanishing
finite quantity even if spec > ¢ does not hold. In this

example, the overlapping is non-vanishing if and only if T_eH.S.

Example 2



o E ] =uloul
n KL JKE s Where on Kg K+9K_

11 :
h£=1+n£( ) s N€R .

-1 =1 4
Note that hy-1=n,(’ 1) is & ¥-selfadjoint nillpotent operatar,
-1-1
and
1 1
-1
hL -l-nz( )
_1 -1,
1 i)
a, =] —2n£(

i -1 -

Thus T_ is H.S. if and only if E£|n§|<m L and T is weakly
®-unitarily implementable if T_€ H.S. and |n,|<1/2 for all %.

But the overlapping is independent of {n,}

§l2. Applications to Physics.

As an illustration, we consider , 1n this sectlion, a mass-
shift model of vector field hu. in ch—dimensional space=time
with perilodic boundary-condition (other more non-trivial models,
see [5,11-13,19,29]).

We shall consider Bogolyubov tranaformations related to
this model and discuss its implementablilities. Pirst we
consider the Bogolyubov tranaformationa whlch dilagonalizes the
Hamiltonian of this model and second we consider the time-trans-
lation operator of this model as Bogolyubov transformations.

The (Stuckelberg ) vector field Au in two-dimensional

gpace-time can be descrived in terms of a scalar field ¢ on the

—5 -



Pock space ‘ﬁh with a posltive definite lnner product and
another scalar field B on the Fock space ?% with an indefinite
inner product:

0 )
A= = +3 B
el [euva ¢ au ]

where ¥> 0 1a a mass of ¢ ,€.., 18 the antisymmetriec

TRV
tensor with values * 1, and we assume B has a mass W'z 0.
(Up = —%—euva“¢ i1s the Proca fleld of ma331jin two dimensions

and B is the gaugeon fleld of mass p'. See [9,11-13].)
The totel Hamiltonian H of the mass-shift model is then

H=HU(¢}+HO(B)— —%— 6ﬁ2 E:Ag(x,O)—Ai(x,O):dx

where HD(¢} and HO(B) are the free Hamiltonians and :
denotes the Wlek product. To set up simple well defined model,
we limit the space to the finite interval & =[-L/2,L/2]1C R
with periediec boundary condition and furthermore wuse the
©euteff ( periodic ) field Au,q(x,0) instead of Ap(x,ﬂ) { high
momentum parts (|p|>c)and zero ;ﬁomentum parts are completely

omitted in Ap,c(x,O). See [11-13] for details).
Without loss of generality, we set u'=0 in the following,

which correspendd. to the Landau gauge formalism of the vector
field [9,11-13,19,29].
+
tn terms of creation and annihilation operators {a (p),

a(p},b+(p),b(p}; peT= 2n1Z/L } of ¢ and B, the Hamiltonlan 1is

27 ) .
(12-1)  H=H(L,9)= L 61 o5p> Uf(p)?f(pm’(p).-E(L,U)
where
’y
- Su—
E(L:U)_ zper,oip} O(QUHPD 2p0)



1/2 1/2

2,2
Po=(p“+p") , q0=(p§+au2)

is a constant ( the vacuunm energy } chosen so that inf spec H{(L,c)
:D’

alp)

Ap)= b (P) , ()= 2t ), vT(p), al-p), bl-p)),
a (-p)
bt (-p)

and H(p) 1s a 4x4 hermitian matrix given by

(12-2) (

—

/ #, (p) # (p) )
#_(-p) #, (=p)

with
2 2
SO L
# (p)= P s
2
Su’
-1—=5—u" (p) -|p|
|
osul e el
ﬁp_(P)’ H 2 2p 2p2
where

In this approximation, ff+=a‘£‘:= 2.2(I') and ﬁ}j- ﬁ{f(_l_),
# =) and the following CCR with an indefinite metric hold:
+ _ + _ L o
i [a"(p),a(q)]= -[67(p),bla}]= =6, .
any other commutator = 0 .
Here

2t (0)=[a(p) 1 =[a(p)1”, vF @)= 1 =[],

~56 -



and {a(p),b{p); pET} are the annihilatlon operators:

a(p)fR=n(p)s =0

for all p.

We shall now discuss the following items about the
Hamiltonian (12-1):
(I) Diagonalization of H=H(L,?) by a ¥-symplectic operator
TG in the sense which shall be explalned.
(EX) The implementability of T, .
(III} The Bogolyubov transformation o ( =exp[it5H] ) induced
by H. -
{(IV) The implementability of a .
Before studying these problemé, we shall note a property

of H(L,0), namely H(L,?¢)} is O-zymmetric :
<¢,H(L,6) p>=<H(L,0) ¢,y> for ¢, PeD(H(L,0)).
Further in the present case H{(L,¢) is ©-selfadjoint. In fact

the symmetric operator ©H(L,o} is selfadjoint since og<= ,

which implies that H(L,o} is ©-selfadjoint [5,13].

I and IT: We choose a UxY¥ matrix S(p) which dlagonalizes

H(p) and leaves the CCR { with indefinite metric ) invariant:

g" (p)(p)S(p)= diagenal matrix,

s* (p)T8(p)=8(p) 18" (p)=T,

)

-

where

with ¥=diag{l,~1). This S{(p) is obtained by sclving the
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following equations:

det[H(p}-Tx]=0, ﬂ(p)Tu1=e u

i"1l

with the normalizaticon with respect to ( 4T )=< , >p ¢

<ui,uj>T-(T)iJ

Here {ei;i=1,..,4} are the roots of the characteristic equation,
and are given by {tq0=i(p2+u2+6ﬁ2)1/2,i|P|} . Then S(p)ij=
3 s,(p) S_(p) -
s(p)=(

S___(_"p ) S+ (-p )

where

=2 0,2 0 iy
s (o) 2 uﬁ;quE 2uiivol | b
p)= 5 _
+ 6up 22
2uiv/a" | pl 2u W
_u%q% %0 - iﬁuzp
s_(p)={ 2uhvp’q 2ui/p° | p|
161°p s’
201/q" | p) 2

with ﬁ-(u2+ﬁu2)lf2.

S, (p) o Y 0 5.(p)y
B+(p)= : B (p)=C
0 S, (-p)/ » s_(-p) 0/,

Let

where C 1z the complex conjugation operator on X . Let

(12-3) T(p)=B,(p)+B_(p) ,
and leg
(12-4) B, (0)= Eb{péogi(p), T =B, (a)+B_(0).

Thus UTU should implement & (p) + 3(ple¢p) , and -
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2y "
then implement AP,G(x,OJ* A (x,0) , where Au,g(x,D) is

2)1/2

wa

the vector fleld of mass i={u2+6u ( in the Landau gauge

formaliam ).

. - W
Since ¥3;(-p)¥=5,(p) in this case, we see U TUU01=T

o ]

where
£G )
U::
0 Y2 \N-¥ 1
i a uwnitary matrix commuting with ¢ , and
v 7Eg(#) 0
%= (
0 tg(“)

where t,(%)=& 0<p;Pt(ip} with
: *

¥

t(zp)=5,(2p)t #C3_(sp).

n
Thusg it suffices tc conslider the implementablility of Tj
Since for K,=K ®&1K_,

by (£)KpCRy , & (23 Kpm®y (83 (+D)2S.(40))z tyla)y,

O<p<o
» %
by (£ )T, CTEy, t_ (21 Ky Pocpeq (S+(+PITS_(4P))=t, (25,

"y
T; takes the following form on K,&JK, :

( T&,l 0 ')
>

o | T&iz
where
t. &, (+
a,l ’ -
0 tg(_)l 3 0 tg( )2

-1 -1_.{(¥)
and,of course, JTc,lJ _TE,E

We investigabte a= Gﬁ?gTb , Wwhich is ¥-gselfadjoint and
>

*
symmetric:

(12-5) & = @ afp)
~6< PX6 ,pF0
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(12-6) a(p)=(81(p)-5.(p)) ¥ (s} (p)-5"(p))

= . 0 2 ¢
(_%_)2_25 iGHE £
= ¢ | u q #pE D
2 2 0
N p
i - p p 1 [uu_ 0{6u2)2]

2 22
H QG’EOP ueu q

a(-p)=(5; (-p)+5. (-p)) ¥V (s* (mpy4s* (-p))

0
4 2.2 812 3
—asglh - E—(su)®] 1 S _p
u25%p q° w2 /%

isqz LD (_ﬁ,
L v AU p M

with p> 0. Therefore a,{p)>0 for all p if ]5u2]<u2, and

2 41 i
1im a(p)=1+ 6“2 ( )+0(p'2)

p+i= u i ﬂ
/4

1
The formal vacuum &, is given by [det{a)] expl- %{q,{u-l)q)]

which is in the Fock space 1f dg<= and i6u2|< uz.

The overlappling 1s glven by

det™/2[B, (9} 17w, (L,0)=T det ™t

0<p<0 Se(p)

2

and 1s pnon-vanishing finite for su° 2 —p2, and absclutely

converges to a non-vanishing finite wvalue mG(L,w) as g=+w

since )
. ) by252 énqo
det "3,(P)* —3—=——"5 05 20 577
(WS (Rp +uSq )= (8u)“ |p|
=1+O(p-2)
58 p+m

As conclusions, T 1s weakly ©E-unitarily implementable

g
for o<« and ]6u2| <u2, and @-unitarlly quasi-implementable
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for oge and &u° 3-u°.

Remarks 7 : (1) The fellowlng gquantity existis:
' 1 1" .

ups 1im -—L'*IDEMG(L,G)= ﬁ;udp 108[det(5+(P))]-
L,g+=

This is called the effective potential in field theory ( the

subscript "p" means the pericdiec boundary condition ). Since
the indefinite metrie formalism is used, this is not necessarlly
positive . In fact det(S (p)}< 1 for large |p].
(2) The vacuum energy per unit volume converges for L,o+= :
: o . ™ 2
1 17 o _q Sy
1lim —~E(L,0)= ==—-! dp(q -p - )
L, g L : 27 0 2pﬁ

(3) Let %}f) be the g-selfadjoint field as before. Then

pglexp 10,(£))= <Q,exp(10,(Bf))a>

=exp[- —%—<Bf,Bf> ],

which converges uniformly as L,g+= for any fe=L2(R2;d2x),(See
alse [7,8,22,23].)

IIT and IV : Let HG(L,a} be the dlagonalized Hamiltonian
by the transformation "S{p)", and let UT be the operator on
the Fock space which Implements the transformation of the fields.
Since’ Up 15 unbounded, we can say that H{L,0) 1s similar to |
the selfadjoint operator HO(L,OJ which commutes with 6 by un-
bouded e-isometrﬁc operator Uy . By the definition of E(L,q),
inf spee HO(L,U)sﬂ.

We say that a closed linear subspace A in/ is uniformly
definite {resp. strongly definite } if 1t is uniformly positive
or negative {(resp. positlve or negative ). We have obtained the
spectral resolution of H(L,¢) in terms of P-selfadjoint projec-

2
tlon operators ( for |6u2]< H ). But their ranges are not
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uniformiy definite.

H(L,0) 1s considered to be the generator of the following

differential equation:

Ju!
i (t)=H(L, s
(12-7) —a50 (L,o)é ()

¢{t-ﬁ)3¢0€ 7 2

i.e., we formally have

(12-8) ¢(t)=U(—t}¢G , U{ty=exp[itH(L,0)].

We proved that H(L,0} is ©-selfadjoint, but formally defined
U(tt) cannot be bounded in general except for t=0: U(f) is an

unbounded operator which implements the following transformation

of the field

(12-9) ay (3,(F)) =exp 188,-0(f) =¢,(B(t)r) ,

where B(t)s= B"lKD(t)B=B+(t)+B_(t) is a one-parameter group
of %-symplectlc operator and Ko(t) iz a one-paramrter unitary

group defined by

(12-20)  exp 186y -8, (£)= B, (K(2)0) .

B, (%) are explicitly given as follows:
=n(?) (¥}
B, (t)=B" ‘Ky(t}B,-B " 'K,(t)B_ ,

(12-11)
B_(6)=8{" )k, (t)8_-Bx ()8, .
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Even if (B+,B_) is weakly O-unitarily implementable,
(B+(t),B_(t)) is not necessarily weakly O-unitarily implement-
able. Such a phenomencn can be easily confirmed in a simpler
example. (B, (%),B_(t)) is O-unitarily quasi-implementable

in general. ( Note that B_(t) is H.S. if so is B_.)

Remark D: One-parameter 6-unitary group U(t) is called
stable [18] 1if "U(t}“iﬂ for all teéR. By connecting results in
[18,21]a we see that the necessary and sufficlent condition
for H to be a generator of one-parameter stable @-unitary group
1$_that H is similar to a selfadjoint operator HO‘ On the other
hand, by a thecorem owing to Phillips [18,21], we  see that the
necessary and sufficlent condition for the 8-selfadjolint operator
H to be similar to a selfadjoint operator H0 is that H has two
elosed invariant uniformly definite subspaces ?ﬁt) such that
F=ftlad-) witnh resﬁect to < , > . In physics, 1t is not
expected that the Hamiltonian becomes a generator of a ohe~

parameter stable @-unitary group.

-53=



§13. Concluding Remarks.

We first discuss some properties of Uél which is weakly

@-unitarily implemented. For simplicity, we assume that B 1s
¢-unitary ( then UZl= T(B™1)).

Let $=P,-P_ &s before and let #= 4, & /£  where £, =p X
Let B-%¥=B_¥f+$B_%”i . The topology of K 1s introduced by

the inner product
(13-1) _(x,x}li XL AEP =<X_,%_>

where x. ¢/, , while the topology of B l# is defined by the

inner product

(13-2) (x,x)2§<x+,x+> =<X_,X_>
where x € B—lﬂ; . ~ Since Bxiéi?i , We have
(x,x),= ® 'Bx, B 'Bx, > -<B™'Bx_,B 'Bx_>

=<Bx+,Bx+>-<Bx_,Bxh>={Bx+,Bx+}1+(Bx_,Bx_}l .

Thus there are constants 0O« Mg ﬁ2<h such that

2 2 2
(13-3) wollxd 35 ol S2moll 2] 5

which means that the topolegies of ¥ and B  are equivelent,
The unitary and hermitian operafor ¥ is again represented as

a unitry and hermitian operator ¥ .

(13-1) #=p1-P!
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where P} are prolections to B-la’?.’+ and are selfadjfeint with

respect to ( , )2.

Next let A()= & o A(X ) and let

(13-5) 9=T (¢)= 0_,-0_

where 8, are projections:

1 on KX ed ™ ),
g =

-1 on FeeR )y

where n=0,1,.. . Let A, ,=0,#. Then the topology of the Fock

space & 1is defined by the inner product
(13-6)  ($,8),=20,,9,> —<¢_,¢_>

where ¢ . ¢ZA , while the topology of F(B'lﬁ:_)@ 5‘(]3"1?('_) is
glven by '

(13-7) ($,9),7<0,28,> ~<b_ ¢_>

1 -1 ). 4
where ¢,€6 ZF (=) and £(B" %)= & FE"L e & (B X)),
o7 B n=even (odd) -

r M phyar (e Iy A )= s, .. 887!  (n-times)
(13-8)

(n,) (n_)
7™ )= o FoOodeE @),

n++n_=n

(n) (n)
Then for ¢€$(n)(B_]7i’}= r (g™t ) & i @€Y, we see

(13-9)  Yelh 5 = It ™ @yg) 2
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Therefore there is a vector ¢ in F such thatﬂ¢ﬁi<m and
Il¢ﬂ§=m . Thls shows that XF(#) and #(B '#) are different.

Due to this phenomenon, the set of weakly @-unitarily imple-
mentable B does not form a group and is not Invariant by ¢-unitary
operators.

Remark 9: If V is -unitary, §(Vf)=T(V)2(F)T(V™}). Then

for a decomposition T=V SVE with vy ¥Y-unitary, we define

1
UT=P(v1}USP(V2). Sinece T(V)Q =0 , nT=ns 1f 7=VS { as in
Theorem 14). Contrary to the case of generslized ¥-scalings,
even if uTeiﬁ R RT_l 1s not necessarily in the Fock space.
In this paper, we considered the properties of HB which
satisfies
<%, nB(P)ﬂ>=<R

peFig>

where P is a polynomial of fields'{¢¢(fi)}
P=P(¢¢(f1},...,¢?(fn}} .

and

T (P)=P(8, (Bf}),...,0,(Bf ).

Let
(13-10} pB(P}=<QB’PﬂB>

~

In physics, expectations LpB(P)} are easily calculated rather
than FB(P} themselves. To obtain Th from Pp i1s the converse
problem which should be Ilnvestigated in the next step. (See,e.g.,
£10,28] for the representation problém which is typical in the

present formalism. See also [13,29] for the problem in physics.)
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