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                        Abstract  

   Canonical fields  (1)90(f) on the Fock space with an indefinite 

metric <, >=( ,e ) and their canonical linear transformations 

(Bogolyubov transformations ) are investigated. 

   Let T be a bijective real linear operator preserving the 

So-symplectic form < ,J >
r=Real ( ,`°J ) in one particle Hilbert 

space X , where 9P is unitary and hermitian and J=/i. It is 

shown that, under some conditions, T has a decomposition T= 

V1SV2 , where V.1 so-unitary andSis a generalized So- 

scaling, namely S(99)-PS *SPA , JSJ-1 -1, SKCK and SJKCJK for 

a decomposition g K ®JK . 

  T is called 0-unitarily implementable if there exists a 

0-unitary ( bounded bijective 0-isometric ) operator UT on 

the Fock space X such that UT05,0( f) UT1=060(Tf) . This definition 

is too restrictive. It is shown that T is 0-unitarily imple-

mentable if and only if [T,S°]=0 and anti-linear part T_ of T 

is of Hilbert-S chmidt . class . 

We introduce a less restrictive notion: T is called weakly 

0-unitarily implementable if there exist a 0-isometric operator 

UT-1 (not necessarily bounded) and a cyclic vector ec such that 

UT14)9,( Tf1) ...X50( Tfn) St=4)so(f1) ... ~( fn) S2T , where S2 is the Fock 

vacuum. A necessary and a sufficient condition for this imple - 

mentability are obtained. 

   As an application, a mass-shift model of the vector field 

of an indefinite metric formalism (Sttickelberg formalism ) is 

discussed. A time-evolution of the system by the model Hamil-

tonian is investigated.
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                     §1. Introduction. 

 Let,L  be a Hilbert sapce equipped with usual(i.e. positive 

definite ) hermitian inner product (.,.), and let n be a unitary 

and hermitian operator: n_if=n 1=n . We define a new (indefinite ) 

sesquilinear form <.,.>- (.,n.) on d°. This is a "Hilbert 

space equipped with an indefinite inner product < , >", and 

denoted {4., < >1. 

                    One familiar example of this space is our Minkowski space 

M= {L=R', n=diag(l,-1,-1,-1) } . Historically speaking, Pontryagin 

first investigated this space in order to study differential 

equations, and physicist also investigated this space in order 

to describe quantum electrodynamics (QED). 

   Some examples of indefinite metric formalism in physics are: 

(1) An indefinite metric is needed to describe a massless vector 

field ( photon field ) in a manifestly covariant way. 

(2) In the Stuckelberg formalism of the massive vector field, 

an indefinite metric is used to cancel divergences due to 

pupv/u2 in the propagator of the Proca field (=vector field of 

positive metric formalism ). 

   In these examples, a Fock space with an indefinite metric 

,>=( ,O ) is constructed by the usual tensor algebra construc-

tions from the ( one-particle ) Hilbert sapce /t with an indefinite 

metric ( ,`4 ). In this space, fields are defined in terms of 

creation annihilation operators in a similar manner as the definite 

metric case. 

    Real linear transformations on J- which preserve the commutation 

relations of these fields are called '-symplectic transformations 

and the corresponding transformationsof fields are called Bogolyu-bov 
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transformations. 

   In this paper, we study the implementability of such Bogolyubov 

transformations B by linear transformations UB preserving the 

indefinite metric (  ,0 ) in the Fock space. 

   Our main results are about three different kinds of implemen-

tability: 

    Definition 0-1: B is said to be 0-unitarily implementable 

if UB and its inverse are bounded in addition to being 0 -isometric . 

   We shall 'show ( Theorem 11) that B is 0--unitarily implementab-

le if and only if UB is unitary with respect to the definite 

inner product which we use to give the topology for the Fock 

space. This shows that the restriction of bounded UB ( and UB1) 

is too restrictive for our purpose. 

    Definition 0-2: B is said to be weakly 0-unitarily implemen-

table if the Fock vacuum state is transformed by B to a state 

given by a cyclic vector in the original Fock space. 

   This includes a wider class of B compared with Def.0-1, and 

UB may be unbouded though it will preserve the indefinite sesqui- 

linear, form in the Fock space. We obtain some conditions on B 

which are necessary or sufficient for the implementability 

( Theorems 12,13). However it is shown that this notion is not 

invariant under 9-unitary transformations ( bijective linear 

transformations preserving ( )) of the space g . We introduce 

a weaker notion called 0-unitary quasi-implementability, which 

in invariant under SO-unitary transformations . For this purpose, 

we study a decomposition of canonical linear transformations B: 

A caninical linear transformation B is a bijective real linear 

transformations of 1e, which preserves the symplectic form given 

by the imaginary part of the indefinite inner product < , > 

E( ,f ) on Af . 
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   Under some conditions, such B has the following decomposition: 

 (1-1)B=V1SV2 

where V1 and V2 are 50-unitary and S is a generalized 'P-scaling 

in the sense that S is a T-selfadjoint canonical linear transf-

ormation commuting with C for some fixed complex conjugation 

operator ( Theorems 9,10). 

    Definition 0-3: A canonical linear transformation B is said 

to be 0-unitarily quasi-implementable if S-1 is of Hilbert-

Schmidt class and its eigenvalues X satisfy 

(1-2)                            2                     m>IIax+x-1 I> 0 

     It is shown that B is 0-unitarily quasi-implementable in 

cases Definitions 0-1 and 0-2 and that the 0-unitary quasi-imple-

mentability is invariant under p-unitary transformations. 

The 0-unitary quasi-implementability is shown to be equivalent 

to the requirement that a kind of non-zero finite inner product 

between the Fock vacuum state and its transformed state can be 

defined in a-certain sense. It is shown, however, that there 

exists an example of 0-unitary quasi-implementable B for which 

the cyclic space for the transformed vacuum has no intersection 

with the original Fock space. 

     The organization of this paper is as follows: In §2, we 

define a Hilbert space equipped with an indefinite metric,and 

construct a Fock space with an indefinite metric. In §3, we 

study a <p-symplectic transformation which is a bijective real 

linear transformation preserving the CCR. 

   In §1-§6, we consider polar and spectral resolutions of a 
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 9'-symplectic transformation. In §7-§10, the implementability 

is discussed. Examples are in §11. 

   An application is discussed in §12, where a mass-shift model 

of the vector field of an indefinite metric formalism ( St{ick-

elberg formalism ) is investigated. The time-evolution by the 

0-selfadjoint Hamiltonian is also discussed. 

   Concluding remarks are in §13.
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                 § 2. Fock Space with an Indefinite Metric 

      In this section we define notation for the Fock space 

with an indefinite metric. Let  X. (i=+,-) be a Hilbert space 

with ( positive definite hermitian ) inner product ( , )i, and 

let ,L= ®~ be a Hilbert space with inner product ( , )=E( ' )i. 

Let Pi be projection operator to k i, and let 

(2-1)n=P+-P - . 

We consider an indefinite hermitian inner product 

(2-2)< , >=( ,n ), 

and we call the pair{L, < , >}" a Hilbert space with an 

indefinite metric". See Refs.[4,16-17,21]. 

     The set of bounded linear operators C:aC i -L is denoted 

by 63 GCi,tj ), and CC ,Z) by tb(L ). 

Any AE8(L) is decomposed as 

        ((2-3)A++ A+-)A-+A 
on t =t+Si  where 

(2-4)A..=P.AP.E~3(Li,L) . 

Its n-adj oint A(n)E-,(,) is uniquely defined by 

(2-5)<cp,AaV>=<A(n)(P,1U> . 

It is given by* * 
            *A-A (

2-6)A(n )=nA n=++ 
                       -A

+- A--
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     Definition 1:  AE  43 (X.) is said to be 

(1) n-selfadjoint if A=A(n), 

(2) n-unitary if A-1=A(n). 

     Remark 1: Even if an operator preserves <,> , it is not 

necessarily a bounded operator. Note that our definition of an 

n-unitary operator requires the boundedness. In this case, if 

U is n-unitary, then 

                 h              Ii U-lH =1HU*n il = P UII 

This also means 1114, and it is easily confirmed that 1114=1 

                                                                  if and only if U commutes with n . 

      We want to introduce a Fock space over a Hilbert sapce 

if with an indefinite metric ( ,PP ). The space X is defined 

by 

en=0 , (n), 

g;(0)=c ,(n)= snL n1f ]=®nie . 

Here S
n is the following symmetrization operator: 

nCV~10...®11,n]=(n!)-1Eperm !1)7(1)111.(n)* 

     Definition 2: For A E (3 (e), r(A) is defined by 

I'(A)rg(n)=A®...@A (n-times), 

and dr(A) by 

                dr(A)('7(n)=A®1®...®1 +..... + 1®...010A . 

Their domains of definition are extended by linearity and closure. 

      Remark 2: r(A) is a bounded operator if and only if 

II All and dr(A) is unbounded whenever 00. 
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     The  Fock space has a positive definite hermitian inner 

product ( , ) naturally constructed from ( , ) in X. We now 

introduce on the following indefinite inner product 

< , >=( ,0 ) , 0=r(1). 

Note that 0 is unitary and hermitian. 

     The usual creation operator a (f) for fEXP is defined by 

        a* (f) (S
nC~U1®...®fin] )_ (n+l )1/2Sn+l[f0l...011,n], 

and the selfadjoint ( Segal ) field by 

(2-7) 0(f)--  (2)-1/2[a* (f)+(a* (f))*] 

Though a (f) is complex linear for feXX, o(f) is not complex 

linear for f e)?. 

     The 0-selfadjoint field is defined by 

(2-8)0(f)=(2)-1/2[a* ( f)+(a*( f)) (0 )]- 

where the bar denotes the closure. Since (a (f)) (0)=0 (a* (f)) *0 
 * * =(a (SPf)) by the definition of 0, we have the following 

commutation relation : 

(2-9)[09(f),(1)50(g)]= i Im(f,9g)=i Im <f,g >. 

                            * The creation operator a (f) can be expressed in terms of Ov(f) 

by 

(2-10)a (f)=(2)-1/2[09,(f)-i09(Jf)] 

where J is the multiplication operator of i=i-1. 
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     Remark 3:  09,(f) is 0-selfadjoint but not * selfadjoint. 

Then exp[i09,(f)] is unbounded in general. 

                 §3. Canonical Linear Transformation 

     Definition 3 : A real linear bounded operator B on le shall 

be called a canonical linear transformation if the commutation 

relation is preserved; namely if 

(3-1)Im(Bf,SPBg)=Im(f,Tg) . 

A canonical linear transformation B shall be called a SP-symplec-

tic transformation if B is bijective. 

    From the definition, it follows that canonical linear trans-

formations-, form a semi-group, and '#-symplectic transformation 

(=P-Bogolyubov transformation ) a group. 

    To obtain an operator form of the condition for B, we intr-

oduce a real bilinear inner product on le by 

(3-2)(f ,g)r=Re(f,g) , 

and denote the multiplication of i by J. The adjoint of real 

linear operator B with bespect to ( , )r will be also denoted 

by B . It conincides with ordinary * if B is complex linear 

(namely if [B,J]=0) . We define B(90) =`PB . 

        Lemma 1 : B is canonical linear transformation if and 

only if 

(3-3)B(~)JB=.J'. 

-10



       Proof :  (3-1) is equivalent to 

(Bf,(PJBg)r=(f,`PJg)r , 

which is equivalent to 

(f,'P [B (f )JB-J] g )r=0 

for all f,gEye. 

                                                                               Q.E.D. 

         Any real linear operator B can be uniquely decomposed 

as a sum of complex linear and anti-linear pperators: 

B=B++B- , B+=-2 (B ±JBJ-l). 

When B is a 9-symplectic operator, B_ is called as its " off-

diagonal part". 

       Lemma 2: B is a canonical linear transformation if and 

only if 

                          B(+f ) B+-B (99) B_=1, 
(3-4)1(90) _(5°)                        B+B _-B_B+ 

       Proof: (3-3) is equivalent to 

     (B(f)B+-B(99)B_)+(B+99)B__B(90)B+)=1. 

Complex linear and anti-linear parts of two sides of this equation 

are the two equations in this lemma. 

                                                                        Q.E.D. 

     We are interested in the transformation of the field under 

Bogolyubov transformation, which is given by 

(3-5)TrB(4)F(f) )E(9) (f)E(1.9,(Bf ) 
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 §4. Polar Decomposition of c°-Symplectic Transformation 

     The main purpose in this section is to prove the following 

theorem: 

     Theorem 3: A -symplectic operator T such that 0 is not an 

eigenvalue of T(A)T +IT'(96')ITI has the following decomposition: 

(4-1)T=OeITI 

where 0,0 and ITI are 9-Symplectic opeartor such that ITI is 

selfadjoint positive, 

             (1) e is orthogonal and f-selfadjoint, 

             (2) 0 is complex linear and unitary. 

This decomposition is unique up to the transformation 

(0,e )—(ov,v-1e ) 

by selfadjoint ,unitary operator V commuting with 99 . 

       We prove this theorem through several lemmas [20,24,27]. 

    Lemma 4: Let T be a '-symplectic operator. Then there is a 

unique decomposition of T as follows: 

(4-2)T=QITI , 

where ITI and Q are P-symplectic and 

(4-3) ITI*=ITI>0, Q*=Q-1, 

     Proof: Let 

T=QI TI 

be the unique polar decomposition of an invertible operator in 

a real Hilbert space. Since T is 99-symplectic, we have 
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              4°JT~* J-1=T-1. 

Hence 

       99JIT1 J-199JQ* J-1=ITI-1Q-1. 

By the uniqueness of the decomposition, we have 

 TJQJ  I'F=Q, 9JITIJ =ITI-1 

                                                                              Q.E.D. 

     Lemma 5: Let Q be an orthogonal operator commuting with 

`PJ . Assume that -1 is not an eigenvalue of Q(y)Q. Then there 

is the following decomposition of Q: 

(4-4) Q=00, 

where 

(4-5)6 =`'6'=J0J-1=0-1, 

             0*=0-1,J0J-1=`P09=0. 

This decomposition is unique up to a unitary and hermitian 

operator commuting with V. 

     Proof: We explicitly construct 0=(Q(V)Q)1/2. 

Let 

p= 2('f+1) =P,p' =Q PQ 
be two projection.. operators. For any two projections E and F, 

we define [2] 

                  EAF=lim (EF)n . 
n--00 

We first note that p'A(1-p)+pA(1-p')=0 due to the absence of 

the eigenvalue -1 for Q(99)Q=[p-(1-p)][p'-(1-p1)]. 

     Let 

0=(1-p)A(1-p')+pAp' +A(1-pAp'-(1-p)A(1-p')) 

where 

-13-



 d=(pp'p)1/2+[(1-p)(1-p')(1-p)]1/2+(pp'p)1/2pp'(1-p) 

-E(1-p)(1- W)(1-0]1/2(1-0101P . 

                                                 Then by the construction [2], 

       * 
e =0-1, J0J-1=f0P=0-1 , 02=Q(`P)Q . 

      Next let 

                          0=Q0-1 . 

Then 0 is again orthogonal and commutes with 9°J. Further 0 

also commutes with f ( then also with J): 

019' 0= eQQ0                               -l~-1=e`Pe2e-1=So • 

                                                                      Q.E.D. 

            §5. Another Decomposition of `P-Symplectic 

                           Transformations 

       We first introduce several notions [16-18,21]: 

     Definition 4: A closed subspace Ay of a Hilbert space 

equipped with an indefinite sesqui-linear form < , > is said 

to be 

         (1) non-negative ( resp. non-positive ) if and only if 

<x,x>>0 ( resp. <0 ) for any XE 1r, 

        (2) positive ( resp. negative ) if and only if 

             <x,x>>0 (resp. <0 ) for any x(/0)E5, 

         (3) uniformly positive (resp. uniformly negetive ) if 

              and only if there is a non-zero positive constant 

            p such that 

<x,x»uCX,x) ( resp. <-p (x,x)) for any xe 4 , 
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 (4) 5P-complementary if and only if 

                   <>n ={0} 

            whereP1jis the orthogonal complement of i 
in 1C with respect to < , >. 

      Definition 5: A -selfadjoint operator A is said to be 

   (1) non-negative (resp. non-positive ) if and only if 

         <x,Ax>>o (resp. <0) for any xEit, 

   (2) positive ( resp. negative ) if and only if 

<x,Ax>>0 (resp. <0) for any x(/0)F/ , 

   (3) uniformly positive (resp. uniformly negative ) if and 

        only if there is a non-zero positive constant p such 

t hat 

           <x,Ax> >p(x,x) (resp. <-p(x,x)) for any xe Pe . 

        We study absolute value ITS of a SP-symplectic operator 

T on ic relative to the real indefinite inner product 

    >
r( ,T)r . Let 

(5-1)H=`PIT I . 

Then this satisfies 

(5-2)H(9Q)=H , JHJ-1=H1. 

Moreover H is uniformly positive with respect to < , >
r. 

(5-3) <x,Hx>r=(x, IT Ix)>P(x,x) 

with P=11 IT I-111-1. 

      For a uniformly positive n-selfadjoint operator A 
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on a complex  Hilbert space 3C with an indefinite metric 71, A has 

the following spectral resolution in terms of n-selfadjoint 

projection operators {E(Q); 52C(-oo,o)} ( see for example [16-18]): 

03 

(5-4)A=
J adE(A) 

-co 

where E(Q) is cs-additive, 

            E(n)(S2)=E(S2), E(S2)E(sl')=E(cns2T), 

(5-5)E( -co,co)=1 

and E(c) is uniquely determined by A. 

   We take the complexification of IC to be lee. Define the complex 

conjugation operator C on Xc by 

(5-6)C(f®ig)=f®-ig . 

We extend H to be an operator on ,k satisfying CHC=H. Then 

H satisfies the requirement for A above and hence we have a 

spectral resolution 

(5-7) H= (xdEA03 
From CHC=C and the uniqueness of of E (E2) , we have CE(Q)C=E(2) 

and hence E(S2) leaves the real linear subspace ICof iec 

invariant. Hence we can restrict the above resolution to 1r. 

   Since JHJ-1=H1, we siso have 

(5-8)JE (S2 )J-1=E (n-1) . 

       Lemma 6: Let H be a P -selfadjoint 5D-symplectic operator 

which is uniformly positive with respect to < , >r. Then there 

exists a real subspace K' C dX such thatK'/1JK' _{ 0},1C=K' ®JK' 

with respect to < , >r and 
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(5-9) HK'C K', H(JK') C JK' 

       Proof : We use the spectral resolution (5-7). Let 

                1 f({ ±l }) =E ({ ±l } ) ye 

Then Jg((±1})=1P({±l} ). Since ±<, >r>u( , )r on ilf ({±l} ), it 

is possible to find a subspace I(±l) of 1({±l}) satisfying 

I(±1)nJI(±1)={0} , 

1C ((±1))=I(±i)0BJI(}1), 

where direct sum referes to the orthogonality with respect to 

< > 
r' 

     Let 

K'=E((-l,l)eI(+l)eI(-1). 

 Then 

JK'= (E(-°3,-1)+E(1,03)) 0JI(+1)®JI(-1), 

 and 

HK'C K' , H (JK') C JK' , K'(\JK' = { o } , 

=K'®JK' . 

                                                                Q.E.D. 

       To state the main result of this section, we introduce 

 the following terminology: 

       Definition 6: In a 2x2 operator entry representation of 

 an operator on 1C relative to the given decomposition =K®JK 

where .,direct sum referes to the orthogonality with respect to 

( , )r and < , >r , an operator 

            CA 0- \ 
        0 A 

 with `P-selfadjoint uniformly positive operator A is called 
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a f-scaling. ( The unique J-linear extension of A to  le will 

be denoted by the same letter A. ). 

        Our discussion above yields the following main result 

in this section: 

       Theorem 7: A V -symplectic operator T, such that the or-

thogonal part Q in the polar decomposition of T commutes with 

`P ( or equivalently commutes with J), has the decomposition 

(5-11)T=U1SU2 

with 5°-unitary Ui and a cf-scaling S. 

        Proof : Let 

                                        t K'=K+®K- 

where 

K+=E(0,1)X I(-I-1) , K=EC.,1,0)/ I(-1) 

 Since for x E K1 , -

                   (x,x) > ±<x,x>><x,Hx>rp(x,x), 
                       r= 

 there exists a bijective 9-isometric ( namely $-orthogonal ) 

 operator U on 1Z which maps K and JK onto K' and JK' respectively. 

 Then U is 0-unitary and T=Q9H=QVU-1SU-1EU1SU2. 

                                                                        Q.E.D. 

           A notion of 5-scaling is an extension of the notion 

 of scaling operator in symplectic space [15,27]. When 5=1, 

 this decomposition is in [24]. 

      The operator T of Theorem 6 corresponds to the case 0=1 

 in Theorem 3. On the other hand, the operator 6 itself has a 

 similar diagonalization as above. 
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         Lemma 8: Let 0 be an orthogonal operator such that 

 V  0f=Je  J-1= e-1 . 

Then there exists a 0-invariant real subspace K" such that 

K"(1JK"={0}, K" and JK" are mutually orthogonal with respect 

to both <, >r and ( , )r and 

(5-12)0 =K"GIJK". 

In this case 

(5-13) u=e rK" , u-1= 0rJK" 

are orthogonal operators such that 5 of=u-1. 

          Proof: After the complexification, we have 

(5-14)e= ( eITdP(T ) 
—Tr 

where {P(2);  PC [-Tr, Tr ] } are selfadjoint projections such that 

`PP(S2)f=JP(S2)J1=P(-SZ) forPC[O ,Tr) 

(5-15) 
` EP(-Tr)+P(Tr)]T=J[P(-Tr)+P(7)]J-1=P(-Tr)+P(Tr) . 

   Since P(Q) commutes with SPJ for all Q((0,7), there exists a 

decomposition g(c)=P(S2)ie=k(0)e 'Jk(S2) into subspaces k(S2) and 

9°Jk(S2) which are P(P)-invariant for all S2: P(S2)?P is decomposed 

as 

k(S2)(WJk(52) 

where k(Q)  1Jk(S2) with respect to ( , )r. Let P1(52) and P2(S2) 

be selfadjoint projections to k(Q) and PJk(SZ) respectively. 

They satisfy 

(5-16)P2(S2)=`'JP1(0)`PJ-1, P1(SZ)P2(2)=0, 

and 

(5-17) P(Q)=P1(Q) +P2 (S2) 

-19-



     Define 

(5-18)  Pi(-Q)=Pi(Q)Y) i=1,2. 

Then {Pi(-Q)} again satisfy (5-16) and (5-17), 

(5-19) JP1 (Q)J-1=P2(-Q) , JP2(52)J-1=P1(-Q) 

By the construction Pi (SZ)+Pi (-St) with i=1,2 

projection operators commuting with 'P. 

   For X(1)=P(0)X and le(-1)=(1)(7)+P(-Tr))1e 

similar decompositions as Lemma 6: 

(5-2o) X(±1)=I+9JI+ , 

where I+ are orthogonal to JI+ with respect to 

< > 
     r 

     Let 

(5-21) K"= [ P1((-7r , 0 ))+Pl ((0,Tr)) J,e®I+®I - 

Then 

(5-22) JK"=[P2((-rr, 0))+P2((0,Tr))]6DJI+®JI _ 

and 

               0 Tr (5-23) u= (c+ ç)eiTdP1(T)+P+P 

 0 where P+ are projections to I+ .

 and 

for QC(0,7). 

are selfadjoint 

 , there are

both ( , )r

Q.E.D.

and
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             § 6.  p-polar Decomposition of So-symplectic Operator 

      We shall discuss the polar decomposition of a 99-symplectic 

opeartor relative to the ° -inner product : 

                      T=UH 

where U should be f-unitary operator and H SP-selfadjoint, 

`P-symplectic with spectrum in the right half plane . Even in 

a finite dimensional case, there are examples of T for which 

such a decomposition is not possible. Therefore we impose a 

condition in the spectrum of T in the following theorem: 

     Theorem 9: 

    Let T be P-symplectic,T+=2 (T± JTJ-1) be its complex 
linear and anti-linear parts . Assume that T_ is of Hilbert-

Schmidt class and the closed negative real axis [-°O, 0] belongs 

to the resolvent set of T(+50)T+. Then there exists a f-unitary 

operator U and f-selfadjoint 92-symplectic H with its spectrum 

in the right half plane satisfying 

(6-1)T=UH . 

Such a pair (U,H) is unique and satisfies 

(6-2) _ JU=UJ, JHJ-1=H 1. 

     Definition 7: Relative to a given orthogonal and 'P-orthogonal 

decomposition 3! =KeJK , a 5-selfadjoint 'P-symplectic operator 

S is called a generalized -scaling if S has the form 

Ch 0\ (6-3)J 

                                 - 

                      0h1 

in the 2x2 matrix representation of an operator on le relative 

to the decomposition / = K®JK , where h is a f-selfadjoint operator 

leaving K and JK invariant. 
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   Theorem 10: For an orthogonal and  99-orthogonal decomposition 

X=KOJK 

assume that a °-symplectic operator T leaves K and JK invariant 

and satisfies the assumption of Theorem 9. Then T has the follow-

ing unique decomposition: 

(6-4)T=US 

where U is f-unitary and S is a generalized f-scaling with its 

spectrum in the right half plane. 

         Proof of Theorem 9: Let 

           A=T(so)T=(2T(+so)T+-1)+2T+5,0)T_ 

By assumption, A has the following properties: 

  (1) A-1 is compact because T+6')T+-1=T(50)T_ (eq.(3-4)) is 
of trace class and T is of Hilbert-Schmidt class. 

  (2) A does not have a negative or zero eigenvalues. This is 

an immediate consequence of the assumption about'the spectrum 

of T(+50)T+and the identity 

              2(A+A-1)=2T(V)T+-1 

which follows from JAJ-1=A-1 and JT(+f)T_J-1=-T+9')T_. 
     We construct the operator 

H=-(2fri)-1A (A-z)-1z-1/2 dz 

in the complexification of the real Hilbert space {le, ( , )r} 
where z-1/2 is defined on the complex plane with the cut on the 

negative real axis such that z-1/2 >0 for positive real z and 

contour r may be taken to be the union of the upper side of the 

cut from -ap to 0 and the lower side of the cut from 0 to -cc. 
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   Due to the two properties of A, the operator calculas in 

Chap.7 of [8] is applicable. By Theorems 10 and 11 in that 

Chapter, H2=A and the spectrum of H lies in the right half plane. 

By a straightforward calculation, we have 

 1 

Hence H can be considered as a real linear operator on  K . By 

f-selfadjointness of A, we have 

                 (~) A(5)) f_:A+T2_1dT=H.      H= 

Since A is SP-symplectic, 

       JHJ-1= coa 
                                      1 (A+

62)-1dc' =A-1H 

by the change of variable T=cs-1. Since A=H2, we have JILT-1= 

H-1. Hence H is a `°-selfadjoint, 50-symplectic operator with 

its spectrum ( on the complexified space ) in the right half 

plane. 

     Let U=TH-1. We have 

U(92)=(H-1)(9')T(P)=H-1T(9°). 

                                                Hence 

U(50)U=H-1T(TH-1= H-1(H2)H-1=1. 

Since U is invertible, U is ° unitary. Since T(9) and H are 

f-symplectic, U is also f-symplectic, which implies 

                        JUJ-1=(U(~))-1=U. 

Thus we have the desired decomposition T=UH. 
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     To show 

Then  H2=T  (f  ) 

the spectrum 

in [8] ), we

 the uniqueness , let U1 

T=H2. By the uniqueness 

 in the right half plane 

 have H1=H, and hence U1

H1 be 

of the 

 ( see 

=U.

another decomposition. 

 square-root with 

, for example, Chap.7

Q.E.D.
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  (T
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-1)-1f =T
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Q.E.D.

      Our 
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 question is whether the 

H is always similar to a 

99-unitary operator V: 
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`P-selfadjoint ,'P-symplectic 

generalized '-scaling S via



 H=VSV  1. 

This is affirmative for dimg<OD, and T in Theorem 9 always has 

a decomposition 

T=V1SV2 

where S is a generalized c°-scaling with its spectrum in the 

right half plane and Vi are p-unitary operators. But for 

dim Fe=c0,Cf-isometric operator V seemes to be unbounded. in general. 

   As we have already proved in Theorem 7 and Lemma 8, this dia-

gonalization is always possible if H is uniformly positive or 

orthogonal. 

   For given generalized 9G-scaling S, let `O-symplectic operator 

T be given by V1SV2 where Vi are S°-unitary. By the boundedness 

of V1 and V2, 

                     T is H.S. F- S-S-1 is H.S. 

{--} S2-1  i s H.S. 

    The role of condition that (-00,0] is in the resolvent set 

of T+`~)T+in Theorem 9 is necessary by the following example 
which does not have a V-polar decomposition as (6-1):

                 0cosh T1+CsinhT1 

T= 

                cosh T2+CsinhT2 0 

on e=C2 where T1XT2 ,y°=diag(1,-1) and C denotes the 

conjugation.

complex
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               §7. 0-Unitary Implementability 

    Recall that a  f-symplectic operator T is 0-unitarily imple-

mentable if there exists a 0-unitary operator UT such that 

UTP(f)UT1= (I)y,(Tf). The main result in this section is the following: 

      Theorem 11: T is 0-unitarily implementable if and only if 

T commutes with p and T is in the Hilbert-Schmidt class. 

      Proof: We first prove that if T does not commute with 99, 

then UT1 does not exist. Let f EIe=P+~. Then 09,(f) is 

  selfadjoint and expji(1)9,(f)] is a bounded operator with norm 

one. UT implements 

           UT(1)9(f)UT-1=4(Tf )=(I)F(Y+Tf )+(1)Y(P-Tf) , 

where (1)9,(P+Tf) and i(1)9,(P-Tf) are selfadjoint and commute 

each other. Thus c,(Tf) is a normal operator. If UT is 

0-unitary, thenIIUTII°IIUT1II <°° and 

i0 (f) i(l)sa(P+Tf) i(1)9(P-Tf)   U
Te UT =e e 

must be a bounded operator. But iIexp[i(1)9,(P -Tf)II = co whenever 

PTf O. Then P -TP+=O if UT is 0-unitary. Next let fEie 

 Then i(1)50 (f) is selfadjoint in this case. By similar reasons, 

we see that P+TP -=0 if UT is 0-unitary. Thus T commutes with 

S° whenever T is 0-unitarily implementable. 

     We may restrict our attention to the case where T commutes 

with 5° . We use the decomposition Je =g+aje according to the 

eigenvalue ±1 ofCorrespondingly we have T=T1eT2, X W)= 

e (l(+)® 7(11f ) . Each Ti is symplectic as well as being 50-symplectic. 

   If Tis of Hilbert-Schmidt class,then (T1)is of Hilbert- 
-- 
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Schmidt class and hence the corresponding Bogolyubov transform-

ation is unitarily implementable by a result of Shale  [24,27]. 

Furthermore the unitary operator implementing the Bogolyubov 

transformation commutes with 0 ( 0=r(s°) being identity on 

eX(i+) and (-1)N for a number operator N on (I~ )) and hence 

is 0-unitary. 

    Next we assume that T is not of Hilbert-Schmidt class. 

Since T is symplectic, the result of Shale [24] implies that the 

Fock vacuum state is transformed to a state which yields a re-

presentation of the canonical commutation relations disjoint from 

the original one and hence has no non-zero intertwining operator. 

Thus there is no bounded invertible UT ( be it unitary or 

0-unitary ). 

                                                                    Q.E.D 

         §8. Weakly 0-Unitary Implementability 

          Recall that a Bogolyubov transformation TB=B++B - is 

weakly 0-unitarily implementable if there exist a complex 

linear 0-isometric operator UB1 on Ave) and a cyclic vector. 

2E7(7C) such that 

(8-1) U1P(0(Bfl),...,~~(Bfn))Q =P(4) (f1),...,~~(fn))QB 

for any polynomial P of (non-commutative ) fields and any test 

functions f ( U-1 is not necessarily a bounded operator ). 

   For this implementability, we do not have a complete criterion. 

A necessary condition and a sufficient condition are given by the 

following theorems: 
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     Theorem 12: If a Bogolyubov transformation TB is weakly 

 0-unitarily implementable, then B is of Hilbert-Schmidt 

class and the negative real axis and zero is in the resolvent 

set of B+P)B+ • 
     Theorem 13: Bogolyubov transformations TS and T -1 are 

S 
weakly 0-unitarily implementable if the following conditions 

are all satisfied: 

         (i) S is of Hilbert-Schmidt class, 

         (ii) S is a generalized S°-scaling: 

Ch 0      S=JI 
0h 1 

onit=K®JK where K is a real linear subspace of X such that 

K j.JK with resect to ( , )r and < , >r' 

         (iii) The spectrum of the selfadjoint part ar=(a+a )/2 

of a=h-2 is in [c,c-1] for some 1>c>0. 

      Remark 4: For the necessity of the positivity of ar, see 

Theorem 27. 

      In connection with the discussion of 0-unitary quasi-

 implementability, we compute the overlap of the vacuum SZ and 

 the transformed vector Q as follows: 

      Theorem 14: Under the condition of Theorem 13, the 

overlap I<Q,Q5>J of the Fock vacuum Q and the transformed 

vacuum SZS is given by 

(8-2)det-1/2(  h2h-1  ), 

which is non-vanishing finite. Further for B=V1SV2with V. 

°-unitary, if QB exists, then 

 (8-3) I <S2 , SZB> I = l <S2,S2S> I = det-1/2 (---------h+h-1) 
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           =det-1/4(1+B(so)B)=det-1/4(B}5D)B+). 

       Remark 5: When  ~P=1, from Theorems 12 and 13, we see 

that symplectic operator TB is unitarily implementable if and 

only if B is in the Hilbert-Schmidt class [Shale]. Further 

                  1 <det (l+B*B ) <co 

if and only if B_ is in the Hilbert-Schmidt class, and hence 

TB is unitarily implementable if and only if the overlap is 

non-vanishing. 

       In these theorems SZS is well defined by the following 

lemma: 

         Lemma 15: Under the assumption of Theorem 13, a vector 

Sts in the Fock space, which is cyclic for the polynomials of 

fields and satisfies 

<StS, P(1)v(f1),...,4(f
n))2S> 

=<St, P(0 (Sf
1),...,Or(Sfn))St> 

for all polynomials P and test functions f1,...,f
n is unique 

up to a multiply of identity. 

        The following theorem means that the vacuum Sts is in 

the domain of the number operator N. 

         Theorem 16: Under the assumption of Theorem 13, 

                   Sts F D(N) 

where N is the number operator. 

        The proof of Theorem 13 involves the "Q-space" method, 

which we shall discuss in the next section. The proofs of 
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Lemma 15, which is related to Theorem  13 , and Theorems 13 ,14 

and 16 will be given in §10. We shall prove Theorem 12 in 

this section. 

         Proof of Theorem 12: We shall use the following 

well known property of the Fock vacuum vector S2: 

(8-4) [a* (f) ] (0 )Q = 7)f----(0s0(f)+i 09, (Jf) )S2 =0 

for all f EJf . By definition SZB satisfies 

(8-5)( 099(B-1f)+i(Dy(B-1Jf))QB=0 

for all f EJt. 

    To show that B is of Hilbert-Schmidt class, let 

                            (m) 
      S2B= w (m) ' w(m)6 7 

where ~(n)=Sn( ®n d~ ) is the n-particle space. Then (8-5) 

implies 

(8-6)<(B-1)+f, W(1)>=0, 

(8-7) /1 Wm+1+f +7E Sm[((B-1)f)®W(m-1)]=0 

where m>1 and Wm is the following mapping of oe into S(m -1) 

x(®m-l1C) defined by the vector w(m) in Sm(®C) through the 
characterizing equation 

            <S
m-1(g1®...®gm-1),Wmg> =<Sm(g ®...®gm-1®g), W(m)>         1 

relative to the inner product < , >_( ,0 ). In particular 

W2 is in the Hilbert-Schmidt class. 

     First we show that the kernel of B+ is {0}. Assume B+f=0 

for f E/C. Then 
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 a* (f  )QB=7-(09,(f)-i(lyJf) )QB 
       =7yUB1(09, (Bf)-i09, (BJf)) SZ 

        =UB1(09, (B-f)+Uv (JB-f) )0=0 

due to B+f=0 and the equation (8-5) ( with f replaced by Bf). 

A vector in the Fock space which is annihilated by a creation 

operator a (f) must vanish, which contradicts to 

(8-8) <C2,SZ>=<QB,QB> =1 

                                                                                                                  • 

        The first consequence of this result is that the range 

of. (B-1)+ is dense because 

<f,(B-1)+g >=0 

for all gE1f implies 

             0= [ (B-1)+] (S°)f=B+f 

where we have used B-1=JB(~)J-1=B+~)-B(90 

         As a consequence w(m)=0 for all odd m: For, (8-6) 

implies w(1)=0 by the density of the range of (B-1)+. The 

relation (8-7) then recursively implies w(
m)=0 for all odd 

m again due to the density of the range of (B-1)+. 

   Since w0=0 would imply w(m)=0 for all even m by the same 

recursive argument and this would contradict with (8-8). 

Hence w0/0. 

    We can now use (8-4) for m=1 to obtain 

w0(B-1)f= -1/2W2•(B-1)+f. 

Since W2 is in the Hilbert-Schmidt class , so is (B-1). Hence 

B =(J(B-1) J-1) (SO) 

is also in the Hilbert-Schmidt class. 
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   Now we assume thatB(5°)B+g=-ag with  X>0,1g11=1 and we shall 

derive a contradiction. First we consider the case A>0. 

   Let L be the set of all vectors satisfying B+~)B+g=-ag. 
For gEL, we have 

          B(+90) B+ B+S°) B_g-B+S°) B+B (5°) B+g 
         =B(+S°) B_B+S°) B+g= -X B+S°) B_g 

and hence B+~)B_g again belongs to L. Namely(5°)B_ is a Hilbert-
Schmidt operator leaving L invariant. Furthermore 

        (B+~)B-)2=B+~)B+(B+~)B+-1). 

Hence 

          {B(+50)B-±[x (a+l)]1/2}L 

is in the eigen space of6P)B _ belonging to the eigenvalue 

±[a(X+1)]1/2, and at least one of them is non-zero. Let g be 

a non-zero vector in one of these spaces. Then f+EB~5°)f, 
fEB g has the following property: 

f+=± [a (a+1) ]1/2g 

f =-(1+A )g. 

By (8-5) , we have 

(8-9)[05,(B-1 f)+i05, (B-1Jf )1QB=O. 

By the canonical commutation relation 

(8-10)[(1)5°(g1),(I'P(g2)*]=D5'9(g1),1)5°Wg2)] 

             =i Im<g
l,°g2 >_ -i (gl,Jg2)r, 

we obtain
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 (8-11) [{0w(B-lf)+i0v,(B-1Jf)}, { 4;p(B-1f)+i0 (B-1Jf)}*] 

=2 (B-1Jf ,JB-1f )
r=2 (JB(50) J-1 f,B(92 )f )r=2 (f+-f-,f++f-)r 

=2(II f +II 2-p fl 2)=-2(l+x )11 gII 2 

 where we have used (h,Jh)
r=0 for any hEfP and JB-1J-1=B(90)= 

B (g')+B (92) 

     Combining (8-9) and (8-11), we obtain the following 

  contradiction: 

O~I { o9, (B-1f)+i05„, (B-1 J f) } * BII 2=-2 (l+A )II gij 211 0BII 2<0 • 

  This proves that B+~)B+does not have negative eigenvalues. 
     Finally consider the case X=0. By the same computation as 

  the previous case, we obtain 

       (B+r)B_)g1=0 , (B+~)B+)g1=0 
  for gl E(B+' B_)g. Because B+99)B-=B(51))B+ , we obtain 

             (B(+99)+B(r))B+g1=B(50)B+g1=0. 

  By the invertibility of B(so), we obtain B+g1=0. Since Ker(B+)= 

{0},  g1=0. Thus 

               B+(9)B _g=0,B(+9)B+g=O . 

  The same argument as above now shows that g=0. Therefore 0 is 

  not an eigenvalue of13+134.. SinceB+~)B+-1=B(P)B_ is compact, 
  this shows that the negative axis and zero are in the resolvent 

set of B+so)B+. 

                                                                                  Q.E.D.
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            §9. Q-Space Method. 

   As a preparation of the full proof of Theorems 13,  14 and 16, 

we prove them for a special case of finite dimensional /( using 

the following Q-space method. 

  Corresponding to any direct orthogonal decomposition ie=K
O®JK0 

with respect to the positive definite inner product ( , ) r , we 

have a maximal abelian algebra generated by ( the spectral 

projections of ) selfadjoint fields 

(1)(f)=2-1/2(a*(f)+(a (f)) ), 

and hence we can identify the Fock space as a certain L2 space 

where fields (f) with f E Ko are mutiplication of certain 

functions. We shall use such astructure in this section to 

discuss x(/E) with indefinite metric < , > =( ,0 ) and the 

0-selfadj oint fields 0y,(f) . 

   If we fix an orthonormal basis e1,...,en in Korelative 

to the definite metric, there exists a unitary map W from 

X(1e) onto L2(Q,dpo) such that 

         WP( 0(e1), Ce2),..., 0(en))0 =P(gl,g2,...,qn) 

for any polynomial P where Q=Rn and 

(9-1) duo=-n12 eXp (- Eqi)lldgi . 

Let 7f=K0JK, K and JK be 9-invariant  and mutually orthogonal
, 

K+=P+K and Ko=K+®JK -. W should implement 

                              -1qi {resp. -iaq-+iqi} for eiEK+                                             1(9-2) W~
~(ei){resp.~~(Jei)}W= 
                                     -iqi{resp. -aq+qi}for e.EK-. 

1 
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 Let =P++iP -. Then ip commutes with V and V*= -1 2=SP 

For the decomposition of S relative to KeJK, *h-1lp is v self-

adjoint and symmetric in the sense that Atr=CA*C=A for the 

                                                           *  complex conjugation C=(+1)e(-1) on KTK and A=1P,h-1 . 

   We introduce a matrix a by (q,aq)= Eij aijgigj where 

aij=(e*h-2ipe) is symmetric due to ( *h-2 )tr=1p h tp and Cej 

=e . . 

   We claim that 

(9-3)SZS=[deta]1/4exp[-2(q,(a-1)q)] 

has the following two properties: 

       (i) For n >0, and any polynomial P, 

(9-4)P(g,...,gn)SZS E L2(Q,dP0) 

      (ii) For fE o , 

(9-5)( Or(S-1f)+i050(S-1Jf))QS=0 . 

The property (i) is immediate from the definition due to the 

assumption that zero and negative real number are not eigenvalues 

of a=(a+a )/2 and hence QS has Gaussian fall-

off for large lql. The property (ii) follows immediately 

       Proof of Theorem 13 and Lemma 15 for finite dimensional HC : 

    We define an operator Us1 by 

(9-6)Us-1P(Or(f1),... ,09,(fn) )Q 

=P(09,(S-lf
l),...,099(S-lfn))Qs 
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  where the polynomial P and test functions  f1,...,f
n are arbitrary. 

 Since any polynomial annihilating S2 is known to belong to the 

  left ideal generated by annihilation operators 0
59(1)+1_09(Jf), 

  (9-5) guarantees that zero vectors are mapped to zero vectors 

  by U-1 and hence U-1 is a well-defined linear operator. 

    Since S2S�0 for all q and QSexp[-2q~]has a Gaussian 
  decrease at q=03, SZS is cyclic for the polynomial P in L2(Q,d110). 

  Hence the image of Uslis dense in L2(Q,d110). 

     Next (9-5) and the canonical commutation relations uniquely 

determine 

<QS'ID4r(f1),...,4)9(f n))QS> 

  because ( OS,(S-1f)+i(1)9,(S-1Jf)) and its 0-adjoint 

  ( 0(S-if)-i050(S-1Jf)) generate the polynomial algebra. Hence 

  it must be equal to 

<c ,P(09,(Sfl),...,0w(Sf n))S2> 
  which means that U-1 is 0-isometric. 

     Finally to prove that S-1 is also weakly 0-unitarily implement-

  able, let 

h-2= a=a +ia.             r 1 

  where ar and iai are selfadjoint and skew-aelfadjoint parts of 

a respectively. For S-1, we have 

                  a-1=(a+ia)-1=(a +a.a-la.)-1-ia-la (a+a.a-la)-1. 
           ririr1r i r i ri 

  Since (a-1)r=(ar+aiarlai)-1 is again a positive operator, S-1 

  is also weakly 0-unitarily implementable. 

                                                                                     Q.E.D. 
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   For the purpose of our proof for the infinite dimensional 

 case, we need a few more estimate about 0S.First we mention 

 the following two lemmas due to Klein  [15,27]: 

       Lemma 17: Let (Qi,dp1) be a sequence of probability 

 measure spaces. Assume fi>0,f1EL2(Qi,dp.),and 0fi112=1 

 for all i. Let F.=ni=lfi.If111P'.0p<0 for some p>2, then 
 for some FE L2~ Lp , 

                           F.-~F                     J 

 in L2. 

     Lemma 18: Let fX (q)= IXexp[-2(X2-1)q2], and letII•II 
 be the norm of f with respect to the probability measure 

duo= IT-1/2exp(-g2)dq. Let 1>c>0 be given so that c<X2 <c-1. 

 Then there is a constant n for some p>2 (any p<2(1-c)-1) such 

 that 

              IIfX(g)11<exp(n(A2-1)2). 

       These two lemmas imply that a formal vacuum given by 

            SZ=ilirexp[-2(X -1)q.] 

 is in L2 if“X-1)2<04, and can be directly applied to our 

 case if 9P=1, because S is a selfadjoint scaling operator 

 in this case ({X2} are eigenvalues of a in this case ). 

      In order to prove the following theorem and as a prepa-

 ration of the next section, we briefly dicuss the compact 

 operators and determinant of Hilbert space operators [ see, for 

 example, 6,23,25,26]. 

Let7( be a separable Hilbert space and let 0 (le) be the 

C -algebra consisting of the bounded operators on it. For a 
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    complete orthonormal basis  {yb
i;i=1,2,..} in 7Z relative to 

the inner product ( , ), the trace of operators is defined by 

(9-7)Tr(A)= Ei(cpi,A(pi). 

If A is positive, selfadjoint, then Tr(A) does not depend on the 

choice of the basis. 

   Let IAI=(A*A)1/2, and define 

(9-8) C={ AEOg(h'); Tr (IAIp)<m}, 

and 

(9-9)IIApp=(Tr(IAIp))1/p 

Especially C2 is called the Hilbert-Schmidt class and is a two-

sided ideal in P(R). 

                      We summarize several inequalities without proof [16,25,26]. 

If AEC'
,Beeqwith p-1+q-1=1, p,q,>1, then both AB and BA are 

in C1 and Holder inequality holds: 

(9-10)ITr(AB)I<1ABll1< IIAIIpIIBIIq • 

If AE to (it), BE C
p ,then 

(9-11)HAM <nAIlIIBII , HBA9IIAIIIIBU . 

    Let {Ai(A);i=1,2,.} be a listing of all the non-zero eigenva1 ,ues 

of A counted up to ( algebraic ) multiplicity. We define 

det(1+A)= ll(1+X.(A)). 

Let {ui(A);i=1,2,.} be a listing of all the non-zero eigenvalues 

Of IAI counted up tomultiplicity. Then 
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(9-12) 1  <det  (1+IAI  )= II (l+p . (A)) <eXpII AQ 1 

and det(l+IAI)<cbif and only if AE~1. The following inequality is 

due to Weyl [6,26]: 

(9-13) E IXi(A)Ip< Ei ui(A)p=IIAllP 

for p>l. Therefore det(l+A) exists for A`61. Further [6,26] 

(9-14)Idet(l+A)I< det(1+IAI ). 

         Our final theorem in this section is the following that 

is a generalization of Lemmas 17 and 18: 

     Theorem 19: Let a and S be bounded symmetric operators( of 

arbitrarily large but finite rank n ) such that 

   (i) 0<c<ar,Sr<c-1,1 >c> 0, 

   (ii) -m<ai, Bi <m , 

(iii) II a-1112311`K , for some K<co independent of n. 

Here ar and ia ( resp.0r and i0) are selfadjoint 

and skew-selfadjoint parts of a(resp. g) respectively. 

Let 

fa=(det a)1/4exp[-2 (q,(a-1)q)], 

          fs=(det 0)1/4exp[-2 (q,(0-1)q)], 

and let 11-11 1I  be the norm with respect to a probability measure 

duo~i=1-l/2exp[-gi]dgi • IfIIa-0112 is sufficiently small, 

then there is a constant n such that 

              a-fall2 nil a-1iII 2 
for an appropriate choice of the quadratic root of det(a) and det(0) 
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    For the proof of this theorem, following lemmas are useful: 

     Lemma 20: Under the same assumption of Theorem 19, 

        II fall  Idet a Ip/4                 pP 
[det(l+ 132-----(ar-1))]1/2 

for p <2(1-c)-1. Further in this case, there is a finite 

constant ri t such that 

            Il fa 11<exp[ 1Hail'2 +n  ar-111 2 1. 
8c2 

      Lemma 21: Let a 
r and Sr be the operators defined in Theorem 

19. Then 

                 14/2_01,./2112<1 c-1/2lla_SII        =2r                                                                   1,2 , 

11 
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1/2( 

r 1/2 

Let 

and 

Then

 (For 

11 a-13J
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a
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r
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1-13
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22:
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<K= ------------ 

        detl/4(a 

   Let a=ar+ia 
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   r1 r 
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     M<c011 a-RII2 

            2 , c0=exp(----------K 2 4 
c

-1/2Il 
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Then 

<exp [ (2 c ) 4II ar- sr112 

as in Theorem 19. 

1/2 

tly small la-P112 such 

(m c 2+c-1) , for

that



     Proof of Lemma 20: Since 

            IaI =I decal 1/4exp[- —2(q, (ar-1)q)] 

the first equation is obvious, while 

        

I detal2=det(ar+iai)det(ar-iai) 

                 =det (a2)det (l+a-1/2a .a-la.a,-1/2) 
          rritit 

              <exp[Ila r1/2aiarlaiarl/2h 1]det(ct) 

           <exp-[Ilar2I1 II a1II 1]det (aT2,)=exp[c-2jj aijl 2]det (ar) . 
Then 

                                 (det (a) )p/4 
     II fallp <exp[12Ilaj2][----------------------------------r ]1/p 

                 8c(det(1+  P  (
ar_1))1/2 • 

Hencewe obtain the desired inequality: 

       IIfah< exp[1--------                  8c2Hill2+r1II(ar-1/2]. 
                                                                              Q.E.D. 

     Proof of Lemma 21: Let {(pi} be the complete orthonormal 

eigenvectors of ar/2+p,r/2, and let {Ai}be the eigenvalues. Then 
2c1/2<A.<2c-1/2 . Since 

      a-~=-----1[(al/2+51/2)(a1/21/2)+(a1/2-~1/2)(a1/2+R1/2)],    rr2rrrrrrrr 

we have 

        Ilar-~rll 2= Ei ,J l (i, (ar-Y(/)j )2I 
                       a.+a.         -Ei~J(12J )21 (~i,(al,/2-51/2)A, )2I 

    r 

                    1/2 1/2 2 1/21/211         > 4c Ei,j I(Fi,(a r-Sr)P~)I                                      "dal/2_131/2Gar-sru22 

Other inequalities follow by substitution. 

                                                                                Q.E.D. 
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      Proof of Lemma  22  : Let x= a- 
                                  r1/21ra-1/2)• O. Then 11x-lII< 

and 

1<K=det1/4(1+  1x-1(x-1)2) <exp[_11x-11111 (x-1)2111] 

        exp[___-11 x-11111ar1/2(ar-Rr)ar1/211 21 
        exp[  16 lix-l"P r 21I1Iar-rII2] < exp[(2c) 41Iar_ rll2]• 

                                                                                 Q.E.D. 

       Proof of Lemma 23:. 

M=det1/4(1+A2){ det[1--(1+A2)-1/2(A2-32)(1+A2)-1/2]-1}2 

<exp[42] [expll A2-B2111 -112. 

Note A,BEC2. By Holder inequality, 

     II A2-B211 1<II A+B11 211 A-B11 2< 2mc-111 A-B11 2. 

Further 
               -1/2-1/2-1/2 

    IIA-BII=II cc-1/2ariar-sr~i~rII 2 

           -1/21/2"1/2=1/2-1/2-1/2-1/2            =.11 a-1/2(-a
r+fir,)firaiar+Pr()ar, 

+13r1/2 1ar,1/21/2)13rl/211 2 

         <(11 ar,l/211 11 cl/2aiarl/211 +Ii arl/211 II S-1/2(31ar1/211) 

                                                    r 

         XIIar/2-sr/2II2+IIar.l/2IIIISrl/2IIIIa.-PiIl21 
            <2=-3/211al/2-S1/211 +c-111a_S —rr 2i1D2. 

Then by Lemma 21, we finally have 

11 A-B,11 2mc-211 ar-13r11 2+c-111 ai-sill 2- (mc-2+c-1)II a-1311 2. 

Thus 

{.eXpII A2-B211 2-1 } 2 <{exp[2mc-1(mc-2+c-1)11 a-31 2]-1} , 
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and then there is a suitable constant d such that 

 <dia412 

We set cC=dexp[------11Al2]to complete the proof. 

      Proof of Theorem 19: 

        fa-fsq 2=11 fa fIII2- jfaf(dvC- jfaf~dP0 

_{ 1  det (a)1/4_1  det(13)  11/4}2 
           det (a r)det(Br) 

+21det(a)det(fi)det-1(a r)det-10r)I1/4 

           -{detl/4(a)det1/4(13)det-1/2(T4+13 )+( 

Let 

   A=arl/2a1a~1/2,B_f3rl/251~r1"2a                                   ~ C=(r23r-1/2a. 

Then these are in C2 , and 

                 C112 -v-c-2l a i-S 1! 2 

We have 

Ilfa-fI12={det1/8(1+A2)-det1/8(1+B2)}2 +2det1/8(1+A 
             detl/4(a r)det1/4(sr) _1/2 2 

                a+~det (1+C2) 
                det                  l/2( rr  )                        2 

          x[det1~4(1-iA)detl/4(1+iB)det1/2(1+iC)+(A 

Let 

i=det1/4(l-iA)det1/4(1+iB)det1/2(1+iC). 
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Q.E.D.

 13-q3)} 

-~. a+9 

2-------)(-------r2
r)-1/2

2)detl/8(1+B2)

,B,C+-A,-B,-C)]



Then 

 IQl=det1/8(1+A2)det1/8(1+B2)det1/4(1+C2) 

and k is given as 

I9Iw, IwI=1. 

Let w
r=Re w. Then we finally have 

Ilfa-fsII2=M+2IQ,Idet-1/2(1+C2)K-l[detl/4(1+C2)K- wr], 

where M and K are quantities given in Lemmas 22 and 23. By 

previous lemmas, it suffices to prove that, if IIa-alit is 
sufficiently small, 

wr-1I<nlll a-1311 2 

for some constant nl. 

        For this purpose, note that 

R=det1/4(l+iC)(1_iA)(l+iB)(l+iC) 

          =detl/4(2                  l+A+H) 

where 

H=A(B-A)-i(A-B-2C)+iCAB+iABC+(A-B)C+C(A-B) 

-C2+iC(A-B)C-CABC. 

We prove HEC1 and II HII1< n2II a-1311 2 for some constant T-12. Since 

A,B and C are in C2, 

II A(A-B)II 1<II All2II A-BIl2< const .11a-1311 2 , 

          H ABCII 1-II ABII 211 C12._ const . ii a-aIJ 2 . 

Thus it suffices to prove II A-B-2CII 1<n3 Ha-f3112 2 for some constant 

n3A-B-2C 

     -1/2-1/2-1/2-1/2ar+ ar-1/2 ai- aiar+Sr-1/2   = a
raiar- araiar_2-(2) (---------------2) (---------------2) 
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  =a-1/2(S1/2-a1/2-1/2a .a-1/2+-Sia-1/2(1/2-a1/2)-1/2 
    rrri tr lrrrr 

     -1/2((ar+~r)1/2
-~1/2)(ar+Sr )-1/2,)-1/2      2

r2iiar 

    4.( °`r+Sr-1/2--1/2ar+~3r1/2 ( ar+r)-1/2    2)(aiRi)a
r((2)2 

Here  ai, y e2, and by Lemma 21, (artr)1/2_ar/2 and 
 a (r2~r)-fir/2 are of Hilbert-Schmidt class whose Hilbert-Schmidt 
norms are dominated by const.IH a-11 2. Then there is a suitable 

constant n
3 such that 1I A-B-2CII2<n3l a-42 

                                   2 Let Hr and iHi be the selfadjoint and skew-selfadjoint parts 

of H respectively, and let 

det(l+A2+H)=det(l+A2+Hr)det(l+iHi), 

where 

Hi=(1+A2+Hr)-1/2Hi(l+A2+Hr)-1/2 

is a selfadjoint operator such that 

II Hill 1 <11(1+A2+Hr)-1I1 II H111 <. n2 11 (1+A2+Hr)-111 II a-III 2• 

Then 

det(l+iHi)=det1/2(1+HI2)exp{iTr[Sin-1 H1(1+Hi2)-1/2I}, 

and 

wr=cos-1{Tr[Sin-1Hi(1+Hi2)-1/2]} 

which completes the proof. 

                                                                         Q.E.D. 

§10. Proof of Main Theorems in §9. 

        For a generalized°-scaling S given by (6-7), S- is 
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given by  

1-----               (h-h-1 0  (10-1) 2C 
                0 h-1-h) 

                          on WK. Then 

(10-2) S is H.S.÷÷ h-h-1 is H.S. <-÷ a-l=h-2-1, a-1-1 are H.S. 

a
r_1, a. (a-1)1 are H.S. 

      Let E
n be an increasing sequence of finite dimensional 

orthogonal projections commuting with 9 and tending to 1 as n-°. 

Let hn=(EnaEn)1/2+(l-En) andSn=hnOhn1 on KeJK. Then {Sn}is 
a sequence of generalized P-scalings of finite rank with an=h 1712 

satisfying Ilan-1112<K , c<(an)<c-1 for all n and 

                Ham an112÷0 

as m,n÷ . The sequence of transformed vacua {Qs } with 

          QS=[det(an)]1/4exp[-2(q,(an-1)q)~ 

               n is Cauchy in L2(Q,dp0) by Theorem 19: 

(10-3) Qs QSEL2(Q,dp0). 

             n The phase of (det(an))1/4 is chosen so that (det(an))1/4> 0 if 

det (a n)> 0. Thus we can prove Theorem 13 and Lemma 15 through 

Lemmas 24-26: 

       Lemma 24 : Let P be a polynomial of the fields Wei)} 

Then 

(10-4) Supn II PQS H2<00 <°° . 

       Proof: It suffices to prove the lemma for a polynomial of 

{qi}. In fact derivative terms {a/aqi} in 12(fi) are only to 
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 induce  linear  terms  of  {  q.  }  asE. ( a1)..q. in P, which stay 
in a bounded set of Lp (Q, d p0) with p> 2 : E j I (an) i j 12< (1+K) 2 

for any n and i. 

          By H81der inequality 

             II PSISl2 =I P52S12dp0 
     nn 

         2 2 
                 ~IIPII 

                       2q'n 
~~sll 2

p' 

where p',q' >1 and (p')-1+(q')-1=1 . By Lemma 20, there is a 

constant p in (2,2(1-c)-1) such that 

IIQsnIIp<exP[8c2 II (an)ill2+1111 (an)r-1112]• 
We put p'=p/2 >1 , which completes the proof. 

                                                                           Q.E.D. 

        Lemma 25: 

(10-5)<C2S,PS2S>=<Q,(P)S2> , 

where P=P(049(f1),...,09(fn)) and ffs(P)=P(09(Sfl),...,00(Sfn)). 

Proof: Let ~n=PS2S By the above lemma, ~n has a seq-

uence converging to a vector T. Since P is a closed operator, 

{QS'Y'}Egraph 

Then T does not depend on the subsequence and 'Yn weakly converges 

                    T=PSIS. ,SZSF D(P) . 

        For finite rank Sn , 

                  <S2s,PS2S> = <52,Tts (P)S2> . 
      nn n 

Then 
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 <QS,PQS>=<Q 'ffS(P)Q> 

                                                                             Q.E.D. 

      Lemma 26: S2S is a cyclic vector for `t . 

Proof: First note that { QS2
S} ={ pctS} , where tQ QS} denotes 

the set of Q(q)Qs with Q(q) polynomials of {q} . As we have already 

proved, 

{QQS}3 QS 
0 

if a-a0 is of finite rank and c<(a)
r, (a0)r <c-1 for some 1>c>0. 

Let E
n be an increasing sequence of finite dimensional orthogonal 

projections tending to 1 as n}o. and commuting with So . Let 

an=En+(l-E
n)a(1-En). Let hn=(an)-1/2 and Sn=hnehnl on K®JK. 

Therefore {Q0S}3S2S and kt n-111 2±0 as n--00, which implies Os->S2 
                                                           in L2(Q,dp0) and 

{ Q"C2S}9C2 • 

    By the explicit evaluation of IIq~QS2SI~2as a function of n, 
it is seen that QQS for any polynomial Q of{q} is an (entire) 

analytic vector ofqj.Hence exp(iagj )QQ3E{QQ8} for any real 

a This shows that {OS}is invariant under the commutative von 

Neuman algebra M generated by {exp(iagj)}. Since the Fock vacuum 

is known to be cyclic for M, {Q S }aQ implies that {Q c2S } is the 

whole Fock space 

                                                                            Q.E.D. 

       To complete the proof of Theorem 12, it suffices to 

prove that T -1 is again weakly 0-unitarily implementable. This 
S 

is obvious since if a-1 is H.S. ,then a1-1 is again H.S. 

(see eq.(10-2)) and if a, is strictly positive , then (1) 

r is again strictly positive as we have already proved in finite 
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dimensional case. 

                                                                                  Q.E.D. 

      Proof of Theorem  l4 : 

         For finite rank Sn, 

dq. <Q' C2Sn>= det1/4 (an) rexp[ -----(q, (an+1)q] II  1 
                = det1/4 (a

n") det-1/2 (a----------n2+l) 
                                      -1 

               =det-1/4(hn2hn )2= det-1/4[l+ -(h n-hnl)2]. 
Take the limit n->00. Since C2Eand h-h-1 is H.S. , this 

is non-vanishing finite . ( Moreover this is positive since 

det (A) >0 if A is symmetric S°-selfadjoint operator such that 

Ar> 0 ) . 

If TB=VISV2 with Vi S-unitary, then 

            V21(  h+h-1)2V2=B+P)B+=l+B(r)B-. 

For the above TB, uB=r(V1>uSr(V2). Since {r(V1)} do not change 

the Fock vacuum, if S2S e D( r (V21)) r then 

<S2'S2B> =<S2, Qs> 

                                                                             Q.E.D. 

        Proof of Theorem 16 : 

      The number operator N is given by 

E.(ei)a(ei)=2i(~as+2qi)as  
              qiqi 

in the Q-space. Let 
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      QNS2i                        =EQ(i)      SS  S ' 

 where 

        2Sl)=2[(aii-1)+qi-(Ejaijgj)2JUS=f.Cq)ZS • 

 Since c, -lk e2 and a-1 is bounded, it is explicitly shown that 

             lQS1I2Ei ,jJfifjIQSI2du0<°° 
                                                                                Q.E.D. 

         Remark 6: By similar method, it will be proved that 

QSE D(Nn) for n=1,2,.. . This is the "locally Fock property" 

  of the vacuum defined by Glimm and Jaffe [7,8]. 

         Finally in this section, we prove that the condition 

 spec ar >0 is necessary to ensure 125 

         Theorem 27: Let S be a generalized CP-scaling. The vector 

52S such that 

<0,7s(P)2>=<S2S,PQs> 

 is not in the Fock space if inf spec ar < 0. 

Proof. a=h-2 takes the following form on JK+ETK-=JK. due to 

the Y-selfadjointness of a: 

(ar)++ 

                           (ai) -+(ar)_- 

 namely ar=(ar)++®(ar) -- on JK+®JK-. First assume that inf spec 

(ar)++ -a < 0. Then there is an eigenvector f F JK+ of ar belonging 

to the eigenvalue-X. In this case 090(f) is selfadjoint and II exp iO,(f) II 
 =1. Now 

<0,7S[exp(i0,p(f))]Q>=<g,exp(i(1)99(Sf) )S2> 

            =exp[- -1 <Sf,Sf>]=exp[- — 
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 =exp[ —(f ,f)]. 

If X>0, then the right hand side can be made arbitralily large , 

which contradicts J<03,exp(i0v(f))Q
S>(<IIQ3 2<w • 

The case of inf spec (a
r)<0 is similarly discussed. 

                                                                              Q.E.D. 

      We remark that the state p= <0, 71-B(.)Q> cannot be extended 

in general to a state on the C*-algebra generated by 

{exp i0(f); fEJ' } , as can be immediately seen from the above 

proof. 

             §11 Examples of 0-unitary Quasi-Implementability 

For weakly 0-unitary implementability of a Bogolyubov trans-

formation B, we obtained the following sufficient condition 

in Theorem 13: 

            S_ .E H.S. , and spec (a)r > 0 

and the following necessary condition in Theorems 12 and 27: 

S F H.S. , and spec (a)r> 0. 

We now want to present two examples of B where this necessary 

condition is not satisfied and yet a quantity which can be 

interpreted to be the overlap <Q, QB> is non-vanishing finite 

in contrast to the situation of positive definite metric where 

the last condition is equivalent to the unitary implementability 

[Remark 5]. 

      The first simple example provides the case where B is 

H.S. but spec ar can become negative. The second example 

provides a case with B non H.S. 
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   Let  {FLR;9,=132,..} be a sequence of two-dimensional Hilbert 

space=C2 equipped with an indefinite sesquilinear form 

< , >=( ,f ) where 9°Q=diag(l ,-1). Let 1-1=®2, iez be 

a Hibert space equipped with an indefinite sesquilinear form 

<, >_( ,f ),T=m
Q5° Let {T(Q); Q=1,2,..} be a sequen- 

ce of 90-symplectic opeartor on 1eQ , and let {iiQ, < >}be 

a Fock space equipped with an indefinite sesquilinear form 

<, > E( ,,rQ(VQ) ) constructed from {le
t, < , >} with the Fock 

vacuum Pt . The Fock space over 7C is identified with 

X=02 , (Q, s~ ) 0=r (9) =®QF Q (9Q ) 

         Example 1: 

               C hQ\ T(Q)=0                                   h
Q1/1 

                                         on KQ®JKQ, where KQ=K+®KQ and hQ is such that the corres-
ponding matrix aid is given by 

                          -1                    2cos20             aQisin20QE.2u(                                              20)             at"2, (isin20cos20 
                           Q with 0<OQ<Tr/2, 0<AQ for all Q . 

    The formal vacuum Q(t) is given by 

[det(aQ)]1/4exp[-2(q(2,1,(aQ-1)q(Q))] 

          = AQexp[-2(q(Q),(XQu(2OQ)-1)q(Q))] 

where
_(Z) 

q(Q)
 q(Q)   2 
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  Then C2TQ )EX onlyfor0< 20Q<ir/2 and 

 Q 

                                                                      xp. 

 II Q (R" )II p=[cos 2821-13/2             Q  T pQ1+2(x
~2-1) 

with 

              x2=X , (cos20Q)1/2 

for 0<p< 2(1-c)-1 (c= cos20Qxmin {x2 ' X-2,-21-  ). The transformed 

total vacuum is given by 

) ®
kQT . 

T = e T(L) isHilbert-Schmidt if and only if - 
k - 

2[ cosh2TQsin20+sinh2T,cost0] <o 

               4-4- EQZQ-zQ1I?<00 E-4- EQIzQ-lI2<00 

where X =exp (T) and z=XQexp (i0Q) zQis one of the eigenvalues 

of h2, • T is weakly 0-unitarily implementable if 0 <19 <7/4 
for all 2, and T 

    The overlapping of the vacua is 
                                          -1 

        <SZ (Q)SZ(Q )> _[det(h              ,2'2+hQ)i-1/2=2 I z +z-11-1   TQ, 

where 0(k) is the Fock vacuum in ~. The formally defined 

overlapping Ilk 2I z Q+z Q1I -1 can converge to a non-vanishing 

finite quantity even if spec ar> 0 does not hold. In this 

example, the overlapping is non-vanishing if and only if T 

     Example 2 : 

T(Q )= hQ0 
                                            -1 

oh Q 
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on KQ43JKQ,where on  KRK+®Q 

                           K 

             1 1            hQ =l+nk ( ) ,  ntE  R . 
                      -1 -1 

Note that hQ-l=n2(1 1) is a '-selfadjoint 
-1-1 

and 

hQ 1=1-nQ (1 1 ) 
                       -1 -1 

, 

                1 i aQ=1 -2nQ() 
                        i -1 . 

Thus T-is H.S. if and only if E~n2,!<0 
0-unitarily implementable if TE H.S. and 

But the overlapping is independent of {nd 

<52(R)~52(Q)>=1 ' <C2' C2T>=1 •

nillpotent operator,

and T is weakly 

Inft,I<1/2 for all k.

§12. Applications to Physics.

   As an illustration, we consider , in this section, a mass-

shift model of vector field A in two-dimensional space-time 

with periodic boundary condition (other more non-trivial models, 

see [5,11-13,19,29]). 

   We shall consider Bogolyubov transformations related to 

this model and discuss its implementabilities. First we 

consider the Bogolyubov transformations which diagonalizes the 

Hamiltonian of this model and second we consider the time-trans-

lation operator of this model as Bogolyubov transformations. 

    The (Stuckelberg ) vector field A in two-dimensional 

space-time can be descrived in terms of a scalar field cp on the 
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Fock space  XU with a positive definite inner product and 

another scalar field B on the Fock space ~B with an indefinite 

inner product: 

               A
u=P-----[euvav(1)+auB] 

where 1i> 0 is a mass of (I)
uvis the antisymmetric 

tensor with values ± 1, and we assume B has a mass P'? 0. 

(U= 16 3vgbis the Proca field of mass pin two dimensionsPv 

and B is the gaugeon field of mass p'. See [9,1L-13].) 

   The total Hamiltonian H of the mass-shift model is then 

    H=HO(q))+HO(B)-1----SU2~:A~(x,0)-A2(x,0):dx 

where H0(0 and H0(B) are the free Hamiltonians and : . 

denotes the Wick product. To set up simple well defined model, 

we limit the space to the finite interval A =[-L/2,L/2] C R 

with periodic boundary condition and furthermore use the 

cutoff ( periodic ) field Ap,a(x,0) instead of Ap(x,0) ( high 

momentum parts (ipl>a)and zero momentum parts are completely 

omitted in Ap,a(x,0). See [11-13] for details). 
     Without loss of generality, we set p'=0 in the following, 

which corresponds to the Landau gauge formalism of the vector 

 field [9,11-13,19,29]. 

     In terms of creation and annihilation operators {a (p), 

a(p),b+(p),b(p); pEr- 21TZ/L } of and B, the Hamiltonian is 

 (12-1) H=H(L,a)= 17E pEr,a>p> 0 _r(p)g(p)d(p) :-E(L,a) 

 where 

Sp2 
E(L,a)= EpEr

,ap> 0(q0-p0-------2p0) 
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 is a 

=0 , 

and i 

(12-2 

with

where

    P=(.p2+p2)1/2q=(p0+SU2)1/2 

;ant ( the vacuum energy ) chosen so that inf 

ta(P) 
b(p) , . +(p)= ( a+(p) , b+(p), a(-P), 

     `a+(-p)       1
b+(-p) 

       is a 4x4 hermitian matrix given by 

     g;(P)(P)) 
n (-P) 

+(-p) 

     22         p0+ ppiU2------- w'(p)   k+(P)=(2           -ia2w'(P)-API 

               u 

           pOSu2-Su2iS—~~(P) \ 
  ie (P)=u22p0u2  - 

22           -i-u2co(P)su2l PI 

w(n)=  (Po+_I.p_DPw'(n)= __(_P0- P )P 
      24"Ip12 p IPt

spec H(L,a) 

 b(-p)),

B

    In 

=F(6i )

Here

 this approximation, K+=1/ = 2,2(r) and XU= 

 and the following CCR with an indefinite 

Ca+(p),a(q)]= -Cb+(p),b(q)J= 2~r dp
,q 

  any other commutator = 0 . 

a+(p)=Ca(p)](0)=Ca(p)]*, b(p)=Cb(p)](0)=-

                           -56-
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,

Cb(p)]
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and  {a(p),b(p); p(r) are the annihilation operators: 

a(p)Q=b(p)S =0 

for all p. 

      We shall now discuss the following items about the 

Hamiltonian (12-1): 

(I) Diagonalization of H=H(L,a) by a Y)-symplectic operator 

Ta in the sense which shall be explained. 

(II) The implementability of Ta . 

(III) The Bogolyubov transformation at ( =exp[it6H] ) induced 

by H. 

(IV) The implementability of at . 

      Before studying these problems, we shall note a property 

of H(L,a), namely H(L,a) is 0-symmetric : 

<4,H(L, a) iU>=<H(L, a) cb, ip> for (1), 1pED(H(L, a)) . 

Further in the present case H(L,a) is 0-selfadjoint. In fact 

the symmetric operator OH(L,a) is selfadjoint since a<co , 

which implies that H(L,a) is 0-selfadjoint C5,137. 

      I and II: We choose a 4X4 matrix S(p) which diagonalizes 

1(p) and leaves the CCR ( with indefinite metric ) invariant: 

S (p)X(p)S(p)= diagonal matrix, 

              S (p)TS(p)=S(p)TS (p)=T, 

where 
             ~P0 

                      T= 
0 -99 

with 99=diag(l,-1). This S(p) is obtained by solving the 
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 following equations: 

 det  [ff(p)-Tx]=0, YC(p) Tui=eiui 

with the normalization with respect to ( ,T )_< , >T : 

                 <u.
i'uj>T= (T)ij 

 Here {ei;i=1,..,4} are the roots of the characteristic equation, 

and are given by {±q0=±(p2+p2+Sp2)1/2,±IpI} . Then S(p)it= 
  (Tu.(p))i J(S +(p) S_(A))            S(p)=\ -------------------- / 

S_(-p) S+(-p) 

where _ 
                  p2p0+p2g0  idp2p  

                                               /                     2 pp^pvq21-154D°1131 
     S+(A)= 22 —2 

            idppp +p  

21-15/4°11D12p u 

                       p2g0- p2p0 _  idp2~p--- \ 
S (p)= 2pU^p6q°2115117-51

idp2pSp2  
2111714 2pu 

 with 5=(p2+Sp2)1/2, 

    Let 
                    *

'0SS(p) 

         /S+(P) 0 
      B+(p)=B _(p)=C( -A) 0       0 S

+(-p)_, 

where C is the complex conjugation operator on it . Let 

 (12-3)T(p)=B+(p)+B_(p) , 

and let 

(12-4) B+(a)= G10
<p<0B+(A), Ta=B+(a)+B(a). 

Thus UT should implement .A/ (P) > S (plq((p) , and 

a 
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then implement Ap,a(x,0)÷ Au,o(x,0) , where Ap,o(x,0) is 

the vector field of mass  u=(112+61.12)1/2 ( in the Landau gauge 

formalism ). 
                                                            ti 

    Since 99S+(-p)95'=S+(p) in this case, we see UOTaUO =To 

where 

1 91 U
O_gyp1J 

is a unitary matrix commuting with S°, and 

            T =Cto(+) 0                o \ 0 t
o(-), 

where ta(±)=C~O<p<ot(±p) with 

t(±p)=S+(±p)± 'CS _(±p)• 
ti 
    Thus it suffices to consider the implementability of To . 

Since for Kv=K+OiK _, 

to(+)KrCK9, , to(±)rKv=9O<p<o(S+(±p)±S_(±p))= to(±)1, 
    to (± )JK~CJK9,, to (+ )PJK~50<p<a S+(±p)+S-(±p) )-ta (± )2, 

qt takes the following form on KoAJK5 : 

       CTa,l 0 )        0 T1,2 , 

where 

            /t6(+)1 0To=to(+)20 
    T

a,1(,2           \\ 
to(-)10to(-)2 

and,of course, JTa,1J-1=T6r2. 
      We investigate a- T(~2To2which is`~-selfadj oint and 

symmetric: 

(12-5) a = m a (p) 
-a< P<o ,p/0 
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(12-6)  a(p)= 

a(-p) 

with p> 0. 

The formal v 

which is in 

      The ov 

and is non-v 

converges to 

since

(S+(p)—S (p))(`19)(S+(p)—Sie(p)) 
* * 

r(u).2 p0 
1du2pop   u

q0 112 q0,17-D—i7 

 46121301D1 [u4—P
0(6/-                  Lu20/0   u2u2q       q p p 

              6°) =(S
+(—p)+S (-0)(                   (S—p)+S*(—p))

 normal vacuum 

 is in the 

 The overlapping 

s non-vanishing 

rges to 

d 

p->°° 

  As conclusions 

y<°° and

i"µ P P 1  Cp4-  P  (42)2] 
P2 0/0  p21712q0 

     q P P 

(S+(-P)+S*(-P))(°)(S}(-P)+S*(-P)) 
   °2 

u2-2p---------°Cu4- q°(Sp2)2] i Sp2^pr                      pPP 

isp2_P_( p )2 
 p2^p° pu 

Therefore ar(p)>0 for all p if 161-12I<p 

lim a(P)=1+ Sul t2 (±1 i) +0(p-2) . 
   p-).-±00p`i T1 

1/4 
cuum^B is given by [det(a)] exp[-

        space if e<° and l42I< p2. 

rlapping is given by 

        /2[B
+(a)]=wo(L,6)=n°~P «det-1 

nishing finite for 6112 > -112, and abs 

nishing finite value w°(L,00) 

       _ 4p2-114p2-11240q020g0  
           (p2+p2)(p2p°+p2q°)-(Sp2)2I 

        =1+0(p-2) 

Tc, is weakly 0-unitarily I 

<p2, and 0-unitarily quasi-in 

-6o-

as 

for

all p if (Sp21<p2, and 

 i  ) +0(p-2) . 
+1 

1/4 
[det(a)] exp[- 2(q,(a.-1)q)] 

nd 1421< u2, 

,a)=11p       0<<6det-1S+(p) 

2 > -112, and absolutely 

 value w0(L,00) as 6ico 

12-1124 q 
p(4112g0)-(6U2)21pi 

y 0-unitarily implementable 

itarily quasi-implementable



 fora<00and Sul >-112. 

  Remarks 7 :  (1) The following quantity exists: 

            a=lim- L logw0(L,c)=2~;0dp log[det(S+(p))]. 

This is called the effective potential in field theory ( the 

subscript "p" means the periodic boundary condition ). Since 

the indefinite metric formalism is used, this is not necessarily 

positive . In fact det(S+(p))‹ 1 for large 'pl. 

(2) The vacuum energy per unit volume converges for L,a-4-00 : 
                                                2 

limL-----E(L,c)= 2~-----fdp(g0-p0- ------Su0) 
     L, c->c02p 

(3) Let (1)(f) be the 0-selfadjoint field as before. Then 

pB(exp iOp(f) )_ <St,exp(i0,(Bf) )Q> 

=exp[- ] <Bf,Bf> ], 

which converges uniformly as L,c-~cofor any f F L2(R2;d2x). (See 

also [7,8,22,23].) 

    III and IV : Let H0(L,cs) be the diagonalized Hamiltonian 

by the transformation "S(p)", and let UT be the operator on 

the Fock space which implements the transformation of the fields 

Since UT is unbounded, we can say that H(L,c) is similar to 

the selfadjoint operator H0(L,c) which commutes with 0 by un-

bouded 0-isometric operator UT . By the definition of E(L,a), 

inf spec H0(L,a)=0. 

      We say that a closed linear subspace ing is uniformly 

definite (resp. strongly definite ) if it is uniformly positive 

or negative (resp. positive or negative ). We have obtained the 

spectral resolution of H(L,c) in terms of 0-selfadjoint projec- 

tion operators ( for~SU2~< 112 ). But their ranges are not 
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uniformly definite. 

 H(L,a) is considered to be the generator of the following 

differential equation: 

i------dtcl)(t)=H(L,a)q)(t), 
(12-7) 

$ (t=0)=(1)O E . , 

i.e., we formally have 

(12-8)(1)(t)=U(-t)q0 , U(t)=exp[itH(L,cs)]. 

    We proved that H(L,a) is 0-selfadjoint, but formally defined 

U(±t) cannot be bounded in general except for t=0: U(t) is an 

unbounded operator which implements the following transformation 

of the field : 

(12-9)at(04,(f)-) =exp it(SH• P(f) =09,(B(t)f) , 

where B(t)= B-1K0(t)B=B+(t)+B _(t) is a one-parameter group 

of 9°-symplectic operator and K0(t) is a one-paramrter unitary 

group defined by 

(12-10)exp itSH• 0~(f)=~~(K0(t)f) . 
                  0 

B+(t) are explicitly given as follows: 

            B+(t)=B+~)K0(t)B+-B(y)K0(t)B_ , 
(12-11) 

           B(t)=B+9')K0(t)B_-B(s°)K0(t)B+
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     Even if (B,B -) is weakly  0-unitarily implementable, 

(B+(t),B -(t)) is not necessarily weakly 0-unitarily implement-

 able. Such a phenomenon can be easi1:7 confirmed in a simpler 

 example. (B+(t),B -(t)) is 0-unitarily quasi-implementable 
 in general. ( Note that B (t) is H.S. if so is B .) 

      Remark 8: One-parameter 0-unitary group U(t) is called 

stable [18] if 1IU(t)II<M for all 'GER. By connecting results in 

[18,21], we see that the necessary and sufficient condition 

for H to be a generator of one-parameter stable 0-unitary group 

is that H is similar to a selfadjoint operator Ho. On the other 

hand, by a theorem owing to Phillips [18,21], we see that the 

necessary and sufficient condition for the 0-selfadjoint operator 

H to be similar to a selfadjoint operator HD is that H has two 

closed invariant uniformly definite subspaces 7(±) such that 

   (+)®~(-)with respect to < 
, > . In physics, it is not 

expected that the Hamiltonian becomes a generator of a one-

parameter stable 0-unitary group.
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         §13. Concluding Remarks. 

   We first discuss some properties of  UB1 which is weakly 

0-unitarily implemented. For simplicity , we assume that B is 

v-unitary ( then UB1= r(B-1)). 

      Let 92=P+-P_ as before and let 1t=+0 where iP±=P±i• 

Let B-4=B-1/t+. The topology of it is introduced by 

the inner product 

(13-1) (x,x)1E <x+,x+> 

where xe4 , while the topology of B-1 l is defined by the 

inner product 

(13-2) (x,x)2E<x+,x+> 

where x+ E B-1,8+ • Since Bx+E H+ , we have 

(x,x)2= <B-1Bx+,B-1Bx+> -<B-1Bx _,B-1Bx_> 

=<Bx
+,Bx+>-<Bx_,Bx`>=(Bx+,Bx+)1+(Bx_,Bx-)1 . 

Thus there are constants 0< pl< p2<0. such that 

(13-3)111xIl~_II xlI2-11211xll1 , 

which means that the topologies of 1e and B-lit are equivalent 

The unitary and hermitian operator V is again represented as 

a unitry and hermitian operator : 

(13-4) =P+-P'
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where  P+ are projections to B-11Z+ and are selfadjoint with 
respect to ( , )2. 

   Next let (7(1t)= ~(H+)® (/t ) and let 

(13-5)e=r (50)=+-0 - 

where 0+ are projections: 

                 1on-(e+)co(2n)), 
0 = 

                  -1 on(61
+w(2n+1)() 

where n=0,l,.. Let 7+=0+ . Then the topology of the Fock 

space is defined by the inner product 

(13-6) ((P,(01=<(1)+,(+> -<,4> 

where +E ~ , while the topology of (B-11(
+)® (B-1X ) is 

given by 

(13-7) ((,(1))2=<(I)+,45+> -<(P $-> 

(n) 
where +E 7+(B-ig) and F(B-1/ )=7(B-3-/e )03) 7 (B-1X ) 

                                 n=even (odd) 

r (n) (B-1)=r (B-1) in) (if)=B-10... 0B-1 (n-times)

(13-8) 

Then f 

(13-9)

for

 (n) W)_ 

Fin) (B 

11411 2

(n+) (n _) 

  n +n =n(+)oX(/) 

    + 

      (n) -1(n)  X) =r(B)(Je) , we see 

Il r (n) (B)(1)II l . 
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Therefore there is a vector in such  thatjI  ('II°° and 

        . This shows that P(/C) and /(B-1J) are different. 

    Due to this phenomenon, the set of weakly 0-unitarily imple-

mentable B does not form a group and is not invariant by SP-unitary 

operators. 

     Remark 9: If V is 90-unitary, 43pf)=r(V)090(f)r(V-1). Then 

for a decomposition T=V1SV2 with V
i So-unitary, we define 

UT=r(V1)USr(V2). Since r(V)c2 =0 ,S2T=QSif T=VS ( as in 

Theorem 14). Contrary to the case of generalized So-scalings , 

even if QTE'S2 -1is not necessarily in the Fock space.                      m 

      In this paper, we considered the properties of QB which 

satisfies 

<2' 7B(P)2>=<2B,P2B> 

where P is a polynomial of fields {(1)90(fi)} 

P=P(Ov(f1),...,(Dr(fn)) 

and 

7B(P)=P(4(Bf1),...,O90(Bf n)). 

     Let 

 (13-10) pB(P)=<S2B' B> • 

 In physics, expectations {pB(P)} are easily calculated rather 

 than 7 B(P) themselves. To obtain ITB from pB is the converse 

 problem which should be investigated in the next step.(See,e.g., 

[10,28] for the representation problem which is typical in the 

present formalism. See also [13,29] for the problem in physics.) 
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