江 尻 有 郷 (東大教養)

§1. プラズマ

固外プラズマを調べる実験的研究は,

1) 高速電子線のエネルギー損失の測定

2) 光学的反射率を測定して光学定数を決定し、損失函数を求める

3) 薄膜に斜めに偏光を入射して, P 偏光, S 偏光の透過率, 反射率を測定する

等の方法でなこなわれており、金属、半導体についてはすでに多くの研究が 成されている。アルカリハライド(A・H)の基礎吸収領域についても、 (1) Philipp と Ehrenreich (1963) は K ハライドを 2)の方法で調べ、損 (2) 失函数のプラスマに対応するビークを assign した。又 Sueoka (1965) は LiE の 25.3 ev のエネルギー損失のビークをくわしく調べ、その分散の θ^2 - 依存性から、それがプラズマによる損失であると断定した。ここでは、 今までにやられてなかった 3)の方法による A・H のプラズマと、更に同 様な方法によるエキシトンについての実験結果を述べる。

§2.実験と結果

固体薄膜に斜めに入射した偏光の電気ベクトルが入射面内にあるとき(p ー偏光)の透過率を T_{p} ,(図1),入射面に垂直(S 偏光)のときを T_{s} と すれば、 $\delta = 2\pi d/\lambda < 1$ (d:膜厚、 λ :光の波長)の条件で、近似的に ⁽³⁾ 互々の透過率は次の様に表わせる。

図1 P-偏光透過測定

-B40-

図2a.

KCP

$$T_{s} = ! - \frac{\delta}{\cos \theta} \epsilon_{T2} (\omega) \qquad \cdots (1)$$

$$T_{p} = 1 - \frac{\delta}{\cos \theta} [\epsilon_{T2} (\omega) \cos^{2}\theta + \frac{\epsilon_{T2} (\omega)}{\epsilon_{T1} (\omega)^{2} + \epsilon_{T2} (\omega)^{2}} \cdot \sin^{2}\theta]$$

ここで, $\epsilon_{T}(\omega) = \epsilon_{T1}(\omega) + i\epsilon_{T2}(\omega)$ は Transverse 復素誘電率, θ は入射角。

 $T_{p} 武力ッコ内第1項は電磁波と Transverse mode との couplingを$ $示し、第2項の <math>\varepsilon_{T2}(\omega) / [\varepsilon_{T1}(\omega)^{2} + \varepsilon_{T2}(\omega)^{2}]$ は損失函数 $-I_{m}$ $(1/\varepsilon_{T})$ に等しく、Longitudinal mode との coupling を示している。 従って $\varepsilon_{T2}(\omega)$ がなめらかな函数ならば、 $\varepsilon_{T1}(\omega) \rightarrow 0$ のとき、 $-I_{m}$ $(1/\varepsilon_{T})$ はピークをもち、 T_{p} の減少が起る。このような P 偏光吸収効果は、 KCl, KBr では金属の場合⁽⁴⁾ほど顕著ではないので、 T_{p}/T_{s} の比を Direct に測定した。この結果が図 2 a、bである。 KCl; 880Å(14.1 ev)、KBr; 950Å(13.1 ev) にそれぞれ大きな dip が現われた。

図2b.

KBr

図 2a. KCPのプラズマ共鳴吸収

図2b. KBrのブラズマ共鳴吸収

-B41-

(in eV)

 T_s はこの附近でなめらかに変化するから、この dip は P - 偏光の吸収とみ なすことができる。従って Longitudinal mode との coupling とみな せる。それらの位置は 1) や 2) の方法の実験値とよく一致している。(表 1) 一方 Horie (1959)は insulator のプラズマとエキシトンの理 論で、波動函数を nearly plane wave like としてプラズマエネルギー が

$$\hbar \omega \simeq \hbar \omega_{p} \left\{ 1 + \left(\frac{G}{\hbar \omega_{p}} \right)^{2} \right\}^{\frac{1}{2}}, \quad G \ll \hbar \omega_{p}, \quad \cdots \quad (3)$$

で与えられ, band gap による shift があることを示した。ここに $\omega_p = (4\pi ne^2/m)^{\frac{1}{2}}$ で自由電子プラズマ振動数。Gは band gap である。

	K C 🖉	KBr
Present Work (5)	14. 1 ± 0.2	1 3.1 ± 0.2
Creuzburg (6)	1 3 9	1 3.5
Philipp-Ehrenreich (1)	1 4.1	1 3.5
$t\omega_p n=6_{per}$ molecule	1 1.6	1 0.7
$\hbar\omega_p n=8_{per}$ molecule	1 3.4	1 2.4.
Hories theory	1 4.5	1 3.3
(Energy Gap)	(8.6)	7. 8

表1 フラズマのエネルギー

プラズマエネルキーの各実験値は、n=6又はn=8 per molecule の場 合の h ω_p より、n=6 で (3) 式より得た ho の方に近い値である。(表1) T $_p$ /T_s の値は金属 (Aℓ, K) に比べてかなり大きく、従って A・H のプラズマ共鳴吸収は金属ほど顕著ではない。(表2) これは A・H の場 合、 $\omega = \omega_p$ でも Transverse な吸収がかなり残っており ($\epsilon_{T2} \simeq 1$), これが Longitudinal な吸収をマスクする働きをしているためと推定され る。

表2. プラズマ共鳴吸収の ^Tp/T_s minimum Value.

	KCC	КBr	Al	, K
庭 厚	200°	150Å	300Å	300Å
(^T p/T _s) min	~ 0 7	~ 0.7	0.02	D. 1

\boxtimes 3. L and T Exiton in KC ℓ

(Room Temp)

-B43-

PHOTON ENERGY この位置で T_o はなめらかに変化するから、この dip は P 偏光の吸収即ち Longi tudinal exciton の吸収であろうと推定きる。一方 Tomiki $(1967)^{[8]}$ の光学定数の data を使った計算値で T_P/T_o と $- I_m (1/\epsilon_T)$ のピークは一致した。(図5) この様にして P 偏光透過率からかなりの精 度でエキシトンの Longi tudinal と Transverse (L,T) のエネルギー が得られ、同時に L - T splitting が求まる。これは従来の optical な T exciton と電子線による L exciton からの L - T splitting に 比べれば1桁精度が高く、反射測定に比べて簡便な方法と云えるだろう。 表 3、4 にその値をまとめた。

§ 4. Discussion

Exciton の L — T effect は Heller — Marcus () により見出さ

-B44-

10 (1) れ、その后 Od S , $Z_n O$ などについて研究されていた。Frenkel model で考えた場合 , Cubic Crystal ではハミルトニヤン Matrix のK 一依 存項は off-diagonal 項で、その主要部分はクーロン相互作用の long range part であり、L-T splitting は $4\pi \rho |\mu_{10}|^2$ で与えられる。 (ρ : density of lattice points, μ_{10} ; transition dipol moment). 蒸着薄膜にP 隔光を斜入射した場合,励起モードの方向と光の K の成分が parh になる可能性が生じ、L-coupling を起すと考えられ る。

 $KC\ell$, KB_r の場合は ground state が P-like (haride ion) で S-0 splitting を起している。 (P_{3/2} uper, P_{1/2} lower) (13) ONodera - Toyozawa の理論によれば、交換エネルギー Δ は

$$\Delta = 2 J |F(0)|^2 \Omega \qquad (\Omega = \frac{1}{\rho})$$

(4)

-B45-

.....

÷		1 s t	2 n d
T	Present	7.95 (eV)	9.75 (eV)
Ŀ	Creuzburq	7.85	9.75
רדי	Present	7.68	9.44
T	Tomiki	7.69	9.4.8
L-T	Splittinq	027	0.31

表3. KC ℓ Exciton peak (Room Temp)

a final a state of the second s

表4. KBr Exciton Peak (Room Temp.) (in eV)

	E 3/2	E 1/2	Doublet & Splitting	
Present	6.67	7.25	0.5 8	
P.Keil	6.80	7.38	0.5 8	
Present	6.5.5	7.11	0.5 6	
$\mathbf{E} - \mathbf{T} - \mathbf{D}$	6.6	7.15	0.5 5	
L-T Present	0.1.2	0.14		
Splitting $\begin{array}{c} K & \& \\ E - T - D \end{array}$	0.20	0.25		

. 5

$$J_{T} = 交換積分 - \frac{4\pi}{3} \frac{\mu^{2}}{\Omega} \cdots T$$

$$J_{L} = 交換積分 + \frac{8\pi}{3} \frac{\mu^{2}}{\Omega} \cdots L$$

で与えられる。J、 \triangle のL-Tdifferenceは

$$\delta J = \frac{4\pi \mu^2}{\Omega} \qquad \dots \qquad (6)$$

$$\delta \Delta = 8\pi \mu^2 |F(0)|^2 = \delta E_{3/2} + \delta E_{1/2} \qquad \dots \qquad (7)$$

(ここで $\delta E_{3/2}$, $\delta E_{1/2}$ は各々 $E_{3/2}$, $E_{1/2}$ の L - T splitting, $E_{3/2}$, E_{1/2} は halogen doublet.) で与えられることがわかる。KB_r につい て、上の関係を使うと、

$$\Delta_{\rm L} - \Delta_{\rm T} = \delta E_{3/2} + \delta E_{1/2} = 0.26 \, \text{eV}.$$
$$|\mu|^2 |F(0)|^2 = 0.26/8\pi \, \text{eV}.$$

が得られる。

同じく 0-Tの理論より、△と λ(S-O Energy)の関係を使うと、

$$\lambda = s \bigtriangleup_{T}, \qquad \bigtriangleup_{T} = \frac{\delta E^{T}}{\sqrt{s^{2} - \frac{2}{3}s + 1}} \qquad \cdots \qquad (8)$$

$$S = \frac{2\sqrt{2}f(k) + 1}{3}, \quad f(k) = \frac{1}{2} \left(\frac{\sqrt{2}k + 1}{\sqrt{2} - k} + \frac{\sqrt{2} - k}{\sqrt{2}k + 1}\right)$$
$$K = \frac{\sqrt{2} - \tan \phi}{1 + \sqrt{2} \tan \phi} = \left(\frac{f_{\frac{1}{2}}}{f_{\frac{3}{2}}}\right)^{\frac{1}{2}}$$

 $\delta \; \textbf{E}^{\; T}$; Transverse S-O doublet separation

 $f_{\frac{1}{2}}, f_{\frac{3}{2}}$ は各々 halogen doublet の振動子強度なる関係が得られる。 4 $\pi\rho |\mu|^2 \propto f$ の関係から、近似的に $f_{\frac{1}{2}}/f_{\frac{3}{2}} = \delta E_{\frac{1}{2}}/\delta E_{\frac{3}{2}}$ が成り たつとすれば、(8) 式より($\delta E^T = 0.56 \text{ eV}$ を使って)

 $\Delta_{\rm T} = 0.24_{\rm 1}, \quad \Delta_{\rm L} = 0.50_{\rm 1}, \quad \lambda = 0.59_{\rm 4},$

などが得られる。

実験はすべて室温であるから O-Tの結果と直接比較できない。試料の 温度を下げた場合は band 巾が sharp になり, L-T splitting が明 瞭になってくることが期待できる。(図6) 低温測定は現在準備中であ る。

-B47-

図6. KCCの2nd Excitonの計算値(78°K)

文 献

- H.R.Philipp and H.Ehrenreich: Phys. Rev. <u>131</u> (1963)
 2016.
- 2) O.Sueoka: J.Phys. Soc. Japan <u>20</u> (1965) 2226.
- 3) E. Burstein: Dynamical Processes in Solid state Optics, Editedby R. Kubo and H. Kamimura, Syokabo. Tokyo, (1967). p.22.
- 4) A. Ejiri and T. Sasaki: J. Phys. Soc. Japan <u>20</u> (1965)
 876.J, Brambving: Z. Phys. <u>200</u> (1967) 186
- 5) A.Ejiri: J.Phys. Soc. Japan 23 (1967) 901
- 6) M. Creuzburg: Z. Phys. <u>196</u> (1966) 433.

-B48-

- 7) C.Horie: Rrog. Theor. Phys. 21 (1959) 113.
- 8) T. Tomiki: J. Phys. Soc. Tapan. 22 (1967) 467.
- 9) W.R.Heller and A.Marcus: Phys. Rev. 84 (1951) 809
- 10) 例えば J.J.Hopfield and D.G.Thomas: Phys. Rev. <u>122</u> (1961) 35.
- 11) J.J.Hopfield and D.G.Thomas: Phys. Chem. Solid <u>12</u> (1960) 276.
- 12) R.S.Knox: Solid State Physics, Edited F.Seitz and
 D.Turnbull, Suppl <u>5</u> (1963) p. 24.
- 13) Y.ONodera and Y.Tovozawa: J.Phys. Soc. Tapan. <u>22</u> (1967) 833.

N. A. WARR