Lee – Yangの定理の一般化と これに対する数値実験

> 東北大. 工. 理⁺ 桂 重 俊 , 山 本 正 実 阿 部 芳 彦⁺, 大勝内勝司

> > (5月19日受理)

§ 1. 序 論

1952年に Lee 及び Yang (は格子系における強磁性的相変化を複素磁 場平面における有限な系の状態和の零点の分布を以て論じた。通例、この定理 は最近接相互作用をもつ格子気体,即ち最近接相互作用をもつ S=- の Ising 強磁性体についての定理とみなされているが成立対称はもっと広い。 Husimi - Temperley model は Lee - Yang の仮定を満たすので,全ての 零点が単位円上にある事は明らかだがこのときの零点の分布関数は Katsura により求められ、Saito, Suzukiによってもその性質が論ぜられた。 Abe この定理がJ < 0の場合(以下J > 0を ferro, J < 0を antiferro と略 称することにする。)に対してどうなるかは興味ある問題で 「< この場合の 状態和の零点は負の実軸上にある"という proposition が多くの人によっ てなされた。また, Abe, Suzuki は零点の分布関数と critical index の関係を論じた。このような問題に対しては数値実験が役立ち、有限な系の 状態和を求めることが必要になってくる。有限な Ising model の状態和を 求めることは 4×4, 3×3×2 については Katsura により求められているが 最近電子計算機の発達により 5×5, 4×6, 3×3×3等が Ono, Karaki, Kawabata, Suzuki 等により相ついで求められた。Antiferro の場合, Yang 自身多くの場合零点は負の実軸上に分布するが例外のあることを述べ ている。Yang が示した例は2つの sublattice に分けられない系であった ので ^{*} 2 つの sublattice に分けられる場合については負の実軸上にある という修正された proposition について数値実験が Kawabata, Ikeda等 によって行なわれ、概ね負の実軸上にのるが例外があるということが分った。 その結果によると 2×2, 3×3, 5×5, 2×2×3, 2×3×3, 3×3×3に

-197-

対しては全ての根は負の実軸上にあるが,4×4,4×6,2×2×2に対して は大部分の負の実軸上の根の外に,複素根があらわれている。

また、S=1, $\frac{3}{2}$ 等の Ising model に対する数値実験も Kawabata等 により行なわれ、Ferro では全ての根は単位円上にあるが、Antiferro で は負の実軸上の根の外に複素根が現われていることが見出された。

Heisenberg model についても Ferro, Antiferro の両者に対して 10) Lee - Yang の定理及び前述の予想が成り立つであろうことを Katsura は 1×6の data より推論した。

 一方, Fisher, Abe, Suzuki は状態和の複素温度平面の根の分 14)
 布より Curie 点及びその近磅の critical index を議論した。Katsura
 はこれに対して状態和の無限乗積表示から積分表示は導くことが出来ても積 分表示から無限乗積表示は必ずしも導かれないことを注意した。

最近 Slater の誘電体 model の2次元的 Version である Lieb の KDP model, Rys の ADP model, Wu の KDP model の exact solution が 15) 得られ その結果は Ising model の exact solution と類似する所が多 い。このノートでは Lee-- Yang の定理及びこの Antiferro に対する推論 が second neighbor の interaction を考えた Ising model 及び KDP の Slater model, ADP の Rys model, Wu model 等でどうなるかにつ いて数値実験を行ってみたのでこれを報告する。

§ 2. 第2近接格子点まで考えた場合の Ising model 4×4 の格子に periodic condition を課せ, next nearest neighbor までの相互作用を考慮した状態和を計算機で求めた。 nearest neighbor の相互作用をJ next nearest neighbor の相互作用をJ'と $u = e^{-J'kT}$, $y = e^{-J'kT}$, $z = e^{2mH'kT}$ とすれば, この系の状態和は

$$Z_{4\times4}(x, y, z) = \Sigma a_{\ell mm} x^{\ell} y^{m} z^{m}$$

-198-

LeeーYangの定理の一般化とこれに対する数値実験

で表わされ、その結果は Table 1 に示す。これは y=1 としたとき Ono, 16) Karaki 及び kawabata 等の結果と一致し、x=1 としたとき別に行っ た second neighbor のみの結果と一致している。これを $J \gtrsim 0$, $J' \gtrsim 0$ の 4 つの場合について種々の相互作用比及び温度を変えて、複素磁場平面に おける状態和の根の分布を調べた。この結果は、全ての根が単位円上にある 場合、概ね単位円上にあるが例外がある場合、全てが負の実軸上にある場合、 概ね負の実軸上にあるが例外がある場合、全く不規則な場合の5 つの場合に 分けられ、概況を Fig. 1 (a) 及び Fig. 1 (b) に示す。

1) J > 0, J' > 0, この場合は Lee – Yang の仮定を満しているから 当然だが、全ての根は単位円の上にのっている。

||) J > 0, J' < 0, $|J'| < \frac{1}{2} J$ では Fig. 2 (a) が ground state である。|J'| が小さい間はほとんどの根は単位円にのっているが $\frac{1}{2} J$ に近 ずくにつれて外れた根の数が増加して来て $|J'| > \frac{1}{2} J$ では全ての根は単位 円にも負の実軸上にものっていない。

Ⅲ) J < □, J'> □, 全ての根は単位円上にも, 負の実軸上にものっていない。

Ⅳ) J < 0, J' < 0, J - J' 平面は全ての根が負の実軸上にある部分と, 大部分が負の実軸上にあり一部が複素根である領域とに分けられる。

J/kTを一定としJ'/kT を変えていったときの根の分布の変化の一例を Fig. 3, 4, 5に示す。Fig. 5 では横軸は – ℓ n (– Im z) を,縦軸は Rez をとってある。

second neighbor まで考えた Ising model の ground state は Fig.2(a), 2(b)(及び+, -を交換したものを含めて)2(c)(及び+,

-	x							J	'/k'	T							· · · · · ·
$\frac{\Delta}{4}$	×	△ 4		公 4				9.		<u>_</u>		(`)		Q			
								1.	0				· ·		· •		
\Box						牴		Ò			. •	\odot		 ()	•	6 3	
								0								t e ser	,
				П				6)	\bigcirc	\bigcirc	\odot	6)	Ċ)	0-	-7) 1	Č)	
						П		Θ	\odot	Э	Ó	()	f_{ij}	£.)	Θ^{*}	O^{-1}	
\bigtriangleup	\bigtriangleup	Δ	1 △	. ()	\bigtriangleup	\bigtriangleup	\times		())	Ć. ji		Ce	. 1 . S	. 0' ூர்	Ú)	ι. Ο <u>(</u>))	J/kT
8	8	8	12:	Γ ₀ 12 ×	12 ×	\times	×				ò	г	Ċ	-()		G_{2}	
12	12	12	12 ×	\mathbf{v}	×	\mathbf{x}	×	12	11	11	Г,	17	\sim	7.5		с.	•
2.5	~~>							4	. ايم مر	<u> </u>	- level -	1-1		1. 1			
×	×.	×	X	Х	×	×	×	△ 4				• *	•			· Çê je	ang Ariang Aritra
×	\times	\mathbf{x}	\times	\times	\times	 12	 12				口					0	
×	X	$\overrightarrow{\Delta}$	∆ 12	Δ 12	△ 12	△ 12	△ 12	\triangle	1.0								
Έ.		△ 12	14	△ 12	, 2	△ 12	1 Ann										
	Бц	σ.	1 (а)	窜っ	- 行榜	≤赼→	ちをえ	经文	<i>t</i> - ⊺	sin	er m	ode	1 D	• .		
· · · ·			, (u	,	-14 -	~>	複素	、 层磁	易平	面の	根分	う布の	D概ž	元 兄			nen und jahr Linge
•	• . •																
															•••		a ang ang ang ang ang ang ang ang ang an
	~	~ ^		~	~ ~		~	~ `	~ ~	/ \	\sim	\sim	~ ~	\sim	\sim	~ ~	
	12 1	2.12	2 12	12	12 1	2 12	12	12	~ ^	~ ~				~		~ ~	J
	- 0.4	·							0.3							- U	·2 / _{kT}
	Fi	g.	1 (b))	J'/	kТ	= 0	の車	由上。	の根	分布	i の 凄	況				
	;)	全部	この木	良がす	单位	円上	にあ	うる場	易合							
		C.	大部	ふ分の	D棖≀	よ単	位円	上に	ある	るが	,外	れて	いる	ちの	つもる	ある場	易合
		×	全部	3負の	D実車	軸上	にあ	る場	合 ま+	日ムご	* 7	坦ム					
		m	貝 U m	ノ夫単 住	田上(自の学	ク 依 素 軸	いか	い $- $	を系た)数	民刀	ゆる	场台	• ,				
1 . S		2		لا سب	· · · · · ·	~ 174	< ۷ مىلىد 	13 2 -	~~~								

口 単位円上にも負の実軸上にもない場合

-200-

Table I. Partition function of the Ising model of $4{\times}4$ with first and second neighbor interactions.

 $z_{4\times4}(x, y, z) = \Sigma \quad a_{\ell m n} x^{\ell} y^{m} z^{n},$ $x = e^{-J/kT}, \quad y = e^{-J'/kT}, \quad z = e^{2mH/kT},$ $\ell = \frac{1}{2}(N_{++} + N_{--} - N_{-+}),$ $m = \frac{1}{2}(N'_{++} + N'_{--} - N'_{-+}),$

where $N_{\alpha\beta}$ and $M'_{\alpha\beta}$ are the number of spin pairs in the first and second neighbors, respectively, and n is the number of + spins.

n	m⁄l	-1	5 -1	4 -1	2 -10	- 8	- 6	- 4		2 0	2	4	ć	5 8	10		12	14	16	Σ	
8,-8	-16	1	0	0	0	0	0	0	0	. 0	0	0	0	0	0		0	0	. 0	1	
7,-7	-12	0	0	16	0	0	0	0	0	0	0	.0	0	0	0		0	0	- 0	16	
6,-6	-10	.0	0	0	0	32	0	0	0	0	0	0	0	0	. 0		0	0	0	32	
	- 8	0	0	0	32	56	0	0	0	0	0	0	.0	0	. 0		0	0	0	88	
5,-5	- 8	0	0	0	0	0	0	9,6	0	0	0	0	. 0	0	0.		0	0	0	96	
	- 6	0	0	0	0	64	128	64	0	0	0	0	0	. 0	0	· · · ·	0	0	0	256	
	- 4	0	0	0	0	32	128	48	0	0	0	0	0	0	0		0	0	0	208	
4,-4	- 7	0	. 0	0	0	0	0	0	0	72	0	0	0	0	0		0	0	0	72	
	- 6	0	. 0	0	0	0	0	0	0	64	0	0	- 0	0	0		0	0	0	64	
	- 4	0	· (0	. 0	16	128	416	384	80	. 0	0	0	0	0		0	0	0	1024	
	- 2	0	0	0	0	0	128	128	128	0	- 0	0	0	0	0		0	0	0	384	
	0	0	0	0	0	8	θ.	192	64	12	0	0	0	. 0	0		0	0	0	276	
3,-3	- 8	0	0	0	0	0	0	0	0	. 0	0	96	- 0	0	0		0	0	0	96	
	- 6	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0		0	0	· 0·	0	
	- 4	0	- 0	0	0	0.	0	16	128	288	128	32	0	0	0		0	0	0	592	
	- 2	0	0	0	0	0	128	384	640	640	256	0	0	0	0		0	. 0	. 0	2048	
	0	0	. (0	0	0	64	192	640	192	64	0	0	0	0		0	0	0	1152	
	2	0	0	0	C	0	0	64	128	64	0	0	0	0	0		0	0	0	256	
	4	0	(0	0	0	0	32	128	64	. 0	0	0	0	0		0	0	0	224	
2,-2	-10	0	U	0	U	U	0	0	.0	0	0	0	• 0	32	0		0	0	0	32	
	- 8	U	L A	0	. U	U O	U. 0	0	. 0	U		U	0	24	0		0	0	. 0	24	
	- 0	0	0	U 1 0	0	0	у. А	U A	0	. 0	0	0	0	0	0		0	0	0	0	
	- 4 - 0	0	U 0	. 9 . 6	0	0	0	. U 190	• U 256	04 	996	100	04	. U	· U		0	U	0	768	-
	<u>Z</u>	0	0	0	0	0	0 06	519	200	1760	540 959	120	U 0	U. 0	U A		0	0	0	1152	.0
	2	0	0	0	0	0	50	512	256	256	676	320	0	0	U A		0	0	0	4320	1
	Ζ.	0		1	0	0 A	0 ·	64	320	320	254	0	. U	0	0		U A	0 0	U A	100	
	4	0	(Û	0	Ő	0	0_0	64	-60	0	0	0	0		0	0	0	64	
	8	Û	i 0	0.	· 0	ů	. 0	0	32	80	0	n n	0	0	. 0		0 A	0	ίΑ	119	
11	-12 -	0	. (0	ů	Ő	Õ	Ő	0	0	0	0	0	n n	0		16	0	0	112	
	-10	0	0	0	0	0	0	0	0	θ	θ	0	Ő	ñ	0		10	0	. 0	10	
·	- 8	0	. 0	0	0	0	0	· 0	0	0	0	0 0	ñ	0	. O		0	0	· 0	0 0	
	- 6	0	0	0	0	0	0	0	0	0	0	64	128	64	0		Ő	. 0	Û	256	
	- 4	0	0	0	0	0	0	0	0	0	0	32	128	32	0		0	Ő	Ő	192	
	- 2	0	. 0	. 0	0	0	0	0	128	384	512	384	128	0	0		0	0	Ő	1536	
	0	0	(0	0	0	64	352	768	1408	1344	544	128	0	0		0	0	0	46.08	
	2	0	(0	0	0	0	256	768	1088	896	320	0	0	0		0	0	0	3328	
	4	0	0	0	0	0	0	16	128	320	256	48	0	0	0		0	0	0	768	
	6	0	0	0	. 0	0	0	0	128	256	128	0	• 0	0	Ó		0	0	0	512	
	8	0	· (0	0	0	0	0	0	192	0	0	. 0	. 0	0		0	0	0	192	
	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
	12	0	0	0	0	0	0	0	0	32	0	0	0	0	0		0	0	0	32	
0	-16	0	0	0	0	- 0	0	0	0	0	0	0	0	0	. 0		0	0	2	2	
	-14	0	. (0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	
	-12	. 0	U	0		ť	U	0	. 0	U	0	0	. 0	0	0		0	.0	0	0	
	-10	· U	. 0	U U	. U	0	0	U	U	0	U	0	0	0	0		0	0	0	0	
	- 8.	0	- 0	. U	· U	- N	0	U A	0	U A	U A	0	. 0	b4	64		0	0	0	128	
	A	0		1	. v	U A	. 0	0	0	- 30	. U	100	190	. ()	0		0	0	· U	0	
	- 2	0	ถ	. 0	0	0	ñ	n	0	. J2 0	220	194	956	32 A	· 0		0	. 0	. 0	512	
. •	0	.0	· · (0	. 0	Ő	0	4 4 8	7 በ 4	2192	1408	1216	109	24	. U		0	0	0	(08	
	2	0	í.	0 1	0	Ő	Õ	256	512	768	512	256	192	24 0	U N		U A	U A	U A	0192 2204	
	4.	0	C	0	Õ	Ō	0	64	384	1024	896	192	n N	n	0 N		0	ں م	. υ Δ	2004 2560	
	6	0	. 0	0	0	0	Ō.	0	0	0	. 0	0	0	n	n		0	n N	, U N	0004 1	
	8	0	0	0	0	0	0	0	0	208	64	õ	0	ĥ	Û.		Ő	: 0	0	. 979	
	10	0	0	0	0	0	0	0	0	128	0	Ŭ,	0	ñ	ñ		0	n n	'n	198	
	1.2	0	0	Û	0	0	0 .	0	0	0	0	0	0	0	Ő		0	Ő	0	120	
	14	0	0	. 0	0	0	0	0	0	0	0	0	Ō	0	0		0	Õ	Õ	Ő	
	16	0	0	0	0	0	0	0	0	4	. 0	0	0	0	0		0	0	0	4	
				•	· 	<u> </u>													1. 1. 1.		
$\Sigma/2$		1	0	16	32	212	864	3344	6784	10262	6784	3344	864	212	32		16	0	1		

LeeーYangの定理の一般化とこれに対する数値実験

 $J'_{kT} = 1.0 \ (>J'_{kT_c}) \ \text{OBG}$ (a) $J'/_J = -\frac{1}{3}$, (b) $J'/_J = -\frac{2}{5}$,
(c) $J'/_J = -\frac{1}{2}$, (d) $J'/_J = -\frac{2}{3}$,

-202-

 Fig.4
 第2近接格子点を考えた Ising model の複素磁場

 平面での根分布

$$J_{kT} = 0.25 (< J_{kT_c}) \text{ oBG}$$
(a) $J'_{J} = -\frac{1}{5}$, (b) $J'_{J} = -\frac{1}{4}$
(c) $J'_{J} = -\frac{1}{3}$, (d) $J'_{J} = -\frac{1}{2}$

-2 03 -

(c) $\frac{1}{-3} \times \frac{1}{-10} \times$

Fig.5 第2近接格子点を考えた Ising model の複素 磁場平面での根分布

$$J_{kT} = -0.2$$

(a) $J'_J = -1.0$, (b) $J'_J = 0$, (c) $J'_J = 3.0$, (d) $J'_J = 4.0$

-204-

- を交換したもの,縦と横を交換したものを含めて)の何れかであり,根の 分布の map もこの3つに対応することを期待したが, Fig.2(a)が ground state であるときは全ての根は単位円上にあるが,全部の根が負の実軸上に あるときと大部分が負の実軸上にあるが一部の根が複素根の場合との境界の 物理的意味は明らかでない。

J < 0, J' = 0の場合,複素根があらわれはじめる点は $J'_{kT} = -0.305$?) で、Ikeda, Kawabata 等 の結果を追認した。

§ 3. 強誘電体の Slater model と反強誘電体の Rys model 最近,強誘電体の Slater model (以下KDP model と呼び, orderdisorder 型諸電体の model を総称して Slater model と呼ぶ。)
反強誘電体の Rys model (以下 F model と呼ぶ。) KDP model を modify した Wu model 等について, Lieb, Yang 等により exact 15)
solution が求められた。 Ising model と Slater model の相似性 から, Ising model について成立った Lee - Yang の定理が Slater model にも拡張して用いられるかどうか調べるため,周期境界条件のもとに 有限な系の状態和を求め,その複素電場平面及び複素温度平面における根の 分布を調べてみた。

状態和は,

$$Z_{M \times N}(x, z) = \Sigma a_{\ell m} x^{\ell} z^{m}$$

$$x = e^{-\epsilon / kT}$$
, $z = e^{/ kT}$

で与えられる。ただし (> 0) は格子点の単位 site energy, V は電場による energy で, KDP, F, Wu の各 model について ice condition を満たす 6 個の裕子点の configuration energy は夫々 Fig. 6 のように与えられる。

Fig. 6 Ice condition を満たす configuration の 各 model に対する energy.

また M × N とは電場の方向に N 個,電場と垂直の方向に M 個ならんだ系を 意味している。(Fig. 7)

• •

Fig.7 M×Nの格子

全ての configuration を作って ice condition を満さないものをす 12 12 12 12 12 12 12 12 12 12 10 0 case を調べる事になるが transfer matrix を作ると、これは diagonal block matrix になる。したがって、この transfer matrix を作る事に より、4×4では 10^3 、6×6では 10^6 の case に減すことが出来る。状 態和を求めたものは

-206-

ΚDΡ	4×4,	4×6,	5×5,	5×6,	6×4,	6×5
F	4×4 ,	4×6 ,		•	6×4,	
Wu	4×4 ,	4×6.				

である。Table Ⅱ-Ⅲ にその係数を示す。根の分布について今までに求められた範囲では(複素温度平面の根分布は一部分未完)次の事が成り立っている。

|) KDP の複素電場平面の根は低温では単位円にのるが、ある温度以上 $^{15},16$) $^{-6}/kT = x_c = \frac{1}{2}$ よりやや高いが、系が大きくなれば $\infty \times \infty$ の臨界点に 近づくであろう。すなわち臨界点より低温側では Lee - Yang の定理が示す ような状況で相転移が起こるが、高温側では ferro の Ising model とは 異なった様子を示す。(Fig. 8)

I) F model の複素電場平面での根分布は全ての温度領域で2次元分布である。(Fig. 9)

|||) $M \times N O K D P では z^{2N}$ 平面を考えると低温で単位円,高温で負の実軸にのっている。この途中で僅かながらある温度範囲で複素根の現われるものもある。 (4 × 4,4 × 6) $M \rightarrow \infty$ でこの温度はなくなるであろう。

Ⅳ) Wu model の複素温度平面の根分布については Suzuki の proposition は成り立っているようである。

V) KDP と F model の複素温度平面の根分布については現在までに得られたデータについては系の大きさが不十分なので,より大きい系についての計算を実施中である。

〔検 討〕

1) Slater model では Ising model と異なり, ice condition に より1個の矢印の向きを変える事は出来ないので,境界条件が複素電場平面, 複素温度平面の根の分布にどのように影響するか問題になる。複素電場平面 の根分布は,たとえば KDP model の高温, F model の全温度領域で 2N 本の放射線上に各々M個の根が分布するという規則性は periodic condition によるものであるが, periodic condition 以外の境界条件に変っ

-207-

Table I. Partition function of KDP, F, and Wu model of 4×4 .

$Z(x, z) = \Sigma a_{\ell m} x^{\ell} z^{m}$	
$x = e^{-\varepsilon / kT}$, $z = e^{V / kT}$	

e ^m	-16 16		-8 8		0	to tal
0 2 4 6 8 10 12 14 16	1 4 0 6 0 4 0 1		0 4 16 148 208 200 48 4		0 0 100 800 680 96 6	2 16 32 408 1216 1088 192 16
total	16		628		1682	2970
4 F e	-16 16		-8 8		0	total
0 2 4 6 8 1 0 1 2 1 4 1 6	0 0 0 0 0 0 0 0 1 6		0 0 84 192 288 0 64		2 32 64 528 384 570 96	2 0 32 64 696 768 1152 256
total	16		628		1682	2970
4×4 Wu e 0 2 4 6 8 10 12 14 16	- 16 0 0 0 0 0 0 0 0 0 1		0 0 0 0 6 0 124 0 6	8 0 4 0 1 24 0 1 24 0 1 24 0 4	16 1 4 0 6 0 4 0 1	total 1 0 8 0 136 256 0 16
total	1	8	136	256	16	418

-208-

Table I. Partition function of KDP, F and Wu models of 4×6 .

4×6 KDP	-24	-12		0	to tal
ℓ 0 2 4 6 8 10 12 14 16 18 20 22 24	24 1 0 6 0 15 0 20 0 15 0 6 0 1	$ \begin{array}{r} 12\\ 0\\ 0\\ 4\\ 24\\ 540\\ 1640\\ 4104\\ 4704\\ 3388\\ 1080\\ 144\\ 0\\ \end{array} $	62 1207 2961 1982 468 26	0 0 0 0 0 0 0 4 2 6 4 0 4 2	$\begin{array}{c} 2\\ 0\\ 12\\ 8\\ 78\\ 1080\\ 3944\\ 20280\\ 39054\\ 26600\\ 6852\\ 552\\ 4\end{array}$
	64	15628	6708	2	98466
	-24	-12		0	to tal
e 0 2 4 6 8 10 12 14 16 18 20 22 24 total	2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 732\\ 2880\\ 5040\\ 3840\\ 2880\\ 0\\ 256\\ 15628 \end{array} $	4 9 136 288 1190 1536 2160 768 576 38 6708	2 0 8 6 8 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 48 96 1368 2880 13368 21120 31680 15360 15360 11520 1024 98466
$4 \times 6 Wu$	-24 -12	2 0	12	24	total
ℓ 0 2 4 6 8 10 12 14 16 18 20 22 24 total	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 750 0 810 0 2 4 1568	$ \begin{array}{c} 0\\ 0\\ 4\\ 0\\ 2184\\ 0\\ 1344\\ 0\\ 84\\ 0\\ 4096 \end{array} $	1 0 15 20 15 0 15 0 6 0 1 6 4	1 0 4 15 480 26 2184 765 1348 816 144 4 5793

-2 09-

Lee - Yangの定理の一般化とこれに対する数値実験

5×5 KDP					and a second
$\sim m$	-25	-15		-5	total
e	25	15		5	Ň
0	1	0		0	2
. 1	0	0		0	D
2	0	0		0	0
3	0	0	· · ·	0	0
4	0	0		0	0
5	5	5		0	20
6	0	0.		0	с
7	0	0		0	0
8	0	25		0	50
9	0	0		0	0
10	10	605		20	1270
11	0	50		50	200
12	0	0	z	330	660
13	0	1300	15	550	5700
148	0	50	4 9	200	9900
15	10	1905	52	220	14270
1.6	0	- 900	109	250	23700
17	0	25	93	580 [°]	18810
18	0	1700	69	250	17300
19	0	200	i 63	300	13000
20	5	610	12	260	3750
21	0	300	17	700	4000
22	0	на стана О	· . ·	0	0
23	0	100	. 2	200	600
24	0	ология С 1944 година О		0	0
25	1			10	32
$= T + \sum_{i=1}^{n-1} T_{i-1} + i$					
otal	32	7780	488	820	113264

Table \mathbb{N} . Partition function of KDP model of 5×5.

t

Table V. Partition function of KDP model of 5×6 .

5×6 KDF)			
m	-30	-18	-6	total
ℓ	30	18	6	
0	1	0 .	0	2
1	0	0	0	0
2	0	0	- 0	0
3	0 -	0	0	0
4	D	0	0	0
5	6	0	0	12
6	0	5	0	10
7	0	· O	· 0	0
8	0	. 0	0	0
9	0	30	0	60
10	15	0	0	30
11	0	1230	0	2460
12	0	75	40,	230
13	0	0	90	180
14	0	3630	780	8820
15	20	100	3560	7360
16	0	7530	14130	43320
17	0	3900	25590	58980
18	0	75	59740	119630
19	0	11430	88530	199920
20	15	1800	89910	183450
21	0	6260	122280	257080
22	0	5100	64335	138870
23	0	300	66210	133020
24	0	3635	23850	54970
25	. 6	600	13650	28512
26	0	630	4500	10260
27	0	300	910	2420
28	0	0	.285	570
29	0	30	· 0	60
30	1	0	0 [°]	2
total	64	46660	578390	1250228

-211-

Lee-Yangの定理の一般化とこれに対する数値実験

Table VI. Partition function of KDP and F models of 6×4 .

6×4 KDP					
e^{m}	-24 24	-16 16	-8 8	C	total
0 2 4 6 8 10 12 14 16 18 20 22 22 ,24	1 0 4 0 0 6 0 0 4 0 0 1	$\begin{array}{c} 0\\ 0\\ 24\\ 480\\ 36\\ 600\\ 774\\ 180\\ 246\\ 60\\ 0\\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 15\\ 60\\ 1710\\ 5244\\ 8247\\ 6372\\ 1650\\ 84\\ 0\\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 440\\ 8592\\ 21012\\ 13488\\ 3060\\ 264\\ 2\end{array}$	$\begin{array}{c} 2\\ 0\\ 12\\ 8\\ 78\\ 1080\\ 3944\\ 20280\\ 39054\\ 26600\\ 6852\\ 552\\ 4\end{array}$
total	16	2406	23382	46858	98466
6×4 F					
	-24 24	-16 16	-8 8	0	total
0 2 4 6 8 10 12 14 16 18 20 22 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 720 0 96	0 0 222 432 2568 5280 7920 3840 2880 0 240	2 0 48 96 924 2016 8232 10560 14580 5760 4320 0 320	2 0 48 96 1368 2880 13368 21120 31680 15360 11520 0 1024
total	16	2406	23382	46858	98466

1、1、412月1日4月1日1月1日(1月1日)

-212-

Tab	le VI. Parti	tion func	tion of	KDP model	of 6×5.
6×5	KDP			·	
∖ m	-30	-20	-10	0	total
e`	30	20	10	14	Ϋ́, Υ
0	1	0	0	· · · 0	2
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	Ū	0	0
4	0	0	0	0	0
5	0	6	0	0	12
6	5	0	0	0	10
. 7	0	0	Û	0	0
8	0	0	0	0	0
9.	0	30	et.e. 0	0	60
10	0	0	15	0	30
11	0	1230	0	0	2460
12	10	0	105	<u>й</u> н О	230
13	0	60	0	· 60	180
14	0	0	4 41 0	0	8820
15	0	2400	0	2560	7360
16	0	0	21660	0	43320
17	0	4740	0	49500	58980
18	10	0	59805	0	119630
19	0	1500	0	196920	199920
20	0	Ο.	91725	0	183450
21	0	3780	D	249520	257080
22	0	0	69435	0	138870
23	0	2130	0	128760	133020
24	5	0	27480	0	54970
25	0	606	0	27300	28511
26	0	0	5130	D	10260
27	0	3 00	0	1.820	2420
28	ет О стал	D	285	0	570
29	0	30	0	0	60
30	1	0	0	0	2
otal	32	16812	280050	656440	1250228

-213-

Ξ PPタ 正

Fig. 8 4×6 KDPの複素電場平面の根分布

(a) x = 0.1 (b) x = 0.45 (c) x = 0.5(d) x = 0.55 (e) x = 0.6 (f) x = 0.8-214-

-215-

Lee - Yangの定理の一般化とこれに対する数値実験

-216-

Lee-Yangの定理の一般化とこれに対する数値実験

ても KDP model の低温では単位円上に分布し, KDP model の高温及び F model の全温度領域で2次元分布する事は変らないであろう。

||)別に行った比熱の計算からそのピークは $\infty \times \infty$ の臨界点 $x_c = \frac{1}{2}$ より わずかに低温に出ている。したがって有限系の臨界点に相当する温度は KDP model の複素電場平面の根の分布で2次元分布に移行する温度より少し下の 温度である事も考えられる。しかしながら、比熱のピークの温度と2次元分布 に移行する温度の間隙は系が大きくなるにしたがって減少し、 $\infty \times \infty$ の臨界点 に近づくはずである。

III) F model では antiferro の Ising model と同様に複素 fugacity
 平面(複素磁場,電場平面)の根の分布によって相転移を議論でぎるか否かは
 今後の問題である。

参 考 文 献

- 1) C.N.Yang and T.D.Lee, Phys. Rev. 87, 404, 410 (1952)
- 2) S.Katsura, Prog. Theor. Phys. <u>13</u>, 571 (1955)
- 3) N. Saito, J. Chem. Phys. 35, 232 (1961)
- 4) R.Abe, Prog. Theor. Phys. 38, 1182 (1967)
- 5) M. Suzuki, Prog. Theor. Phys. 38, 1225 (1967)
- 6) S.Katsura, Proceedings of International Conference of Theoretical Physics (1953) p. 534; Prog. Theor. Phys. <u>19</u>, 476 (1954); <u>23</u>, 390 (1960); 物性論研究 No. 70 (1954)
- 7) S.Ono, Y.Karaki, M.Suzuki and C.Kawabata, Phys. Lett, 24a 703 (1967); J.Phys. Soc. Japan, in press.
- C.N.Yang, Special Problems of Statistical Mechanics, Lecture Note, University of Washington, (1952)
- 9) M. Ikeda, K. Shiono, S. Imai, T. Fukagawa, C. Kawabata, M. Suzuki, and S. Katsura, NEAC SP研究会資料, (1967.10)

-218-

- 10) S.Katsura, Phys. Rev. 127, 1508 (1962)
- 11) M.E.Fisher, Lectures in Theoretical Physics, University of Colorado Press, Boulder, 70, 1 (1964)
- 12) R.Abe, Prog. Theor. Phys. 37, 1070 (1967)
- 13) M.Suzuki, Prog. Theor. Phys. 38, 1243 (1967)
- 14) S.Katsura, Prog. Theor. Phys. 38, 1415 (1967)
- 15) F. Y. Wu, Phys. Rev. Letters <u>18</u>, 608 (1967)
 E. H. Lieb, Phys. Rev. Letters <u>18</u>, 692, 1046 (1967);
 <u>19</u>, 108 (1967)
 B. Sutherland, Phys. Rev. Letters <u>19</u>, 103 (1967)
 C. P. Yang, Phys. Rev. Letters <u>19</u>, 586 (1967)
 B. Sutherland, C. N. Yang and C. P. Yang, Phys. Rev.
 Letters <u>19</u>, 588 (1967)
- 16) S.Ono and Y.Karaki, private communication, Ref.6) の訂正は12)に出ている。
- 17) C.Kawabata, private communication.
- 18) H. Takahashi, Proc. Phys. Math. Soc. Japan. 23, 1069 (1941)