<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>レオロジーの幾何学的研究 III（網目構造粘弾性論）</td>
</tr>
<tr>
<td>著者</td>
<td>池田 恵</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究（物理の基礎としての物理）</td>
</tr>
<tr>
<td>水平同心部</td>
<td>保温部</td>
</tr>
<tr>
<td>屋根部</td>
<td>隔熱形部</td>
</tr>
<tr>
<td>網目部</td>
<td>隔熱形部</td>
</tr>
<tr>
<td>物性研究</td>
<td>隔熱形部</td>
</tr>
<tr>
<td>保温側部</td>
<td>隔熱形部</td>
</tr>
<tr>
<td>隔熱形部</td>
<td>隔熱形部</td>
</tr>
</tbody>
</table>

出版社：京都大学
レオロジーの幾何学的研究 — Ⅱ
— 網目構造粘弾性論 —

東大工　池　田　恵
(5月29日受理)

§ 1. 序

我々が既にのべてきたところの幾何学的方法論に基づいて、その具体的展
開として、この論文では網目構造粘弾性論を扱いたい。我々の幾何学的方法論
は、E. Cartan の動標構の方法を用いて、各点にその点での接触ユークリッド
空間の標構を付随させ、変形によって如何なる変化を来たすかをみようとする
ものであるから、ことばをかえていえば、内部変形を考慮に入れるということ
である。この考え方が、実に、統計力学的考察で着眼されているところの外
部変形（observable deformations）と内部変形（inner deformations）との相対的変形の派生に相当していることは明らかである。しかも、それらの扱いでは、統一的に表現することができて、物理的条件の中に、
あいまいに解消させてしまって表面には出していない。我々はこの問題を、典
型的な網目構造モデルに着眼して考えていくたい。

§ 2. 網目構造モデルの本質

網目構造モデルの幾何学化については、既に文献1）でのべたところである
が、要するに、高分子のからまりの結合点を点とみなし、網目の構成された状
態を想定して、その網目方向に三次元の標構を付随させ、親接させる結合点間
での標構のくいちがいを論じ、それを網目の変形の様相と対応させて考えるわ
けである。そして、そのくいちがいが、結合点間ベクトルの大きさ及び時間間
隔に比例すると考えるとそこに、rheonomic 性が出現する。

変形前後の状態空間を、それぞれ (i) — 及び (κ) — 空間とし、それぞれの標
構を {ε_i} 及び {ε_κ} とおくと、変形は

\[\varepsilon_κ = \Lambda_κ^i (x, t) \varepsilon_i \] (21)

—233—
池田 恵

で表わされ、2点間での標構のくいちがいは

\[
\begin{align*}
\dot{\mathbf{e}_\kappa} &= \Gamma_{\mu\kappa}^\lambda \mathbf{e}_\lambda \delta x^\mu + \Gamma^\lambda_{\kappa\lambda} \mathbf{e}_\lambda \, dt \\
& \quad \text{但し } \delta x^\kappa \equiv dx^\kappa - x^{(1)}_\kappa \, dt \\
& \quad \frac{dx^{(1)}_\kappa}{dt}
\end{align*}
\]

(2.2)

で与えられることとなる。このことは共変微分

\[
\mathbf{D} \mathbf{e}_\kappa \equiv \dot{\mathbf{e}}_\kappa - \Gamma_{\mu\kappa}^\lambda \mathbf{e}_\lambda \delta x^\mu - \Gamma^\lambda_{\kappa\lambda} \mathbf{e}_\lambda \, dt
\]

(2.3)

が消失すること、即ち \(\mathbf{D} \mathbf{e}_\kappa = 0 \) を意味し、このベクトルが平行移動されて遠隔平行移動を与えることになるが、これは標構のとり方の規定からの帰結であり、又、接続係数 \(\Gamma_{\mu\lambda}^\kappa \) と \(\Gamma^\kappa_{\mu\lambda} \) の決定の仕方を規定するものである。（2.2）から共変微分商として、

\[
\nabla^\mu \mathbf{e}_\kappa \equiv \partial^\mu \mathbf{e}_\kappa - \Gamma_{\mu\kappa}^\lambda \mathbf{e}_\lambda \quad (=0)
\]

\[
\mathbf{D}_t \mathbf{e}_\kappa \equiv \partial_t \mathbf{e}_\kappa - \Gamma^\lambda_{\kappa\lambda} \mathbf{e}_\lambda \quad (=0)
\]

(2.4)

が定義され、かくして（2.1），（2.3）あるいは（2.4）から rheonomic geometry が構成されることとなり、文献 1)，2) の議論に移行することができる。そこで、そのような基本的概念に対して、ここでは具体的な物理的意味付けを図るために、我々の立場から引いた来計力学的考察の代表例としての文献 4)，5）との比較検討を試みたい。

§3. 綱目の変形について

（2.1）の変形は綱目の変形だが、これ自体は micro な段階での変量であり、外部変形として外から与えられる変形を \(\mathbf{B}_i^\sigma \) とおくと、\(\mathbf{A}_i^\kappa \) との差が即ち相対的変形である。それを \(\mathbf{C}_\sigma^\kappa \) とおくと、

\[
\mathbf{A}_i^\kappa = \mathbf{B}_i^\sigma \mathbf{C}_\sigma^\kappa
\]

(3.1)
の如くに分解できるが、この規定の仕方は最も一般的なものであり、相対的変形の与え方によって種々のモデルが考えられる。例えば、いわゆる比例定理を仮定すれば

\[A^K_i = a(x, t) B^K_i ; C^K_\sigma = a(x, t) \delta^K_\sigma \]

（3.2）

あるいは、文献 2）でのべた如く、

\[C^K_\sigma = - C(t) (\delta^K_\sigma - A^K_\sigma) \]

（3.3）

（但し (*) は (2.4) の \(D_t \) による微分）

などと表わすことができる。しかし、文献 4)， 5）との比較検討を行なう上では、（3.1）よりも

\[A^K_i = B^K_i + C^K_i \]

（3.4）

とおくことが望ましい。従って、統計力学的考察との対応での key-points は、とりもなおず、一般的変形論から (3.4) に基づいて (\(B^K_i \)) によるものと (\(C^K_i \)) によるものとに分解し、特に (\(C^K_i \)) によるものを適当な物理的条件の下で (\(B^K_i \)) と結びつけて (\(A^K_i \)) を一意的に決定せんとすることであり、併せて応力変形—時間関係へ代入して、一般化 Maxwell−model へ帰着させることである。その際帰着されるのは \(\tilde{\gamma}_\lambda^K \) あるいは \(\tilde{\Gamma}_\lambda^K \) なる量であることはいうまでもない。

§ 4．レオロジー方程式 — （1）文献 5）との対応

ここでの基本量は文献 2）と同じく (\(\gamma_{\lambda^K}, \Omega^K_\lambda \)) と仮定し、それらは

\[\gamma_{\lambda^K} = A^j_\lambda A^K_i \delta_{ji} \]

\[\Omega^K_\lambda = - \Gamma^K_\lambda = A^K_i A^j_\lambda \]

（4.1）

で与えられるとする。又、応力変形—時間関係式を文献 2）より文献 5）にあるべく、
池田 恵

\[\sigma_{\lambda \kappa}(t) = \lambda(t) \varrho_{\lambda \kappa}(t) \quad (42) \]

とおいておく。さて、そこで (4.1) から実際に (3.4) を考慮して \(\varrho_{\lambda \kappa} \) を計算してみると、

\[\dot{\varrho}_{\lambda \kappa} = \dot{\varrho}_{\lambda \kappa} + 2 \dot{a}_{\lambda \kappa} + \dot{c}_{\lambda \kappa} \quad (4.3) \]

とかける。但し、

\[b_{\lambda \kappa} \equiv B_i^j B_k^i \delta_{ji} ; \quad a_{\lambda \kappa} \equiv B_i^j C_k^i \delta_{ji} ; \quad c_{\lambda \kappa} \equiv C_i^j C_k^i \delta_{ji} \quad (4.4) \]

で、\(b_{\lambda \kappa} \) は外部変形による計量、\(c_{\lambda \kappa} \) は純粋に相対的変形のみの計量、\(a_{\lambda \kappa} \)
は両者の混合成分といえるが、以下、特微的に外部変形と全相対的変形への分解というものを図るために、(4.3) を

\[\dot{\varrho}_{\lambda \kappa} = b_{\lambda \kappa} + \dot{r}_{(\lambda \kappa)} ; \quad \dot{r}_{\lambda \kappa} \equiv 2 \dot{a}_{\lambda \kappa} + \dot{c}_{\lambda \kappa} \quad (4.5) \]

とおくことにする。そうすると (4.1) より、

\[\Gamma^\kappa_\lambda = b_{\lambda \kappa} + \dot{r}_{\lambda \kappa} \]

\[\begin{align*}
&\text{但し } b_{\lambda \kappa} \equiv B_i^j B_k^i \\
&\quad \dot{r}_{\lambda \kappa} \equiv (B_i^k + C_i^k) C_i^j B_k^i
\end{align*} \quad (4.6) \]

とかける。このようにすると、(4) = (B, C) 分解が遂行されて、すべての量が \(b_{\lambda \kappa}, \dot{r}_{\lambda \kappa} \) 分解に帰着され、文献 5）での外部変形対内部変形の対立が explicit に表わされるようになる。

そこで、(4.2) を仮定したから、これを時間微分すると、

\[\dot{\sigma}_{\lambda \kappa}(t) = \dot{\lambda}(t) \varrho_{\lambda \kappa}(t) + \lambda(t) \dot{\varrho}_{\lambda \kappa}(t) \quad (4.7) \]

となるが、\(\dot{\varrho}_{\lambda \kappa} \) については、\(\nabla \varrho_{\lambda \kappa} = 0 \) より

\[\dot{\varrho}_{\lambda \kappa} = \Gamma^\nu_\lambda \varrho_{\nu \kappa} + \Gamma_\kappa^\nu \varrho_{\lambda \nu} \quad (4.8) \]

なる関係があるから、これを代入し、かつ (4.6) を代入すると、
\[
\dot{\sigma}_{\lambda \kappa}(t) = \lambda(t) \frac{\dot{\sigma}_{\lambda \kappa}(t)}{\lambda(t)} + (D_{\lambda} \sigma_{\nu \kappa} + D_{\nu} \sigma_{\lambda \kappa}) + (r_{\lambda} \sigma_{\nu \kappa} + r_{\kappa} \sigma_{\lambda \nu})
\]

\[\text{(4.9)}\]

とかえ，これは正に一般化 Maxwell model の方程式になっており，右辺第一項は体積変化を，第二項は外部変形による弾性項を，第三項は相対的変形からの寄与を表し，文献 5）では

\[
\sigma_{\lambda \nu} r_{\kappa} \equiv - \kappa (\sigma_{\lambda \kappa} - \lambda(t) \delta_{\lambda \kappa})
\]

\[\text{(4.10)}\]

なる形を仮定していることになり，従って，

\[
\dot{\sigma}_{\lambda \kappa} = \lambda(t) \frac{\dot{\sigma}_{\lambda \kappa}}{\lambda(t)} + (D_{\lambda} \sigma_{\nu \kappa} + \sigma_{\lambda \nu} \dot{D}_{\nu}) - 2 \kappa (\sigma_{\lambda \kappa} - \lambda(t) \delta_{\lambda \kappa})
\]

\[\text{(4.11)}\]

に帰着するが，このことは相対的変形に対してある種の物理的条件をおくことに他ならず，実際に（4.10）は，

\[
\dot{r}_{\kappa} \equiv - \kappa (\delta_{\kappa} - \sigma_{\lambda \nu} \delta_{\lambda \kappa})
\]

\[\text{(4.12)}\]

なる仮定と同値であり，相対的変形の時間的変化は純変形に比例するということを裏付ける条件となっている。この \(\kappa\) なる係数は文献 5）では constant として扱われているが，それを時間の関数と拡張することもできる。

\((E_{\kappa}^{e})\) が与えられた時，(4.12) から \((C_{\kappa}^{e})\) を求め，それから \((\sigma_{\lambda \kappa})\) が求められ，(4.2) から応力 \((\sigma_{\lambda \kappa})\) が求められる。実際では定常状態を扱い，

(4.11) において \(\dot{\sigma}_{\lambda \kappa} = 0\) とおいてやって，パラメータ \(\kappa\) と \(\lambda(t)\) を介して \(\sigma_{\lambda \kappa}(t)\) を一意的に求めようとしている。その結果を単純すべきや単純伸張などに従用してやって変曲応力効果などの粘弾性物性を論じている。\(\lambda(t)\) なるパラメータは，文献 5）では損の結合点の生成・消減に関係した一種の物質係数で，すべての非ホロノーム性を代表しているといえる。又，(4.10)，(4.12) の \(\kappa\) なるパラメータも，時間の関数としてやると \(\lambda(t)\) と同じ意味合いをもってくる。文献 5）では，損の分布仮数について，実際の網目の変形との対応が考
池田 恵

えられてなく、かつ、極端に macro な段階での仮定をとり入れて議論を進めているが、我々としては、これより micro な段階での仮定をとり入れて議論を進めていているが、我々としては、これより micro に、網目の変形からくる空間構造の規定を考えていきたい。それのために、次節で文献 4）との対応を調べたい。又、文献 5）で扱われている Rouse-model についての議論は次の論文（孤立鎖粘弹性論）に含まれたい。

§ 5．レオロジー方程式 — (2) ：文献 4）との対応

まず、(4.8) は、文献 4）での鎖の数分布関数の時間の変化の方程式そのものであることがわかり、(4.8) を

\[\partial_t g_{\lambda \kappa} = - \chi (1)^\mu \partial_\mu g_{\lambda \kappa} + \Gamma_\nu g_{\nu \kappa} + \Gamma_\nu g_{\lambda \nu} \quad (5.1) \]

とかきなおせば、\(g_{\lambda \kappa} \) を分布関数とみなすことにより文献 4）のものと一致していく事になる。(4.8) に (4.6) を代入することにより,

\[\dot{g}_{\lambda \kappa} = (\delta_\nu g_{\nu \kappa} + \delta_\lambda g_{\lambda \nu}) + (\tilde{\Gamma}_\nu g_{\nu \kappa} + \tilde{g}_{\lambda \nu} \tilde{\Gamma}_\nu) \quad (5.2) \]

と計算されるが、これを文献 4）の方程式と比較すると、相対的変形に依存した項が散逸性を代表するとして、

\[\tilde{\Gamma}_\nu g_{\nu \kappa} + \tilde{\Gamma}_\nu g_{\lambda \nu} \equiv \tilde{G}_{\lambda \kappa}(x,t) - \beta \phi \cdot \tilde{g}_{\lambda \kappa}(x,t) \quad (5.3) \]

と等置できる。但し \(\tilde{G}_{\lambda \kappa}(x,t) \) は物理的には単位時間当りの鎖再生成率に相当し、全体系の計量的変化を与えるものであり、\(\beta \phi \) は単位時間当りの鎖切断確率に相当し、全体としては変形的も計量に比例した形で導入されている。たとえば (4.12) を仮定したとすると、(5.3) は

\[-2 \kappa (g_{\lambda \kappa} - \delta_{\lambda \kappa}) \equiv \tilde{G}_{\lambda \kappa} - \beta \cdot g_{\lambda \kappa} \quad (5.4) \]

に帰着するから、文献 5）の立場は文献 4）の立場の特殊なものといえる。これらの条件は、\(\tilde{\Gamma}_\kappa \) の形を規定するものだから、物理的条件によらねばならない。（5.3）から直接には、

---238---
\[
\begin{align*}
\dot{\sigma}^\kappa_\lambda &= \frac{1}{2} \left[\mathcal{G}^\kappa_\lambda - \beta \, \delta^\kappa_\lambda \right] : \mathcal{G}^\kappa_\nu \, g^{\nu \kappa} \\
\text{あるいは}
\dot{\gamma}^{(\kappa \lambda)} &= \frac{1}{2} \left[\mathcal{G}^{\kappa \lambda} - \beta \, \mathcal{G}^{\kappa \lambda} \right] : \mathcal{G}^{\nu \kappa} \, g^{\nu \kappa}
\end{align*}
\]

とおけばよいことがわかり、結局相対的変形の時間的な変化を如何に物理的に解釈していくかの実例を与えていることになる。

さて統計力学の考察では、応力の時間的な変化は分布函数のそれに、ある平均化操作が加えられた形として与えられ、本質的には分布函数の時間的変化に比例した形で与えられる。それで、我々の場合にも最も簡単な形として (4.2) といたわけだが、ここではより一般的に、

\[
\sigma^\kappa_\lambda (t) = \mathcal{E}^{\kappa}_\lambda \mu \nu (t) \, \mathcal{G}^{\nu \mu} (t)
\]

とおき、\(\mathcal{E} \) を一種の物質係数とし平均化作用素とみなしてやる。そうすると、この時間微分に (5.2) を代入してやると、

\[
\begin{align*}
\dot{\sigma}^\kappa_\lambda &= \left(\mathcal{E}^{\kappa}_\lambda \mu \nu \mathcal{E}^{\nu \mu \delta \tau} \right) \sigma^\delta \\
&\quad + \left\{ \alpha \, \mathcal{E}^{\kappa}_\lambda \mu \nu \mathcal{E}^{\alpha \mu \delta \tau} + \alpha \, \mathcal{E}^{\kappa}_\lambda \mu \nu \mathcal{E}^{\alpha \nu \delta \tau} \right\} \sigma^\delta \\
&\quad + (\dot{\sigma}^\star)_\kappa_\lambda,
\end{align*}
\]

\[
\begin{pmatrix}
(\dot{\sigma}^\star)_\kappa_\lambda \\
\mathcal{E}^{\kappa}_\nu \mu \lambda \kappa
\end{pmatrix}
\]

は \(\mathcal{E}^{\kappa}_\lambda \mu \nu) \) の逆テンソル

to the equation (文献 4) の式と本質的に一致し、(\dot{\sigma}^\star)_\kappa_\lambda がそこで分の形状の再生成に依存した散逸的応力である。右辺第一項は物質係数の時間依存性からの寄与で本質的に非線型性を代表し、統計力学的には Gauss 分布からのずれに依存し、第二項は外部変形に依存した弾性項である。今 \(\mathcal{B} \mathcal{E}^{-1} = 0 \) なることを仮定する。このことは Gauss 分布を仮定し、形態的非線型性の消失を仮定するものであるが、我々の場合には簡単のために isotropic 性で代表させ、

——239——
池田 恵

\[E^{\kappa\lambda\mu\nu} = E^{1} g^{\kappa\lambda} g^{\mu\nu} + E^{2} g^{\kappa\mu} g^{\lambda\nu} \] \hspace{1cm} (E^{1}, E^{2} \text{は定数})

とおくことにする。 (5.7) は

\[
\dot{\sigma}^{\kappa\lambda} = \left\{ 2 \dot{\sigma} + 2 \frac{E^{1}}{E^{2}} b_{(\gamma\delta)} \sigma^{\gamma\delta} \right\} g^{\kappa\lambda} + \left\{ 2 \frac{E^{2}}{E^{1}} \sigma \cdot (\kappa\lambda) + 2 \sigma \cdot (\lambda\delta) \sigma^{\kappa\delta} \right\} + (\dot{\sigma} \cdot \kappa\lambda)
\]

と記す。

\[
\begin{align*}
&b \equiv b^{\kappa}_{\kappa}, \quad \sigma \equiv \sigma^{\kappa\lambda} g_{\lambda\kappa} \\
&b^{\kappa\lambda} \equiv b_{\nu}^{\kappa} g^{\kappa\nu} \\
&\lambda \cdot \delta \equiv \lambda_{\nu} g_{\nu\delta}
\end{align*}
\]

とかける。今、圧力項として

\[P(t) \equiv 2 \dot{b} \sigma + 2 \frac{E^{1}}{E^{2}} b_{(\gamma\delta)} \sigma^{\gamma\delta} \] \hspace{1cm} (5.10)

とおき、\(g^{\kappa\lambda} \) については \(r^{(\kappa\lambda)} \) なる成分は、\((\dot{\sigma} \cdot \kappa\lambda) \) にまとめられていっていると考えてやると、 (5.9) は特徴的に

\[
\dot{\sigma}^{\kappa\lambda} = P(t) \delta^{\kappa\lambda} + 2 P(t) b^{(\kappa\lambda)} + 2 \left(\frac{E^{2}}{E^{1}} \sigma \delta^{\kappa\nu} + \sigma^{\kappa\nu} \right) b^{(\kappa\nu)} + (\dot{\sigma} \cdot \kappa\lambda) \] \hspace{1cm} (5.11)

とかける。これを文献 4）と比較すべく、各項をその量の時間依存性についての order によって展開してやって、例えば、

\[
\begin{align*}
P(t) &= P_{(0)} + P_{(1)} + \ldots \\
\sigma^{\kappa\lambda}(t) &= \sigma_{(0)}^{\kappa\lambda} + \sigma_{(1)}^{\kappa\lambda} + \ldots \tag{5.12}
\end{align*}
\]

の如く下指標で次数を表わし、かつ一次の項までといて (5.11) を展開すると，
0次項は時間に依存しないから，
\[
\begin{align*}
\dot{\sigma}^\lambda &= \dot{\bar{P}}(t) \delta^\lambda + 2 \bar{P}(t) b(\sigma^\lambda) \\
&\quad + 2 \left(\frac{\bar{P}_0}{\bar{P}} \delta^\lambda + \delta^\nu \cdot \nu \right) \cdot b(\nu^\lambda) + \left(\sigma^\star \right)^\lambda
\end{align*}
\]
(5.13)

と表わされる。これらは (4.3), (4.4) での分解において (\(\bar{P}_i^\xi\))，(\(C_i^\xi\)) についての二次以上の微增量を省略するという線型化操作によって得られる結果と一致するとえる。一方，文献 4) でのもう一つの特徴的な平均化は (5.3) における鎖関数積率 \(\beta(x)\) によるもので，いわゆる \(\beta-\text{subnetwork}\) を構成するためのものである。これは (5.13) から時間によらないパラメータ \(\beta(x)\) を用いて，再び各項をその依存度の order で展開し (5.11) から (5.13) を得たら同じ操作を行えばよい。たとえば，
\[
\begin{align*}
\bar{P}(t, \beta) &= \bar{P}(t) + \bar{P}(t, \beta) + \ldots \\
\sigma^\lambda(t, \beta) &= \sigma(t) + \sigma(t, \beta) + \ldots
\end{align*}
\]
(5.14)

の如く展開して，今度は上指標でその次数を表わすことにし，(5.13) を書き直すと，同じく一次の項まではしかとらないことにして，
\[
\begin{align*}
\begin{cases}
\dot{\sigma}^\lambda &= \bar{P} \delta^\lambda + 2 \bar{P} b(\sigma^\lambda) + \bar{P} b(\nu^\lambda) + \left(\sigma^\star \right)^\lambda \\
\sigma^\lambda &= \bar{P} \delta^\lambda + 2 \bar{P} b(\nu^\lambda) + \bar{P} b(\nu^\lambda)
\end{cases}
\end{align*}
\]
(5.15)

なる二つの式を得るが，(5.12) は恒等式とみなす，(5.15) は本質的に文献 4) の \(\beta-\text{subnetwork}\) の応力 - 変形 - 時間関係に等しいものである
池田 惠

る。但し

$$2 \left(\frac{E}{\sigma} (\sigma \delta + (i)^{\lambda} (i)^{\lambda}) \equiv (i)^{\lambda} \right) \quad (i = 0, 1) \quad (5.16)$$

とおいた。今、(5.15) において、$$\left(\sigma \right)^{\lambda}_{\lambda}$$ が、(4.12) あるいは(5.5) を介して適当に計算された結果として、$$\kappa, \theta_{\lambda \kappa}$$ などのパラメータが全体系の計量に直接的に寄与することを考え併せてやって、

$$\left(\sigma \right)^{\lambda}_{\lambda} + 2 \left(P_{\beta \beta}^{(0)} (\kappa \lambda) + P_{\beta \beta}^{(1)} (\kappa \lambda) \right) \equiv 0 \quad (5.17)$$

が成立つとする。このことは (4.2) において $$\lambda(t)$$ がすべての非ホロノーム性を代表すると考えていることとも関係する。そして更に、$$\left(\sigma \right)^{\lambda}_{\lambda}$$ に関する項は

$$\left(\sigma \right)^{\lambda}_{\lambda}$$ に関する項とは $$\beta$$ の一次の order のみがうだけだから，それを

explicit に

$$\left(\sigma \right)^{\lambda}_{\lambda} \equiv \xi \cdot \nu (\beta) \quad (5.18)$$

とおいてやることにすると，結局 (5.15) は、

$$\left(\sigma \right)^{\lambda}_{\lambda} + \mu P^{(1)} \equiv \left(\sigma \right)^{\lambda}_{\lambda} - \left(\sigma \right)^{\lambda}_{\lambda} \quad (5.19)$$

とかけるから，これは正に純粋の Maxwell—model 形式になっていて、$$\mu$$ は圧縮率，$$\eta_{\lambda \lambda}$$ は粘性率を意味することとなる。パラメータ $$\beta$$ の形に依存した物質係数への拡張は，より高次の項をとり入れることによって得られることは明らかである。末だ $$\beta$$ の依存性が判然としていないから (5.18) の意味付け
が明確でないが (5.18) はみかけの粘性率を与えていると考えられ、その場合

\(\eta \) ではなくて \(\eta' \) \(\lambda \) \(\xi' \) \(\mu' \) \(\lambda' \)

なる \(\beta \) に依存した粘性率が認識される。

このような時間及びパラメータ \(\beta \) に対する操作は一般的には \(\phi (x, t) \) なる形の函数を用いた一種の平均化操作

\[
\frac{-\kappa \lambda}{\sigma} = \phi (x, t) \sigma \kappa \lambda
\]

を (5.11) に施すことと同値であり、\(\phi (x, t) \) は、ある着目した観間を時間の原点に選び、その時の応力を \(\sigma \kappa \lambda \) とすると、それから時間がたつにつれて我々の観測する応力が \(\phi (x, t) \) の割合で変化することを意味し、しかも文献 4) の如く、網目を構成する織が応力を加えることによってある割合で切断され、そのうちのある割合のものが再生されるというふうに考えるならば、

\(\phi (x, t) \) は単調減少函数である。その形は応力 \(\sigma \kappa \lambda \) の大きさに比例して減少し、\(t \to \infty \) では緩和してしまうから \(\phi = 0 \) 故に、一般的に \(e^{-\sigma \kappa \lambda} \) の形をもつことがわかる。これが (5.11) から (5.13) を経て (5.15) あるいは (5.19) への移行をひとまとめにした考え方であり、幾何学的には共形接続幾何学を与えるものであり、それらからの議論から我々の問題に対する方針を得ることもできるが、長くなるので、このあたりで終りたいと思う。

§6. 結 語

結局、文献 4)， 5) は、我々の一般的変形論、非線型粘弾性論から特殊な縮退を考えることによって得られるところであり、網目構造粘弾性、就中、一般化 Maxwell -model の議論は、完全に我々のものの中に含まれることがわかった。又、通常の統計力学的考察でのスペクトル解析への移行の問題は、固有時間分布を考えるわけだから、物質係数の時間尺度変換に帰着させられることとなる。この時は固有 mode 分解が行なわれるべく表現の仕方を考え、文献 5) の如く Rouse-model の各要素に着目した扱いなどを試みなければならぬ。この論文では統計力学的考察との対応づけに気をとられずき、物理的意味の判然としない条件が多く出てきたが、これらについての考察も将来の
課題としたい。

§7. 参考文献
1) 池田 恵, 物性研究, 12 (1969), 117.
2) 池田 恵, 物性研究, 12 (1969), 178.
3) E. Cartan, Leçon sur la géométrie des espaces de