| タイトル | レオロジーの幾何学的研究 日法論的拡張 その1接
<table>
<thead>
<tr>
<th></th>
<th>角テンソル解析の応用</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者(s)</td>
<td>池田 恵</td>
</tr>
<tr>
<td>引用</td>
<td>物性研究 日法論的拡張 その1接</td>
</tr>
<tr>
<td>期日</td>
<td>1969-09-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/87218</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>publisher</td>
</tr>
<tr>
<td>提供者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
レオロジーの幾何学的研究 — V

—方法論的拡張（その2：接触テンソル解析の応用）—

東大工 池田 恵

（8月1日受理）

§1 序

我々が前論文でのべた方法論的拡張は、フィルム空間と vierbein 表式であったが、ここでは最も一般的と考えられる接触テンソル解析的な考え方をのべよう。2) 3) その本質的なところは、要するに相対立する二つの独立な自由度によって構成される二つの空間（あるいは場）を統合した形で議論することであり、特に両空間の物理的相互作用が考えられる時、その相互作用場が非対称場になることが特徴的である。我々は、その性格の異なる相対立する自由度に対して、種々の物理的表现が与えられ。例えば方向特性、内部回転、内部変形などといわれていることをみてきたが、我々が一般的変形論の立場に立つ時は、基準になる母空間は無形場であり、これを幾何学的自由度をもつ場とみなし、これに対して方向性、内部変形などと特徴的にいわれている自由度を物理的自由度とみなし、その物理的場が相互作用をひき起こすところに非対称な相互作用場が出現すると考えるのはレオロジー的には、例えば我々が主として扱ってきた粘弹性に於て、通常の力学的モデルでは粘性的なものと弾性的なものとに分解して考える如く、変形場を構成する力学的自由度の相違というものが着目され、それらの複雑な組合わせ方を解析していこうとするところに、接触テンソル解析を用いる本質的な必然性が存していると考える。

§2 接触テンソル解析

前節でのべた如く、我々は変形に際しての相対立する性格をもつ二つの自由度に着目するわけで、その二つの自由度が、それぞれに構成する空間（あるいは場）を explicitに区別して表わすところに接触テンソル解析的表現が導入される。まず、幾何学的場を (e) —空間とし、物理的場を (i) —空間と

—365—
する。以下同様に \((\kappa, \lambda, \mu, \nu \cdots)\) などは \((\kappa)\) へ平間の指標、 \((i, j, k, \cdots)\) などは \((i)\) へ平間の指標とする。この節の表現はレオノーム性を explicit
に表していないが、そのためには \((\kappa)\) や \((i)\) をフィルム平間の座標とみなしてやれば充分であるし、又、時間 \((t)\) をつけ加えた拡張は容易に出るから
その点はここでは省略する。但し、次節でこの問題にふれる。
それぞれの平間の標構を \(\{\varphi_\kappa\}, \{\varphi_i\}\) とおくと、我々は \(\{\varphi_\kappa\}, \{\varphi_i\}\)
の \(n\) 次元的結合平間を部分平間分解するという立場をとることになり、しかも今の場合、変形というものを考えるとから、変形前のは状態の標構を \(\{\varphi_A\}\)
とおくと、それぞれの自由度に関する変形が、
\[
\begin{align*}
\varphi_\kappa &= T^{A}_{\kappa} \varphi_A, & (\kappa = 1 \cdots m, \\
\varphi_i &= S^{B}_{i} \varphi_B, & i = m+1 \cdots n, \\
\end{align*}
\]
と表わせる。\(T^{A}_{\kappa}\) は基準となる自由度のはる母平間の変形、\(S^{B}_{i}\) はそれに
伴う物理場の変形を表わす。相互作用が存在して、物理的条件から
\[
\varphi_i = \lambda^{\kappa}_i \varphi_\kappa
\]
などとおける場合には、\(\lambda^{\kappa}_i\) なる量が本質的に対称場を現出させるもので
ある。それぞれの平間の計量は、\((2.1)\) に従って
\[
\begin{align*}
\varrho_{\lambda\kappa} &= T^{B}_{\lambda} T^{A}_{\kappa} \delta_{BA}, \\
\varrho_{ji} &= S^{B}_{j} S^{A}_{i} \delta_{BA}
\end{align*}
\]
などと導入されるが、相互作用場の計量は、
\[
\varrho_{\lambda i} = T^{B}_{\lambda} S^{A}_{i} \delta_{BA} \quad \cdots \quad (2.4)
\]
と導入されて対称であり、\((2.2)\) が成立つ時は、更に
\[
\varrho_{\lambda i} = \lambda^{\kappa}_i \varrho_{\lambda\kappa} \quad \cdots \quad (2.5)
\]
とかえて，λ_i^k が非対称性を現出させることを裏付ける。一方、線素については

\[
\begin{align*}
\mathrm{d}x^k &= T^k_A \, \mathrm{d}x^A, \\
\mathrm{d}x^i &= S^i_B \, \mathrm{d}x^B
\end{align*}
\]

（2.6）

の如く分解されるが、我々が変形場で線素という場合、基本になる幾何学的空間の線素 $\mathrm{d}x^k$ を考え、変形はこの線素に基づいて物理的相互作用を含めた形で規定されねばならないと考えるから、物理的自由度の線素 $\mathrm{d}x^i$ には直接には着目しないことにする。その条件は，$\mathrm{d}x^i = 0$ であり，これが (κ)-空間を非ホロノームにするものである。さて，このようにして (κ)-空間を母空間と考え，あくまで変形場に着目していく立場からは，接続は次のように導入される。

\[
\begin{align*}
\mathrm{D}x^k &= \mathrm{d}x^k + \Gamma^k_{\mu \lambda} \, \mathrm{d}x^\mu + \Gamma^k_{i} \, \mathrm{d}x^i, \\
\mathrm{D}x^i &= \mathrm{d}x^i + \Gamma^i_{\mu \lambda} \, \mathrm{d}x^\mu + \Gamma^i_{j} \, \mathrm{d}x^j
\end{align*}
\]

（2.7）

そこで共変微分商は，

\[
\begin{align*}
\nabla^\mu x^k &= \partial^\mu x^k + \Gamma^k_{\mu \lambda} x^\lambda + \Gamma^k_{i} x^i, \\
\nabla^\mu x^i &= \partial^\mu x^i + \Gamma^i_{\mu \lambda} x^\lambda + \Gamma^i_{j} x^j
\end{align*}
\]

（2.8）

と定義される。そして各接続係数は

\[
\begin{align*}
\Gamma^k_{\mu \lambda} &= T^k_{\mu \lambda} + T^k_{\mu \lambda} + T^k_{\mu \lambda}, \\
\Gamma^k_{i} &= T^k_{i}, \\
\Gamma^i_{\mu j} &= S^i_{\mu j}, \\
\Gamma^i_{j} &= S^i_{j}
\end{align*}
\]

（2.9）
と変換される。$\Gamma_{\mu i}^{\kappa}$、$\Gamma_{\mu j}^{i}$、$\Gamma_{\mu \lambda}^{i}$ などが相互作用を explicit に表わすものである。そして、(2.2) が成立つ時は、基本量 $\Gamma_{\mu \lambda}^{\kappa}$ から

$$
\begin{align*}
\Gamma_{\mu i}^{\kappa} &= \lambda_{i}^{\kappa} \Gamma_{\mu \lambda}^{\kappa} + \partial_{\mu} \lambda_{i}^{\kappa}, \\
\Gamma_{\mu \lambda}^{i} &= \lambda_{\lambda}^{i} \Gamma_{\mu \lambda}^{\kappa}, \\
\Gamma_{\mu j}^{i} &= \lambda_{\lambda}^{i} \lambda_{j}^{\kappa} \Gamma_{\mu \lambda}^{\kappa} + \lambda_{\lambda}^{i} \partial_{\mu} \lambda_{j}^{\kappa}
\end{align*}
$$

と表わされる。$\Gamma_{\mu \lambda}^{i}$ は λ 一変換でテンソル的に変換され、より一般的な変換下のテンソルにして消去されていると考えると、$\Gamma_{\mu i}^{\kappa}$ と $\Gamma_{\mu j}^{i}$ がより本質的な相互作用係数といえる。(A) 一空間は、変形前の自然状態と考えているから Euclid 空間とみなせ、$\Gamma_{\alpha \beta}^{A} = 0$ と仮定できるから、結局遠隔平行性空間を与えることになるが、これは物理場の性格として {i,j} なる自由度の方向特性は、局所的に一意的に定まることからなされる。さて、次に、(2.8) に基づくテンソル量は、通常の計算と同様にして、次の如くに定義される。4) 3)

$$
2[\nabla_{\nu} \nabla_{\mu}] X^{\kappa} = R_{\nu \mu \lambda}^{\kappa} X^{\lambda} + R_{\nu \mu i}^{\kappa} X^{i} - 2 U_{\nu \mu}^{\lambda} \nabla_{\lambda} X^{i}
$$

と定義する。(2.11) 三

$$
2[\nabla_{\nu} \nabla_{\mu}] X^{i} = R_{\nu \mu \lambda}^{\kappa} X^{\lambda} + R_{\nu \mu j}^{i} X^{j} - 2 U_{\nu \mu}^{\lambda} \nabla_{\lambda} X^{i}
$$

但し,

$$
\begin{align*}
R_{\nu \mu \lambda}^{\kappa} &= 2(\partial_{\nu} \Gamma_{\mu \lambda}^{\kappa} + \Gamma_{\nu \rho}^{\kappa} \Gamma_{\mu \lambda}^{\rho} + \Gamma_{\nu \lambda}^{\kappa} \Gamma_{\mu \rho}^{\rho} + \partial_{\nu} \Gamma_{\mu \lambda}^{\rho} \Gamma_{\rho \lambda}^{\kappa}), \\
R_{\nu \mu i}^{\kappa} &= 2(\partial_{\nu} \Gamma_{\mu i}^{\kappa} + \Gamma_{\nu \rho}^{\kappa} \Gamma_{\mu i}^{\rho} + \Gamma_{\nu i}^{\kappa} \Gamma_{\mu \rho}^{\rho} + \partial_{\nu} \Gamma_{\mu i}^{\rho} \Gamma_{\rho i}^{\kappa}), \\
R_{\nu \mu \lambda}^{i} &= 2(\partial_{\nu} \Gamma_{\mu \lambda}^{i} + \Gamma_{\nu \rho}^{i} \Gamma_{\mu \lambda}^{\rho} + \Gamma_{\nu \lambda}^{i} \Gamma_{\mu \rho}^{\rho} + \partial_{\nu} \Gamma_{\mu \lambda}^{\rho} \Gamma_{\rho \lambda}^{i}), \\
R_{\nu \mu j}^{i} &= 2(\partial_{\nu} \Gamma_{\mu j}^{i} + \Gamma_{\nu \rho}^{i} \Gamma_{\mu j}^{\rho} + \Gamma_{\nu j}^{i} \Gamma_{\mu \rho}^{\rho} + \partial_{\nu} \Gamma_{\mu j}^{\rho} \Gamma_{\rho j}^{i}), \\
U_{\nu \mu}^{\lambda} &= \Gamma_{\nu \mu}^{\lambda} + \Omega_{\nu \mu}^{\lambda}, \\
\Omega_{\mu \lambda}^{\kappa} &= T_{\nu}^{\kappa} \partial_{\nu} \Gamma_{\mu \lambda}^{A}
\end{align*}
$$

(2.12)
と定義される。遠隔平行性だとすべての曲線は消失し、ただ一つ非ホロノーム対象 $\Omega_{\mu \lambda}^k$ が散逸性を代表することになる。更にこのような接触テンソル解析的取扱いの結果、Riemann–Christoffel 曲率にかわって相互作用を表わすべきものとして、Euler–Schouten 曲率テンソルなるものが導入される。それらは形式的には

$$S_A^i \nabla \mu T_A^\lambda \equiv H_{\mu \lambda}^i,$$

$$T_A^\lambda \nabla \mu S_A^i \equiv H_{\mu i}^k.$$

と定義され、$\nabla \mu$ を近似的に $\partial \mu$ でおきかえれば、(2.2) から

$$H_{\mu \lambda}^i = \lambda_i^\lambda \Gamma_{\mu \lambda}^\kappa,$$

$$H_{\mu i}^k = \lambda_i^\lambda \Gamma_{\mu \lambda}^\kappa + \partial \mu \lambda_i^\kappa$$

とかけ、$H_{\mu \lambda}^i$ は実質的に $H_{\mu i}^k$ の中に含まれてしまっているといえる。あくまで (k)-空間を母空間として考える時、変形場の基本量としては $(g_{\lambda \kappa}, \Omega_{\mu \lambda}^k, H_{\mu \lambda}^i)$ が独立変数として採用されることになるが、相互作用場なるものを explicit に抽出すると、その場を支配するのは $(g_{\lambda i}, H_{\mu i}^k)$ であることがわかり、そこで (λ_i^κ) なる物理的条件が加わって、(2.5)，(2.14)2 の如くに母空間と締びつけられる。又、当然その場は非対称である。

大体以上が接触テンソル解析的考察による変形場の表現形式であるが、我々が隠目するのは、レオロジー的とも、又、更に一般的な物理的立場からいっても、結局、(k)-空間と (i)-空間の相互作用場の状態把握であり、粘弹性などの二つの自由度が同時に含まれる現象の解析が重要だから、相互作用場 $(g_{\lambda i}, H_{\mu i}^k)$ を考察することになる。その議論に移る前に、前述のレオノーム性の強調のための措置について考えよう。

§3 レオノーム幾何学的拡張について

(k)-系などを jilm-space 的に解釈することもできるが、従来の立場
に準拠する意味で、ここでは（*）一系なども空間座標とみなし、新しく時間（t）を加えることを考える。

まず、計量などは (2.1), (2.6) 及び (2.2) などが強ベクトルとしてのレオノーマ変換とみなすことにより、(2.3), (2.5) と同じ形で導入される。
次に接続は、(2.7) に対して

\[\begin{align*}
D^{\kappa} &= \frac{dx^{\kappa}}{dt} + (\Gamma_{\mu}^{\kappa} x^{\lambda} + \Gamma_{\mu i}^{\kappa} x^{i}) dx^{\mu} + (\Gamma_{\lambda}^{\kappa} x^{\lambda} + \Gamma_{i}^{\kappa} x^{i}) dt,
\end{align*}\]

と拡張され、(2.8) に対しては、その他に

\[\begin{align*}
\nabla x^{\kappa} &= \frac{dx^{\kappa}}{dt} + \Gamma_{\mu}^{\kappa} x^{\lambda} + \Gamma_{\mu i}^{\kappa} x^{i},
\end{align*}\]

が新しくつけ加わる。接続係数 \(\Gamma_{\mu}^{\kappa}, \Gamma_{\mu i}^{\kappa}, \Gamma_{\lambda}^{\kappa}, \Gamma_{i}^{\kappa} \) が新しく登場するが、それらは (2.9) に対応して、

\[\begin{align*}
\Gamma_{\mu}^{\kappa} &= T_{\mu}^{\kappa} T_{\lambda}^{B} f_{B}^{A} + T_{\mu}^{\kappa} \frac{dT_{A}^{B}}{dt},
\Gamma_{\mu i}^{\kappa} &= T_{\mu i}^{\kappa} S_{j}^{B} f_{B}^{A} + T_{\mu i}^{\kappa} \frac{dS_{A}^{B}}{dt},
\Gamma_{\lambda}^{i} &= S_{\lambda}^{i} T_{\mu}^{B} f_{B}^{A} + S_{\lambda}^{i} \frac{dT_{A}^{B}}{dt},
\Gamma_{i}^{\lambda} &= S_{i}^{\lambda} S_{j}^{B} f_{B}^{A} + S_{i}^{\lambda} \frac{dS_{A}^{B}}{dt},
\end{align*}\]

と変換される。 (2.10) に対しては

\[
\begin{align*}
\Gamma_i^\kappa &= \lambda_i^\kappa \Gamma_\lambda^\kappa + \frac{\lambda_i^\kappa}{\lambda^\kappa} \\
\Gamma_\lambda^i &= \lambda_\kappa^i \Gamma_\lambda^\kappa \\
\Gamma_j^i &= \lambda_\kappa^i \lambda_j^\kappa \Gamma_\lambda^\kappa + \lambda_i^\mu \frac{\lambda_j^\mu}{\lambda^\mu}
\end{align*}
\]

(3.4)

とかかれる。（2.11）に対しては，\(\nabla_\nu \) と \(\nabla \) の組合わせが新しく登場する。

例えば，

\[
\begin{align*}
2 [\nabla_\nu \nabla] X^\kappa &= P^\nu_j \epsilon^\kappa \epsilon^\lambda + P^\nu_\mu \epsilon^\mu \epsilon^j - 2 Q^\nu_\mu \nabla_\mu X^\kappa, \\
2 [\nabla_\nu \nabla] X_i &= P^\nu_j i^X_j + P^\nu_\mu i^\mu X^\lambda - 2 Q^\nu_\mu \nabla_\mu X^i
\end{align*}
\]

(3.5)

などと定義される。但し各 \(\mathcal{F} \) は（2.12）の各 \(\mathcal{R} \) において形式的に \(\mu \)－指標を時間指標におきかえたものに等しく， \(Q^\alpha_\beta \) は従来通りの変形の時間的変化のテンソル形である。（2.13）に対しては，新しく

\[
\begin{align*}
S_i^A \nabla T_\kappa^A &= J_i^\kappa, \\
T_\kappa^A \nabla S_i^A &= J_i^\kappa
\end{align*}
\]

(3.6)

が出現し，これも形式的には \(H \) の \(\mu \) を時間指標におきかえたものに等しい，そして（2.14）に対しては，\(\nabla \) を近似的に \(\frac{\partial}{\partial t} \) とおいて，

\[
\begin{align*}
J_i^\kappa &= \lambda_i^\kappa \Gamma_\lambda^\kappa, \\
J_i^\kappa &= \lambda_i^\kappa \Gamma_\lambda^\kappa + \frac{\lambda_i^\kappa}{\lambda^\kappa}
\end{align*}
\]

(3.7)

が対応する。従って，このようにレノノーム幾何学的に拡張された場合には，（\(\kappa \)－空間なる変形場を表わす基本量としては \(g_{\mu \lambda}, \Theta_{\mu \lambda}^\kappa, H_{\mu \lambda}^\kappa, Q_{\mu \lambda}^\kappa, J_{\mu \lambda}^\kappa \) が独立変数として採用され，相互作用場の基本量は \(g_{\mu \lambda}, H_{\mu \lambda}^\kappa, J_{\mu \lambda}^\kappa \) の三種類になる。結局，前節の議論に時間をとり入れることは，形式的には単

---371---
池田 恵

に時間に関する項を加えて拡張すればよいことになり、非対称場には \(J_i^K \) がつけ加わるのみとなる。一般に、Euler–Schouten 曲率は、母空間からの不適合はみだしを意味し、従って、例えば Weissenberg 効果での回転円筒にそう盛り上がりなどを本質的に説明するものであり \(J_i^K \) はそのような不適合的変形としての非弾性変形の時間依存性を代表するものである。前節にもふれた如く、我々はレオロジー的には相互作用場に着目したいから、それはとてもなおまず、(\(\theta_{i}, H_{\mu i}^{i K}, J_i^K \)) に基づくレオロジー方程式を求めることに通ずる。

§ 4 レオロジーと接触テンソル解析の関係

接触テンソル解析的表現は、結局、(\(X^K, \lambda_i^K \)) を element of support とする一種の動標構の方法とも考えられる。要するに問題は \((\lambda_i^K) \)、あるいは \(\{ \theta_i \} \) なるものを、物理的に如何とにとらえるかという事に集約される。その意味から、前論文の vierbein 表式を含むものであるといえ、その点を強調すれば孤立鎖各要素の運動についての議論に容易に移行できることができるが、まず指摘される。さて、レオロジーは、我々の立場からは時間依存性変形として把握され、通常の変形場としての \((\kappa) \) 一母空間に、新しく時間的変化という性格がつけ加えられたものとみなされる。そこで本質的な相対立する二つの自由度の統合という考え方が成立し、それが (\(\{ \theta_K \}, \{ \theta_i \} \) という形の非ホロノーム部分空間分解に帰着する。若干の例をあげよう。まず、縦目構造においては、その構造自体が動標構の方法でモデル化されることになるが、今、その内部構造の標構を \(\theta_i \) とおいてやる。外部変形による macro な変形状態の標構を \(\theta_K \) とおいてやれば、明らかに \((\lambda_i^K) \) は相対的変形を表わすことになる。そして \(J_i^K \) が粘弾性的特徴を代表し、定常的な場合には \(H_{\mu i}^{i K} \) がそれを代表することになる。次に孤立鎖では、既にのべた如く、vierbein 表式への移行が考えられる。そして更にモデル的問題として、形状の異方性や粒子モデルの内部回転などの表現として \(\{ \theta_i \} \) が \(\{ \theta_K \} \) とは孤立に考えられる。その他、内部自由度と考えられて \(\{ \theta_i \} \) の実例を与えるものとしては、誘電体の偏極、準結晶の配向性、非晶顕の配向性、あるいは力学的モデルの類似性から、粘塑性、粒子、粉体などの非ホロノーム変形などがあげられる。

—372—
§ 5 非対称相互作用場のレオロジー方程式

3 節でのべた如く，\(\{ \theta^\kappa \}, \{ \theta_i \} \) 基づく相互作用場は，必然的に非対称となり \((x^\kappa, l^\kappa_i) \) を独立変数として扱われなければならない。その結果，レオロジー的，例えば粘弾性的の如き，性格の異なる二つの自由度の相互作用がびき出す変形場は，そのような相互作用場そのものとして実現されていると考えられる。そこで \((g_{\lambda i}, H^{\kappa}_{\mu i}, J^{\kappa}_i) \) 基づいてレオロジー方程式を求めている。既に述べたごとく，これらは

\[
\begin{align*}
g_{\lambda i} &= \lambda_i^\kappa g_{\lambda i}, \\
H^{\kappa}_{\mu i} &= \lambda_i^\kappa \Gamma^{\kappa}_{\mu \lambda} + \partial_\mu \lambda_i^\kappa, \\
J^{\kappa}_i &= \lambda_i^\kappa \Gamma^{\kappa}_\lambda + \frac{d\lambda_i^\kappa}{dt}
\end{align*}
\]

で与えられ，かつ，今の場合

\[
\begin{align*}
g_{\lambda \kappa} &= T^B_{\lambda} T^A_{\kappa} \delta_{BA}, \\
\Gamma^{\kappa}_{\mu \lambda} &= T^\kappa_A \partial_\mu T^A_{\lambda}, \\
\Gamma^{\kappa}_\lambda &= T^\kappa_A \frac{dT^A_{\lambda}}{dt}
\end{align*}
\]

で与えられる。一方，エネルギー変分原理より，エネルギー変数を \(W = W(g_{\lambda i}, H^{\kappa}_{\mu i}, J^{\kappa}_i) \) とおくと，前論文と同じく

\[
\delta \int W \mathrm{d}x \mathrm{d}t = \int \left[\sigma \delta g_{\lambda i} + \mu \delta H^{\kappa}_{\mu i} + \tau \delta J^{\kappa}_i \right] \mathrm{d}x \mathrm{d}t = 0
\]

\[
\forall x \quad \forall t
\]

とかける。但し各応力成分は

\[
\sigma \delta g_{\lambda i} \equiv \frac{\partial W}{\partial g_{\lambda i}}, \quad \mu \delta H^{\kappa}_{\mu i} \equiv \frac{\partial W}{\partial H^{\kappa}_{\mu i}}, \quad \tau \delta J^{\kappa}_i \equiv \frac{\partial W}{\partial J^{\kappa}_i}
\]

---373---
で与えられることにする。（5.1），（5.2）より，各変形成分を変分し，これらを（5.3）に代入し，部分積分を行なって，自由境界条件が適当に満足されていると仮定すると，場の方程式，即ちレオロジー方程式として

$$\delta \lambda_i^\kappa: \sigma_i^\kappa g_{\lambda\kappa} + \mu_{\nu} i^{\nu} \Gamma_{\mu\kappa} + \tau_i^{\nu} \Gamma_{\nu\kappa} - \partial_{\nu} \mu \cdot i_{\kappa} - \frac{\partial r_{\nu}^{\kappa}}{\partial t} = 0$$

$$\delta T_{\lambda}^B: 2 \sigma_i^\lambda \lambda_{ iT} A B - \mu_{\nu}_k \nu_{TB} i^{\nu} \lambda_{\kappa} \nu - \tau_i^{\nu} \lambda_{\nu} \nu_{TB} \nu_{\nu} - \partial_{\nu} \mu \cdot i_{\lambda} \lambda_{\nu} \nu_{TB} \nu_{\nu}$$

を得る。これらは又，

$$\delta \lambda_i^\kappa: \sigma_i^\kappa + \mu_{\nu} i^{\nu} \lambda_{\kappa} \nu - \partial_{\nu} \mu \cdot i_{\kappa} - \frac{\partial r_{\nu}^{\kappa}}{\partial t} = 0$$

$$\delta T_{\lambda}^B: 2 \sigma_{\nu}^{\nu} - \mu_{\nu} i^{\nu} \lambda \nu - \tau_i^{\nu} i^{\nu} = 0$$

をかきなおす。但し，

$$\sigma_i^\kappa g_{\lambda\kappa} = \sigma_i^\kappa, \quad \mu_{\nu} i^{\nu} \Gamma_{\mu\kappa} = \mu_{\nu} i^{\nu} \lambda_{\mu\kappa}$$

$$\sigma_i^\nu \lambda_{\nu}^{\kappa} = \sigma_i^\nu, \quad \sigma_{\nu}^{\kappa} g_{\nu\kappa} = \sigma_{\nu}^{\kappa}$$

などとおいた。ここに σ_i^κ は相互作用応力で相対的変形をひきおこし，物理的自由度の変形への寄与を表わし非対称である。M^i_{ν} は μ^i_{ν} という変形全体から派生する空間構造に左右され，体モーメントを生起させる。又，その時間依存性を $\tau_i^{\nu} \Gamma_{\nu\kappa}$ が表わしている。（5.6）からわかけることは，相互作用場のモーメント応力はすべからく $H_{\mu i}^{\nu} \lambda$ から派生することで，σ_i^κ と $\tau_i^{\nu} \Gamma_{\nu\kappa}$ は通常のレオノーム幾何学的取扱いの場合の応力成分と同様の扱いができる。（5.6）2は外部変形に抗する応力方程式で，（5.6）1は内部変形に抗する応力方程式である。通常のレオロジー方程式の形式は（5.6）1に相当し，明らかに (λ_i^κ) に
関する応力の鉱合方程式となっており、例えば粘性的要素及び弾性的要素がいかなるかかわりあい方をして、いかなる形にまとめられるかを表わしていることになる。λ_i^κ から派生する応力が非対称に、交叉応力効果、結線応力効果なども容易に説明されることとなり、その結果、Weissenberg 効果などの一連の現象が λ_{μ}^κ 及び J_{λ}^κ によって説明されることとなる。例えば、(5.6) において、これを

$$\frac{d\tau_{\lambda}^\kappa}{dt} = \tau_{\lambda}^\kappa \Gamma_{\kappa}^\nu + \sum_{\kappa} i_{\kappa}$$

但し $\sum_{\kappa} i_{\kappa} = \sigma_{i_{\kappa}} + M_{i_{\kappa}} - \mu_{\mu_{\kappa}} i_{\mu}$

とおく。$\sum_{\kappa} i_{\kappa}$ は $(\lambda_{\lambda}^\kappa, \partial \lambda_{\mu}^\kappa)$ に依存した空間的変形に抗する応力である。今の場合は、体積変形に依存した、高分子鎖のガウス分布からのはずれなどの非線型性を表現する。Γ_{κ}^ν は (5.2) で与えられる如く、外部変形に依存したものだから、相対的変形を explicit に表すためには、(5.8) を我々の観測している (κ) 一系の表現になおす必要がある。そこで、

$$\tau_{\lambda}^\kappa = \tau_{\lambda}^\kappa \lambda_{i}^\kappa, \quad \sum_{\kappa} \lambda_{i}^\kappa = \sum_{\kappa} i_{\kappa} \lambda_{i}^\kappa$$

などとおいてやると、(5.8) は

$$\frac{d\tau_{\lambda}^\kappa}{dt} = (T_{\lambda}^\kappa \frac{dT_{\lambda}^\kappa}{dt}) \tau_{\lambda}^\nu - (\lambda_{i}^\kappa \frac{d\lambda_{i}^\kappa}{dt}) \tau_{\lambda}^\nu + \sum_{\nu} \Gamma_{\kappa}^\nu$$

とかける。ここに外部変形速度 $(T_{\lambda}^\kappa \frac{dT_{\lambda}^\kappa}{dt})$ 及び内部変形速度 $(\lambda_{i}^\kappa \frac{d\lambda_{i}^\kappa}{dt})$ に依存した項が、それぞれ分離された形で登場し、かくして物理的仮定の入るここ余地ができてきた。T_{λ}^κ に基づいてレオロジー方程式を解いていこうとするのが、一般化 Maxwell-model の粘弹性論である。λ_{i}^κ で τ_{λ}^κ に着目したら一般化 Maxwell-model 形式を与え、σ_{i}^κ に着目すれば一般化 Voigt-model を与える。λ_{i}^κ に基づいて、constitutive equat-
§ 6 結び

接触テンソル解析を物理的に応用しようとする時，本質的なことは（\{\theta_k\},
\{\phi_i\}）あるいは（x^k, \lambda^i_k）を独立変数とする非対称な相互作用場に着目する
ことで，いわゆる内部自由度などの物理的自由度を explicit に把握していくことである。レオロジー的には，外部変形と内部変形の対立，相対的変形の
出現がこれに対応する。しかも，最も大切なことは，それらの考え方は，動橋
構の方法に他ならないということの認識であり，それによって一般的な非ホロ
ノーム変形論の立場に移行できる。具体的に物理現象を専門的に扱うことは，
これからの課題であるが，その際，このような一般的な取扱いは，当然，物理的
条件にあわせて縮退されねばならず，幾何学的な Finsler 空間への縮退問題
などと相依って，我々の物性にはあれない展開がなされなければならないことはい
うまでもない。

§ 7 参考文献

1) 池田 恵，物性研究，（1969），
2) 池田 恵，物性研究，12（1969），117。
3) K. Yano & E.T. Davies，Annali di Matematica，37（1954），1。
4) 池田 恵，物性研究，12（1969），178。
6) 池田 恵，物性研究，12（1969），245。
7) 池田 恵，物性研究，12（1969），233。
8) 山本三三三，レオロジー，講談社（1964）。
9) 中川鶴太郎，神戸博太郎，レオロジー，みすず（1959）。

-376-