8. 液体金属・合金の圧縮率の理論（「第2回液体金属の物性と構造に関する研究討論会」研究会報告）

渡部 三雄, 長谷川 正之

物性研究 京都大学金属工学研究所

渡部, 長谷川, 植村, 坂本, 高野, 小林, 小野, 今井, 藤原, 藤本

渡部, 長谷川, 植村, 坂本, 高野, 小林, 小野, 今井, 藤原, 藤本

渡部, 長谷川, 植村, 坂本, 高野, 小林, 小野, 今井, 藤原, 藤本

渡部, 長谷川, 植村, 坂本, 高野, 小林, 小野, 今井, 藤原, 藤本
8. 液体金属・合金の圧縮率の理論

東北大理 渡部 三 雄
長谷川 正 之

研究会では液体金属・合金の圧縮率の定式化についてはあまり触れなかったので、ここではそれについて詳しく述べて、最後に数値計算の結果を簡単に報告する。

よく知られているように N 個の古典粒子系に対するハミルトニアンを

$$ H = \sum_{i=1}^{N} \frac{P_i^2}{2m} + U \{ \mathbf{N} \} $$ (1)

とすると、この系の圧力は次のように与えられる。

$$ P = \frac{N}{V} k_B T \left(1 - \frac{1}{Z_N} \int \cdots \int \exp \left[-\frac{U \{ \mathbf{N} \}}{k_B T} \right] \frac{\partial U}{\partial V} \, d \{ \mathbf{N} \} \right), $$

$$ Z_N \equiv \int \cdots \int \exp \left[-\frac{U \{ \mathbf{N} \}}{k_B T} \right] \, d \{ \mathbf{N} \} $$ (2)
長谷川正之・辻崎三雄

ここで \(\{ N \} \) は \(N \) 個の粒子の座標 \(\mathbf{r}_1, \ldots, \mathbf{r}_N \) の全体を表わし、ポテンシャル・エネルギー \(U \) は粒子の座標だけに依存するとした。\(M \) は粒子の質量、\(V \) は系の体積、\(k_B \) はボルツマン定数、\(T \) は温度である。\(U \) が 2 体のポテンシャル・エネルギーの和で与えられるならば、即ち

\[
U\{N\} = \frac{1}{2} \sum_{i,j(i \neq j)} u(r_{ij}), \quad r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|, \quad (3)
\]

と書けるならば（2）式は次のように簡単な形に帰着する

\[
P = \rho k_B T \left[1 - \frac{\rho}{6k_B T} \int r \frac{d\mu(r)}{dr} g(r) \, dr \right], \quad (4)
\]

\(\rho \) は粒子密度（\(\rho = N/V \)）。\(g(r) \) は径分布関数である。

液体金属の場合には伝導電子が存在するために \(U \) を（3）式のように表わすことはできない。したがって（4）式のような "pressure equation" はそうでない。そこで液体金属の場合には Born–Oppenheimer 近似の精神に従って \(U \) は次のように書けるとする。

\[
U\{N\} = N u_0(\rho) + \frac{1}{2} \sum_{i \neq j} u(r_{ij}, \rho). \quad (5)
\]

第 1 項はイオン数密度（或伝導電子数密度）だけに依存する項である。第 2 項はイオンの配列に依存する項であるが、2 体のポテンシャル・エネルギーの和で書けるとした（これは電子とイオンの相互作用を摂動と考えた場合その 2 次までとる近似では正しい）。ただし今度は電子の screening の効果のために 2 体のポテンシャルはイオン間距離だけでなく、イオン密度にも依存する。

（4）式を導いた時と同じ手続をくり返すと、pressure equation は次のようになる。

\[
P = \rho k_B T + \rho^2 \frac{d\mu_0}{d\rho} - \rho^2 \int r \, dr \left\{ \rho \frac{\partial u(r, \rho)}{\partial \rho} + \frac{r \rho u(r, \rho)}{3} \right\} g(r) \quad (6)
\]

（4）と異なるのは右辺第 2 項、おおよび積分中の第 1 項が新たに現われることである。

—402—
（5）式の第2項をFourier分解するとその$k=0$成分はイオンの座標に依存しないから第1項にくり込むことができる。その意味でUを（5）式のように分けることは任意性がある。ここでは（5）式の代わりに次のように書くと：

$$U\{N\} = N\ u_0'(\rho) + \frac{1}{2} \sum_{k \neq 0} u(k, \rho) \sum_{i \neq j} e^{i\mathbf{k}(\mathbf{r}_i-\mathbf{r}_j)} \quad (5')$$

$$\mathbf{r}_i = r_i^z \sqrt{V}, \ \mathbf{k} = k^z / \sqrt{V} \quad \text{とscalingを行なえば明らかのように}$$

（5'）を（2）に代入する。すると

$$P = \rho \ k_B \ T \ - \ N \ \frac{du_0'}{dV} \ - \ \frac{1}{2} \sum_{k \neq 0} \frac{du(k, \rho)}{dV} < \sum_{i \neq j} e^{i\mathbf{k}(\mathbf{r}_i-\mathbf{r}_j)} >, \quad \text{(7)}$$

$$< \cdots > = \frac{1}{Z_N} \int \cdots \int \exp \left(- \frac{U\{N\}}{k_B T} \right) (\cdots) d\{N\}.$$

構造因子$S(k)$を

$$S(k) = N^{-1} < \sum_{i, j} e^{i\mathbf{k}(\mathbf{r}_i-\mathbf{r}_j)} > - N \ \delta_{k, 0} \quad (8)$$

と定義すると

$$< \sum_{i \neq j} e^{i\mathbf{k}(\mathbf{r}_i-\mathbf{r}_j)} > = N[S(k) - 1] + N^2 \delta_{k, 0}, \quad (9)$$

従って（7）式は次のように簡単な形になる。

$$P = \rho \ k_B \ T \ - \ N \ \frac{du_0'}{dV} \ - \ N \ \sum_{k \neq 0} \frac{du(k, \rho)}{dV} [S(k) - 1] \quad (10)$$

次に$u_0'(\rho), u(k, \rho)$を考えよう。$U\{N\}$の中にはまずイオンーイオンCoulomb相互作用が考えられる。それはatomic unit（$\hbar = 2m = e^2/2$ = 1）で次のように書ける。（以下このunitを使う）

$$\frac{1}{2} \sum_{i \neq j} \frac{2Z^2}{|\mathbf{r}_i-\mathbf{r}_j|} = \frac{1}{2V} \frac{8\pi Z^2}{k^2} \sum_i \sum_j e^{i\mathbf{k}(\mathbf{r}_i-\mathbf{r}_j)} \quad (11)$$

Zはイオンのvalencyである。電子ーイオン相互作用は弱いlocal pseudo
potential で表わされると考えて、その 2 次までとる。その 1 次は

\[N Z \cdot \lim_{k \to 0} \frac{1}{V} \sum_{i} v(r_{i}) e^{-i \mathbf{k} \cdot r_{i}} \mathrm{d}r \]

\[= \frac{N^2 Z^2}{V} \lim_{k \to 0} \frac{1}{Z} v(k) \]

\[= \frac{N^2 Z^2}{V} \lim_{k \to 0} \frac{1}{Z} \left\{ - \frac{8\pi Z}{k^2} + \beta(k) \right\}. \tag{12} \]

ここで \(v(k) \) を Coulomb 相互作用の部分と、伝導電子とイオンの core の波動関数の直交性等による効果 \(\beta(k) \) との和に便宜上書いた。次に 2 次の項は

\[\frac{1}{2V} \sum_{k \neq 0} \frac{k^2}{8\pi} \left\{ \frac{1}{\varepsilon(k,0)} - 1 \right\} |v(k)|^2 \sum_{ij} e^{i \mathbf{k} \cdot (r_i - r_j)} \]

\[= \frac{N}{2V} \sum_{k \neq 0} \frac{k^2}{8\pi} \left\{ \frac{1}{\varepsilon(k,0)} - 1 \right\} |v(k)|^2 \sum_{i \neq j} e^{i \mathbf{k} \cdot (r_i - r_j)} \] \tag{13}

\(\varepsilon(k,0) \) は電子ガスの screening function である。\((11) \) 式の \(k = 0 \) 成分と \((12) \) 式の第 1 項は電子ガスの uniform 部分の Coulomb self-energy と共にちょうど打ち消し合う。\((11) \), \((12) \) 及び \((13) \) と \((5') \) をくらべると

\[u_0' \left(\rho \right) = u_{e} \left(\rho \right) + \frac{NZ^2}{V} \lim_{k \to 0} \frac{1}{Z} \beta(k) \]

\[+ \frac{1}{2V} \sum_{k \neq 0} \frac{k^2}{8\pi} \left\{ \frac{1}{\varepsilon(k,0)} - 1 \right\} |v(k)|^2 \] \tag{14}

\[u(k, \rho) = \frac{8\pi Z^2}{Vk^2} + \frac{k^2}{8\pi V} \left\{ \frac{1}{\varepsilon(k,0)} - 1 \right\} |v(k)|^2 \] \tag{15}

\(u_{e} \left(\rho \right) \) は電子ガスの kinetic, exchange, および correlation energy である。これらの結果を合金の場合に拡張することは簡単にできるがここでは

-404-
省略する。(14)，(15)を(10)に代入すればPが求まる。等温圧縮率を

\[\frac{1}{x_T} = -V \left(\frac{\partial P}{\partial V} \right)_T \] （16）

我々は次の近似でNa-K合金系に対して数値計算を行なった。

(i) \(v(k) \) に対してはAshcroftのmodel potentialを用いる。即ち

\[v(k) = -\frac{8\pi Z}{K^2} \cos kr_c \] （17）

\(r_c \) はフェルミ面のデータから得られる。(Naに対しては \(r_c = 1.66 \) a.u.,
Kに対して \(r_c = 2.13 \) a.n.)

(ii) \(\lim_{k \to 0} \beta(k)/2 \equiv \alpha \) は体積に依存しない定数であるとして \(F \cong 0 \) の
条件から決める。

(iii) \(S(k) \) は剛体模型に対する近似的なPercus-Yevick方程式から
求められたものを用いる。これは純金属の場合、それ中に含まれるparameterを適当にとれば中性子線（またはX線）回折の実験から求
えられたものとかなりよく一致する。

(iv) \(\varepsilon(k,0) \) に対してはRPAを使う。

以上の近似による数値計算の結果は表に示してある。純金属の場合は大体5
%の範囲内で実験値と一致するが、合金の場合は10%程度小さい値しか与
えず、全体的な振舞いはあまりよくない。詳しい結果はいずれどこかに発表さ
れるはずである。

<table>
<thead>
<tr>
<th>atomic % of K</th>
<th>(x_T \left(10^{-12} \text{ cm}^2/\text{dyn} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18.2</td>
</tr>
<tr>
<td>13.84</td>
<td>20.8</td>
</tr>
<tr>
<td>30.48</td>
<td>24.0</td>
</tr>
<tr>
<td>38.18</td>
<td>25.6</td>
</tr>
<tr>
<td>59.61</td>
<td>30.3</td>
</tr>
<tr>
<td>100</td>
<td>40.3</td>
</tr>
</tbody>
</table>

表：Na-K合金系の
圧縮率

ー405ー
9. Ziman理論による
水銀合金系の電気抵抗と熱電能

豊田理研 武内 隆
名大工 野口 精一郎

Hg合金系の伝導現象を扱う場合Mott理論とZiman理論の2つの立場が考えられるが、ここでは後者の理論に基づいて13種のHg合金系（HgとLi, Na, K, Rb, Cs, Zn, Ca, Ga, In, Tl, Sn, Pb, Biの2元系）の電気抵抗と熱電能を計算してみた。Ziman理論に基づいて計算をおこなう場合、現段階ではなお種々の仮定を必要とするが、そのうち特に問題となりそうなものをあげれば次のようになる。

合金に対するpartial structure factorは組成に独立とみなし、同種原子間のものには実験的に定められた純金属のstructure factorを用いた。

-406-