

第24章 若 狭 湾

I 地 質

海域の概要

若狭湾は、日本本土のほぼ中央部に位置し、日本海 側における数少ない大型湾の一つである.西の丹後半 島先端の経ケ岬と東の越前岬とを結んだ線で外洋と区 分され,その形状は広い間口と浅い奥行きによって特 徴づけられる(第1図).京都府と福井県の両府県にま たがる海岸線は,典型的なリアス式の様相を呈して複 雑に入り組み,多数の枝湾および付属湾が発達する. 最大の枝湾は最西部に位置して丹後半島と大浦半島で

第1図 若狭湾海底地形図 [海上保安庁水路部(1980a,b)を一部改変] 黒丸は底質粒度分析試料採取地点,直線は由良川沖調査定線をそれぞれ示す。

縁どられた丹後海でその奥部の左右の隅角部に宮津, 栗田,舞鶴の付属湾を伴う.以下,西部から東部にか けて内浦湾,高浜湾,小浜湾,矢代湾,世久見湾,敦 賀湾など大小さまざまの枝湾が順に並ぶ.若狭湾の水 深は,湾口中央部東寄りでもっとも深く,260 m を超え るが,60-100 m の部分が全体の 50%近くを占め,湾 全体の平均水深は約 100 m である.湾の総面積は 2,657 km²,容積は 264 km³に及ぶ.若狭湾およびそれ に含まれる諸枝湾,付属湾の大きさに関する諸量は第 1表にまとめられている.

湾内に流入する河川の中で最大のものは丹後海に注 ぐ由良川で,流量の少ない時で約15 m³/秒,最大で約 240 m³/秒,平均して約30 m³/秒の陸水が流入してお り(中山,1956)? 水質ばかりでなく底質の面でも丹 後海に多大の影響を及ぼしていることは後述の通りで ある.

当湾内は陸棚が比較的よく発達する.しかし海底地 形はかなり複雑で,湾口部西寄りに冠島,小島(沖ノ 島)などの島群が,そして沿岸寄りにはクリと呼ばれ る岩礁が多数存在する他,沖合には,西端の経ケ岬北 北東23 km に存在する水深 100 m程の浦島礁と,経ケ 岬からそれに向かって指状に延びる浅瀬,また,東端 の越前岬北西30 km にある 50 m 以浅の大型の玄達瀬 およびその北東に接する松ダシ(60 m深),大グリ(70 m深)などのいわゆる越前堆列と称される礁群が特筆 される.

第1表 若狭湾に関する諸量

			長さ(km)		面積	平均深度	容積	
				長軸	短軸	(km ²)	(m)	(km ³)
若	狭	湾		80	40	2,657	99.2	264
丹	後	海		17	16	273		
倌	津	湾		10	1.5	21	15.5	
瑮	日	湾		3	2	8	17.0	
舞	龥	湾		11	0.6	25	9.4	
内	浦	湾		4	1.5	8	22.0	
高	浜	湾		14	6	58		
小	浜	湾		17	6	60	13.1	
矢 世 ⁄	代 久見	湾湾	}	13	5	70	_	
敦	賀	湾		12	3	46	20.3	

注) 舞鶴海洋気象台(1974)¹⁾および朝岡・橋本(1984)²⁾を もとに一部加筆修正をした.

2. 湾岸陸域の地形

若狭湾沿岸では,全域にわたって山地が海岸に迫り, 平地としては,由良川流域と敦賀平野の他は,湾入部 に流入する小河川が河口付近に小さな扇状地三角州を つくっているに過ぎない.

山地の上には、小起伏平坦面のブロック化した名残 りが各所に認められる。とくに西岸の丹後半島では、 400-600 m の定高性の平坦面が残存していることが 古くから指摘されている(田山、1928 f) 水山、1978⁵¹)。 また、東岸の福井海岸でも、600 m から数段にわたる平 坦面が存在する(新野、1950)?

海岸段丘は湾口付近両岸にのみ顕著である.東岸の 越前岬付近には 60-100 m および約 20 m の標高をも つ段丘が発達する.また,丹後半島北端部の経ケ岬付 近にも高さ 30 m の段丘が見られる.

これに対して,若狭湾南岸一帯は,前述のとおり, 断層運動に伴う沈水によって生じた典型的なリアス式 海岸として有名である.

若狭湾一帯の海岸には,海蝕崖や海蝕島が各所に発 達して美景をつくっている。その他,宮津湾奥に阿蘇 海(与謝内海)を抱く砂嘴の天の橋立,同じく砂州に より湾奥が閉塞されて生じた三方五湖などが有名であ る.

3. 湾岸陸域の地質

3-1.諸岩層の分布

若狭湾岸陸域の地質は、工業技術院地質調査所5万 分の1各図幅、同説明書? 福井県(1955)? 塚野 (1965⁹, 1969¹⁰)などにまとめられているが、その後 多くの新しい知見も得られている.

若狭湾南岸の東半部および湾東岸南半部には,美濃 一丹波地帯の中・古生層と,これを貫く,白亜紀末な いし古第三紀初めの花崗岩類が分布する.とくに前者 の分布が広い.泥質岩,砂岩などよりなり,一部チャー トや緑色岩類を含む地層である.本層は,かつて,石 灰岩レンズに産する紡錘虫化石に基づいて,二畳・石灰 系とみなされていたが,近年,チャートや泥質岩中の コノドント,放散虫化石などによって,むしろ三畳系 やジュラ系が,より広い面積を占めることが明らかと なった.後者は中粒黒雲母花崗岩を主とし,敦賀半島, 敦賀湾南方,同湾湾口東岸,三方湖付近などに分布す る.

これに対し,若狭湾南岸西部には,舞鶴地帯を構成 する諸岩層(三畳紀末の"古期花崗岩"・斑れい岩・輝 緑岩・超塩基性岩・角閃岩・片麻岩,中・上部二畳系 舞鶴層群の泥岩・砂岩など,上部三畳系難波江層群の 泥岩・砂岩,その他)がかなり広い面積を占める.ま た,同帯の主に北側(中国帯に属する)には,丹波地 帯の中・古生層の一部に相当する泥岩・チャートなど からなる地層(大浦層)の他,白亜紀末ないし古第三 紀初めの宮津花崗岩,新第三系中新統(与謝層群,内 浦層群など)の泥岩・砂岩・石英安山岩質ないし流紋 岩質火砕岩,青葉山安山岩など,多様な岩層が分布し ている.新第三系の基盤には,三郡変成岩も存在する かと思われるが,若狭湾周辺には露出していない.

一方,湾東岸北半には,新第三系の砕屑岩・凝灰岩・ 安山岩・玄武岩などや,新第三系や古第三系ないし白 亜系の石英安山岩質一流紋岩質火砕岩などが広く分布 する.これらの下にくる基盤は,他地域と同じ白亜紀 末頃の花崗岩類の他,日本列島地質構造発達区分上最 古の飛驒帯を構成する片麻岩,角閃岩,その他の変成 岩類からなる.

以上の,陸域に分布する諸岩層が若狭湾底にどのように延びているかについては,必ずしも明確でない. とくに,飛驒帯と舞鶴帯などの関係を考える上で,若 狭湾は重要な位置にあるが,これに関する情報はほとんどない.

若狭湾底の礁や堆からの岩盤試料については別に述 べる.

3-2.新期地質構造

若狭湾岸には、上記の諸岩層を切る各種の断層が発達している。そのうち多くはかなり新しく、活断層も少なくない。その最大のものの一つは、"近畿トライアングル" (Huzita、1962)¹¹⁾の東北辺を限る柳ヶ瀬断層で、その延長分岐線上に、越前海岸に沿って北西に走り、千飯埼沖に至る甲楽城断層がある。越前海岸の直線的急崖は、この断層により若狭湾側が陥没して生じたものと考えられる。

近畿トライアングルの他の一辺をなすのは比良山系 の西側を限る花折断層であるが、その北方延長にも三 方断層があって小浜湾に達している.

柳ケ瀬断層と並行的な,北西一南東方向に延びる断 層や,これと共軛関係にある北東一南西(ないし東北 東一西南西)方向の断層あるいはリニアメント(線状 構造)は,小浜より西の若狭湾沿岸一帯に発達してい る.若狭湾の西岸を限っても,同種の断層の一つがあ ると考えられる.その西南西方延長に,やや延びの方 向は違うが,1927年北丹後地震の際に活動した断層の 一つである山田断層が位置することが注目される.

近畿トライアングルの内部には,三方断層と平行的 な断層が密に発達している.

当湾の湾奥部における屈曲に富むリアス式海岸線

は、これら多くの断層に切られて複雑な起伏をもつに 至った山地が、沈水することによってつくられたもの である。

4. 湾底の地形および地質

4-1. 湾底の地形

第1図に見られる通り,若狭湾内は大部分大陸棚か らなっている.大陸棚外縁の水深は,東部では 130-140 m である.西部では外縁の傾斜変換部は不明 瞭であるが,東部よりやや浅く,120-125 m 付近にあ ると思われる.このことと関連して注目されるのは, 陸棚縁辺に続く斜面部の形状で,東部できわめて急勾 配の斜面をなすのとは対照的に,西部では緩やかな傾 斜を示している.

大陸棚には,大小多くの平坦面が見られる(第2図). 海上保安庁水路部(1980 a^{1,2} b¹³)によれば,東部のも のは,平坦面 I (水深 80 m 以浅),平坦面 II (水深 80-95 m)に大別され,さらに大陸棚より外に平坦面 III(水深 200 m 以深)が認められる.一方,中・西部には, 平坦面 I (水深 35 m 以浅),平坦面 II (水深 41-70 m), 平坦面 III (水深 70-105 m),平坦面 IV (水深 100-120 m)が分布する.

これらの平坦面,なかでも枝湾内の水深の浅いもの は,局地毎にも水深を異にする.もっとも顕著な平坦 面は,大陸棚の上では東部の平坦面IIと中・西部の平坦面 IIIである.これらはもともと同一の面であると思われ るが,東部の中でも,後述の,敦賀半島西方の大グリ (前記,越前堆列の同名の礁とは別)の西を通る北西 一南東方向の断層によって切られて水深を異にする (第9図参照).この平坦面上には,小規模の谷状地形 が発達するほか,比高1~2mの独立した凹凸が多数 分布している.

4-2. 底質

若狭湾とその周辺海域の底質については,古くは, とくに浦島礁,玄達瀬をはじめとする諸礁の周辺を中 心に論じた新野(1950)⁶⁾の報告がある.また,最近, 本稿の執筆者の一人の林とその共同研究者(1978 a ³⁴⁾ b³⁵⁾1979³⁶⁾1983³⁷⁾1984¹⁸⁾が,底生動物の分布に関 する研究の一環として枝湾部を含む湾内の諸海域にお いて採取した堆積物の粒度分析を行った.

一方,日本海区水産研究所(1983)¹⁹は,科学技術振 興調整費によるプロジェクト研究「海洋生物の生産能 力と海洋環境に関する研究」の中で,当湾の底質に関 する知見を得ている。

さらに海上保安庁水路部(1980 a ¹²) b¹³)が,「沿岸 の海の基本図」の作成にあたり,音波による底質探査

第2図 若狭湾海底地形分類図 1:平坦面,2:主な浅所(礁および島しょ),3:主な谷,4:緩やかな凹地 海上保安庁水路部(1980a,b):5万分の1沿岸海の基本図,海底地形地質調査報告若狭湾東部, 同若狭湾西部に基づき一部改変.

と同時に,湾内に広く設定した多数の測点において, 堆積物の粒度分析を行っている.これらの諸研究にお いて底質試料の得られた地点を第1図に示している が,約200地点に及び,湾内のほぼ全域を網羅してい る.ここではこれらの結果を中心に,一部水路部発行 の海図(海図番号第1164号:若狭湾)をも参照しつつ 当湾の底質について述べる.

(1) 中央粒径値および淘汰度

各測点の堆積物の中央粒径値($Md\phi$)の分布を第3 図に示す.この図に明らかなように、 ϕ 値は枝湾部、 島および礁群の周辺を除いて、沿岸から沖合に向かっ て単純な増加傾向を示す.しかし、湾の東西でその変 化傾向は著しく異なる.すなわち、西部域ではかなり 緩やかな増加傾向を示すのに対して、東部域では、陸 棚部が $1.5\sim2.0 \phi$ のかなり一様な Md 値分布を示し た後、斜面部で急激に値の増加がある.おそらく、前 述の海底地形の特徴を反映しているものと考えられ る. また,陸棚上の諸礁の周辺ではひときわ小さな Md 値を示し,隣接する平坦部とは明確に区別される.

淘汰度(分級度)の分布パターンも中央粒径値分布 とほぼ同様の傾向を示す(第4図).主湾平坦部では, 沿岸浅所でもっとも淘汰がよく,沖合深所に向かうに つれて次第に悪くなり,250m域では2を超える非常 に大きい淘汰値を示す.一方,東部では,1以下のか なり淘汰のよい底質が,沖合にまで陸棚部,とくに平 坦面IIの上を広くおおっているのが注目される.

(2) 堆積型区分

海底堆積物をその粒度組成特性をもとに、いくつか の堆積型に類型化する試みは多くの海域においてなさ れているが、その区分法は必ずしも各研究者間で一致 していない.加えて、筆者らの手許にある粒度分析結 果のすべてが、各研究者の提唱する手法に従えるに十 分なほど細密なものとは言えないなどの事情もあり、 ここでは上記の中央粒径値と淘汰度に注目して堆積型 の区分を行うのが現実的であろう.鎌田(1979)²⁰⁾も、

第4図 底質淘汰度(σφ)分布

各種堆積学的統計値の中で、FOLK and WARD (1957)²¹⁾ の指数が堆積環境に関してより正確な情報 を与えるとしながらも、とくに泥質堆積物においては、 彼等が提唱した基準値を測定によって求められないこ とが多く、実用性に欠ける点を指摘している.

第5図は各測点の底質について中央粒径値と淘汰度 との関係を図示したものであるが、当海域の堆積物は、 図のように少なくとも4つの型に区分し得る. Md値 0.5ϕ 以下の堆積物は礫(粒径:1mm以上)ないしは 粗砂($0.5\sim1$ mm)が主体であり、これらの堆積物に よって占められるところは砂礫底ないしは粗砂底と呼 べよう. 同様に、Md値 5ϕ 以上の堆積物はシルト・粘 土のいわゆる泥分を70%以上含み、このような堆積物 によって占められるところは泥底である.

一方、大部分の測点の堆積物の Md 値は 1 ϕ ないし 5 ϕ の範囲に含まれるが、これらは明瞭に 2 型に分け られる(第5図).一つはほぼ含泥率 20%以下で、中砂 ないし細砂などの砂質分が主体であるのに対し、他方 は 30%から 60%の範囲の比較的高い含泥率を示すこ とから、それぞれ砂質底および砂泥底と呼んで区別す ることが可能である。両者は淘汰度でもかなり差がみ られ、概して砂泥底で淘汰度が劣る。

(3) 底質分布

前節で示したような区分法に従って区分した4堆積 型に岩礁底を加えた5つの底質型について地図上でそ の分布をみると第6図のようになる.

岩礁は越前海岸や丹後半島沿いの急峻な海岸にほぼ 切れ目なく連なるほか,奥部の半島の突出端にも岩礁 底が付随する.また,沖合部の沈水礁群や浦島礁,玄

達瀬などの巨大礁でも一部岩盤が露出する.新野 (1950)⁹によれば,前記,越前堆列をつくる岩石は, 付近の陸上の新第三系の諸岩石,すなわち礫岩,砂岩, 泥岩,石灰質砂岩,玄武岩,石英粗面岩,同質凝灰岩 などである.一方,若狭湾奥の諸礁,たとえば敦賀半 島西方約5.5 kmの大グリ,同半島北方約5 kmのトー グリなどの諸礁の基盤は,付近の陸上の先第三系の岩 石に同定される.水路部(1980 a)¹²⁾も,上記2礁の岩 盤については,音響記録のパターンと付近陸上の地質 とから推して,花崗岩類からなるものであろうとしている.

砂礫はしばしば上記の基盤の上を薄く被覆する形で 存在する.たとえば、前記、敦賀半島西方の大グリお よびその北西方の礁、小浜湾北方、鋸埼北方の礁およ びその周辺には比較的広く礫が分布する.水路部(1980 a)¹²⁾によれば、越前岬付近の岩の分布域の沖合にも礫 質堆積物がある.

一方,主湾部はおおむね砂質底でおおわれるが,丹 後海を含む西部域では,丹後海湾口中央部の冠島,小 島周辺にみられる砂礫ないし粗砂底および砂質底を取 り囲んで砂泥底が広範囲に発達する.

泥底域は水深150 m 線付近以深の大陸斜面部に発達するほか,枝湾や付属湾の奥部に分布する.このうち,丹後海奥部の泥底域は堆積物中に陸上起源と思われる植物破片を多数含んでいる(YOKOYAMA and HAYASHI,1980)²²⁾ことからも明らかなように,由良川から流入する微細粒子の堆積によって形成されたものであるが,ここでは堆積物の含泥率と水深との間に明瞭な対応関係が認められる(第7図).

第1図に示した,由良川河口域から沖合に延びる定線に沿って,水深の増加に伴う堆積物含泥率の変化を 追うと,含泥率の最大値は水深 30 m ないし 40 m 域で 認められ,河口に近い浅所には砂質底が広がる.沿岸 の砂質底域からその沖の泥底域へは,水深 20 m 付近 の中間域を経てかなり急激に推移するが,このことは, 当海域では波浪の営力が影響を及ぼす下限水深,すな わち wave base がほぼこの付近に存在することを示 唆している.含泥率の推移傾向から考えて,微細粒子 の堆積域はほぼ水深 60 m 域までで,それより沖合は 対馬暖流分枝の影響下に入り,再び底層水の動きが活 発となるようである.

内湾部の底質型分布は、各湾でそれぞれ固有のパ ターンを示すが、概して分布型の形成には湾口部の地 形が大きく影響していると言えよう。外湾に対する露 出の程度を異にする敦賀湾、小浜湾および舞鶴湾の3 内湾を例にとれば、もっとも閉鎖的な舞鶴湾でほぼ全

第6図 若狭湾の底質型の分布

域にわたって泥底が広がるのに対し,もっとも開放的な 敦賀湾では,砂質底が湾口部を中心に広範囲にわたり, 湾奥部でもおおむね砂泥底によって占められ,泥底域 はごく湾入部に限定されるなど,舞鶴湾とは対照的な 底質型分布を示す.また,両者の中間的な露出度を示 す小浜湾では,底質型分布においてもほぼ両者の中間 的な分布パターンが見られる.

最近,磯部(1976)²³⁾は小浜湾の底質分布について論 じ,その中で,湾域の底質配置に及ぼす沖波の重要性 を指摘したが,上述の3内湾の間にみられる底質配 置の相違は,まさにこの指摘に沿ったものと言える. 彼によれば,小浜湾の底質分布は,沖波の進入の減少 に対応して砂質から泥質堆積物に変化しており,一次 的に湾内に供給された砕屑物質が,二次的に波や湾流 による移動で再配列された形跡があるという.また, それとともに,海底の形状も底質型の分布に影響を及 ぼし,砂質堆積物は急傾斜面に,泥質堆積物は緩傾斜 面上にそれぞれ分布する傾向にある.なお,小浜湾に ついては,昔の海図との比較および底生動物相の変遷 から,最近湾内の泥底域が拡大している可能性が指摘 されている(HAYASHI, 1983)¹⁷⁾

4-3. 海底地質構造

以下, 主に海上保安庁水路部 (1980 a,¹²⁾ b¹³⁾), 一部

第7図 水深の増加に伴う堆積物含泥率の変化(由良川沖 定線) 細野ほか(1979²⁴⁾)などに従って,若狭湾底の地質層序, 構造を記述する. (1) 層序区分

若狭湾海域の音響的層序区分、およびその陸上地質

との対比は,第2表のように,また,下記II w 層以上 の堆積層の全層厚と基底の深さは,それぞれ,第8図, 第9図のようにまとめられている.

Iw層:音響記録上で強い水平的反射ないし淡い

第2表 調査海域の音響的層序区分

区時	域 代	地質図「丹後由 良」(1/5万) (地質 調査所)による.	丹 生 山 地 (塚 野)	北陸・山陰沖 (石油技術協会 会 誌,1979)	海上保安庁水路部 (1980 a, b)
	現世	沖 積 層	沖 積 層	F	I w
	更新世	大山安山岩	段丘堆積物	Ľ	Πw
车笛二幻	鮮新世	蝠蝙山安山岩 本庄浜安山岩		D	IIIw
机弗二応	中新世	与謝 層 群 内 浦 層 群	国 見 累 層 糸 生 累 層	C B	IVw
先新第	5 三 紀	舞鶴層群	鬼 ケ 岳 累 層	А	Vw

注)海上保安庁水路部(1980a, b)¹²⁾¹³⁾に基づき総合,一部簡略化した.

第8図 若狭湾堆積層等層厚線図

IIw 層の基底(ほぼ第四系の基底に相当)までの堆積物の厚さ(単位はメートル)を示す。矢印は層厚が増すことを示す。

海上保安庁水路部(1980a,b):5万分の1沿岸海の基本図,海底地形地質調査報告若狭湾東部,同若狭湾西部に基づき総合.

954

第9図 若狭湾堆積層基底面深度および断層・リニアメント分布を示す図(基底深度はメートルで表わす) 矢印は凹部, 海上保安庁水路部(1980a,b):5万分の1沿岸海の基本図.海底地形地質調査報告若狭湾東部・同若狭湾西部により総合.

稿目のパターンを示す.若狭湾全域にわたって分布する. 層厚は沖合に比して沿岸部で厚く,越前岬から干飯埼 に至る海岸では50mに達する.その他,敦賀湾,敦賀 半島西岸基部などの湾入部で層厚が厚い.平坦面IIで は5m前後の層厚である.

下位のII w 層を不整合におおい,下位層にみられる 侵食谷を埋積する。しかし,水深 100 m 以深では下位 層との境界が不明瞭なところが多い。

II w 層:音響記録上,上・下の2層に分けられる. 上部層はほとんど水平的な縞目パターンを示す.下部 層には,外海側へ傾いた層理ないし前置層状の堆積形 態を示すところがある.層厚は,平坦面IIでは30~50 mであるが,湾北西部では上部層だけで80m,また, 後述の,越前岬一干飯埼の沖合に延びる堆積層基底面 の地溝状凹地では,100mに達する下部層が発達して いる.下位のIII w 層との間には局所的に著しい不整合 が認められる. IIIw層:弱い縞目ないし白抜きのパターンを示す. 大陸斜面以深では層厚数 10 cm 以上で下限は不明で ある.大陸棚上では,主に,大グリの南から北に延び る断層線の東側に分布し,数 10 m の層厚をもつとこ ろが多いが,V層に対して尖滅する形で堆積している ところも見られる.

IVw層:強弱の縞目パターンと比較的透明な層と の互層からなる.変位・変形が著しい.分布が判然と しないが,上記大グリの南から北北西に延びる断層の 東側ではV層に対して尖滅する形で分布するところが 見られる.水路部(1980b)¹³⁾によれば,海域北西部で は,経ケ岬〜新井埼にかけての陸上に分布する与謝層 群(中新統)の堆積岩や安山岩質火山岩類に続き,そ の延長と考えられる.

V w 層:表面に起伏に富んだ強い反射面をもつ不透明層.大グリ,トーグリなどの高まりは本層からなる.水路部(1980 a)¹²⁾では,前述のとおり,付近陸上

の地質をも考慮して,これを先第三系基盤と考えている.

(2) 断層その他の構造

前述のように、若狭湾内には周辺陸上に発達するの と同系の断層が、陸上と同様に密な分布をもって発達 している。それらのうち、もっとも顕著なものの一つ は、前記、越前海岸に沿って北西一南東に延びるもの で、陸上の柳ケ瀬断層の延長部に位置し、活断層研究 会編「日本の活断層図」(1982)²⁵⁾ その他で活断層とさ れている。

これと平行的で同一系統に属すると考えられるもの が、敦賀半島西方大グリの西側を北西一南東に延びる もので、堆積層基底図上で最大落差約50mの顕著な 左横ずれ断層であることが読みとられる(第9図).こ の断層の陸上延長は黒川断層(塚野,1965)⁹⁾に続いて いる.

同様の北西一南東の断層や基盤地形のリニアメント は小浜湾口とその西北方延長,丹後半島北東岸沿いな どにも見られる.

以上の断層と共軛の関係にあると考えられる北東 一南西方向の断層ないしリニアメントは、若狭湾底で は、1、2例を除いて周辺陸上におけるほどには顕著 でない.しかし、干飯埼沖6kmから南西方向には、大 陸棚外縁に並行に、堆積層基底の強い段差(最大55m) があり、同埼沖で方向を転じて北へ延びている。

一方,南北方向のリニアメントは陸上と同様に多く 認められる.越前岬一干飯埼沖合の断層群は,その一 つが上述の南西方向の大陸棚外縁の断層に続くもの で,越前の陸域と外海とを構造的に分け,最大落差140 mに達するところがある.

南北方向の断層は,敦賀半島立石岬北方および西方にも 見られる.長さは10km以下で短いが,最大落差は20m から50mに及ぶところがある.とくに,音響層序の最 上層(Iw層)に影響を与えていることは注目される.

以上の断層群は,若狭湾底基盤を大小数多くのブ ロックに分割している.たとえば,水路部(1980 a)¹²⁾ が指摘しているように,1)越前海岸に沿って干飯埼 沖から南東に延びる甲楽城断層,2)これと並行な大 グリ西側の断層,3)陸上の木ノ芽峠断層,4)これ と並行的な,干飯埼沖6kmより南西に延びる断層,に よって囲まれる平行四辺形は,この地域における一つ の構造地塊をなしていると思われる.また,これに隣 接して,大グリ西側の断層,陸上の熊川断層から前記 小浜湾口北西海底へ延びる断層,陸上の三方断層など に囲まれた,別の地塊が考えられる.

なお,断層とは別に,越前岬沖には大陸棚外縁との

間に、小さな凹凸のある帯状の地塁や溝状凹地の線状 配列がある。後者には、厚い堆積物が集積しているこ とは先に述べた。また、干飯埼西方11kmの大陸棚外 縁外側(前記平坦面IIIの内縁に沿い)の下の堆積層基 底面には、比深10m以下ながら、長さ12-13kmのト ラフ状の特異な凹みが存在していることは注目に値す る(第9図)。この他、堆積層基底面図上では、舞鶴湾、 栗田湾から東方に延びて冠島西方に至る、全長約30 kmの埋積谷の存在が読みとられる。

参考文献

- 1) 舞鶴海洋気象台(1974):若狭湾(I).沿岸海洋 研究ノート, 11, 143-150.
- 朝岡 治,橋本祐一(1984):若狭湾の概況.日本海 区水産研究所編「海洋生物資源の生産能力と海洋 環境に関する研究」一北陸沿岸地域調査成果報告 -, 315-341.
- 3) 中山一蔵(1956):若狭湾西部の海況に及ぼす陸水 の影響について、気象庁研報, 8,422-424.
- 4)田山利三郎(1928):丹後但馬地震地域の地体構造 及び最新地史について.齋藤報恩会学術報告,6, 1-14.
- 5) 水山高幸(1978):京都府の特異な地形・地質一地 形編一.京都府衛生部公害対策室,24 pp.
- 新野 弘(1950):若狭湾口の諸礁及びこれに近接 する大陸棚の底質.東京水産大学研報,37,1 -274.
- 工業技術院地質調査所:5万分の1「小浜」,「鋸 埼」,「冠島」,「丹後由良」の各図幅,同説明書.
- 8) 福井県(1955):福井県地質図, 同説明書, 34 pp.
- 9) 塚野善三(1965):若狭湾地域の地形と地質。日本 自然保護協会調査報告,16.
- 塚野善三(1969):15万分の1福井県地質図.福井
 県.
- HUZITA, K. (1962) : Tectonic development of the median zone (Setouti) of Southwest Japan since Miocene. J. Geosci. Osaka City Univ., 6, 103-144.
- 海上保安庁水路部(1980 a):沿岸の海の基本図 (5万分の1)「若狭湾東部」海底地形図「第6336 号8)および海底地形地質調査報告,33 pp.
- 13)海上保安庁水路部(1980b):沿岸の海の基本図 (5万分の1)「若狭湾西部」海底地形図(第6337 号4)および海底地形地質調査報告,35 pp.
- 14)林 勇夫(1978 a):舞鶴湾の平坦底における底生 動物の生態的分布-I,一春季相一。日本海洋学

会誌, 34, 24-35.

- HAYASHI, I. (1978b): Ecological distribution of macrobenthic animals on the level bottom in Turuga Bay. Mem. Coll. Agric., Kyoto Univ., 112, 1-28.
- 16)林 勇夫,浜中雄一(1979):若狭湾西部海域(丹後海)の底生動物群集-とくに多毛類群集における群集構造の特徴-.京都府立海洋センター研報, 3,38-65.
- HAYASHI, I. (1983): Distribution of macrobenthic animals on the flat bottom in Obama Bay. Bull. Japan. Soc. Sci. Fish., 49, 1765–1775.
- 18) HAYASHI, I. and S. KIYONO (1984): Macrobenthos in and offshore of Wakasa Bay in the Japan Sea. Mem. Coll. Agric., Kyoto Univ., 123, 1-26.
- 19) 水産庁日本海区水産研究所(1983):海洋生物資源 の生産能力と海洋環境に関する研究--北陸沿岸地 域調査資料集-, 127 pp.
- 20) 鎌田泰彦(1979):大陸棚堆積物の性状と分布

ー主として九州周辺海域を例として一.西海区水 産研究所編「第25回西海区水研ブロック漁海況予 報会議 第8回シンポジウム報告書」,37-60.

- 21) FOLK, R. L. and W. WARD (1957): Brazos river bar; a study in significance of grain size parameters. J. Sed. Petrol., 27, 3-26.
- 22) YOKOYAMA, H. and I. HAYASHI (1980): Zonation and species diversity of smaller macrobenthos in the westernmost part of Wakasa Bay (the Sea of Tango). J. Oceanogr. Soc. Japan, 36, 46-58.
- 23) 磯部一洋(1976):福井県小浜湾の底質分布と堆積 環境について.地調月報,27,225-230.
- 24) 細野武男,広島俊男,鎌田清吉(1976):小浜湾の
 第四系に関する音波探査.地調月報,27,15-22.
- 25)活断層研究会(編)(1982):日本の活断層,分布 図と資料.東京大学出版会,363 pp.
- 26) 茂木昭夫(1977):日本近海海底地形誌. 東京大学 出版会,90 pp.