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We study a monodromy preserving deformation �MPD� of linear differential equa-
tions on elliptic curves. As the first of our results, we describe asymptotic behaviors
of solutions to the MPD system when the elliptic curve degenerates to a rational
curve. As the second, we find explicit solutions for special values of parameters
where the MPD system is linearizable. Our solutions are written in terms of inte-
grals of theta functions. We also show that they converge to the hypergeometric
functions applying the above asymptotic formula when the elliptic curve degener-
ates to a rational curve. © 2009 American Institute of Physics.
�doi:10.1063/1.3204973�

I. INTRODUCTION

Monodromy preserving deformations �MPDs� of linear differential equations with rational
coefficients yield many interesting nonlinear special functions such as the Painlevé transcendents
and they have many applications in mathematics and mathematical physics. In this paper, we study
the MPD of Fuchsian differential equations with two regular singular points on elliptic curves.
Okamoto13,14 derived the Hamiltonian systems that govern the MPD of second-order Fuchsian
differential equations on an elliptic curve. Although his results are restricted to the deformation
with respect to configurations of points on an elliptic curve, in fact, we can consider the defor-
mation with respect to moduli of elliptic curves. Kawai6 derived the Hamiltonian system that
governs the MPD with respect to the moduli of elliptic curves. Nowadays other formulations for
the MPD on elliptic curves have been proposed by several authors.8,19 Those formulations might
be conceptually equivalent, however, the explicit relationship between them seem not to be clear.
In this paper, we mainly follow Korotkin–Samtleben’s formulation,8 which treats the MPD of
rank-two systems of linear differential equations on elliptic curves. We prove in Sec. II that
Korotkin–Samtleben’s formulation is equivalent to Okamoto–Kawai’s formulation which treats
second-order single differential equations �Proposition 2.5�. This result may be regarded as an
analog to the Garnier–Schlesinger correspondence in the rational case.15

The main purpose in the present paper is to study detailed properties of solutions to the MPD
system on elliptic curves. We treat two aspects of the problem. One is to describe asymptotic
behaviors of the solutions when the elliptic curve degenerates to a rational curve. The other is to
find explicit solutions to the MPD system for special values of parameters where the MPD system
is linearizable. In Sec. III, we study asymptotic behaviors of generic solutions to the MPD system
around the boundary in the moduli space of elliptic curves. As is mentioned above, the MPD
system on elliptic curves has two types of independent variables, namely, configurations of points
on an elliptic curve and moduli of elliptic curves. The fiber of the boundary point forms an
irreducible rational curve with one node �which we call a rational nodal curve�. In his paper,10 the
author formulated and studied a MPD problem on a rational nodal curve. Then we may naturally
expect that a solution to the MPD system on elliptic curves is approximated by a solution to the
MPD system on a rational nodal curve around the boundary point. In fact, we can prove that, given
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a solution to the MPD system on a rational nodal curve, there exists a unique solution to the MPD
system on elliptic curves whose “boundary value” coincides with the given solution �Theorem
3.1�. The discussions developed here are similar to Ref. 3. However, we need more delicate
treatment than Ref. 3 because our object is a system of partial differential equations. In Sec. IV, we
construct special solutions to the MPD system on elliptic curves. Several kinds of special solutions
have been found by Korotkin7 and Sasaki.16 In the present paper, we give another one. It is known
that the Painlevé equations for special values of the parameters have the so-called Riccati solu-
tions, which are linearizable. Also in our case, the MPD systems on elliptic curves with special
values of parameters have linearizable solutions. We show that those solutions are written in terms
of integrals of theta functions,

�
�

e−2��−1c0w�1�w�−c1�1�w − t�c1s�w − ti;��dw, i = 1,2,

where we set t1=0 , t2= t and the function s�w ;�� is defined by

s�z;�� =
�1�z − ���1�

�1�z��1�− ��
.

We call this kind of integrals Riemann–Wirtinger integrals,11,12,18 which may be regarded as an
analog on elliptic curves of the hypergeometric integrals �we remark that similar integrals appear
in the context of integral representations of solutions to the Knizhnik-Zamolodchikov-Bernard
equation in conformal field theory on the elliptic curve1,9�. As is proven in Theorem 3.1, the
hypergeometric integrals on a rational curve asymptotically approximate the Riemann–Wirtinger
integrals on elliptic curves. Applying this asymptotics, we can describe how the Riemann–
Wirtinger integrals converge to the hypergeometric integrals when the elliptic curve degenerates to
the rational curve �Theorem 4.2�.

Notation for elliptic functions. In this paper, we basically follow standard notations for elliptic
functions. One can consult, e.g., Refs. 2 and 20. For ��H, let E�=C /Z+Z� be the complex torus
with fundamental periods 1 and �. We define Weierstrass’ elliptic functions by

��z� =
1

z
+ �� � 1

z − �m + n��
+

1

m + n�
+

z

�m + n��2	 ,

��z� = − ���z� ,

and we introduce the function

z�z;w� ª ��z − w� − ��z� + ��w� .

On the other hand, we define Jacobi’s theta function by

�1�z� = �− 1 �
n=−�

+�

�− 1�ne��−1�n − 1/2�2�+2��−1�n−1/2�z,

which is an odd function of z. We introduce the following functions:

��z� ª �1��z�/�1�z� ,

s�z;�� ª
�1�z − ���1�

�1�z��1�− ��
.

The correspondence between Weierstrass and Jacobi’s pictures is given by

103501-2 Toshiyuki Mano J. Math. Phys. 50, 103501 �2009�

Downloaded 19 Nov 2009 to 130.54.110.33. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



��z� = ��z� + 	1z, ��z� = − ���z� − 	1,

where

	1 = −
1

3

�1�

�1�
.

II. MPD OF LINEAR DIFFERENTIAL EQUATIONS ON ELLIPTIC CURVES

In this section, we review the MPD theories of Fuchsian differential equations on elliptic
curves. First, we follow Okamoto’s formulation, which treats second-order single differential
equations. Second, we follow Korotkin–Samtleben’s formulation, which treats rank-two systems
of linear differential equations. Thereafter, we give an explicit correspondence between these two
formulations.

We consider the following second-order Fuchsian differential equation on E�:

d2w

dz2 = Q�z�w , �1�

where

Q�z� = 
 + a1��z� + a2��z − t� + 3
4��z − �1� + 3

4��z − �2� + Hz�z;t� − �1z�z;�1� − �2z�z;�2� .

�2�

The Riemann scheme of �1� �that is, the scheme indicating the characteristic exponents at each
singular point� reads


 �0� �t� ��k��k = 1,2�
1
2 �1 + c1� 1

2 �1 + c2� 3
2

1
2 �1 − c1� 1

2 �1 − c2� − 1
2

; z� ,

where ai= �ci
2−1� /4, i=1,2.

In what follows, we make the following assumptions on the Eq. �1�.

�A1� At �k, k=1,2, no solution have logarithmic singularities.
�A2� The differential equation �1� is irreducible, that is, the differential operator �d2 /dz2�
−Q�z� does not decompose into any product of differential operators of lower order.
�A3� Neither c1 nor c2 is an integer.

The coefficients H and 
 are expressible in terms of the other parameters by the assumption �A1�,

H = M��1
2 − �2

2 + N��1 + �2� − �1 + �2� , �3�


 = M��2
2
z��1;t� − �1

2
z��2;t� − N��1z��1;t� + �2z��2;t�� + �1z��2;t� − �2z��1;t�� , �4�

where M =1 / �z��1 ; t�−z��2 ; t��, N=z��1 ;�2�, and �k=a1���k�+a2���k− t�+3���1−�2� /4.
Proposition 2.1: (Okamoto14) The MPD of the Fuchsian equation (1) on E� with a deforma-

tion parameter t is governed by the Hamiltonian system with the Hamiltonian function H,

��k

�t
=

�H

��k
,

��k

�t
= −

�H

��k
, k = 1,2. �5�
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Proposition 2.2: (Kawai6) We introduce another function by

K ª

1

2��− 1
�
 + H��t� − �1���1� − �2���2�� , �6�

then the MPD of (1) with a deformation parameter � is governed by the Hamiltonian system with
the Hamiltonian function K,

��k

��
=

�K

��k
,

��k

��
= −

�K

��k
, k = 1,2. �7�

Next, we consider the following system of differential equations:

dY

dz
= A�z�Y , �8�

where

A�z� = � 0 + 1��z� − 1��z − t� �1s�z;�� + �2s�z − t;��
�1s�z;− �� + �2s�z − t;− �� − 0 − 1��z� + 1��z − t�

	 , �9�

with the relations

− 1
2 − �1�1 = −

c1
2

4
, − 1

2 − �2�2 = −
c2

2

4
�10�

for some constants c1 ,c2. The matrix A�z� has the following quasiperiodicities:

A�z + 1� = A�z� , �11�

A�z + �� = �e��−1� 0

0 e−��−1�	A�z��e−��−1� 0

0 e��−1�	 . �12�

Hence, the global behavior of a fundamental system of solutions Y�z� to �8� is described as
follows:

Y�z + 1� = Y�z�M0, �13�

Y�z + �� = �e��−1� 0

0 e−��−1�	Y�z�M� �14�

and

Y�z� = G1�I + O�z���zc1/2 0

0 z−c1/2 	C1 at z = 0,

=G2�I + O�z − t����z − t�c2/2 0

0 �z − t�−c2/2 	C2 at z = t ,

where M0 ,M� ,C1 ,C2�SL�2,C�.
Definition 2.1: We put
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M1 = C1
−1�e��−1c1 0

0 e−��−1c1
	C1,

M2 = C2
−1�e��−1c2 0

0 e−��−1c2
	C2.

For a fundamental system of solutions Y�z� to �8�, we define the monodromy data associated with
Y�z� by the set of matrices �M0 ,M� ,M1 ,M2. We note that these matrices obey the unique relation

M�
−1M0

−1M�M0 = M1M2. �15�

Proposition 2.3: (Korotkin-Samtleben8) Let Y�z ; t� be a family of fundamental systems of
solutions to (8). Then the monodromy matrices of Y�z ; t� are independent of t, if and only if Y�z ; t�
and �=��t� satisfy the following system of differential equations:

�Y

�t
�z;t� = B�z;t�Y�z;t�,

��

�t
= − 21, �16�

where

B�z;t� = � � + 1��z − t� − �2s�z − t;��
− �2s�z − t;− �� − � − 1��z − t�

	 �17�

and � is some function of t and independent of z.
Remark 2.1: The parameter � is not essential because it comes from ambiguity of the normal-

ization of Y�z ; t�.
Proposition 2.4: (Reference 8) Let Y�z ;�� be a family of fundamental systems of solutions to

(8). Then the monodromy matrices of Y�z ;�� are independent of �, if and only if Y�z ;�� and �
=���� satisfy the following system of differential equations:

�Y

��
�z;�� = C�z;��Y�z;��, ��− 1

��

��
= 0, �18�

where

C�z;��

=�� +
1

4��− 1
���z�2 + ���z� − ��z − t�2 − ���z − t�� −

�1

2��− 1

�s

��
�z;�� −

�2

2��− 1

�s

��
�z − t;��

−
�1

2��− 1

�s

��
�z;− �� −

�2

2��− 1

�s

��
�z − t;− �� − � −

1

4��− 1
���z�2 + ���z� − ��z − t�2 − ���z − t�� �

�19�

and � is some function of � and independent of z.
In this paper, we choose �, � such as �=−��−11, �= �0−��−1c0� /2, respectively, for some

constant c0. From the integrability conditions between �8�, �16�, and �18�,

�A

�t
−

�B

�z
+ �A,B� = 0,

�A

��
−

�C

�z
+ �A,C� = 0,

we obtain the following MPD system of differential equations for the coefficients of A�z�:8

��

�t
= − 21, �20�
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�0

�t
= − �1�2

�s

��
�t;�� + �2�1

�s

��
�t;− �� , �21�

�1

�t
= − �1�2s�t;�� + �2�1s�t;− �� , �22�

��1

�t
= − 2��− 11�1 − 21�1��t� − 21�2s�t;− �� , �23�

��2

�t
= − 2��− 11�2 + 20�2 + 21�2��t� + 21�1s�t;�� , �24�

��1

�t
= 2��− 11�1 + 21�1��t� + 21�2s�t;�� , �25�

��2

�t
= 2��− 11�2 − 20�2 − 21�2��t� − 21�1s�t;− �� , �26�

and

2��− 1
��

��
= 20, �27�

2��− 1
�0

��
= − ��1�1 + �2�2������ + �1�2

�2s

��2 �t;�� − �2�1
�2s

��2 �t;− �� , �28�

2��− 1
�1

��
= �1�2

�s

��
�t;�� − �2�1

�s

��
�t;− �� , �29�

2��− 1
��1

��
= 2��− 1�0 − ��− 1c0��1 + 21�2

�s

��
�t;− �� + 1�1�2���� − ��t�2 + ��t�� ,

�30�

2��− 1
��2

��
= 2��− 1�0 − ��− 1c0��2 − 21�1

�s

��
�t;�� − 1�2�2���� − ��t�2 + ��t�� ,

�31�

2��− 1
��1

��
= − 2��− 1�0 − ��− 1c0��1 − 21�2

�s

��
�t;�� − 1�1�2���� − ��t�2 + ��t�� ,

�32�

2��− 1
��2

��
= − 2��− 1�0 − ��− 1c0��2 + 21�1

�s

��
�t;− �� + 1�2�2���� − ��t�2 + ��t�� .

�33�
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Remark 2.2: This system of differential equations �20�–�33� is left invariant by the following
transformation:

��,0,1,�1,�2,�1,�2,�,�� � �− �,− 0,− 1,�1,�2,�1,�2,− �,− �� .

Proposition 2.5: Two systems of the MPD equations �5�, �7�, and �20�–�33� are equivalent to
each other. In particular, the explicit correspondence between the dependent variables of two
systems is given as follows:

�1 + �2 = � + t , �34�

�1 + �2s�t;��−1���� − �1� + ��� − �2� + ��t� − ����� = 0, �35�

�1 = 0 − �1 − 1/2����1 − t� + �1 + 1/2����1� − 1
2���1 − �2� , �36�

�2 = 0 − �1 − 1/2����2 − t� + �1 + 1/2����2� − 1
2���2 − �1� . �37�

Note that �1 and �2 can be recovered from the relations in (10).
Proof: First of all, note that the function

�1 + �2s�z;��−1s�z − t;�� �38�

is meromorphic in z and has two zeros on E�, which we denote by ��1� , ��2�. Here we use the
symbol � · � in order to indicate an equivalence class modulo the period lattice. We can choose
complex numbers �1 ,�2 which are representatives for ��1� , ��2�, respectively, such as �1+�2=�
+ t by Abel’s theorem. We introduce the following function of z:

r�z� = s�z;�1�s�z − t;� − �1�s�t;� − �1� . �39�

Then r�z� is a quasiperiodic function whose quasiperiodicity is given by

r�z + 1� = r�z�, r�z + �� = e2��−1�r�z� ,

and has poles �0� , �t� and zeros ��1� , ��2�. We transform the dependent variables of the system �8�
into W�z�=R�z�Y�z�, where

R�z� = �r�z�−1/2 0

0 r�z�1/2 	 .

If we find the single differential equation for the first component of W�z�=� w1�z�
w2�z� �, then we obtain

a differential equation of the type �1�, which has two apparent singularities ��1� , ��2�. By com-
puting the coefficients of that equation, we obtain the relations �34�–�37�. �

III. ASYMPTOTIC ANALYSIS ON SOLUTIONS TO THE MPD SYSTEM AROUND q=0

In this section, we study asymptotic behaviors of solutions to the MPD system in Sec. II. In
Ref. 10 the author formulated and solved the MPD system on a rational nodal curve with two
regular singular points. Then we may expect that solutions to the MPD system on elliptic curves
are approximated by solutions to the MPD system on the rational nodal curve around the boundary
point in the moduli space of elliptic curves. We shall prove that it is valid under some condition
�Theorem 3.1�.

First of all, we recall the standard MPD theory on P1�C� with four regular singular points
�0,1 ,s ,�: consider
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dZ

dx
= B�x�Z , �40�

where

B�x� =
B0

x
+

B1

x − 1
+

B2

x − s
,

Bi = �pi qi

ri − pi
	, i = 0,1,2, �41�

and assume that

B� ª − B0 − B1 − B2 = �− c0/2 0

0 c0/2 	 , �42�

− pi
2 − qiri = −

ci
2

4
, i = 0,1,2, �43�

for some constants c0 ,c1 ,c2. We take a fundamental system of solutions normalized as follows:

Z�x� = �I + O�x−1��xT0 at x = �

= K1�I + O�x − 1���x − 1�T1C1 at x = 1

= K2�I + O�x − s���x − s�T2C2 at x = s

= K0�I + O�x��xT0C0 at x = 0, �44�

where Ti= � ci/2 0
0 −ci/2

�, i=0,1 ,2. We define the monodromy data associated with Z�x� by the follow-
ing set of matrices:

�N� = e−2��−1T0, Ni = Ci
−1e2��−1TiCii=0,1,2. �45�

We note that these matrices obey the unique relation

N�N0N1N2 = I . �46�

The following fact is well known.
Proposition 3.1: (Jimbo–Miwa–Ueno4) Let Z�x ;s� be a family of fundamental solutions to

(40). Then the monodromy data associated with Z�x ;s� are independent of s, if and only if the
coefficients �Bii=0,1,2 satisfy the following system of differential equations, which is called the
Schlesinger system:

dB0

ds
=

1

s
�B2,B0� ,

dB1

ds
=

1

s − 1
�B2,B1� , �47�

dB2

ds
= −

1

s
�B2,B0� −

1

s − 1
�B2,B1� .

Moreover, if the connection matrix C0 is also independent of s, then K0 in (44) satisfies the
following differential equation:
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dK0

ds
= �0K0, �48�

where �0= �1 /s�B2.
We introduce the �-function associated with a solution �B0 ,B1 ,B2 to �47� by

d

ds
log ��s� = tr�B0

s
+

B1

s − 1
	B2.

Proposition 3.2: (Jimbo–Miwa5) The components �K0�ab �a ,b� �1,2� of the solution matrix
K0 to (48) can be written in terms of �-quotients associated with �B0 ,B1 ,B2,

�K0�ab = const q�� 0

a b
; B0,B1,B2� ,

where q� � 0
a b ; B0 ,B1 ,B2=�� � 0

a b
 /� and �� � 0

a b
 stands for the elementary Schlesinger trans-

formation from � of the type �� � 0
a b

 (see Ref. 5 for details).
Noting that K0

−1B0K0=T0 and det K0=1, we have the following expression of K0:

K0 = � k − q0�c0k�−1

− q0
−1�p0 −

c0

2
	k �c0k�−1�p0 +

c0

2
	 � �49�

and

k = const q�� 0

1 1
; B0,B1,B2� . �50�

Remark 3.1: It was proved in Ref. 10 that �Bii=0,1,2 and k solve the MPD system on a rational
nodal curve with two regular singular points.

In what follows, we use the notations q=e2��−1�, x=e2��−1z, �=e2��−1�, s=e2��−1t. Before we
proceed to the asymptotic analysis on the MPD system �20�–�33�, we explain a basic idea about it.
Suppose that there exists a solution �� ,0 ,1 ,�1 ,�2 ,�1 ,�2 to the MPD system �20�–�33�, such
that they converge as follows:

� = e2��−1� → 0,

i → i
0, i = 0,1,

�i → �i
0, i = 1,2,

�i → �i
0, i = 1,2,

as q→0, where i
0=i

0�s�, �i
0=�i

0�s�, �i
0=�i

0�s� are meromorphic functions of s. Then the associ-
ated linear differential equation �8� should converge to

d

dx
Y0�x� = A0�x�Y0�x� ,

where

A0�x� =
A0

0

x
+

A1
0

x − 1
+

A2
0

x − s
�51�

and
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A0
0 = �0

0/2��− 1 0

− ��1
0 + �2

0� − 0
0/2��− 1

	 ,

A1
0 = �1

0 �1
0

�1
0 − 1

0 	, A2
0 = �− 1

0 �2
0

�2
0 1

0 	 .

The differential equation �51� is related to �40� by the gauge transformation,

Bi = G−1Ai
0G, i = 0,1,2,

with

G = �1 −
��− 1��1

0 + �2
0�

0
0

0 1
� .

Since the monodromy data should be preserved along the solution of the MPD system, we see that
the monodromy data �M0 ,M� ,M1 ,M2 on the elliptic curve should correspond to the monodromy
data �N0 ,N� ,N1 ,N2 on the rational curve as follows:

N� = M0
−1, N1 = M1, N2 = M2,

N0 = �N1N2N��−1 = M�
−1M0M�.

However, this correspondence between two monodromy data is not one to one. So we give
attention to the differential equation �27�. We could expect that � behaves like ��qc0�0 as q
→0 by noting that 0

0=��−1c0. Substituting it into �12�, we have

�q−c0/2 0

0 qc0/2 	Y�qx;q� → ��0
1/2 0

0 �0
−1/2 	Y0�x�M�,

as q→0, which suggests that the monodromy matrix M� corresponds to the connection matrix C0

in �44� joining x=� and x=0 on the rational curve. Actually, put

M� = C0, M0 = C0N0C0
−1, M1 = N1, M2 = N2, �52�

then we see that they must obey the relation

M�
−1M0

−1M�M0 = M1M2 �53�

because we have M�
−1M0

−1M�M0=N0
−1N�

−1=N1N2. The relation �53� coincides with the one among
monodromy matrices on the elliptic curve �15�. Therefore, the correspondence �52� between the
data �N� ,N0 ,N1 ,N2 ,C0 and �M� ,M0 ,M1 ,M2 is one to one. By the above consideration and
Proposition 3.1 and 3.2, we may expect that a set of solutions �B0 ,B1 ,B2 ,k to the Schlesinger
system �47� and the differential equation �48� uniquely corresponds to a solution
�� ,0 ,1 ,�1 ,�2 ,�1 ,�2 to �20�–�33� in the limit of q→0.

Theorem 3.1: We assume 0�Rc0�1 and choose a constant � satisfying 0��
�min�Rc0 ,1−Rc0�. For a given set of solutions �B0 ,B1 ,B2 ,k to the Schlesinger system (47) and
the differential equation (48), put

�0 = � c0k

p0 + c0/2	
2

,

0
0 = ��− 1c0,
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1
0 = − p2 −

q0r2

p0 + c0/2
,

�i
0 = qi −

2q0pi

p0 + c0/2
− � q0

p0 + c0/2	
2

ri, i = 1,2,

�i
0 = ri, i = 1,2.

We introduce the following subset in P1�C�:

E�Bi,k
= �poles of the functions Bi�i = 0,1,2� and k � �zeros of the functions p0

+ c0/2 and k

and take a simply connected relatively compact open set V�P1�C� \ ��0,1 ,��E�Bi,k
�, then there

exists a constant K�0, such that 1 /K� ��0�s���K, � j
0�s���K, ��i

0�s���K, ��i
0�s���K �j

=0,1 , i=1,2� for any s�V. Then, for any ��0, there exists an ��0, such that (20)–(33) admit
a unique solution �� ,0 ,1 ,�1 ,�2 ,�1 ,�2 in the sector S�,�= �q�C �0� �q��� , �arg q��� with
the properties

�q−c0� − �0� � K�q��, �0 − 0
0� � L�q��, �1 − 1

0� � K�q��, �54�

��i − �i
0� � K�q��, ��i − �i

0� � K�q��, i = 1,2, �55�

where L is a constant such as 0�L��� /2. These estimates are uniform on s�V.
Proof: Since the proof is quite technical, we give only an outline. The discussion here is very

similar to Refs. 17 and 3. We construct a solution of �27�–�33� with respect to the variable q by
successive approximation starting from ��0 ,0

0 ,1
0 ,�1

0 ,�2
0 ,�1

0 ,�2
0: we define ��k��q� ,0

�k��q� ,1
�k�

��q� ,�i
�k��q� ,�i

�k��q� �k=0,1 ,2 , . . .� inductively by ��0��q�=�0 , . . . , �2
�0��q�=�2

0 and

q−c0��k��q� = �0 + �
0

q 0
�k−1��q�� − ��− 1c0

��− 1q�
q�−c0��k−1��q��dq�,

0
�k��q� = 0

0 + �
0

q R0
���k−1��q��,i

�k−1��q��,�i
�k−1��q��,�i

�k−1��q��;s,q��

�2��− 1�2q�
dq�,

1
�k��q� = 1

0 + �
0

q R1
���k−1��q��,0

�k−1��q��, . . . ,q��

�2��− 1�2q�
dq�,

�i
�k��q� = �i

0 + �
0

q R�i
���k−1��q��,0

�k−1��q��, . . . ,q��

�2��− 1�2q�
dq�, i = 1,2,

�i
�k��q� = �i

0 + �
0

q R�i
���k−1��q��,0

�k−1��q��, . . . ,q��

�2��− 1�2q�
dq�, i = 1,2,

where R0
�� ,i ,�i ,�i ;s ,q� , . . . ,R�2

�� ,i ,�i ,�i ;s ,q� denote the right hand sides of the Eqs.
�28�–�33� and the path of integrals is the line segment �q�=rei� �0�r� �q� , �=arg q. Then we
can prove that ��=limk→� ��k� , . . . , �2=limk→� �2

�k� gives a unique solution to �27�–�33� satisfy-
ing the inequalities �54� and �55�. Next, we have to verify that the solution �� ,i ,�i ,�i con-
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structed in above satisfies the differential equations �20�–�26� with respect to the variable s. We
consider the following differential equation:

�Y�x�
�x

= A0�x�Y�x� , �56�

where

A0�x� =
A0

0

x
+

A1
0

x − 1
+

A2
0

x − s
�57�

and

A0
0 = �0

0/2��− 1 0

− ��1
0 + �2

0� − 0
0/2��− 1

	 ,

A1
0 = �1

0 �1
0

�1
0 − 1

0 	, A2
0 = �− 1

0 �2
0

�2
0 1

0 	 .

Let Y0�x� be a fundamental solution to �56� normalized as follows:

Y0�x� = G�I + O�x−1��xT0 at x = �

=G1
0�I + O�x − 1���x − 1�T1C1 at x = 1

=G2
0�I + O�x − s���x − s�T2C2 at x = s

=G0
0�I + O�x��xT0C0 at x = 0,

where G= � 1 q0�p0+c0/2�−1

0 1
� and G0

0 is defined by G0
0= � l 0

r0l/c0 l−1 � with some l�0. Put

F�z;q� =
1

2��− 1q�
0 − ��− 1c0

2
+

1

4��− 1
���z�2 + ���z� − ��z − t�2 − ���z − t��

−
�1

2��− 1

�s

��
�z;− �� −

�2

2��− 1

�s

��
�z − t;− ��

−
�1

2��− 1

�s

��
�z;�� −

�2

2��− 1

�s

��
�z − t;��

−
0 − ��− 1c0

2
−

1

4��− 1
���z�2 + ���z� − ��z − t�2 − ���z − t�� � ,

and we set

U�z;q� = 1 + �
k=1

� �
0

q

dq1�
0

q1

dq2 ¯ �
0

qk−1

dqkF�z;q1�F�z;q2� ¯ F�z;qk� .

The integration is taken along the line segment joining 0 and q in S�,�. Then we can prove that the
infinite sum in the right hand side is uniformly convergent on s�V. Put

Y�z;q� = U�z;q�Y0�x� ,

then it satisfies the linear differential equation �8� associated with �� ,i ,�i ,�i and
limq→0 Y�z ;q�=Y0�x�. By construction, it is obvious that the monodromy matrices M0 ,M1 ,M2 are
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independent of s. Hence it is enough to prove that the matrix M� is also independent of s. By �12�,
we have

lim
q→0

�q−c0/2 0

0 qc0/2 	Y�qx;q� = ��0
1/2 0

0 �0
−1/2 	Y0�x�M�. �58�

On the other hand, making use of the expansion of Y0�x� around x=0, we have

�q−c0/2 0

0 qc0/2 	Y0�qx� = �q−c0/2 0

0 qc0/2 	G0
0�I + O�qx���qx�T0C0.

Therefore, taking the limit q→0, we have

lim
q→0

�q−c0/2 0

0 qc0/2 	Y0�qx� = � l 0

0 l−1 	xT0C0. �59�

Comparing �1,1�-component of �58� and �59� at x=�, we obtain

C0 = M�, l = �0
1/2 =

c0k

p0 + c0/2
.

By the latter half part of Proposition 3.1, we can conclude that C0=M� is also independent of s.
�

IV. SPECIAL SOLUTIONS AND THEIR ASYMPTOTIC BEHAVIOR

In this section, we find explicit solutions to the MPD system on elliptic curves for special
values of parameters where the MPD system is linearizable. In the rational case, such a kind of
special solutions are known as the Riccati solutions. For example, in the PVI-case, the Riccati
solutions are solved in terms of Gauss’s hypergeometric function. It is also known that the hyper-
geometric function has Euler’s integral representation. Therefore, we may expect that our special
solutions have some kind of integral representation. We show that our solutions can be written by
the following integrals: for i=1,2,

�
�

e−2��−1c0w�1�w�−c1�1�w − t�c1s�w − ti;��dw ,

where we set t1=0 , t2= t. We call this type of integrals Riemann–Wirtinger integrals.11,12,18 In the
latter part of this section, applying Theorem 3.1 to our special solutions, we prove that the
Riemann–Wirtinger integrals converge to the hypergeometric integrals as q→0.

We consider the case where c1+c2=0 for c1�” Z and �1=�2=0 on �8�,

dY

dz
= A�z�Y ,

A�z� = �0 + 1��z� − 1��z − t� �1s�z;�� + �2s�z − t;��
0 − 0 − 1��z� + 1��z − t�

	 . �60�

Then the MPD systems �20�–�33� reduce to

��

�t
= − 21,

�0

�t
= 0,

�1

�t
= 0, �61�

��1

�t
= − 2��− 11�1 − 21�1��t� − 21�2s�t;− �� , �62�
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��2

�t
= − 2��− 11�2 + 20�2 + 21�2��t� + 21�1s�t;�� �63�

and

2��− 1
��

��
= 20,

�0

��
= 0,

�1

��
= 0, �64�

2��− 1
��1

��
= 21�2

�s

��
�t;− �� + 1�1�2���� − ��t�2 + ��t�� , �65�

2��− 1
��2

��
= − 21�1

�s

��
�t;�� − 1�2�2���� − ��t�2 + ��t�� . �66�

By �61� and �64�, we can set

0 = ��− 1c0, 1 = c1/2 �67�

and

� = c0� + c1t − c� �68�

for some constants c0 ,c�.
Proposition 4.1: Equation (60) is solvable. We have a fundamental system of solutions to �60�

written as follows:

Y�z� = �y11 e��−1c1ty11��1�
0

z

��w�dw + �2�
0

z

��w�dw	
0 y11

−1 � , �69�

where

y11 = e��−1�c0z−�c1/2�t��1�z�c1/2�1�z − t�−c1/2,

��w� = e−2��−1c0w�1�w�−c1�1�w − t�c1s�w;�� , �70�

��w� = e−2��−1c0w�1�w�−c1�1�w − t�c1s�w − t;�� . �71�

Proof: Put Y = � y1

y2
�, then y2 must satisfy the following first-order linear differential equation:

dy2

dz
= �− ��− 1c0 −

c1

2
��z� +

c1

2
��z − t�	y2.

It is solved by

y2 = d2e−��−1�c0z−�c1/2�t��1�z�−c1/2�1�z − t�c1/2 = d2y11
−1,

where d2 is an integration constant. Then y1 must satisfy the following first-order nonhomoge-
neous linear differential equation:

dy1

dz
= ���− 1c0 +

c1

2
��z� −

c1

2
��z − t�	y1 + ��1s�z;�� + �2s�z − t;���y2.

It is solved by
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y1 = d1y11 + y11�
0

z

��1s�w;�� + �2s�w − t;���y2�w�y11�w�−1dw ,

where d1 is an integration constant. Hence we obtain the fundamental system of solutions �69�. �

We shall compute the monodromy matrices of Y�z� along the loops drawn in Fig. 1. As for l0

and l�, we have

Yl0�z� = Y�z�M0, Yl��z� = �e��−1� 0

0 e−��−1�	Y�z�M�,

where

M0 = �e��−1c0 e��−1c0N0

0 e−��−1c0
	, M� = �e��−1c� e��−1c�N�

0 e−��−1c�
	 , �72�

and Y�z� can be expanded at z=0 and t as follows:

Y�z� = �g11
�1� c1

−1�1g11
�1�−1

0 g11
�1�−1 	�I + O�z��zT1 at z = 0,

=�g11
�2� − c1

−1�2g11
�2�−1

0 g11
�2�−1 	�I + O�z − t���z − t�−T1C2 at z = t ,

where

g11
�1� = e−��−1c1t/2�1�

c1/2�1�− t�−c1/2, g11
�2� = e��−1�c0−c1/2�t�1�

−c1/2�1�t�c1/2,

and C2= � 1 N2

0 1
�. Here we define Nj for j=0,2 ,� by

Nj = �1�
�j

��w�dw + �2�
�j

��w�dw , �73�

and the paths of integrals � j �j=0,2 ,�� are given in Fig. 2. Hence we obtain the monodromy
matrices along the loops l1 and l2,

Yl1�z� = Y�z�M1, Yl2�z� = Y�z�M2,

where M1, M2 are given by

M1 = �e��−1c1 0

0 e−��−1c1
	 , �74�

1

τ

l∞

l0

l1 l2
0

t

FIG. 1. Loops on E�.
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M2 = �1 N2

0 1
	−1�e−��−1c1 0

0 e��−1c1
	�1 N2

0 1
	 . �75�

We have a unique relation among the generators l0, l1, l2, l� of the fundamental group of E� and,
therefore, we have a corresponding relation among the monodromy matrices M0, M1, M2, M�,

M�
−1M0

−1M�M0 = M1M2. �76�

Substituting �72�, �74�, and �75� into �76�, we have

�1 − e−2��−1c��N0 + �e−2��−1c0 − 1�N� = �1 − e2��−1c1�N2. �77�

On the other hand, from the homotopy equivalence relation among the paths of integrals �0, �2,
��, we have

�1 − e−2��−1c���0 + �e−2��−1c0 − 1��� = �1 − e2��−1c1��2. �78�

Making use of the above computations on the monodromy matrices, we can solve the reduced
MPD system �61�–�66�.

Theorem 4.1: Assume that c1�” Z. We put �=c0�+c1t−c� and

��k� = ��1
�k�

�2
�k� 	 =�− e2��−1�c0−c1�t�

�k

��w�dw

e2��−1�c0−c1�t�
�k

��w�dw �
for k=0,2 ,�. Then ��k� �k=0,2 ,�� satisfy the following system of linear differential equations:

��1

�t
= − ���− 1 + ��t��c1�1 − c1s�t;− ���2, �79�

��2

�t
= ���− 1�2c0 − c1� + c1��t���2 + c1s�t;���1, �80�

4��− 1
��1

��
= 2c1

�s

��
�t;− ���2 + c1�2���� − ��t�2 + ��t���1, �81�

: branch cut for Φ(w) and Ψ(w)

0

τ

1
γ0

γ∞

t

γ2

FIG. 2. Paths of integral.
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4��− 1
��2

��
= − 2c1

�s

��
�t;���1 − c1�2���� − ��t�2 + ��t���2. �82�

The solution space of the system (79)–(82) is of two dimensions. Three of the solutions ��k�, k
=0,2 ,�, obey the unique linear relation

�1 − e−2��−1c����0� + �e−2��−1c0 − 1����� = �1 − e2��−1c1���2�. �83�

Proof: We have obtained the following correspondence between the coefficients of the differ-
ential equations �60� and the monodromy data of �60�,

�N�

N0

N2
� =�

�
��

��w�dw �
��

��w�dw

�
�0

��w�dw �
�0

��w�dw

�
�2

��w�dw �
�2

��w�dw
���1

�2
	 .

Since the relation �77� is unique, two of Nk’s can be taken freely. It means that the 3�2 matrix in
the right hand side is of rank two. Particularly, the square matrix,

F =����

��w�dw �
��

��w�dw

�
�0

��w�dw �
�0

��w�dw� ,

is invertible by the assumption c1�” Z. Hence we have

��1

�2
	 = F−1�N�

N0
	 ,

which means that

��1
�k�

�2
�k� 	 = det F−1�− �

�k

��w�dw

�
�k

��w�dw �, k = �,0,

form a system of fundamental solutions to the system of linear differential equations �79�–�82�. On

the other hand, det� �1
��� �1

�0�

�2
��� �2

�0� �=det F−1 satisfies the following differential equations:

�

�t
det F−1 = 2��− 1�c0 − c1�det F−1,

�

��
det F−1 = 0.

So we may take det F−1=e2��−1�c0−c1�t. The linear relation �83� follows from �78�. �

Next, we shall describe the behavior of the solutions as q→0. The differential system �60�
tends to the following system on P1�C� as shown in Sec. III:
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dY0

dx
= A0�x�Y0, �84�

where

A0�x� =
1

x
�c0/2 0

0 − c0/2 	 +
1

x − 1
�c1/2 �1

0

0 − c1/2
	 +

1

x − s
�− c1/2 �2

0

0 c1/2
	 .

Proposition 4.2: Equation (84) is solvable, whose fundamental solution is given by

Y0�x� = �y0,11 y0,11��1
0�

1

x

�0�w�dw + �2
0�

1

x

�0�w�dw	
0 y0,11

−1 � , �85�

where

y0,11 = xc0/2�x − 1�c1/2�x − s�−c1/2

and

�0�w� = w−c0�w − s�c1�w − 1�−c1−1, �0�w� = w−c0�w − s�c1−1�w − 1�−c1.

Proof: The statement can be proven in the similar way to Proposition 4.1. Here we remark that
the lower end 1 of the integrals in �85� corresponds to the lower end 0 in �69� because we adopt
the coordinate x=e2��−1z on the rational curve. �

We can expand the solution Y0�x� as follows:

Y0�x� = G�I + O�x−1��xT0C� at x = �

=G1
0�I + O�x − 1���x − 1�T1 at x = 1

=G2
0�I + O�x − s���x − s�−T1�1 N2

0 1
	 at x = s

=G0
0�I + O�x��xT0C��e��−1c� e��−1c�N�

0 e−��−1c�
	 at x = 0,

where

C� = �1 �1 − e−2��−1c0�−1N0

0 1
	 ,

G = �1 − c0
−1��1

0 + �2
0�

0 1
	 ,

G1
0 = ��1 − s�−c1/2 c1

−1�1
0�1 − s�c1/2

0 �1 − s�c1/2 	 ,

G2
0 = �sc0/2�s − 1�c1/2 − c1

−1�2
0s−c0/2�s − 1�−c1/2

0 s−c0/2�s − 1�−c1/2 	 ,
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G0
0 = �e−��−1c�s−c1/2 0

0 e��−1c�sc1/2	 ,

and

�1
0�

1

�

�0�w�dw + �2
0�

1

�

�0�w�dw = �1 − e−2��−1c0�−1N0, �86�

�1
0�

1

s

�0�w�dw + �2
0�

1

s

�0�w�dw = N2, �87�

�1
0�

1

0

�0�w�dw + �2
0�

1

0

�0�w�dw = N� + e−2��−1c��1 − e−2��−1c0�−1N0, �88�

the paths of integrals are given in Fig. 3. Applying Theorem 3.1, we obtain formulas on a
relationship between the Riemann–Wirtinger integrals and the hypergeometric integrals.

Theorem 4.2: Assume that 0�Rc0�1. We put

��w� = e−2��−1c0w�1�w�−c1�1�w − t�c1s�w;�� ,

��w� = e−2��−1c0w�1�w�−c1�1�w − t�c1s�w − t;�� ,

�0�w� = w−c0�w − s�c1�w − 1�−c1−1,

�0�w� = w−c0�w − s�c1−1�w − 1�−c1,

and s=e2��−1t, q=e2��−1�. For any simply connected relatively compact open set
V�P1�C� \ �0,1 ,�, the Riemann–Wirtinger integrals converge uniformly on s�V to the hyper-
geometric integrals as follows:

lim
q→0
�

0

1

��w�dw = �1 − e−2��−1c0��
1

�

�0�w�dw ,

lim
q→0
�

0

1

��w�dw = �1 − e−2��−1c0��
1

�

�0�w�dw ,

: branch cut for Φ0(w) and Ψ0(w)

∞0

s

1

FIG. 3. Paths of integral.
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lim
q→0
�

0

t

��w�dw = �
1

s

�0�w�dw ,

lim
q→0
�

0

t

��w�dw = �
1

s

�0�w�dw ,

lim
q→0
�

0

�

��w�dw = �
1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw ,

lim
q→0
�

0

�

��w�dw = �
1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw .

Proof: From the relations �86�–�88�, we have

�N�

N0

N2
� =�

�
1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw �
1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw

�1 − e−2��−1c0��
1

�

�0�w�dw �1 − e−2��−1c0��
1

�

�0�w�dw

�
1

s

�0�w�dw �
1

s

�0�w�dw
���1

0

�2
0 	 .

By a similar discussion in the proof of Theorem 4.1, we have

��1
0

�2
0 	 = s�c0−c1�� �1 − e−2��−1c0��

1

�

�0�w�dw − ��
1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw	
− �1 − e−2��−1c0��

1

�

�0�w�dw �
1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw �
��N�

N0
	 .

Applying Theorem 3.1, we obtain

��0� → �0
�0� =�− s�c0−c1��1 − e−2��−1c0��

1

�

�0�w�dw

s�c0−c1��1 − e−2��−1c0��
1

�

�0�w�dw � ,

���� → �0
��� =�− s�c0−c1���

1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw	
s�c0−c1���

1

0

�0�w�dw − e−2��−1c��
1

�

�0�w�dw	 � ,

as q→0. In addition, since the relation �77� is preserved along the solutions to the MPD equation,
we have
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�1 − e−2��−1c���0
�0� + �e−2��−1c0 − 1��0

��� = �1 − e2��−1c1��0
�2�,

with

�0
�2� =�− s�c0−c1��

1

s

�0�w�dw

s�c0−c1��
1

s

�0�w�dw � .

Hence we obtain ��2�→�0
�2� as q→0. �
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