
ON THE BIRATIONAL UNBOUNDEDNESS OF HIGHER

DIMENSIONAL Q-FANO VARIETIES
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Abstract. We show that the family of (Q-factorial and log terminal) Q-Fano

n-folds with Picard number one is birationally unbounded for n ≥ 6.

1. Introduction

In this paper, we say that a normal projective variety defined over the field C
of complex numbers is a Q-Fano variety if it is Q-factorial, has only log terminal

singularities and its anticanonical divisor is ample. Q-Fano varieties appear as

one of the final outcomes of the log Minimal Model Program and play an impor-

tant role in the classification of algebraic varieties. Because of its importance,

boundedness of (Q-)Fano varieties has been studied by many authors. For exam-

ple, Kollár-Miyaoka-Mori [7] proved the boundedness of smooth Fano varieties

in arbitrary dimension. Kollár-Miyaoka-Mori-Takagi [8] proved the boundedness

of Q-Fano threefolds with canonical singularities. McKernan [11] proved the

boundedness of log terminal Fano pairs of bounded index.

In dimension two, Q-Fano varieties, which are usually called log Del Pezzo

surfaces, are unbounded but they are birationally bounded because they are all

rational. Here we give the definition of birational boundedness.

Definition 1.1. A class of varieties V is birationally bounded if there exists a

morphism f : X → S between algebraic schemes such that every variety in V

is birational to one of the geometric fibers of f . We say that V is birationally

unbounded if it is not birationally bounded.

Lin [10] proved the birational unboundedness of Q-Fano threefolds with Picard

number one. It seems difficult to generalize the proof given by Lin to higher

dimensional cases because it depends on the Sarkisov Program which is build

upon the Minimal Model Program. Following is the main theorem of this paper.

Theorem 1.2. If n ≥ 6 then the family of Q-Fano n-folds defined over C with

Picard number one is birationally unbounded.

In order to get the boundedness results of Q-Fano varieties, we need to impose a

restriction on some invariants. A. Borisov, L. Borisov and Alexeev independently

proposed the following interesting conjecture (cf. [2], [1]).

Conjecture 1.3 (Borisov-Alexeev-Borisov). Fix ε > 0. Then the family of all

Q-Fano varieties of a given dimension with log canonical discrepancy greater than

ε is bounded.
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This conjecture is solved only in special cases. Alexeev [1] and Nikulin [12]

proved Conjecture 1.3 in dimension two, and A. Borisov-L. Borisov [3] proved

Conjecture 1.3 in the toric case. Theorem 1.2, as well as Lin’s result [10], shows

that we cannot drop the restriction on ε in the hypothesis of Conjecture 1.3 even

if we replace the boundedness by the birational boundedness.

In [13], we constructed examples of non-ruled Q-Fano weighted hypersurfaces

with Picard number one. The proof of Theorem 1.2 will be done by showing that

these examples are birationally unbounded if the dimension is greater than or

equal to 6.

This paper is organized as follows. In Section 2, we recall examples of non-ruled

Q-Fano weighted hypersurfaces X = Xf from [13] and study their properties. In

particular, we recall that, if X is defined over an algebraically closed field k of

characteristic two, there is a big line bundle L on Y which is a subsheaf of Ωn−1
Y ,

where Y is a nonsingular model of X and n is the dimension of Y . We prove the

birational invariance of the global sections of L under a suitable condition. In

Section 3, we construct a “large” birationally trivial family of Q-Fano weighted

hypersurfaces defined over k assuming that the family of Q-Fano n-folds defined

over C with Picard number one is birationally bounded. Finally, in Section 4, we

compute the dimension of the birationally trivial family of weighted hypersurfaces

defined over k and show that it is not so “large” compared with the one obtained

in Section 3, which completes the proof of our main theorem.

Notations and conventions.

• Let V be a vector space. We say that an element v ∈ V is general

(resp. very general) if it belongs to the complement of a suitable proper

closed subspace (resp. at most countable union of suitable proper closed

subspaces) of V .

• For a vector space V , we denote by P(V ) (resp. Psub(V )) the projective

space parametrizing one dimensional quotients (resp. subspaces) of V .

• For a Q-divisor D on a variety X, we denote by xDy the round down of

D.

• Let φ : Y → X be a morphism between normal varieties and D a Q-

Cartier Weil divisor on X. We denote by φ∗D the pull back of D as a

Q-divisor, that is, φ∗D := (1/m)φ∗(mD), where m is a positive integer

such that mD is a Cartier divisor on X.

• Let L (resp. D) be a reflexive sheaf of rank one (resp. Weil divisor)

on a normal variety X with the finite dimensional global sections. We

denote by |L| (resp. |D|) the complete linear system Psub(H
0(X,L))

(resp. Psub(H
0(X,OX(D))). We denote by

Φ|L| : X 99K P(H0(X,L)) (resp. Φ|D| : X 99K P(H0(X,OX(D)))

the rational map which is associated with the complete linear system |L|
(resp. |D|).

• Let S be a graded ring and f ∈ S a homogeneous element. By (f = 0) ⊂
ProjS, we mean the closed subscheme defined by the homogeneous ideal

generated by f .
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2. Non-ruled weighted hypersurfaces

We recall examples of non-ruled Q-Fano weighted hypersurfaces. Let a, l,m

and n be positive integers, where a and l are odd. Put b = (al − 1)/2.

Definition 2.1. Let X be a variety defined over a field k. We say that X is ruled

(resp. separably uniruled) if there exist a variety Y defined over k of dimension

dimX − 1 and a birational map (resp. separable dominant map) Y × P1 99K X.

Definition 2.2. Let l,m, n, a and b be as above and let k be a field. We denote

simply by k[x0, . . . , xn] and k[x0, . . . , xn, y] the graded rings whose gradings are

given by deg xi = 1 for i = 0, . . . ,m, deg xi = a for i = m+1, . . . , n and deg y = b.

We define weighted projective spaces Pk and Qk as follows.

• Pk = Pk(
m+1︷ ︸︸ ︷

1, . . . , 1,

n−m︷ ︸︸ ︷
a, . . . , a, b) := Proj k[x0, . . . , xn, y].

• Qk = Pk(
m+1︷ ︸︸ ︷

1, . . . , 1,

n−m︷ ︸︸ ︷
a, . . . , a) := Proj k[x0, . . . , xn].

For a positive integer d, we denote by Hd(k) the k-vector space k[x0, . . . , xn]d,

the degree d part of the graded ring k[x0, . . . , xn]. For an element f ∈ Hal(k), we

define

Xf := (y2x0 − f(x0, . . . , xn) = 0) ⊂ Pk.

We consider the following condition on l,m and n.

Condition 2.3.

(1) m,n are integers and l is an odd integer.

(2) 4 ≤ n and 0 < m < n.

(3) n−m+ 1 < l < 2(n−m).

Theorem 2.4 ([13], Theorem 7.3 and 1.3). Let l,m and n be integers which

satisfy Condition 2.3. Then, the following assertions hold for every odd positive

integer a with a > (m+ 1)/2.

(1) The weighted hypersurface Xf ⊂ PC of degree al defined over C is a

non-ruled Q-Fano variety with Picard number one for a very general f ∈
Hal(C).

(2) The weighted hypersurface Xf ⊂ Pk of degree al defined over an alge-

braically closed field k of characteristic two is not separably uniruled for

a general f ∈ Hal(k).

Remark 2.5. In [13, Theorem 7.3], we did not mention the Picard number of

Xf . In our case, a general weighted hypersurface Xf defined over C is quasi
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smooth (cf. [13, Lemma 3.5]). Hence it follows from [4, Theorem 3.2.4] that the

Picard number of Xf is one.

Throughout the paper,

• we fix positive integers l,m and n which satisfy Condition 2.3,

• a is an odd integer with a > m+ 1, and

• b = (al − 1)/2.

Throughout the present section, we work over an algebraically closed field k of

characteristic two and we fix a general element f = f(x0, . . . , xn) ∈ Hal(k). Put

X = Xf , P = Pk and Q = Qk. Let πP : P 99K Q be the natural projection and

π : X 99K Q be its restriction. The rational maps πP and π are defined outside

the point p := (0 : · · · : 0 : 1) ∈ P .

Lemma 2.6 ([13], Lemma 3.10). The following assertions hold.

(1) X ∩ D+(x0) has only isolated singularities which are isomorphic to the

singularities of the origin of the hypersurface defined by the equation

ν2 = ξ1ξ2 + ξ3ξ4 + · · ·+ ξn−1ξn + h(ξ1, . . . , ξn)

if n is even, or

ν2 = αξ21 + ξ2ξ3 + ξ4ξ5 + · · ·+ ξn−1ξn + ξ31 + h′(ξ1, . . . , ξn)

if n is odd, where α ∈ k, deg h,deg h′ ≥ 3 and the coefficient of ξ31 in h′

is zero.

(2) Put Xqs := X \ (Sing(X) ∩D+(x0)) and Uqs := Xqs ∩ D+(x0 · · ·xny).
Then, Uqs ⊂ Xqs is a toroidal embedding without self-intersection.

Lemma 2.7 ([13], Corollary 3.13). There is a resolution r : Y → X of singular-

ities of X with the following properties.

(1) Around the isolated singular point which is contained in X ∩D+(x0), r is

a blow up at the point.

(2) r|r−1(Xqs) : r
−1(Xqs) → Xqs is a resolution of the toroidal embedding Uqs ⊂

Xqs.

We fix a resolution r : Y → X of singularities of X which is obtained by Lemma

2.7. Let V be the smooth locus of Q, U := (πP |P\{p})
−1(V ) and X◦ := X ∩ U .

We see that U is smooth and codimX(X \X◦) ≥ 2. We denote by π◦ : X◦ → V

the restriction of π : X 99K Q.

Lemma 2.8 ([13], Lemma 4.2). Notation as above.

(1) There is an exact sequence

0 → (π◦)∗Ω1
V → Ω1

U |X◦ → OX◦(−b) → 0.

(2) There is an exact sequence

0 → OX◦(−al) δ−→ Ω1
U |X◦ → Ω1

X◦ → 0,

and we have Im δ ⊂ (π◦)∗Ω1
V .

(3) There is an exact sequence

0 → Coker[OX◦(−al) δ−→ (π◦)∗Ω1
V ] → Ω1

X◦ → OX◦(−b) → 0.
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Definition 2.9. Let M◦ be the double dual of∧n−1 (
Coker[OX◦(−al) δ−→ (π◦)∗Ω1

V ]
)

and M = i∗M◦, where i : X◦ ↪→ X is the embedding.

It follows from Lemma 2.8 that M ⊂ (Ωn−1
X )∨∨ and M ∼= OX(A), where

A := (l +m− n)a− (m+ 1).

By Condition 2.3 and the assumption a > m+ 1, we have a < A < b.

Definition 2.10. We denote by {Ej | j ∈ J} the set of exceptional divisors

of r : Y → X which are obtained by resolving the singularities of the toroidal

embedding Uqs ⊂ Xqs, and put E = ∪j∈JEj .

Let M be a Weil divisor on X such that OX(M) ∼= M. Then, by [13, Lemma

4.5], there is an injection OY (xr∗My)|Y \E ↪→ Ωn−1
Y |Y \E .

Definition 2.11. For each j ∈ J , we denote by cj(M) the largest integer cj such

that the injection

OY (xr∗My)|Y \E ↪→ Ωn−1
Y |Y \E

lifts to an injection

OY (xr∗My+ cjEj)|Uj ↪→ Ωn−1
Y |Uj ,

where Uj = Y \
∪
k∈J\{j}Ek. We denote by L the image of the injection

OY

(
xr∗My+

∑
j∈J

cj(M)Ej

)
↪→ Ωn−1

Y .

The definition of L does not depend on the choice of M . We see that L is an

invertible sheaf which is a subsheaf of Ωn−1
Y . Notice that the sheaf L coincides

with the one defined in [13, Definition 4.4].

Lemma 2.12. For each j ∈ J , the integer cj(M) is nonnegative.

Proof. Let α be a sufficiently divisible positive integer such that αM is a Cartier

divisor on X. Then, for suitable rational numbers c′j , we can write

L⊗α ∼= r∗OX(αM)⊗OY

(∑
j∈J

αc′jEj

)
.

We see that cj(M) = ⌈c′j⌉. Hence it is enough to show that c′j > −1. Let x ∈ X

be a point which is contained in the center of Ej . By [13, Lemma 5.7] or [13,

Lemma 5.8], there are a function h ∈ OX,x vanishing along the center of Ej and

a rational (n − 1)-form ω such that OX(αM)x ⊂ OX,x ·hω⊗α. Moreover, the

rational (n− 1)-form ω is of the form

ω =
dg1 ∧ · · · ∧ dgn−1

g1 · · · gn−1
,

where gi ∈ OX,x, so that the order of the pole of r∗ω along Ej is at most one.

By the definition of c′j , the integer αc′j is not less than the order of the zero of

the rational (n− 1)-form r∗(hω⊗α). Thus, we see that

αc′j ≥ −α+multEj (r
∗h) > −α.

This completes the proof. �
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We see that every global section of M lifts uniquely to a global section of

OY (xr∗My). By Lemma 2.12, H0(Y,OY (xr∗My)) is naturally isomorphic to

H0(Y,L). Therefore, we can identify the rational map Φ|L| : Y 99K P(H0(Y,L))
with the composite of r : Y → X and Φ|M| : X 99K P(H0(X,M)). The rational

map Φ|M| is the composite of the projection π : X 99K Q and Φ|OQ(A)| since

M ∼= OX(A) and a < A < b. Let Z be the image of the rational map Φ|L|. It

follows from the argument above that Z coincides with the images of Φ|M| and

Φ|OQ(A)|.

Lemma 2.13. Notation as above. There is a commutative diagram

Y
r //

Φ|L|
""

X
π //

Φ|M|

��

Q

Φ|OQ(A)|
||

Z

and the rational map Φ|OQ(A)| : Q 99K Z is a birational map. Moreover, its inverse

Φ−1
|OQ(A)| : Z 99K Q is the blow up of Q along the subvariety (x0 = · · · = xm = 0).

Proof. The existence of the commutative diagram follows from the preceding

argument. The map Φ|OQ(A)| : Q 99K Z is birational since we have a < A. Let

Q̃ → Q be the blow up of Q along the subvariety (x0 = · · · = xm = 0). It is

straightforward to check that the induced rational map Q̃ 99K Z is everywhere

defined and it is biregular at each point of the exceptional divisor. This shows

that Z is isomorphic to Q̃. �

Next, we shall prove the birational invariance of the global sections of L under

an additional condition on l,m and n.

Lemma 2.14. If l,m and n satisfy l+2m− 2n+2 ≤ 0 in addition to Condition

2.3 then we have H0(X,M) = H0
(
X, (Ωn−1

X )∨∨
)
.

Proof. Let U be an open subset of X. By using local cohomology, we see that

H i(X,OX(j)) ∼= H i(U,OX(j)) for i ≤ codimX(X \ U)− 2 and any j.

Let V be a smooth open subset of Q such that the open subset U := π−1(V )

of X is smooth and codimQ(Q \ V ) ≥ 2. Let F be the cokernel of the map

δ : OU (−al) → π∗Ω1
V , which sits in the exact sequence

0 → F → Ω1
U → OU (−b) → 0.

After shrinking V and U , we may assume that F is locally free on U and we still

have codimQ(Q\V ) ≥ 2 because a torsion free sheaf on a smooth variety is locally

free outside a closed subset of codimension ≥ 2. Taking the wedge product
∧n−1,

we obtain the exact sequence

0 → M|U → Ωn−1
U → OU (−b)⊗

∧n−2
F → 0.

We have an isomorphism

OU (−b)⊗
∧n−2

F ∼= OU (−b)⊗
∧n−1

F ⊗ F∨ = OU (−b)⊗M|U ⊗F∨.

Put

G := i∗(OU (−b)⊗M|U ⊗F∨) ∼= i∗(OU (A
′)⊗F∨),
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where i : U ↪→ X is the open immersion and A′ = A − b. Then the assertion

H0(X,M) ∼= H0(X, (Ωn−1
X )∨∨) follows from the assertion H0(X,G) = 0.

Now let U be an open subset of X such that it is contained in the smooth locus

of X, the sheaf F is locally free on U and we have codimX(X \ U) ≥ 3. We can

take such an open set U because a reflexive sheaf on a smooth variety is locally

free outside a closed subset of codimension ≥ 3. Let U ′ be an open subset of P

such that it is contained in the smooth locus of P and U ′ ∩X = U . By the exact

sequence

0 → OU (b) → TU → F∨ → 0,

we obtain an exact sequence

0 → OU (A) → H|U → G|U → 0,

where H := i∗(T |U ⊗ OU (A
′)). As H1(U,OU (A)) ∼= H1(X,OX(A)) = 0, this

shows that the assertion H0(X,G) = 0 is equivalent to the assertion

H0(X,OX(A)) ∼= H0(X,H).

By the exact sequence

0 → TU → TU ′ |U → OU (al) → 0,

we obtain an exact sequence

0 → H|U → H′|U → OU (A
′ + al) → 0,

where H′ := i∗((TU ′ |U )⊗OU (A
′)). To conclude that H0(X,G) = 0, it is enough

to show that h0(X,H′) = h0(X,OX(A)). By the exact sequence

0 → OU → O⊕m+1
U (1)

⊕
OU (a)

⊕n−m
⊕

OU (b) → TU ′ |U → 0,

we obtain an exact sequence

0 → OU (A
′) → OU (1 +A′)⊕m+1

⊕
OU (a+A′)⊕n−m

⊕
OU (A) → H′|U → 0.

By the assumption, we have

1 +A′ < a+A′ = ((l + 2m− 2n+ 2)a− (2m+ 1))/2 < 0.

Thus, we have H0(X,H′) ∼= H0(X,OX(A)) since we have

H1(U,OU (A)) ∼= H1(X,OX(A)) = 0.

Therefore, we have H0(X,H) ∼= H0(X,OX(A)). This completes the proof. �

Proposition 2.15. If l,m and n satisfy l + 2m − 2n + 2 ≤ 0 in addition to

Condition 2.3 then we have H0(Y,L) = H0(Y,Ωn−1
Y ).

Proof. Let F be the exceptional locus of φ : Y → X and let ω ∈ H0(Y,Ωn−1
Y ).

Then, we see that

ω|Y \F ∈ H0(X \ φ(F ), (Ωn−1
X )∨∨) = H0(X \ φ(F ),M) = H0(X,M).

Thus, we have ω|Y \F ∈ H0(Y \ F,L). It follows from the definition of L that

ω ∈ H0(Y,L). �
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3. Construction of birationally trivial families

We begin with defining the scheme which parametrizes birational correspon-

dences between members of two families. Let ϕ1 : X1 → S1 and ϕ2 : X1 → S2 be

projective morphisms between noetherian schemes defined over an algebraically

closed field. Let Hilb(X1 × X2/S1 × S2) be the relative Hilbert scheme of Φ :=

(ϕ1, ϕ2) : X1 ×X2 → S1 ×S2 and π : Z → Hilb(X1 ×X2/S1 ×S2) be the universal

family of subschemes. We have the following diagram.

Z

π **UUUUUUUUUUUUUUUUUUUUU
� � ι // (X1 ×X2)×(S1×S2) Hilb(X1 ×X2/S1 × S2)

p3

��

p12 // X1 ×X2

Φ

��
Hilb(X1 ×X2/S1 × S2)

p // S1 × S2.

In the diagram above, p12, p3 are the natural projections and ι is the closed

embedding. Let qi : Hilb(X1 × X2/S1 × S2) → Si be the composite of p and the

natural projection S1 × S2 → Si.
Now let us assume that both ϕ1 and ϕ2 are flat morphisms between varieties

with geometrically integral fibers. Then the set

{ t ∈ Hilb(X1 ×X2/S1 × S2) | Zt is a birational correspondence }

is open in Hilb(X1 ×X2/S1 ×S2). Here we say that Zt ⊂ (X1)q1(t) × (X2)q2(t) is a

birational correspondence if it is a geometrically integral subscheme of (X1)q1(t)×
(X2)q2(t) such that the projection (X1)q1(t) × (X2)q2(t) → (Xi)qi(t) restricts to a

birational morphism Zt → (Xi)qi(t) for i = 1, 2. For the proof of the openness, we

refer the reader to [5, Proposition 1.3.2] where the settings are slightly different

from ours. Our case can be proved similarly. We denote by Bir(X1/S1,X2/S2)

the set above with the open subscheme structure.

Definition 3.1. We call Bir(X1/S1,X2/S2) the scheme parametrizing birational

correspondences between members of X1/S1 and X2/S2. We define

Γ(X1/S1,X2/S2) := π−1(Bir(X1/S1,X2/S2))

and call it the universal family of birational correspondences between members of

X1/S1 and X2/S2.

Definition 3.2. Let l,m and n be integers which satisfy Condition 2.3 and we

fix them. For an odd integer a > m + 1, let Xa → Sa be the family of quasi

smooth weighted hypersurfaces Xf of degree al in PC (cf. Definition 2.2), and let

X ′
a → S ′

a be the family of weighted hypersurfaces X ′
f of degree al in Pk with the

singularities described in Lemma 2.6.

We see that Sa and S ′
a are open subsets of

Psub(H
0(QC,OQC(al))) and Psub(H

0(Qk,OQk(al)))

respectively so that we have

dimSa = h0(QC,OQC(al))− 1 = h0(Qk,OQk(al))− 1 = dimS ′
a.

In the following argument, we will freely replace Sa and S ′
a by their open subsets.
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Definition 3.3. We say that a family of varieties is birationally trivial if every

two members of the family are birational.

Proposition 3.4. Suppose that the family of Q-Fano n-folds defined over C with

Picard number one is birationally bounded. Then, there exists a constant R such

that, for every odd positive integer a with a > m+1 and a general point sa ∈ Sa,
there is a closed subvariety Ba of Sa with the following properties.

(1) Ba parametrizes a birationally trivial family.

(2) Ba passes through sa.

(3) dimSa − dimBa ≤ R.

Proof. By the assumption, there is a morphism Y → T between algebraic schemes

such that every Q-Fano n-folds with Picard number one is birational to one of

the geometric fibers of Y → T . As T has only finitely many components, there is

at least one component, say Ta, such that a sufficiently general member of Xa/Sa
is birational to one of the geometric fibers of Ya := Y ×T Ta → Ta. Without loss

of generality, we may assume that the morphism Ya → Ta is flat and projective.

Let

π : Γ := Γ(Xa/Sa,Ya/Ta) → H := Bir(Xa/Sa,Ya/Ta)
be the universal family of birational correspondences between members of Xa/Sa
and Ya/Ta. By the definition, H is an open subscheme of Hilb(Xa ×Ya/Sa ×Ta)
and Γ is a closed subscheme of (Xa × Ya) ×(Sa×Ta) H. Let q1 : H → Xa (resp.

q2 : H → Ya) be the composite of p : H → Sa × Ta and the natural projection

Sa×Ta → Sa (resp. Sa×Ta → Ta). By the assumption and our choice of Ta, we see
that q1 is dominant. As H has at most countably many irreducible components,

we may assume, after replacing H by its suitable irreducible component, that

H is a variety and q1 : H → Sa is still dominant. Let t be a general point of

Im(q2) ⊂ Ta and Ht the fiber of q2 over t. By the construction, every member

parametrized by Ba := q1(Ht) is birational to Yt. As q1 is dominant, we see that

Ba passes through a general point sa ∈ Sa. We have dim T ≥ dimH − dimHt,

dimH = dimSa + dim(q1) and dimHt = dimBa + dim(q1|Ht), where dim(q) is

the dimension of the generic fiber for a morphism q of finite type. Therefore, we

see that

dimSa − dimBa ≤ dimSa − dimBa + (dim(q1)− dim((q1)|Ht) ≤ dim T .

We have only to put R := dim T . This completes the proof. �

Let f = f(x0, . . . , xn) ∈ Hal(C) be a very general element and put X = Xf .

There is a discrete valuation ring R such that it is a localization of a finitely

generated Z-algebra, its residue field has characteristic two and X descends to

a scheme X over R. Let us briefly explain the construction of R. We refer the

reader to [9, Section 4.4] for a detail. We can write

f =
∑

Λ
cΛx

Λ,

where Λ = (λ0, . . . , λn), cΛ ∈ C and xΛ = xλ00 · · ·xλnn . We may assume that

the cΛ’s are algebraically independent over Q because f is very general. Let

S := Z[{ cΛ }] be the subring of C. Then the localization R of S at its prime ideal
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(2) is a discrete valuation ring and the residue field of R has characteristic two.

It follows from the construction that X descends to the scheme

X = Xf := (y2x0 − f = 0) ⊂ PR(
m+1︷ ︸︸ ︷

1, . . . , 1,

n−m︷ ︸︸ ︷
a, . . . , a, b)

over SpecR. Let X ′ be the geometric special fiber of X → SpecR so that it is

a member of X ′
a/S ′

a. By replacing R if necessary, we assume that the isolated

hypersurface singularities (cf. Lemma 2.6) on X ′ are defined on X.

Lemma 3.5. Notation and assumption as above. There is a resolution ρ : X̃ → X

of singularities of X such that, for every exceptional divisor E of ρ, its special

fiber Esp has dimension less than n or Esp is ruled.

Proof. The scheme X is a closed subscheme of PR := PR(1, . . . , 1, a, . . . , a, b). Let
t ∈ R be a uniformizing parameter of R. By choosing suitable local coordinates of

PR, the singularity of X on D+(x0) is isomorphic to the point, which corresponds

to the maximal ideal (t, ξ1, . . . , ξn, ν), of the hypersurface determined by the

equation

ν2 = tα+ th1 ++ξ1ξ2 + ξ3ξ4 + · · ·+ ξn−1ξn + th2 + h≥3

if n is even, or

ν2 = tα′ + th′1 + β′ξ21 + ξ2ξ3 + ξ4ξ5 + · · ·+ ξn−1ξn + th′2 + γ′ξ31 + h′≥3

if n is odd, where α, α′β′ ∈ R, γ′ ∈ R×, hi, h
′
i ∈ R[ξ1, . . . , ξn] are polynomials of

degree i and h≥3, h
′
≥3 ∈ R[ξ1, . . . , ξn] are polynomials which consists of monomials

of degree ≥ 3. This singularity can be resolved by blowing up the point. Let E

be the exceptional divisor of the blow up. It is straightforward to check that

E = Esp is the cone over a quadric. In particular, it is ruled.

There is a desingularization of the toroidal embedding Uqs ⊂ Xqs (cf. Lemma

2.6). Such a morphism is defined over R and we obtain a birational morphism

ρ1 : X1 → X. Let E be an exceptional divisor of ρ1. Then, we have dimEsp =

dimE − 1 ≤ n − 1. Let ρ : X̃ → X be the composite of ρ1 and blowing ups at

each isolated hypersurface singular points. This completes the proof. �

Lemma 3.6. Let l,m and n be integers which satisfy Condition 2.3, and let a

be an odd integer with a > m+ 1. Let f, g ∈ Hal(C) be very general elements. If

Xf is birational to Xg over C then X ′
f is birational to X ′

g, where X
′
f and X ′

g are

reduction mod 2 models of Xf and Xg respectively.

Proof. Let ψ : Xf 99K Xg be a birational map. There is a discrete valuation ring

R with the following properties.

• R is a localization of a finitely generated Z-algebra and its residue field

has characteristic two.

• Xf and Xg descend to schemes Xf and Xg over R respectively.

• The birational map ψ : Xf 99K Xg descends to a birational map Ψ: Xf 99K
Xg.

The geometric special fibers of Xf and Xg are isomorphic to X ′
f and X ′

g respec-

tively. After replacing R, we may assume that the isolated singular points of X ′
f

and X ′
g on D+(x0) are defined on Xf and Xg respectively.
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Let ρf : X̃f → Xf and ρg : X̃g → Xg be the resolution of singularities of Xf
and Xg respectively, which are obtained by Lemma 3.5. Let Ψ̃ : X̃f 99K X̃g be the

birational which is induced by Ψ. Let X̃ ′
f and X̃ ′

g be the strict transform of X ′
f

and X ′
g in X̃f and X̃g respectively. The birational map Ψ̃ does not contracts X̃ ′

f

because it is not ruled by Theorem 2.4. Therefore, by Lemma 3.5, Ψ̃ induces a

birational map between X̃ ′
f and X̃ ′

g. This shows that X
′
f and X ′

g are birational.

�

Proposition 3.7. Suppose that the family of Q-Fano n-folds defined over C with

Picard number one is birationally bounded. Then, there exists a constant R′ such

that, for every odd integer a with a > m+1 and a general point s′a ∈ S ′
a, there is

a closed subvariety B′
a of S ′

a with the following properties.

(1) B′
a parametrizes a birationally trivial family.

(2) B′
a passes through s′a.

(3) dimS ′
a − dimB′

a ≤ R′.

Proof. Put X = Xa and S = Sa. By Lemma 3.4, there is a closed subvariety

B ⊂ S which parametrizes a birationally trivial family and dimS − dimB ≤ R.

Let

π : ΓB := Γ(XB/B,XB/B) → HB := Bir(XB/B,XB/B)
be the universal family of birational correspondences between two copies of the

family XB/B. We see that p : HB → B×B is surjective since XB/B is a birationally

trivial family. Without loss of generality, we may assume that HB is irreducible.

Let B′ = B′
a be the reduction mod 2 model of B. Let Γf,g ⊂ Xf × Xg be a

birational correspondence between two general members Xf and Xg of XB/B,
which corresponds to a general point of HB. Let φ : Xf 99K Xg be the birational

map induced by the birational correspondence above. By Lemma 3.6, the bira-

tional map φ induces a birational map between reduction 2 models of Xf and

Xg. This shows that, after shrinking S ′ and then B′ if necessary, we see that B′

parametrizes a birationally trivial family. Finally, we see that

dimS ′ − dimB′ ≤ dimS − dimB ≤ R,

since we have dimS ′ = dimS and dimB′ ≥ dimB. Put R′ = R. This completes

the proof. �

4. Bounding birationally trivial families

In this section, we shall count the dimension of birationally trivial subfamilies

of the family X ′
a/S ′

a and prove Theorem 1.2. Throughout the present section,

• we work over an algebraically closed field k of characteristic two,

• we fix positive integers l,m, and n which satisfy the inequality l + 2m−
2n+ 2 ≤ 0 in addition to Condition 2.3, and

• f = f(x0, . . . , xn) and g = g(x0, . . . , xn) are both general elements of

Hal(k).

Definition 4.1. We denote by G the subgroup

G := {σ ∈ Aut(Q) | σ∗x0 = αx0 for some α ∈ k×}
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of the group of automorphisms of Q.

Lemma 4.2. Suppose that there is a birational map φ : Xf 99K Xg. Then, there

is an isomorphism σ : Q→ Q such that σ ∈ G and the diagram

Xf
φ //

πf

��

Xg

πg

��
Q

σ
// Q

commutes.

Proof. We fix a resolution Yf → Xf (resp. Yg → Xg) of singularities of Xf (resp.

Xg). Let Mf (resp. Mg) be the reflexive sheaf of rank one on Xf (resp. Xg)

defined in Definition 2.9 and Lf (resp. Lg) be the invertible sheave on Yf (resp.

Yg) defined in Definition 2.11. Let ψ : Yf 99K Yg be the birational map induced

by φ. Let Zf (resp. Zg) be the image of the rational map Φ|Lf | (resp. Φ|Lg |). By

Lemma 2.15 and the fact that H0(Yf ,Ω
n−1
Yf

) ∼= H0(Yg,Ω
n−1
Yg

), there is a natural

isomorphism γ : Zf → Zg such that the diagram

Yf
ψ //

Φ|Lf |
��

Yg

Φ|Lg |
��

Zf γ
// Zg

commutes. It follows from Lemma 2.13 that Zf and Zg are blow ups of Q along

the subvariety (x0 = · · · = xm = 0). Hence, the isomorphism γ : Zf → Zg
descends to an isomorphism σ : Q → Q. Therefore, we obtain a commutative

diagram

Xf
φ //

Φ|Mf |

  
πf

��

Xg
Φ|Mg |

~~
πg

��

Zf
γ // Zg

Q

Φ|OQ(A)|

>>

σ
// Q.

Φ|OQ(A)|

``

Let Df (resp. Dg) be the hypersurface of Xf (resp. Xg) cut out by x0 and H

be the zero locus of x0 in Q. We see that Df (resp. Dg) is the only divisor which

is contracted by πf (resp. πg). Suppose that σ is not contained in G. Then, the

divisors H and σ∗H on Q are distinct. Pick a divisor D′
f on Xf which dominates

σ∗H. Then φ∗D
′
f must be a divisor on Xg dominating H. This is a contradiction

because there is no divisor on Xg dominating H. Therefore, we have σ ∈ G and

this completes the proof. �

Lemma 4.3. Suppose that there is a birational map φ : Xf 99K Xg and let σ ∈ G

be the automorphism of Q obtained by Lemma 4.2. Then there is an automor-

phism φP of P with the following properties.

(1) πP ◦ φP = σ ◦ πP , where πP is the natural projection πP : P 99K Q.
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(2) (φP )
∗g = σ∗g = β(f + x0h

2) for some β ∈ k× and h ∈ Hb(k).
(3) The restriction of φP on Xf defines an isomorphism (φP )|Xf

: Xf → Xg

between Xf and Xg, and it coincides with φ.

In particular, φ is an isomorphism.

Proof. We consider the weighted hypersurface

Q̃f := (ỹ2 − x0f = 0) ⊂ P̃ := P(1m+1, an−m, b+ 1).

Let x0, . . . , xn and ỹ be the homogeneous coordinates of P̃ with the gradings

deg xi = 1 for 0 ≤ i ≤ m, deg xi = a for m + 1 ≤ i ≤ n and deg ỹ = b + 1. Let

k[x0, . . . , xn, ỹ] → k[x0, . . . , xn, y] be the homomorphism of graded rings defined

by xi 7→ xi and ỹ 7→ yx0. This defines a birational map P 99K P̃ and then a

birational map Xf 99K Q̃f . We see that Q̃f is the normalization of Q in the

function field of Xf . By Lemma 4.2, there is an isomorphism σ̃ : Q̃f → Q̃g. We

can write σ̃∗ỹ = γỹ + h′ for some γ ∈ k and h′ ∈ k[x0, . . . , xn]b+1. We have

σ̃∗(ỹ2) = σ̃∗(x0g) = σ∗(x0g) = αx0σ
∗g,

where α is an element of k× such that σ∗x0 = αx0. On the other hand, we have

σ̃∗(ỹ2) = (γỹ + h′)2 = γ2ỹ2 + h′
2
= γ2x0f + h′

2
.

Thus, we see that h′2 = αx0σ
∗g − γ2x0f and we can write h′ = x0h for suitable

h ∈ Hb(k). Hence we have ασ∗g = γ2f+x0h
2 and this implies that γ ̸= 0 since g is

general and σ is an automorphism. This shows that the isomorphism σ̃ lifts to the

isomorphism σ̃
P̃
: P̃ → P̃ determined by (σ̃

P̃
)∗xi = σ∗xi and (σ̃

P̃
)∗ỹ = γỹ + x0h.

Now let φP be the automorphism of P determined by (φP )
∗xi = σ∗xi and

(φP )
∗y = (γy + h)/α. This defines an isomorphism (φP )|Xf

: Xf → Xg and, by

the construction, it coincides with the birational map φ : Xf 99K Xg. �

Lemma 4.4. We have dim(Aut(Q)) = (m+ 1)2 + (n−m)h0(OQ(a))− 1.

Proof. Put e := h0(OQ(a)). Let A ∈ GL(m+1) = GL(m+1,k), B ∈ GL(n−m) =

GL(n−m, k) and C ∈ M = M(n−m, e− n+m,k) be matrices. The matrix A

defines an automorphism ρA of k[x0, . . . , xn]1 = k·x0+ · · ·+k·xm and the matrix(
Syma(A) O

C B

)
∈ GL(e)

defines an automorphism τA,B,C of k[x0, . . . , xn]a such that (τA,B,C)|k[x0,...,xm]a co-

incides with Syma(ρA), where Syma(A) is the matrix which represents the auto-

morphism Syma(ρA) and O is the zero matrix. The pair (ρA, τA,B,C) of automor-

phisms defines an automorphism of the graded ring k[x0, . . . , xn] in a natural way

and thus an automorphism σA,B,C of Q. Notice that we have σA,B,C = σA′,B′,C′

if and only if there is some α ∈ k× such that (A,B,C) = (αA′, αaB′, αaC ′). This

shows that there is a morphism

GL(m+ 1)×GL(n−m)×M → Aut(Q),

which sends (A,B,C) to σA,B,C . It can be checked that the morphism above

is surjective. Let {uij}, {vij} and {wij} be the system of affine coordinates of
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GL(m + 1),GL(n −m) and M respectively. We consider the Gm = Spec k[t, t−1]

action on GL(m+ 1)×GL(n−m)×M defined by

uij 7→ uij ⊗ t, vij 7→ vij ⊗ ta, wij 7→ wij ⊗ ta.

Then we see that there is a morphism

(GL(m+ 1)×GL(n−m)×M) /Gm → Aut(Q)

and it is an isomorphism. Thus, we see that

dimAut(Q) = (m+ 1)2 + (n−m)2 + (n−m)(e− n+m)− 1

= (m+ 1)2 + (n−m)e− 1.

This completes the proof. �

Definition 4.5. Let V be the k-vector space Hal(k). We denote by V ′ the

k-vector subspace
V ′ = {x0h2 | h ∈ Hb(k) }

of V . For an element f ∈ V , we denote by Vf the subset

Vf :=
{
g ∈ V | g = β(σ∗f + x0h

2) for some β ∈ k×, σ ∈ G and h ∈ Hb(k)
}

of V .

Notice that we have f ∈ Vf .

Proposition 4.6. Let f and g be general elements of Hal(k). Then, the following
statements are equivalent.

(1) Xf is isomorphic to Xg.

(2) Xf is birational to Xg.

(3) Vf = Vg.

Proof. The implication (1) ⇒ (2) is obvious and the implication (2) ⇒ (3) is

proved in Lemma 4.3. We shall prove that (3) implies (1). Suppose that Vf = Vg.

Then g ∈ Vg implies g ∈ Vf , so that there are α, β ∈ k×, σ ∈ G and h ∈ Hb(k)
such that σ∗x0 = αx0 and g = β(σ∗f + x0h

2). Let φP be the automorphism

determined by (φP )
∗xi = σ∗xi and (φP )

∗y = (1/
√
αβ)y+(1/

√
α)h. This defines

an isomorphism φP |Xg : Xg → Xf and the implication (3) ⇒ (1) is proved. �

Proposition 4.7. For any odd integer a > m + 1 and a general point s′a ∈ S ′
a,

there is a closed subscheme C′
a of S ′

a with the following properties.

(1) C′
a parametrizes the members which are birational to the member X ′

a,s′a
corresponds to s′a.

(2) dimS ′
a − dim C′

a → +∞ (a→ +∞).

Proof. We see that G naturally acts on Psub(V ), that is, there is a morphism

G× Psub(V ) → Psub(V ),

which sends (σ, [f ]) to [σ∗f ], where [f ] is the point of Psub(V ) corresponds to

f ∈ V . Now let f be an element of V such that s′a = [f ] ∈ Psub(V ) and let G · [f ]
be the closure of the image of G × {[f ]}. Let Psub(V ) 99K Psub(V/V

′) be the

projection from the linear subspace Psub(V
′) ⊂ Psub(V ) and let C′

a be the cone



BIRATIONAL UNBOUNDEDNESS OF Q-FANO VARIETIES 15

over the image of G · [f ] under the projection. It follows that C′
a contains every

point of Vf . By Proposition 4.6, we have (1).

By Lemma 4.4, we have

dim C′
a ≤ dimG · [f ] + dimV ′ ≤ dimG+ dimV ′

< (n−m)h0(OQ(a)) + h0(OQ(b)) + (m+ 1)2.

We can calculate h0(OQ(al)), h
0(OQ(a)) and h0(OQ(b)) explicitly and we have

the following estimates.

• h0(OQ(al)) = am
l−1∑
k=0

(n−m+ k − 1)!

(n−m− 1)!k!

(l − k)m

m!
+O(am−1).

• h0(OQ(a)) =
1

m!
am +O(am−1).

• h0(OQ(b)) = am
(l−1)/2∑
k=0

(n−m+ k − 1)!

(n−m− 1)!k!

(l − 2k)m

m!2m
+O(am−1).

Thus, we have

dimS ′
a − dim C′

a ≥ h0(OQ(al))− (n−m)h0(OQ(a))− h0(OQ(b)) +O(am−1)

≥
(

(n−m+ l − 2)!

(n−m− 1)!(l − 1)!

1

m!
− n−m

m!

)
am +O(am−1).

Condition 2.3 in particular implies that n−m ≥ 2, which shows that the coefficient

of am in the inequality above is positive. This proves (2). �

of Theorem 1.2. If n ≥ 6, then we can find integers l,m and n which satisfy

Condition 2.3 and the inequality l + 2m − 2n + 2 ≤ 0. We fix such l,m and n.

We assume that the family of Q-Fano n-folds defined over C with Picard number

one is birationally bounded. Then, by Proposition 3.7, there is a constant R′ and

a closed subvariety B′
a of S ′

a which passes through a general point s′a ∈ S ′
a and

parametrizes a birationally trivial family such that dimS ′
a − dimB′

a ≤ R′. Let

C′
a be a subscheme of S ′

a obtained by Proposition 4.7. We may assume that C′
a

passes through s′a so that it contains B′
a by the property (1) of Proposition 4.7.

Therefore, we have

dimS ′
a − dim C′

a ≤ dimS ′
a − dimB′

a ≤ R′.

This contradicts to the property (2) of Proposition 4.7. �
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