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1 Introduction

Automated storage and retrieval systems (AS/RSs) have become widely used in warehouses and distribu-
tion centres. A typical AS/RS consists of several storage racks along parallel aisles and S/R (storage and
retrieval) machines. Each S/R machine can move along an aisle to process storage and retrieval requests
from/to the input/output point at one end of the aisle. To operate such an AS/RS, several problems should
be solved; where storage items should be stored, which items should be processed in each cycle of the S/R
machine, where the S/R machine should dwell when no request exists, and so on (van den Berg 1999).

As the methods to determine the position where storage items should be stored, there are two main
classes of policies (Goetschalckx and Ratliff (1990), Kulturel et al. (1999)):

(1) dedicated storage policy
Storage items are stored in their corresponding rack positions.

(2) shared storage policy
Storage items can be stored in any rack openings.

The shared storage policy often appears in literatures as the following two policies (Hausman et al. 1976).

(a) class-baseds torage policy
A storage rack is partitioned into classes or zones, and storage items are stored in their corresponding
zones. There are several researches on the storage rack zoning (Rosenblatt and Eynan (1989), Guenov
and Raesid (1992), Eynan and Rosenblatt (1994), van den Berg and Gademann (1996), and so on).
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(b) random (randomized) storage policy
Storage items are stored in any openings with an equal probability. The shared storage policy itself
is sometimes referred to as random (or randomized) storage policy, but we follow the classification by
Kulturel et al. (1999) for clarity because the very point of the shared storage policy is that storage
positions can be determined arbitrarily , not randomly.

Under the shared storage policy, there are several heuristics to choose an opening for the next storage
item: the closest open location (COL) rule (Hausman et al. 1976), the nearest neighbor (NN) and shortest
leg (SL) rules (Han et al. 1987), the shortest total travel (TT) rule (Lee and Schaefer 1996), and so on.

To process storage and retrieval items, how to route an S/R machine should also be determined in
addition to storage positions. In the case of a unit-load S/R machine, items are processed by either
a single-command (SC) or dual-command (DC) operation. In a SC operation, one storage item or one
retrieval item is processed in one cycle of the S/R machine starting from the I/O point and returning
again to the I/O point. On the other hand, in a DC operation one storage item and one retrieval item
are processed in one cycle. Therefore, it is better in general to perform a DC operation if there are both
storage and retrieval items. In most researches, storage items are assumed to be processed in FCFS (First-
Come-First-Served) order because it is often the case that storage items are transported to the AS/RS by
a conveyor system linked to the I/O point. As for retrieval sequencing, i.e., how retrieval items should be
paired with storage items to perform DC operations, the FCFS rule, the NN, SL and TT rules (these three
rules determine the next storage position and the next retrieval item at the same time), and the nearest
retrieval (NR) and nearest storage/retrieval (NSR) rules (van den Berg and Gademann (2000); the NSR
rule may perform a SC storage operation) among others are known. There is also an attempt to switch
such rules dynamically (Yin and Rau 2006). However, only few researches consider exact optimization
methods for routing the S/R machine.

In the case of the dedicated storage policy Lee and Schaefer (1997) treated the routing problem of a unit-
load S/R machine as a linear assignment problem, which is known to be polynomially solvable. Another
research under the dedicated storage policy was done by van den Berg and Gademann (1999). They showed
that the problem under FCFS storage sequencing can be formulated as a transportation problem and hence
is polynomially solvable even when the input and output points are separate. On the other hand, in the
case of the shared storage policy Lee and Schaefer (1996) proposed a solution algorithm by regarding the
routing problem as a linear assignment problem with an additional constraint that storage items cannot
be stored in the location where a retrieval item occupies before it is retrieved. If an optimal solution of
the linear assignment problem does not satisfy the constraint, the second best solution is constructed by
the ranking algorithm (Murty 1968). It is continued until a feasible solution or a sufficiently good solution
compared to an upper bound is obtained. This algorithm works as an exact algorithm when it is iterated
until an optimal solution (a feasible solution or a solution equal to an upper bound) is obtained, and as
an efficient near-optimal algorithm when the iteration is terminated before obtaining an optimal solution
to reduce computational efforts.

In this study we propose an exact algorithm for a more general routing problem of a unit-load S/R
machine. In our problem, possibly separate input and output points are considered under the shared
storage policy (see Table 1). One of our main results is that the problem is formulated as two types of 0-1
integer linear programming problems corresponding to two types of dwell point settings: the dwell point is
the input point and the output point. It, in general, enables us to solve the problem by utilizing a general
MILP (Mixed Integer Linear Programming) solver. Unfortunately, our formulations have exponentially
many number of constraints and it is difficult to apply a MILP solver to them directly. To cope with this
difficulty, we propose a simple but efficient iterative solution algorithm based on a MILP solver where
constraints are taken into account only when they are violated. Then, not only the effectiveness of our
algorithm but also the effects of the rack shape and the dwell point setting on the performance of the
AS/RS are examined by computational experiments.
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2 Problem Description and Solution Components

In this section, we present an explicit problem description and show several components that compose a
solution of the problem.

Consider a storage rack and a unit-load S/R machine. The S/R machine operates to process storage and
retrieval requests for the rack. These requests arrive at time zero and can be processed in an arbitrary order
(or, we can assume that storage requests are processed in FCFS order because they are not distinguished
from each other in our problem).

Storage items waiting at the input point should be carried into some openings of the rack. On the other
hand, retrieval items should be carried out from the rack to the output point. A position where a retrieval
item occupies becomes an opening after it is retrieved. A storage item can be stored in either such an
opening or an initial opening. The input and output points are possibly separate. For example, the input
point is at one end of an aisle, while the output point is at the other end. The objective in this study is to
find an optimal travel route of the S/R machine such that all the storage and retrieval items are processed
and the total travel time is minimized.

For this problem, we make the following basic assumptions.

Assumption 2.1 Travel time of the S/R machine satisfies the triangle inequality.

Assumption 2.2 Item pickup/drop time is constant and thus is ignored.

Assumption 2.3 The S/R machine dwells at the input or output point initially and returns there again
after all requests are processed.

Assumption 2.4 There are at least one storage request and one retrieval request.

Hereafter, we use the following notation and definitions. The numbers of storage and retrieval items are
denoted by nS > 0 and nR > 0, respectively. The number of initial openings is denoted by nO and let
n = nR + nO. A location Li (0 ≤ i ≤ n + 1) denotes

Li :





the input point, if i = 0,
the i-th retrieval point, if 1 ≤ i ≤ nR,
the (i− nR)-th initial opening, if nR + 1 ≤ i ≤ n,
the output point, if i = n + 1.

Here, “i-th retrieval point” means the rack position where the i-th retrieval item occupies. The travel time
of the S/R machine from Li to Lj is denoted by cij .

From Assumption 2.1, we can assume without loss of optimality that if the S/R machine visits a location
except the final dwell point, it always picks up or drops an item there. Therefore, all the possible components
(sub-travels and sub-cycles) of an optimal solution are given as follows (See also Figure 1).

(a) Single Storage Command Cycle (SSCC)
The S/R machine picks up a storage item at the input point, moves to an opening, stores the item,
and then returns to the input point.

(b) Single Storage Command Travel (SSCT)
The S/R machine picks up a storage item at the input point, moves to an opening, stores the item,
and then moves to the output point.

(c) Single Retrieval Command Cycle (SRCC)
The S/R machine starts from the output point, visits a retrieval point, picks up a retrieval item,
returns to the output point, and then drops the item.

(d) Single Retrieval Command Travel (SRCT)
The S/R machine starts from the input point, visits a retrieval point, picks up a retrieval item, moves
to the output point, and then drops the item.

(e) Dual Command Travel (DCT)
The S/R machine picks up a storage item at the input point, moves to an opening, stores the storage
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item, moves to a retrieval point, picks up a retrieval item, moves to the output point, and then drops
the retrieval item.

(f) Output point to Input point Travel (OIT)
The S/R machine moves from the output point to the input point.

In the following, these components are denoted by their abbreviations with visited location numbers in
parentheses, if necessary. For example, a dual command travel that visits the locations L3 and L1 in this
order is denoted by DCT(3, 1).

Since an optimal solution consists of these components, it can be expressed by a sequence of components
as DCT(3, 1), SRCC(2), OIT, SSCC(1). In this case, the solution corresponds to a cycle L0 → L3 → L1 →
L4 → L2 → L4 → L0 → L1 → L0, where the output point is assumed to be L4. It is easy to see that a
feasible sequence satisfies the following conditions:

• All the components are connected.
• All the storage items are stored and all the retrieval items are retrieved.
• The initial and final positions of the S/R machine are identical (the input or output point).
• Precedence relations are satisfied that item retrieval from a location should precede item storage to that

location. In other words, a storage item cannot be stored in the location where a retrieval item occupies
until it is retrieved.

We will give mathematical formulations as 0-1 integer linear programming problems for the two dwell
point settings separately:

(A) The dwell point of the S/R machine is the input point.
(B) The dwell point of the S/R machine is the output point.

In the next section, only the problem formulation for the dwell point setting (A) is shown. The results
for the dwell point setting (B) are almost parallel to those for the dwell point setting (A), and hence the
formulation is given in Appendix A.

3 Problem Formulation for Dwell Point Setting (A)

In this section we consider the dwell point setting (A), i.e. the case when the dwell point is the input point,
and give a 0-1 integer programming problem formulation for this dwell point setting. For preparation, we
show some basic properties.

3.1 Basic Properties

To begin with, we show the following property claiming that it is not necessary to consider SSCTs.

Property 3.1 It is not necessary to consider SSCTs in an optimal sequence. Thus, there exists an optimal
sequence consisting of SRCCs, SRCTs, SSCCs, DCTs and OITs.

Proof Assume that there exists an optimal sequence containing SSCTs. Then, any subsequence starting
from an SSCT in the sequence is given by

SSCT, SRCC, . . ., SRCC, OIT, . . .,

or,

SSCT, OIT, . . ..

In the former case, the SSCT and the SRCC just after the SSCT can be combined into a DCT without
increasing the total travel time from Assumption 2.1. For example, an SSCT(1) and an SRCC(2) can be
combined into a DCT(1, 2). In the latter case, the SSCT and the OIT can be combined into an SSCC
without increasing the total travel time. Therefore, we need not consider SSCTs. ¤

If a feasible sequence satisfies Property 3.1, it also satisfies the following two properties.
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Property 3.2 In any feasible sequence without SSCTs, the number of occurrences of OITs is equal to the
number of occurrences of SRCTs and DCTs.

Proof It is obvious because the initial and final positions are the input point. ¤

Property 3.3 At least one SRCT occurs in any feasible sequence without SSCTs if there is no DCT that
visits an initial opening (including the case that there is no DCT at all).

Proof It is obvious that an SRCT is necessary if no DCT occurs at all because the initial position of the
S/R machine is the input point and it cannot move to the output point without SRCTs, DCTs nor SSCTs.
Thus, we assume that at least one DCT occurs, but no DCT visits an initial opening. Such a DCT cannot
precede item retrieval that makes the storage point visited in that DCT open. It implies that an SRCT
or an SRCC should precede all the DCTs to open at least one storage point. Moreover, an SRCC can be
processed only after at least one SRCT or DCT occurs because the S/R machine should move from the
input point to the output point to process an SRCC. Therefore, at least one SRCT should occur. ¤

The last property is on an optimal sequence.

Property 3.4 There exists an optimal sequence such that

• all the SRCCs occur contiguously after the first SRCT (if exists) or DCT (if no SRCT exists),
• all the SSCCs occur contiguously at the end of the sequence.

Proof It is obvious because it is better to retrieve items as early as possible and to store items as late as
possible to meet precedence relations. ¤

3.2 Problem Formulation

From the properties shown in the preceding subsection, we formulate the problem as a 0-1 integer linear
programming problem.

Let us introduce binary decision variables xi (1 ≤ i ≤ n) and yij (0 ≤ i ≤ n, 1 ≤ j ≤ nR, i 6= j) defined
by

xi =
{

1, if Li is used as a storage point,
0, otherwise, (1)

yij =
{

1, if i 6= 0 and a DCT(i, j) occurs, or, if i = 0 and an SRCT(j) occurs,
0, otherwise. (2)

In addition, we define VR by VR = {1, . . . , nR} and cij (0 ≤ i ≤ n, 1 ≤ j ≤ nR, i 6= j) by

cij =
{

cij + c0,n+1 − c0i − cj,n+1, if i 6= 0,
c0j + c0,n+1 − cj,n+1, if i = 0.

(3)

Then, our problem with the dwell point setting (A) can be formulated as a 0-1 integer linear programming
problem (PA):

minimize
∑

1≤i≤nR

2ci,n+1 +
∑

1≤i≤n

2c0ixi +
∑

0≤i≤n

1≤j≤nR
i6=j

cijyij , (4)

subject to
∑

1≤i≤n

xi = nS, (5)

∑

1≤j≤nR

y0j +
∑

nR+1≤i≤n

1≤j≤nR

yij ≥ 1, (6)
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∑
0≤i≤n

i 6=j

yij ≤ 1 (1 ≤ j ≤ nR), (7)

∑
1≤j≤nR

j 6=i

yij ≤ xi (1 ≤ i ≤ n), (8)

∑
i,j∈VC

i 6=j

yij ≤ |VC| − 1 (VC ⊆ VR, |VC| ≥ 2), (9)

xi ∈ {0, 1} (1 ≤ i ≤ n), (10)

yij ∈ {0, 1} (0 ≤ i ≤ n, 1 ≤ j ≤ nR, i 6= j). (11)

We will state step by step where the equations come from. First, the objective function (4) is explained.
Suppose that yij = 0 holds for any i and j (0 ≤ i ≤ n, 1 ≤ j ≤ nR, i 6= j), although it cannot happen
from Property 3.3. Then, all the storage points (Li with xi = 1) are visited by SSCCs and all the retrieval
points are visited by SRCCs. Thus, the total travel time of these components is given by

∑

1≤i≤nR

2ci,n+1 +
∑

1≤i≤n

2c0ixi. (12)

If yij = 1 for some i, j (1 ≤ i ≤ n, 1 ≤ j ≤ nR, i 6= j), an SSCC(i) and an SRCC(j) disappear and
a DCT(i, j) appears. Moreover, an OIT occurs from Property 3.2. Thus, the total travel time increases
by cij = cij + c0,n+1 − c0i − cj,n+1 as shown in Figure 2(a). In the case that y0j = 1 holds for some j
(1 ≤ j ≤ nR), an SRCC(j) disappears, and an SRCT(j) and an OIT appear. Then, the total travel time
increases by c0j = c0j + c0,n+1− cj,n+1 (Figure 2(b)). Therefore, the objective function is expressed by (4).

Next, the constraints (5)–(9) are explained. The constraint that all the storage items should be processed
is given by (5). The constraint (6) corresponds to Property 3.3 since the first and second terms of the
lefthand side of (6) respectively denote the number of occurrences of SRCTs and the number of occurrences
of DCTs that visit initial openings. The constraint (7) requires that a retrieval point Lj cannot be visited
in two or more DCTs (and SRCTs), and the constraint (8) requires that Li cannot be visited for storage
in a DCT unless it is used as a storage point (xi = 1).

The constraint (9) originates from precedence relations between storage and retrieval. More specifically,
(9) is necessary and sufficient for the existence of a solution satisfying precedence relations. In other words,
there exists a precedence deadlock called tour (Lee and Schaefer 1996) formed by DCTs if and only if (9) is
broken for some VC. Here, we will give a brief sketch of what (9) requires by an example. For the detailed
proof of the necessity and sufficiency of (9), please refer to Appendix B.

Suppose that VC = {1, 2, 3} and y12 = y23 = y31 = 1. Then, (9) is broken for this VC because both the
lefthand and righthand sides of (9) are equal to 3. In this case, there are three DCTs corresponding to
y12, y23 and y31. The DCT(1, 2) should precede the DCT(2, 3) because of the precedence relation between
the storage to L2 in the latter DCT and the retrieval from L2 in the former DCT. Similarly, the DCT(2,
3) should precede the DCT(3, 1), and the DCT(3, 1) should precede the DCT(1, 2). Therefore, the three
DCTs form a tour and there exists no feasible sequence satisfying the precedence relations.

If the binary decision variables xi and yij satisfy the constraints (5)–(9), there exists at least one feasible
sequence satisfying the conditions of Property 3.4. First, all the DCTs (and OITs) are sequenced so as not
to break precedence relations. Such a sequence always exists because there is no tour from the constraint
(9). Next, if there exists some SRCTs, they together with OITs are added to the top of the sequence.
Then, all the SRCCs are inserted after the first component. Finally, all the SSCCs are added to the end
of the sequence.

For example, consider the case when nR = nS = 6 and nO = 2, and assume that the decision variables
x1, x2, x3, x6, x7, x8, y01, y12, y26, y64, y73 are one and the others are all zero. It is easy to check that
these decision variables satisfy the constraints (5)–(9). First, DCTs and OITs are sequenced. In this case,
there are two blocks formed by precedence relations: The first block is DCT(1, 2), OIT, DCT(2, 6), OIT,
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DCT(6, 4), OIT, and the second is DCT(7, 3), OIT. Therefore, the following sequence does not break
precedence relations:

DCT(1, 2), OIT, DCT(2, 6), OIT, DCT(6, 4), OIT, DCT(7, 3), OIT.

Next, SRCT(1) corresponding to y01 = 1 together with an OIT is added to the top of the sequence as
follows:

SRCT(1), OIT, DCT(1, 2), OIT, DCT(2, 6), OIT, DCT(6, 4), OIT, DCT(7, 3), OIT.

Then, SRCC(5) yielded by
∑

0≤i≤n

i 6=j

yij = 0 for j = 5 is inserted after the first component SRCT(1):

SRCT(1), SRCC(5), OIT, DCT(1, 2), OIT, DCT(2, 6), OIT, DCT(6, 4), OIT, DCT(7, 3), OIT.

Finally, SSCC(3) and SSCC(8) yielded by xi = 1,
∑

1≤j≤nR
j 6=i

yij = 0 for i = 3, 8 are added to the end of the

sequence, and we obtain a feasible sequence:

SRCT(1), SRCC(5), OIT, DCT(1, 2), OIT, DCT(2, 6), OIT, DCT(6, 4), OIT, DCT(7, 3), OIT, SSCC(3),
SSCC(8).

It should be pointed out that the above sequence is not the unique feasible sequence. For example,
SRCC(5) can be moved after any DCT, DCT(6, 4) and DCT(7, 3) can be exchanged, and so on. It
is because total travel time does not depend on the sequencing order of components, and they can be
sequenced arbitrarily as far as they are connected from the initial dwell point to the final dwell point and
precedence relations are satisfied.

4 Solution Algorithm

In this section, we give a simple but efficient exact solution algorithm for our problem formulated in the
preceding section.

Instead of constructing a specific branch-and-bound or branch-and-cut algorithm, we utilize a general
MILP solver to solve the 0-1 integer linear programming problem (PA). However, it is difficult to apply an
MILP solver directly to (PA) because the number of constraints (9) increases exponentially as nR increases.
To overcome this difficulty, we start from a problem without (9), and these constraints are added only
when they are violated. The detailed algorithm for (PA) is given by the following.

0◦ Denote by (PA
0 ) a 0-1 integer linear programming problem defined by (4)–(8), (10) and (11). Let i := 0.

1◦ Solve (PA
i ) by a general MILP solver.

2◦ Find tours in the current solution. If no tour is found, output the current solution as an optimal solution
and terminate.

3◦ Construct (PA
i+1) by adding (9) corresponding to the tours to (PA

i ). For example, if y12 = y23 = y31 = 1
holds in the current solution, the constraint for VC = {1, 2, 3}, i.e.

y12 + y13 + y21 + y23 + y31 + y32 ≤ 2 (13)

is added.
4◦ Let i := i + 1 and go to 1◦.

It is direct to modify the algorithm for (PB), the problem formulated for the dwell point setting (B),
and so is omitted.
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5 Numerical Experiments

We examine by numerical experiments the effectiveness of our algorithm proposed in the preceding section.
We also examine the effects of the rack shape and the dwell point setting on the performance of the AS/RS.

The rack configuration and the performance of the S/R machine used in the experiments follow Bozer
and White (1984). Let L and H respectively denote the length and the height of the rack. The horizontal
and vertical travel speeds of the S/R machine are given by Vh and Vv, respectively. Thus, the travel time
from (0, 0) to (p, q) is computed by max(p/Vh, q/Vv). The times to travel full length and full height are
defined by th := L/Vh and tv := H/Vv, respectively.

We introduce two parameters T and b defined by T := max(th, tv) and b := min(th/T, tv/T ). The
parameter T specifies the rack scale and we set T to 1 without loss of generality. The parameter b is called
“shape factor” that specifies the rack shape. Here, we assume th ≥ tv (th = T = 1 and tv = b).

The input and output points are placed at the both ends of the aisle as shown in Figure 4. We consider
the two dwell point settings (A) and (B), where

(A) the dwell point of the S/R machine is the input point,
(B) the dwell point of the S/R machine is the output point.

The numbers of storage and retrieval items nS and nR are chosen as nS = nR. We generate problem
instances by varying the shape factor b, the number of retrieval (storage) items nR (nS), and the number
of initial openings nO, as shown in Table 2. For every combination of b, nR and nO, 10 problem instances
are generated. The scaled horizontal and vertical coordinates of retrieval points and initial openings are
determined by uniform distributions [0, 1] and [0, b], respectively. Computation is performed on a Pentium4
3.4 GHz desktop computer. The solution algorithm is is coded in C, and ILOG CPLEX9.1 is used as an
MILP solver.

First, we show the computational times of our algorithm in Tables 3 and 4, where the average (and the
maximum in parentheses) computational times to obtain optimal solutions are shown in seconds. From
these tables, we can see that it takes longer computational time for the dwell point setting (B) than for
the dwell point setting (A). It is because (PB) has more decision variables than (PA). Nonetheless, all the
problem instances with nR = nS = 200 are optimally solved within 100 seconds, and the effectiveness of
our solution algorithm is confirmed.

Next, we examine the effect of the dwell point settings on total travel time. Table 5 shows the ratios
(%) of the average travel times for the two dwell point settings, where the average travel times for the
dwell point setting (A) are taken as bases. From Table 5, we see that (A) dominates (B) in most problem
instances when b = 0.2. When b is larger (b = 0.6, 1.0), there are only small differences between the two.
Since (PA) is easier to solve than (PB), (A) seems advantageous over (B) from a practical point of view.

Last, we examine which locations are and are not visited in DCTs. The locations visited in DCTs are
plotted in Figure 5, where the shape factor b is set to 1.0 and all the combinations of nO and nR are taken
into account. DCTs never visit so-called the single command area (van den Berg and Gademann 1999)
when the dwell point is chosen as (A), although it does not hold in such a case that all the initial openings
and retrieval points are within this area. On the other hand, the single command area does not seem to
exist for (B). However, it is revealed by a further observation that total travel time does not increase even
if we forbid DCTs to visit the single command area, at least when b = 1.0. Therefore, we can conclude
that the single command area exists for both the dwell point settings. The locations that are not visited in
DCTs, i.e. the locations visited in SSCCs, SSCTs, SRCCs and SRCTs are also plotted and are shown in
Figure 6. Although there is not so distinct a tendency as in Figure 5, we can see that the locations closer
to the output point and with lower vertical coordinates are more likely to be visited. These facts would
be helpful for constructing good heuristics.

6 Conclusion

In this study we proposed an exact solution algorithm for the routing problem of a unit-load S/R machine
with separate input and output points under the shared storage policy. We gave two types of 0-1 integer
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linear programming formulations corresponding to the different dwell point settings that the dwell point
is the input point and is the output point. Based on these formulations we proposed an exact solution
algorithm utilizing a general MILP solver. Numerical experiments showed that our algorithm can solve
problem instances efficiently even with 400 items (200 for each storage and retrieval). We also showed that
AS/RS performance does not depend much on the two dwell point settings and that the single command
area also exists in our problem.

It is left for future research to extend our algorithm for any dwell point settings. It seems also interesting
to apply our algorithm as a dynamic optimization method.

Appendix A: Problem Formulation for Dwell Point Setting (B)

Here, we consider the dwell point setting (B), the case when the dwell point is the output point. As in
Section 3, we first show basic properties satisfied in this dwell point setting and then give a 0-1 integer
linear programming problem formulation of the problem.

A.1 Basic Properties

The components of an optimal sequence in the dwell point setting (B) are restricted by the following
property.

Property A.1 It is not necessary to consider SRCTs in an optimal sequence. Thus, there exists an optimal
sequence consisting of SRCCs, SSCCs, SSCTs, DCTs and OITs.

Proof Assume that there exists an optimal sequence containing SRCTs. Then, any subsequence finishing
at an SRCT in the optimal sequence is given by

. . ., OIT, SSCC, . . ., SSCC, SRCT,

or,

. . ., OIT, SRCT.

In the former case, the SRCT and the SSCC just before the SRCT can be combined into a DCT. In
the latter case, the SRCT and the OIT can be combined into an SRCC. Therefore, we need not consider
SRCTs. ¤

The following three properties correspond to Properties 3.2, 3.3 and 3.4, respectively.

Property A.2 In any feasible sequence without SRCTs, the number of occurrences of OITs is equal to the
number of occurrences of SSCTs and DCTs.

Proof It is obvious because the initial and final positions are the output point. ¤

Property A.3 At least one SSCT occurs in any feasible sequence without SRCTs if there is no DCT such
that the retrieval point visited in the DCT is not used as a storage point by any storage items.

Proof It is obvious that an SSCT is necessary if no DCT occurs at all because the final position of the S/R
machine is the output point and it cannot return to the output point without SSCTs, DCTs nor SRCTs.
Thus, we assume that at least one DCT occurs and that all the retrieval points visited in DCTs are used
as storage points in other components. It follows that the last DCT should precede an SSCT or an SSCC
visiting the retrieval point in that DCT as a storage point. Moreover, an SSCC should precede at least one
SSCT or DCT because the S/R machine is located at the input point when the SSCC is finished, whereas
the final position is the output point. Therefore, at least one SSCT occurs. ¤

Property A.4 There exists an optimal sequence such that

• all the SRCCs occur contiguously from the beginning of the sequence,
• the last component of the sequence is an SSCT, if at least one SSCT occurs.
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Proof The first part is obvious because it is better to retrieve items as early as possible to meet precedence
relations. The second part can be shown by noting that the occurrence of an SSCT leads to the existence
of a subsequence OIT, SSCC, . . ., SSCC, SSCT. This subsequence can be moved to the end of the sequence
without breaking precedence relations. ¤

A.2 Problem Formulation

To formulate the problem with the dwell point setting (B), we introduce binary decision variables ỹij

(1 ≤ i ≤ n, 0 ≤ j ≤ nR, i 6= j) instead of yij .

ỹij =
{

1, if j 6= 0 and a DCT(i, j) occurs, or, if j = 0 and an SSCT(i) occurs,
0, otherwise. (A1)

In addition, we introduce auxiliary binary variables zi (1 ≤ i ≤ nR) corresponding to Property A.3 such
that

zi =
{

1, if a DCT(•, i) occurs and Li is not used as a storage point,
0, otherwise. (A2)

We also define c̃ij (1 ≤ i ≤ n, 0 ≤ j ≤ nR, i 6= j) instead of cij by

c̃ij =
{

cij + c0,n+1 − c0i − cj,n+1, if j 6= 0,
ci,n+1 + c0,n+1 − c0i, if j = 0.

(A3)

Then, our problem with the dwell point setting (B) can be formulated as a 0-1 integer linear programming
problem (PB):

minimize
∑

1≤i≤nR

2ci,n+1 +
∑

1≤i≤n

2c0ixi +
∑

1≤i≤n

0≤j≤nR
i 6=j

c̃ij ỹij , (A4)

subject to
∑

1≤i≤n

xi = nS, (A5)

∑

1≤i≤n

ỹi0 +
∑

1≤i≤nR

zi ≥ 1, (A6)

2zj ≤ 1− xj +
∑

1≤i≤n

i 6=j

ỹij (1 ≤ j ≤ nR), (A7)

∑
1≤i≤n

i6=j

ỹij ≤ 1 (1 ≤ j ≤ nR), (A8)

∑
0≤j≤nR

j 6=i

ỹij ≤ xi (1 ≤ i ≤ n), (A9)

∑
i,j∈VC

i6=j

ỹij ≤ |VC| − 1 (VC ⊆ VR, |VC| ≥ 2), (A10)

xi ∈ {0, 1} (1 ≤ i ≤ n), (A11)

ỹij ∈ {0, 1} (1 ≤ i ≤ n, 0 ≤ j ≤ nR, i 6= j), (A12)

zi ∈ {0, 1} (1 ≤ i ≤ nR). (A13)
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Here, we will explain the meanings of the equations by focusing on the differences between (PA) and
(PB).

The coefficient c̃i0 of ỹi0 in the objective function (A4) is given by (A3) because if ỹi0 is equal to 1, an
SSCT(i) and an OIT occur instead of an SSCC(i). Figure 3 shows this situation. The constraints (A6)
and (A7) correspond to Property A.3. The first term in the lefthand side of (A6) denotes the number of
occurrences of SSCTs, and the second term denotes the number of occurrences of DCTs satisfying the
condition of Property A.3, i.e. the visited retrieval points are not used as storage points by any storage
items. Therefore, (A6) requires that at least one SSCT occurs if no DCT satisfies the condition. In addition,
the righthand side of (A7) is equal to 2 only when Lj is not used as a storage point (xj = 0) and a DCT(•,
j) occurs. It follows that zj can be 1 only when the condition is satisfied and it is consistent with the
definition of zj .

If the decision variables xi, ỹij , and zj satisfy the constraints (A5)–(A13), there exists at least one feasible
sequence satisfying the conditions of Property A.4. Such a sequence is given by

SRCC, . . ., SRCC, OIT, DCT, OIT, DCT, . . ., OIT, DCT, OIT, SSCC, . . ., SSCC, SSCT

if some SSCT occurs, or,

SRCC, . . ., SRCC, OIT, DCT, OIT, DCT, . . ., OIT, DCT, OIT, SSCC, . . ., SSCC, DCT

if no SSCT occurs.

Appendix B: Proof of the Necessity and Sufficiency of (9) for Tour Elimination

The sufficiency part is obvious because if there exists a tour, yi1i2 = yi2i3 = · · · = yij−1ij
= yiji1 = 1 holds

for i1, i2, . . ., ij corresponding to the tour, and (9) is broken for VC = {i1, i2, . . . , ij}. To show the necessity
part, we first note that for any VC ⊆ VR,

∑
i,j∈VC

i6=j

yij ≤ |VC| (B1)

holds from (7) and (8). Therefore, if VC breaks (9),

∑
i,j∈VC

i6=j

yij = |VC| (B2)

is satisfied.
Let us suppose that (9) is broken for some VC. Then, we can assume without loss of generality that

VC has the minimal cardinality among those breaking (9). Under this assumption a vertex set VC and an
arc set EC compose a connected directed graph (VC, EC), where EC consists of arcs i → j corresponding
to yij = 1 (i, j ∈ VC, i 6= j). If this graph is disconnected, (VC, EC) can be decomposed into k maximal
connected subgraphs (V i

C, Ei
C) (1 ≤ i ≤ k). From (B1) and (B2), these subgraphs satisfy |V i

C| > 1 and
|Ei

C| = |V i
C|. It follows that V i

C breaks (9) and the assumption that VC has the minimal cardinality is
contradicted. Therefore, the directed graph (VC, EC) has the following properties:

• Connected.
• |EC| = |VC| holds (from (B2)).
• Both the in-degree and out-degree of any vertex are less than or equal to 1 (from (7) and (8)).

These properties imply that (VC, EC) has a directed Hamiltonian cycle. To summarize, there exists a tour
if (9) is broken for some VC, and the necessity part is proved by contradiction.
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Table 1. Relations among previous studies and our study

storage policy
input/output point

common separate
dedicated Lee and Schaefer (1997) van den Berg and Gademann (1999)
shared Lee and Schaefer (1996) this study
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Table 2. Parameter settings

Parameter Setting
b 0.2, 0.6, 1.0

nO 0, 50, 100, 150, 200
nR (nS) 50, 100, 150, 200
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Table 3. Average and maximum computational times for dwell point setting

(A)

(a) b = 0.2

nR
nO

0 50 100 150 200
50 0.012s 0.044s 0.095s 0.127s 0.182s

(0.020s) (0.069s) (0.154s) (0.129s) (0.319s)
100 0.046s 0.157s 0.299s 0.380s 0.492s

(0.063s) (0.259s) (0.574s) (0.833s) (0.761s)
150 0.128s 0.302s 0.676s 0.818s 0.991s

(0.177s) (0.615s) (1.389s) (1.474s) (2.136s)
200 0.232s 0.685s 1.168s 1.222s 1.858s

(0.466s) (1.636s) (2.074s) (1.524s) (2.919s)

(b) b = 0.6

nR
nO

0 50 100 150 200
50 0.022s 0.068s 0.102s 0.172s 0.212s

(0.044s) (0.125s) (0.182s) (0.278s) (0.369s)
100 0.123s 0.321s 0.463s 0.630s 0.773s

(0.188s) (0.662s) (0.917s) (0.948s) (1.287s)
150 0.382s 0.933s 1.404s 1.427s 1.241s

(0.843s) (1.853s) (2.580s) (2.949s) (2.188s)
200 0.773s 2.137s 2.446s 3.261s 3.014s

(0.967s) (3.893s) (3.714s) (9.709s) (3.899s)

(c) b = 1.0

nR
nO

0 50 100 150 200
50 0.080s 0.119s 0.150s 0.187s 0.303s

(0.182s) (0.179s) (0.363s) (0.346s) (0.458s)
100 0.472s 0.815s 0.623s 0.762s 0.797s

(1.231s) (2.080s) (1.012s) (0.988s) (1.233s)
150 2.021s 2.515s 3.078s 2.120s 1.956s

(4.671s) (4.889s) (4.527s) (5.619s) (3.289s)
200 7.342s 5.126s 7.050s 4.857s 4.098s

(15.429s) (7.524s) (24.448s) (10.654s) (8.408s)



16 Tables

Table 4. Average and maximum computational times for dwell point setting

(B)

(a) b = 0.2

nR
nO

0 50 100 150 200
50 0.208s 0.356s 0.455s 0.482s 0.558s

(0.348s) (0.675s) (0.873s) (0.717s) (0.871s)
100 2.113s 3.084s 2.661s 2.918s 2.915s

(3.149s) (5.971s) (4.687s) (5.724s) (4.594s)
150 8.844s 8.258s 11.028s 10.023s 9.954s

(13.948s) (20.510s) (28.086s) (23.508s) (26.137s)
200 21.172s 29.174s 26.914s 20.983s 25.539s

(45.558s) (88.316s) (54.671s) (30.308s) (52.117s)

(b) b = 0.6

nR
nO

0 50 100 150 200
50 0.333s 0.234s 0.136s 0.204s 0.232s

(0.681s) (0.785s) (0.256s) (0.322s) (0.405s)
100 3.127s 1.517s 0.737s 0.903s 0.907s

(4.442s) (5.150s) (1.529s) (1.390s) (1.637s)
150 12.104s 2.846s 2.730s 2.481s 1.928s

(25.294s) (5.858s) (4.997s) (5.238s) (3.763s)
200 27.764s 7.744s 5.315s 6.946s 5.331s

(33.849s) (17.956s) (8.365s) (19.889s) (7.200s)

(c) b = 1.0

nR
nO

0 50 100 150 200
50 0.609s 0.188s 0.171s 0.202s 0.355s

(1.073s) (0.325s) (0.429s) (0.349s) (0.538s)
100 4.780s 1.419s 0.863s 0.981s 0.973s

(9.950s) (3.350s) (1.776s) (1.341s) (1.731s)
150 19.446s 4.865s 4.718s 3.280s 2.914s

(34.631s) (9.527s) (7.489s) (7.297s) (5.352s)
200 61.791s 11.454s 13.355s 8.164s 6.601s

(98.974s) (15.367s) (47.574s) (13.840s) (14.107s)
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Table 5. Travel time ratios between (A) and (B)

(a) b = 0.2

nR

nO

0 50 100 150 200
50 100.006 100.051 100.042 100.047 100.034

100 99.997 100.019 100.019 100.012 100.008
150 100.000 100.008 100.009 100.007 100.010
200 100.006 100.005 100.006 100.005 100.006

(b) b = 0.6

nR

nO

0 50 100 150 200
50 99.981 100.014 100.000 100.000 100.000

100 100.010 100.002 100.000 100.000 100.000
150 100.012 100.000 100.000 100.000 100.000
200 100.008 100.000 100.000 100.000 100.000

(c) b = 1.0

nR

nO

0 50 100 150 200
50 99.980 100.000 100.000 100.000 100.000

100 99.998 100.000 100.000 100.000 100.000
150 99.981 100.000 100.000 100.000 100.000
200 100.000 100.000 100.000 100.000 100.000
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(a) SSCC (b) SSCT (c) SRCC

(d) SRCT (e) DCT (f) OIT

input point storage opening retrieval pointoutput point

Figure 1. Components of a solution
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L0 Ln+1
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L0 Ln+1

(a) A DCT and an OIT when yij = 1 (b) An SRCT and an OIT when y0j = 1

Figure 2. Relations between yij and solution components
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L0 Ln+1

Figure 3. An SSCT and an OIT when eyi0 = 1
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Figure 4. Input and output points
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Figure 5. Locations visited in DCTs (b = 1.0)
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Figure 6. Locations visited in SSCCs, SSCTs, SRCCs and SRCTs (b = 1.0)


