<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>液体金属のDynamical Structure Factor (『液体金属の構造と物性』 物性研短期研究会報告)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>千原 順三</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (1971), 16(5): 637-642</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1971-08-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/88338</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
I-5. 液体金属のDynamical Structure Factor

原子力研（東海） 千原 順 三

液体金属は、ion と electron の mixture であり、electron は Fermi 線を起しているので量子効果は無視できない。これを取扱うために、先ず Hartree equation の一般化を行い、次いでこれを binary quantum mixture に拡張する。

Mori の方法に従うと、

$$\rho_{k,Q} = a_k + a_k^+ \rightleftharpoons \rho_{k}$$

についての relaxation function, $A_{k,k'}(z)$ は次のようになる。

$$A_{Q}^{k,k'}(z) = \int_{0}^{\infty} e^{-zt} <\rho_{k,Q}(t) ; \rho_{k',Q}> dt$$

$$= \sum_{k''} (k' \{ z - i\omega + \varphi(z) \}^{-1} | k'') \chi_{Q}^{k''}$$

(1)

ここで,

$$<A : B> = \beta^{-1} \int_{0}^{\beta} e^{i\lambda H} A e^{-i\lambda H} B^\dagger d\lambda, \quad \beta^{-1} \equiv k_BT,$$

$$(k | i\omega | k') = \sum_{k''} <\rho_{k,Q} : \rho_{k'',Q} > (\rho_{k'',Q} : \rho_{k'Q})^{-1},$$

$$(k | A | k') : matrix A \otimes (k, k') element.$$

$$\varphi(t) : damping function.$$

ここで $\varphi(z) = 0$ の近似を用いる。$x_{Q}^{k,k'}$ を求めることは困難なので次の 3 条件を満たすように仮定する。
1), interaction がない時は free particle の $\chi^0_{Qk,k'}$ なる。

$$\chi_{Qk,k'} = \chi^0_{Qk,k'} = \delta_{kk'} f_Q(k),$$

とで

$$f_Q(k) = (n_{k+Q} - n_k) / (\omega^0_{k,k'}),$$

$$\omega^0_{k,k'} = \varepsilon_{k+Q} - \varepsilon_k$$

$$n_k = 1 / (e^{\beta(\varepsilon_k - \mu)} - \eta), \quad \eta = +1 \text{ (boson)} , -1 \text{ (fermion)}$$

2),

$$\sum_{k,k'} \chi_{Qk,k'} = \langle \rho_{-Q} : \rho_{Q} \rangle \equiv \chi_Q$$

3),

$$\lim_{\hbar \to 0} \chi_{Qk,k'} = \delta_{kk'} f_M(k) + f_M(k) f_M(k') \{ S(Q) - 1 \}$$

この2条件より $\chi_{Qk,k'}$ を次のように仮定する。

$$\chi_{Qk,k'} = \langle \rho_{k,k'} : \rho_{k',Q} \rangle = \delta_{kk'} f_Q(k)$$

$$+ f_Q(k) f_Q(k') \{ \chi_Q / \chi^0_Q - 1 \} / \chi^0_Q$$

(2)

そこで、$\chi^0_Q = \sum_k f_Q(k) = (-\beta^{-1}) \sum_k \{ n_{k+Q} - n_k \} / (\varepsilon_{k+Q} - \varepsilon_k)$

また一方式が容易に得られる。

$$\langle \rho_{k,k'} : \rho_{k',Q} \rangle = (-i \beta^{-1} \hbar^{-1}) \langle n_{k+Q} - n_k \rangle f_Q(k)$$

(3)
千原順三

(2) 式と(3)式より，
\[
\begin{align*}
(k | i \omega_0 | k') = & \frac{i}{\hbar} \omega_k Q^2 \delta(k, k') \\
& - \frac{1}{\beta} \left\{ \frac{1}{\chi_0^Q} - \frac{1}{\chi_{Q-k}} \right\} \frac{i}{\hbar} \left(n_{k+Q} - n_k \right)
\end{align*}
\]

これから次の generalized Hartree equation を得る。

\[
\rho_{kQ} = (z - i \omega_0^0) \rho_{k, Q}
- \frac{1}{\beta} \left\{ \frac{1}{\chi_0^Q} - \frac{1}{\chi_{Q-k}} \right\} \frac{i}{\hbar} \left(n_{k+Q} - n_k \right) \Sigma^{\rho_{k', Q}}
\]

これは普通の Hartree equation と比べて，

\[
V_{\text{eff}}(Q) = - \frac{1}{\beta} \left\{ \frac{1}{\chi_0^Q} - \frac{1}{\chi_{Q-k}} \right\}
\]

となっている点で異なる。それ（4）式を用いると，(1) 式は次のようになる。

\[
\begin{align*}
\rho_{kQ} &= \frac{1}{z} \left\{ \chi_{k, Q} - \chi_{Q-k} \right\} \\
\chi_{k, Q}(z) &= \int_{0}^{\infty} e^{-zt} \langle \rho_{k', Q} ; \rho^{+}_{k', Q} \rangle dt \\
&= \frac{\mathcal{G}_{Q}(k)}{A(z, k)} + V_{\text{eff}} \frac{\mathcal{G}_{Q}(k)}{A(z, k)} \cdot \frac{1}{\epsilon(Q, z)} \cdot \frac{\mathcal{G}_{Q}(k')}{A(z, k')}
\end{align*}
\]

ここで，

\[
\begin{align*}
A(z, k) &= z - i \omega_0^0 \\
\epsilon(Q, z) &= 1 - V_{\text{eff}} \frac{\mathcal{G}_{Q}(k)}{A(k)}
\end{align*}
\]

これから，

-639-
液体金属のDynamical Structure Factor

\[S(Q, \omega) = \frac{\beta \hbar \omega}{2} \left\{ 1 + \coth \frac{\beta \hbar \omega}{2} \right\} \Gamma_Q(\omega), \]

\[\Gamma_Q(\omega) = \text{Re} \left[\sum_{k, k'} A_{Q}^{kk'}(i\omega) \right] = \frac{1}{\omega} \frac{1}{V_{\text{eff}}} \text{Im} \left\{ \frac{1}{\varepsilon(Q, i\omega)} \right\} \]

（6）

dispersion relation は, \(\varepsilon_Q, z = 0, \) より

\[\Omega^2 = \frac{Q^2}{\chi_Q} \left\{ \frac{1}{\chi_Q} - \frac{1}{\chi_Q} \right\} \]

（7）
i), classical な場合は, \(\chi_Q^0 = 1, \) \(\chi_Q = S(Q) \) だから,

\[\Omega^2 = \frac{Q^2}{m\beta} \left\{ \frac{1}{S(Q)} - 1 \right\} \]

ii), quantal な場合は, \(\Gamma_Q(\omega) = \chi_Q \left\{ \delta(\omega - \Omega_Q) + \delta(\omega + \Omega_Q) \right\} / 2 \) とすると,

\[\beta \chi_Q = S(Q) / \frac{\hbar \Omega_Q}{2} \coth \frac{\beta \hbar \Omega_Q}{2} = S(Q) / \frac{\hbar \Omega_Q}{2} \]

これを用いると,

イ), Boson の場合, \(\Omega_Q = \frac{\hbar Q^2}{2mS(Q)} \)

ロ), Fermion の場合,

\[\Omega^2 = \frac{Q^2}{m} \left\{ \frac{\hbar}{2} \Omega_Q / S(Q) - \varrho(\epsilon_F) W(Q/2k_F) \right\} \]

\[W(Q/2k_F) = W(x) = \frac{1}{2} + \frac{1-x^2}{4x} \ln \left| \frac{1+x}{1-x} \right| \]

以上の結果を, 変数として,

\[a \equiv \begin{bmatrix} \rho^{(1)}_{k, Q} \\ \rho^{(2)}_{k, Q} \end{bmatrix} \]

-640-
千原順二

のとり、Binary quantum systemに適用すると次の結果を得る。

\[x_{ij}(Q, z) \equiv \int_0^\infty e^{-zt} \left\langle \rho^{(i)}_k, Q', \rho^{(i)}_k, Q(t) \right\rangle dt \]

\[
= \frac{g_i \delta_{kk'}}{A_i(k)} + V_i^*(Q, z) \frac{g_i(k)}{A_i(k)} \frac{1}{\varepsilon_i(Q, z)} \frac{g_i(k')}{A_i(k')} \quad (8)
\]

\[S_{ii}(Q, \omega) = \frac{F_\beta(\omega)}{\omega} \text{Im} \left(\frac{1}{V_i^*(Q, i\omega)} \left\{ \frac{1}{\varepsilon_i(Q, \omega)} - 1 \right\} \right) \]

\[S_{ij}(Q, \omega) = \frac{F_\beta(\omega)}{\omega} \frac{V_{12}}{V_1 V_2} \text{Im} \left(\frac{(\varepsilon_2 - 1)(\varepsilon_1 - 1)}{\varepsilon_1 + \varepsilon_2 - 1} \right) \quad (9) \]

ここで，

\[\beta V_i = -(H_1 + H_2 \chi_i \chi_i^0 - H_{12} \chi_i^{0,2} H_{12}) \times \left[1 + \chi_1^0 H_1 + \chi_2^0 H_2 + \chi_1^0 H_1 \chi_2^0 H_2 - H_{12} \chi_1^0 \chi_2^0 \right]^{-1} \]

\[\beta V_{ij} = -H_{12} / d : d \text{ は上式の第 2 因子（分母）, } \bar{1} = 2, \bar{2} = 1, \]

\[H_i = \{ x_i(Q) / x_i^0(Q) - 1 \} / x_i^0(Q), \]

\[H_{ij} = x_{ij}(Q) / x_i^0 x_j^0, \]

\[\varepsilon_i(Q, z) = 1 - V_i^*(Q, z) \sum_k g_i, \]

\[\varepsilon_i = 1 - V_i \sum_k g_i \quad (8) \]

\[g_i = -\frac{1}{\beta} \frac{i}{\hbar} \left[n^{(i)}_k + Q - n^{(i)}_k \right], \quad A_j = z - i \omega_k, Q \]

-641-
液体金属のDynamical Structure Factor

\[V_i^* = V_i / \varepsilon_i (Q, z) , \]

\[F_\beta (\omega) = \frac{\hbar \omega \beta}{2} \left\{ 1 + \coth \frac{\beta \hbar \omega}{2} \right\} \]

この結果は ion-ion interaction が、

\[V_{I-I}^{I-I} = V_{I-I} / \varepsilon_{\text{elect}} (Q, z) \]

で与えられ、さらに \(V_{I-I}, \varepsilon_{\text{elect}} \) が \(\chi_Q^I, \chi_Q^e \) の関数になっていることを示している。

\(\varepsilon_e (Q, z) \approx \varepsilon_e (Q, 0) \) とすると、

\[\beta V_{I-I}^{\text{eff}} = \left\{ \frac{1}{S(Q)} - 1 \right\} \frac{1}{1 + 4 \pi e^2 / Q^2 \left\{ 1 - G(q) \right\} \chi_Q e} \frac{\chi_Q^I - e (Q)}{S(Q) x_0^e} , \]

\[G(q) = - \frac{1}{n} \int \frac{q q'}{q'^2} \left(S_e (q - q') - 1 \right) \frac{d q'}{(2 \pi)^3} \approx \frac{1}{2} \frac{q^2}{q^2 + q_F^2} \]

\[\chi_Q^0 e = g (\varepsilon_F) \cdot W(Q / 2k_F) \]

電子ガスのない場合の \(\beta V_{\text{eff}} (Q) = \frac{1}{S(Q)} - 1 \), との違いがあらわれている。