1,2-ジクロルエタン結晶の相転移

参考文献

- 1) T. B. Reed and W. N. Lipscomb, Acta Cryst. 6, 45 (1953); W. N. Lipscomb and F. E. Wang, ibid 14, 1100 (1961)
- 2) M. E. Milberg and W. N. Lipscomb, Acta Cryst. 4, 369 (1951)

リチウムハライド1水和物における乱れと転移

阪大・理 曾田 元

リチウムハライドの1水和物は弗化物を除いて一定の温度・蒸気圧のもとで 作成できる。¹⁾ Li Br·H₂O(Br 塩)は306K で斜方晶系(Pmma $-D_{2h}^{5}$)から 立方晶系へ,²⁾ Li C ℓ ·H₂O(C ℓ 塩)は366Kで正方晶系(P4₂/nmc-D¹⁵_{4h}) から立方晶系へ転移する。 Li I·H₂O(I塩)は20K以上で転移点は確認 されてなく立方晶系である。 $^{4),5)}$ Br, C ℓ 塩の高温相および I塩の構造は図1に 示した cubic perovskite 構造 (P_m 3m $-O_h^1$) で L_i^+ は面心に % の確率で分布 し、 H_2O は体心で無秩序な方位をとる。Br塩の低温相は B_r と一部の L_i^+ が 約0.2Åc軸方向にずれて単位胞が2倍になり、図2のようになる。 Cℓ塩では 単位胞は8倍になる。この disorder は L_i^+ の自己拡散, H_2O の体心における random reorientation が担い,低温側ではこれらの運動が凍結すると期待さ れる。この disorder の性格と相転移の関連性(とくに I 塩では 20K 以上で 転移が見出されていない)を検討するため、広巾およびパルス法 NMR を用い ¹H, ⁷Li 共鳴の吸収線型,およびスピンー格子緩和時間(T₁)の温度変化を 測定し、 L_i^+ および H_2O の運動状態を調べた。 1H , 7L_i 共鳴線型の二次モー メント $< \Delta H^2 > > T_1$ の温度変化を図 3 ~ 6 に示す。 I 塩の T < 220 K, Br, $C\ell$ 塩の低温相における $< \Delta H^2 >$ の値は結晶水および L_i^+ の運動が充分おそ *) (あるいは全く凍結している)事を示す。 I 塩の T > 300K, Br, C ℓ 塩の高温相でみられる¹H共鳴の $< \Delta H^2 > \sim 2 G^2$, ⁷Li 共鳴の $< \Delta H^2 > \sim$

曾田 元

0 G² は各々この温度領域で H₂0 の random reorientation, L⁺_iの自己拡散 が充分早い^{*)} ことを示す。 I, Br 塩の高温側にみられる鋭い T₁ 極小はこれ らの運動によるものである。 u 塩の L⁺_i および H₂ O各々低温相ですでにおそ い^{*)} 自己拡散 random reorientation を起しており, これらの運動が転移とと もに加速されると考えられる。運動の相関時間 τ_c にアーレニウス型 $\tau_c = \tau_0$ exp ($V_0 /_{RT}$) を仮定すると活性化エネルギー V₀ は表 1 のようになる。ハロ ゲンイオンのイオン半径が大きくなるとともに H₂Oの運動の V₀ は下がり, L⁺_i の自己拡散の V₀ は大きくなる。 Br 塩の低温相で 230 K附近の T₁ 極小は結晶 水の 2 回軸周りの flipping motion によるものである (V₀=3.2Kcal/mole)。

リチウムハライド1水和物における乱れと転移の研究は格子の不安定性とい う点で興味深い問題であるが、研究もはじまったばかりである。我々の測定結 果でも、Br塩の転移点直上における T_1 の異常、I塩のT < 270Kにおける 緩和過程などが解析を進めねばならない点で、これがまた手掛りを与えてくれ るものと思う。しかし、Li,Hの運動が焦点になるので、一方で重水素化物 の中性子回折の実験がとくに期待されます。以上、研究の現状を簡単に紹介し ました。

*)	"はやい	», [°] . 73-	そい"と	いう時,	その基準	は運動の相	関時間 ^て c	が
 	NMR の	narrowin	g 条件 τ	$c \sqrt{\langle \Delta \rangle}$	$\overline{\mathrm{H}^2>}\ll$	1をみた-	すか否かに	- と
	5.			· · ·				

参考文献

1) L. Gmelin "Handbuch der Anorganischen Chemie "Vol 20 (1960)

p. 336 (Cl塩), p. 416 (Br塩), p. 450 (I塩).

2) E. Weiss, H. Hensel & H. Kühr, Chem. Ber. 102 632 (1969)

3) Jean-Jacques Kerris, Bull. Soc. Chim. France 32 48 (1965)

4) E. Weirs, Z. anorg. allg. Chem. 341 203 (1965)

5) H. Chihara, T. Kawakami, & G. Soda, J. mag. res. 1 75 (1968)

リチウムハライド1水和物における乱れと転移

表 1

	高温相	ハロゲン	V ₀	
転移点	の格子 定 数	のイオン 半	H ₂ O	L
		⊤ ≝ (ra	andom reorientation)	(自己拡散)
LiCl·H ₂ O 306K	3 .8 5 [*] Å	1.81 Å	11.5 Kcal/mole	9.5Kcal/mole
LiBr•H ₂ O 366	4.027	1.95	9.9	10.2
Li I · H ₂ O –	4.296	2.16	8.1	12.0

*) 低温相の格子定数から推算したもの。

$$(X = I^{-}, Br^{-}, C\ell^{-})$$

図1. Li Br·H₂O, Li Cl·H₂O の高温相,および L_i I·H₂Oの構造, L_i⁺は面心に ½ の統計的確率で分布する。

図 2・ L_iBr・H₂O の低温相の構造

-C27 -

曾田 元

図 3 (a)

図 3 (b)

図 3。 Li Br・H₂Oおよび Li Cl・H₂O における 吸収線型の二次モーメントの温度変化

(a) ${}^{1}H$ — 共鳴 (b) ${}^{7}L_{i}$ — 共鳴

図4. L_iB_r·H₂OおよびL_iCℓ·H₂Oにおけるスピンー 格子緩和時間の温度変化

(a) ${}^{1}H$ 一共鳴 (b) ${}^{7}L_{i}$ - 共鳴 (共に 10 MHz)

-C29 -

曾田 元

(a) ¹H, ²D-共鳴 (b) ⁷Li - 共鳴 (いずれも10 MHz)

-C30 -