1. 雷放電の物性

京都大学理学部 小川俊雄

§1. はじめに

雷および電光放電は真夏の風物詩として情緒的に一般に親しまれているが、これこそ最 も手近な自然界のプラズマ現象である。しかしこのプラズマは数学的には取り扱い難いや っかいなしろものである。ここではこの複雑な現象の全般にわたって述べることはできな いので、電光放電に関する二三の興味ある地球物理学的研究を紹介した後、電光の分光学 から放電路の物理的性質を決める問題について述べる。そのために必要な放電過程につい ても概略を述べる。

§2. 電光放電の地球物理学的研究

雷および電光放電は地球物理学の分野に多くの大小規模の興味ある現象を提供する。その電磁気学的側面だけをみても、まず、雷雲から流れ出る直流電流成分は、地球と電離層を回路の一端とした所謂Global circuit を形成し、雷電流は晴天域において大気電場・電流として観測される。また、雷放電からは放射される数 Hz ~数 100 MHzの電磁波は空電と呼ばれ、電波通信に対する雑音電波としてその季節的特性や地域的特性が研究されているほか、ELF(Extremely low frequency)・VLF(Very low frequency)の2つの周波数帯には地球物理学的に特に興味のある幾つかの現象が存在する。

その一つは数~数10 Hz の ELF 帯下端の空電で,地球と電離層で作る導波管に沿って 地球表面を一周以上伝播し,その電磁エネルギーは地球電離層空洞の中に貯わえられて共 振現象を示す。この空洞のQ 値は3~5程度であるが,8,14,20 Hz 等に明らかな共振 のピークをもつ。この現象は Schumann (1952)によってはじめてその存在が予言され, Schumann resonance とも呼ばれている。これらの共振のピーク周波数は,電波源であ る雷放電発生地域と受信点間の距離,および,電波反射層である下部電離層の電気伝導度 分布に依存するため,これらの周波数の変動から全地球的現象規模での雷活動分布および 電離層擾乱をモニターしようとする研究が行なわれている。

-249-

数K~数10 KHz の VLF 帯空電で,主として夜間の地球電離層間を導波管モードで伝播してきたものは Tweek と呼ばれ, 1.7 KHz 付近に遮断周波数をもつ。この遮断周波数 は導波管の上限壁の高さに直接関係があるため,これらの微細構造の観測からやはり下部 電離層の研究が行なわれている。

一方同じ周波数の一部の空電は電離層を突き抜けてホイッスラー(whistler) モード で地球磁力線に沿って伝播し,他半球の地磁気共役地点において受信されるか,あるいは 共役地点の電離層で反射されて再び元の地点にもどってきて受信される。中低緯度で受信 されるホイッスラーでは周波数 f と伝播時間 t の間には t $\sqrt{f} = D$ の関係がある。D はホ イッスラーの分散と呼ばれ,伝播通路のプラズマ周波数とサイクロトロン周波数の関数で, したがってDの観測から磁気圏内の電子密度分布を推定することができる。こうしてホイ ッスラーの研究は,ロケット・人工衛星による直接測定に先がけて地球磁気圏物理学に大 きな貢献をした。

さて直接電光放電の問題に目を転ずると、それらの研究は放電路の写真観測と放電にと もなう地表面の電場・磁場・電流等の変化の観測とによって行なわれてきた。放電路の性 質を知る一つの有効な方法は、放電路から放射される光のスペクトルの解析である。この 電光の分光学は一世紀以上にわたって研究されてきたが、1960年以前に得られた電光の スペクトルは、少なくとも一つの電光放電全体について時間積分したものであった。これ に対し Salanave (1961)は各ストローク毎のスペクトルをとることに成功し、それ以後、 Salanave他(1962,1964,1965), Krider (1965), Orville (1966)等いず れもアリゾナ大学の研究者達によって、それぞれ独自の分光器を用いた特徴あるスペクト ルが得られ、放電路の物理的性質もようやく明らかにされるに至った。これらについては 当時アリゾナ大学の準教授であり、現在はフロリダ大学の教授であるMartin A. Uman のすぐれた教科書"Lightning"(1969)に詳しく述べられている。

§3. 電光放電過程の概略

電光放電は弱く光る先駆放電(Leader)で始まり、これが雲から地表に向って伝播し、 その直後に非常に明るい帰還雷撃(Return stroke)が逆に地表面から雲に向って走る。 1つの電光放電は通常3~4個の帰還雷撃から成るが、最初の帰還雷撃に先だつ先駆放電 を階段状先駆(Stepped leader)と呼ぶ。これは約50mづつ 光ってステップ状に下向

-250-

雷放電の物性

きに動くからで、ステップとステップの間には約50 μ sec の休止時間がある。階段状先 駆の典型的な平均速度は $1.5 \times 10^5 \,\mathrm{m/sec}$ で、3km の距離を走るのに約20 m sec かか る。この間約5 coul の負電荷を放電路に分布させ、その平均電流は $10^2 \,\mathrm{amp}$ のオーダ となる。写真でみると光る階段状先駆の直径は $1 \sim 10 \,\mathrm{m}$ であるが、電流はその中心の細 い導電核を流れ、光ってみえるのはその核の周りのコロナシースであると考えられている。

負の高電圧荷電柱である階段状先駆が地表近くに近づいた時,地表面との間に強い電場 ができて地表面からリーダーの先端に向って上向きの放電がおこる。この放電がリーダー と接触したとき,リーダーの底は土地の電位につながり,リーダーの残りの部分はなお負 電位のまま存在していることになる。したがってこの両者の間に連続的に放電がおこるこ ととなり,高電場の電離波面である帰還雷撃が先駆放電によって作られた路に土地の電位 を運ぶこととなる。この波面は光の¼~¼のスピードで進み,約70 μ sec で雲底に達す る。この波面と土地との間に大電流が流れ,数 μ sec 以内に10~20 KA に達するが, 20~60 μ sec でピーク値の½に下がる。それから数100 ampのオーダの電流が数m sec の間連続して流れる。

帰還雷撃中の最初の気体密度はリーダーの気体密度と等しいが、帰還雷撃の運ぶエネル ギーによって最初の温度は多分リーダーの温度よりずっと高く、したがって放電路の気圧 (\simeq nkT)は周囲の空気の気圧より高くなり、放電路は膨脹する。この膨脹は明らかに超 音速でおこって衝撃波を生じ雷鳴を発する。この状態は5~10 μ sec の間続く。電流路 の気体密度は衝撃波が拡がるにつれて減少する。衝撃波位相の後の方の部分では、スペク トルから測定した放電路の温度は 30,000[°]K に近い。放電路膨脹の衝撃波位相が完結した 後、1~½ μ sec 内に放電路は高温低密度となり周囲の空気と気圧平衡の状態となる。こ の時放電路の直径は数cmのオーダである。

電流が流れなくなった後,前の放電路の上部に更に別の負電荷が存在すると次のストロ ークがおこる。このような電光を多重雷撃(Multiple-stroke flash)と呼ぶ。この負 電荷からKストリーマーまたはJストリーマーと呼ばれる小放電によって,減衰しつつあ る前の帰還雷撃放電路に約100 msec 以内に新しい電荷が運び込まれるならば,連続的 な矢型先駆(Dart leader)が走って電離を更新し,再び雲の電位を地表に引き下ろす。 こうして2回目以後の帰還雷撃が走ることになる。矢型先駆は約50 mの光った部分が約 2×10^6 m/sec の速さで地表に向って走る。前の帰還雷撃との時間間隔は約40 msec

- 251 -

である。以上の電光放電過程を模型的に表わすと第1図のようになる。各部分放電過程に 関するデータを第1表に示す。

第1図 落雷放電過程の模型図

 $t_1 = 20 \text{ m sec}, \quad t_2 = 70 \,\mu \,\text{sec}$ $t_3 = 40 \,\text{m sec}, \quad t_4 = 1.5 \,\text{m sec}$ $t_5 = 60 \,\mu \,\text{sec}$

第1表 落 雷 の 特 性

· · · · · · · · · · · · · · · · · · ·		下限值	代表値	上限值
階段状先駆(Stepped leade	r)			
階段の長さ	(m)	3	50	200
階段の時間間隔	(<i>µ</i> sec)	30	50	125
平均進行速度	(m/sec)	$1.0 imes10^{5}$	1.5×10^{5}	$2.6 imes 10^{6}$
放電路にたまる電荷量	(coul)	3	5	20
矢型先駆 (Dart leader)				
進行速度	(m/sec)	1.0×10^{6}	2.0×10^6	2.1×10^7
放電路にたまる電荷量	(coul)	0.2	1	6
帰還雷擊(Return stroke)			-	
進行速度	(m/sec)	2.0×10^7	5.0×10^7	$1.4 imes 10^{8}$
電加增加率	$(KA/\mu sec)$	< 1	10	> 8 0
ピーク電流に達する時間	(µsec)	< 1	2 、	30
ピーク電流	(KA)		10 - 20	110
ピーク電流の½になる時間	(µ sec)	10	40	250
輸送される電荷量	(coul)	0.2	2.5	20
放電路の長さ	(km) ·	2	5	14 -
電光放電(Lightning flash	h)			
ストローク数		1	3 - 4	26
ストロークの時間間隔	(m sec)	3	40	100
継続時間	(sec)	10^{-2}	0.2 ·	2
輸送される電荷量	(coul)	3	25	90

-252 -

§4. 電光スペクトルの観測

電光放電研究のための分光器にはスリット分光器とスリットなし分光器がある。前者の 方が波長分解能がよいので、スペクトルの波長を正確に決定することができる。スリット 分光器を用いてWallace(1964)が得た電光スペクトルの主な放射特性を第2表に示す (Uman, 1969)。 原子記号の後のローマ数字は電離段階を表わす。すなわち、"I" は中性、"II"は一価電離を表わす。括弧中のアラビア数字は多重線番号で、数の大きい程 放射遷移のおこる下のエネルギーレベルのエネルギーが高いことを表わす。まだ十分確認 されていないものには下線をほどこしてある。スペクトルの中で最もはっきりしているも のはNI,OI,NI,OII であるが、その他、ArIの希ガス原子線やH_a,H_βのバルマ ー系列の水素原子スペクトル線、およびN₂,O₂,N₂⁺,NH,CN等の分子スペクトル線も 見える。水素のスペクトル線があるのは空気中の水蒸気の分解によるものである。

一方スリットなし分光器は光の損失が少ないので、高速度カメラを併用してスペクトル を時間分解し、各成分放電のスペクトルをうることができる。Orville(1966)の用い たスリットなし分光器の模型図を第2図に示す。この方法で約5µsecの時間分解能と約 10 Å の波長分解能をうることができる。

スペクトル記録に写真フィルムを用いると、その非線型応答のためにスペクトル強度変 化を精々3桁しか読みとれない。これに対し、多数の光電管や光電子増倍管などを用いる と、7桁あるいはそれ以上にわたる応答をうることができる。スペクトルの絶対強度の正 確な測定にはこれらの光電装置の利用に頼らなければならない。

第2表 電光放電スペクトルの主要放射特性,

波長(λ)の単位はA

				λ	原子・分子	λ	原子・分子
	·		, 	13.5	13.1 NI(unc.) (17.7 NI(unc.)	70.7 77.9	77.9 NII(62)?
ړ	原子・分子	X	原子・分子	$\frac{17.3}{19.5}$	17.1 OII(2)? 19.6 OII(2)	84.2 4709.3	N ⁺ ₂ (0,2)
3159.3 3292.4	N ₂ (1,0)	71.4 83.4	CN(1,1) CN(0,0)	$\frac{26.0}{32.5}$		37.7 79.7 88.2	NII(20) NII(20)
97.6 3329.4		94.6 3914.4 3919.0	$N_2(3,6)$ $N_2^+(0,0)$ NII(17)	$ \begin{array}{r} 36.3 \\ 42.0 \\ 4348.8 \end{array} $	36.5 NI(unc.) 49.4 OII(2)?	$ \frac{92.3}{4803.3} 61.5 $	$\begin{array}{c} \mathrm{NII}(20) \\ \mathbf{61.3H}_{\boldsymbol{\beta}} \end{array}$
$ \begin{array}{r} 60.0 \\ \underline{63.4} \\ \overline{67.2} \end{array} $	NH(0,0): Q head	$\frac{41.7}{47.3}$	43.0 $N_2(2,5)$? OI(3)	$\frac{56.1}{58.5}$	58.3Hg?	4914.9 35.0 69.6	NI(9) NI(9)
71.4 85.1	$\begin{array}{c c} \mathbf{N}_{2}(0,0) \\ \mathbf{NH}(0,0) & O_{2}(0,14) \\ 84_{\cdot}8_{\cdot}\mathbf{P}_{\tau} & 85_{\cdot}0_{\cdot}\mathbf{P}_{15}, R_{19} \end{array}$	$\frac{3955.4}{73.0}$	54.4 OII(6)? 73.3 OII(6)?	68.3 91.7 4403.4	01(5)	$\frac{\overline{77.1}}{94.3}$	94.4 NII(64)?
. <u>88.6</u> <u>91.9</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{83.0}{95.0}$ 98.4	NII(12) N ₂ (1,4)	$\frac{14.5}{26.2}$	14.9 OII(5)?	<u>5001.9</u> 05.0	01.5 NII(19) {05.1 NII(19) {05.1 NII(64)?
$\frac{95.8}{3400.0}$	$\begin{array}{c} 95.7 \ P_{16} \\ 99.3 \ P_{11} \\ 09.9 \ P_{12} \\ 11.4 \ P_{22} \\ R_{27} \\ 11.4 \ P_{27} \\ R_{31} \end{array}$	4026.1 35.1 41.3	NII(40) NII(39) NII(39)	32.7 42.0 47.0	N11(55) NII(55) NII(15)	$\frac{45.3}{5169.6}$	45.1 NII(4)
$\frac{\overline{16.3}}{\overline{27.4}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.5 59.4 72.7	NII(39) N2(0,3) 73.0 NII(38)?	$ \frac{51.6}{56.6} 59.6 $	59.3 $N_2^+(7,9)$	$\frac{80.9}{86.4}$ 99.1	
$ \frac{37.2}{3532.} 33.2 $	NII(13) N ⁺ (5,4)	$\frac{82.1}{99.9}$ 4110.0	82.3 NII(38)? NI(10) NI(10)	$\frac{\overline{66.0}}{\overline{75.3}}$	66.6 $N_z^+(6,8)$, (8,10)	$\frac{5201.7}{81.2}$	NI(14)
36.7 ?538.0 43.5	N ₂ (1,2) N ⁺ ₂ (4,3)	$\frac{37.4}{52.2}$	37.6 NI(6) 51.5 NI(6)	4515.9 30.4	$N_2^+(4,6)$ 30.4 NII(59)?	$\frac{53.4}{5309.3}$ 28.7	NI(13)
48.2 53.3	N ⁺ ₂ (3,2)	$\frac{\frac{67.1}{80.8}}{97.0}$	67.8 CN (3,4)? 81.0 CN (2,3)? 97.2 CN (1,2)?	48.2 52.5	(52.5 NII(59)?	56.8 66.7	NI(13)
$ \frac{72}{76.9} $	$N_{2}(0,1)$	<u>4216.0</u> 22.8	$\begin{cases} 16.0 \text{ CN}(0,1)? \\ 15.9 \text{ NI}(5) \\ 23.0 \text{ NI}(5) \end{cases}$	4601.5 07.2 13.9	NII(5) NII(5) NII(5)	$\frac{\frac{87.7}{5400.9}}{10.9}$	10.8 OI(51,52)?
82.5 3710.6 55.5	$N_{2}^{\tau}(1,0)$ $N_{2}(2,4)$ $N_{2}(1,3)$	24.6 36.5	24.7 NI(5) $N_2^+(1,2)$	$\frac{17.2}{21.4}$	NII(5)	$\frac{37.5}{42.8}$	36.8 OI(11)?
3804.9 <u>30.</u> 51.0	N₂(0,2) 30.4 NI(11)? CN(4,4)	41.8 54.7 78.1	N11(47,48) N1(4) $N_{2}^{+}(0,1)$	$ \frac{30.5}{43.1} $	NII(5)	<u>50.4</u> 60.7	Hg: contamination ∫60.4 NI(25)?
54.7 61.9	CN (3,3) CN (2,2)	$\frac{98.4}{4305.0}$	05.5 NI(une.)	$\frac{51.0}{60.9}$	51.9 N ₂ ⁺ (1,3)	77.4	64.4 NI(25)? [OI]: aurora

- 254 -

Ó

λ 原子・分子	$\begin{array}{rcrcr} 46.4 & 01(4) \\ 8521.4 & ArI(8) \\ 67.4 & NI(8) \\ 94.0 & NI(8) \\ 85.9 \cdot 2 & NI(8) \\ 86.2 & NI(8) \\ 86.1 & NI(1) \\ 11.7 & NI(1) \\ 11.7 & NI(1) \\ 11.7 & NI(1) \\ 11.7 & NI(1) \\ 12.8 & NI(1) \\ 12.8 & NI(1) \\ 28.9 & NI(1) \\ 28.$	
子・分子	ntamination (1(3) (1(3) (1(3) (1(1) (1(1) (1(2) (1(2) (1(2) (1(2) (1(2) (1(2) (1(2) (1(2) (1(3)) (1(
び び 単	93.6 0.06.2 Ar 14.8 Ar 14.8 Ar 15.3 Ar 15.3 Ar 15.3 Ar 167.1 1 1 1667.1 1 167.1 1 1 1 167.1 1 15.4 1	
	n , long X n n n to nu to to to to	4
原子・分子	H _a Ne: côntaminatú NII(31) 22.5 NI(20)? 30.5 NII(41)? 33.4 NI(20), deg 53.4 NI(20), deg Ne: contaminatú Ne: contaminatú	45.2 NI(29)? 65.4 ArI(1)? 02.2 OI(21)? Ne: contaminatio 0I(38) 84.0 ArI NI(3) NI(3) NI(3) NI(3) NI(3) NI(3) NI(3) ArI(1) ArI(1) OI(35) 86.3 OI(64)? 86.3 OI(64)? 0I(35)
1 ・ 原子・分子	40.7 45.1 50.5 62.8 77.2 89.3 89.3 90.0 80.7.5 80.7.5 80.11(31) 23.8 23.5 29.5 39.4 37.0 78.3 78.3 78.3 87.0.2 53.4 70.2 67.0.2 53.4 70.2 73.4 70.2 78.3 78.5 78.5 70.2 70.2 71.0 70.2 71.0 70.2 71.0 71.0 73.4 73.5 73.1 73.1 73.1 73.1 73.1 73.1 73.1 73.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
原子・分子 1 原子・分子	16. 5 N1(24)? 40.7 23. 2 N1(24)? 40.7 25. 4 N1(24)? 50.5 Ha 45.1 25. 4 N1(24)? 50.5 Ha 77.2 NII(3) 77.2 NII(3) 90.0 NII(3) 90.5 Ne: contamination 73.0 Ne: contamination 73.3 Ne: contamination 77.0 Ne: contaminatio	Ne: contamination $\underline{6948}, 4$ 45.2 NI(29)? Ne: contamination $\underline{61.6}$ $\overline{65.4}$ ArI(1)? Ne: contamination $\underline{61.5}$ $\overline{65.4}$ ArI(1)? Ne: contamination $\underline{81.5}$ 02.2 OI(21)? $\overline{7003.1}$ 02.2 OI(21)? $\overline{32.6}$ $\overline{41.7}$ NI(23)? $\overline{7003.1}$ 02.2 OI(21)? $\overline{55.0}$ OI(9)? $\overline{7465.2}$ Ne: contaminatio $\overline{55.0}$ OI(9)? $\overline{23.6}$ NI(3) $\overline{55.0}$ NI(21), deg. long λ $\overline{503.7}$ \overline{ArI} $91.5.5$ \overline{ArI} $\overline{50.5}$ $\overline{76.8}$ $\overline{76.5}$ $\overline{76.5}$ $\overline{91.5.5}$ \overline{ArI} $\overline{91.5.5}$ \overline{ArI} $\overline{91.5.5}$ \overline{ArI} $\overline{91.64}$ $\overline{76.5}$ $\overline{76.8}$ $\overline{76.5}$ $\overline{74.5}$

雷放電の物性

- 255 -

スリットなし電光分光器の模型図(Orville, 1966)

§5. 電光スペクトルの理論

電光スペクトルの解析から電光放電路内の粒子密度と、粒子の平均エネルギーを表わす 温度を決定することができるが、このためにはまず放電路の不透明度を決定する必要があ る。すなわち、いま調べようとする特別の波長に対して放電路が光学的にうすいか、厚い か、あるいはその中間であるかを決定する。ある波長の光子が放電路を形成する粒子と相 互作用することなく放電路を通り抜けることができるとき、その放電路はその波長に対し て光学的にうすいと言える。もし、その波長の光子が放電路を通過するとき何回も吸収・ 再放射されるならば、放電路はその波長に対して光学的に厚いと言える。一定温度で光学 的に厚い放電路はその温度の黒体放射特性を示す。

電光スペクトルから放電路の性質を決定するためには、実用上通常放電路中で局地熱力 学平衡(LTE)が成り立つと仮定する。すなわち、すべてのエネルギー状態で Boltzmann 統計に従っている場合は、その気体は温度Tで熱力学平衡にあるということができ、気体 の各小体積が局地温度Tで熱力学平衡の条件を満たしているとき、その気体は位置と時間 の関数としてLTEにあるということができる。このLTEの仮定ができない場合は、簡単 に粒子密度やエネルギーを求めることはできず、励起断面積、電離断面積、再結合係数、 遷移確率等多くの未知量を計算しなければならない(Griem, 1964; Sampson, 1966)。 LTEにおいて電離状態にある原子エネルギー準位の粒子数は Boltzmann 統計に従う。

雷放電の物性

$$N_n = \frac{Ng_n}{B(T)} \exp(-E_n/kT)$$
 (1)

ここで、 N_n はエネルギー準位nにある原子の数密度、Nは原子の全数密度、 E_n はn 番目の準位の励起ポテンシャル、kはBoltzmann常数、Tは絶対温度、 g_n はn番目の準 位の統計的重みである。B(T)は分配関数で次式で与えられる。

$$B(T) = \sum_{i} g_{i} \exp(-E_{i}/kT)$$
 (2)

LTEにある粒子については Saha 方程式が成り立つ。

$$n_{e} = \frac{N^{i}}{N^{i+1}} \frac{2}{h^{3}} \left(2\pi m kT\right)^{\frac{3}{2}} \frac{B^{i+1}}{B^{i}} \exp\left(-X/kT\right)$$
(3)

ここで、 n_e は電子密度、上添字は電離状態を表わし、例えば0は中性、 1は一価電離を 表わす。Xはi番目の電離状態から(i+1)番目への電離ポテンシャル、hはPlank の常数で、mは電子の質量である。

光学的にうすい気体からのスペクトル線の中で、準位nからrへの遷移による放射強度は、温度・密度ともに均一な単位体積の気体について、

$$I_{nr} = CN_n A_{nr} h \nu_{nr}$$
(4)

で表わされる。ここで A_{nr} はEinstein遷移確率, ν_{nr} は放射光子の周波数, Cは幾何学的因子である。

(1)式を(4)式へ代入して

$$I_{nr} = \frac{CNg_nA_{nr}h\nu_{nr}}{B(T)} \exp\left(-E_n/kT\right)$$
(5)

と書ける。これから,放射強度を測定して,粒子密度がわかれば温度を決定することがで きるし,また逆に温度がわかれば粒子密度を決定することができる。準位 n から r への遷

- 257 -

移によるスペクトル線の強さと、準位mからpへの遷移による強さとの比は次式で与えられる。

$$\frac{I_{nr}}{I_{mp}} = \frac{g_n A_{nr} \nu_{nr}}{g_n A_{mp} \nu_{mp}} \exp\left(\frac{-(E_n - E_m)}{kT}\right)$$
(6)

(6) 式を温度に関して解くと

$$T = \frac{E_{m} - E_{n}}{k \ln(I_{nr} g_{m} A_{mp} \nu_{mp} / I_{mp} g_{n} A_{nr} \nu_{nr})}$$
(7)

(7)式を用いて,光学的にうすい気体の同じ原子から放射された2つのスペクトル線の強度比を測定して,その気体の温度を決定することができる。精密な温度を決定するためには,実際上(E_m - E_n)を kT より大きく選ぶ必要がある。

LTE にある光学的に厚い気体の場合には、 Planck の放射法則

$$I(T) = \frac{2h\nu^3}{C^3} \frac{1}{e^{h\nu/kT} - 1}$$
(8)

を用いて黒体温度を決定することができる。

さて添字Cで表わされるC型の原子とDで表わされるD型の原子を考える。光学的にう すい気体からのスペクトル線の強度比は(5)式を用いて,

$$\frac{I_{D}}{I_{C}} = \frac{N_{D} g_{Dj} B_{C} A_{D} \nu_{D}}{N_{C} g_{Ci} B_{D} A_{C} \nu_{C}} \exp\left(\frac{E_{Ci} - E_{Dj}}{kT}\right)$$
(9)

いま原子Dが中性原子で,原子CがDの電離によってできた一価イオンであるならば, (9)式をSaha方程式(3)に結びつけることによってN_D/N_Cを消去し,温度と強度比の関 係として電子密度を表わす式を求めることができる。(7)式から温度が決定され,中性原 子(例えばNI)から放射されたスペクトル線と,一価電離原子(例えばNI)から放射 されたスペクトル線の強度比を測定して電子密度を計算することができる。

Saha 方程式は厳密にはLTE が成り立つときにのみ成り立つが、実用上は電光放電路 中でLTE が存在するかどうかについては幾らかの疑問がある。幸いにもLTE の仮定を

-258 -

しなくても電子密度を決定する別の方法がある。それは、Stark 効果によって、強い電場の中で分岐したスペクトル線の幅が、基本的には荷電粒子数密度に依存するという事実を 用いる。多くのスペクトル線のStark 効果についてはGriem (1964)によって研究され ている。第2表から電光放電スペクトルの中にバルマー系列の H_{α} 線が存在することを見た が、このスペクトル線はStark 効果によって幅がかなり拡がっている。この幅の測定から

電子密度を決定することができる。第 3回は H_aの半値幅と電子密度の関係 を示したものである (Uman and Orville, 1964)。

放電路の不透明度の決定については, 光学的にうすい気体の中で,等しい上 位原子エネルギー準位から2つのスペ クトル線が出るとき,(6)式の指数項 が1になって,強度比は温度に依存せ ず,原子常数のみに依存することにな る。この結果が実験結果と一致すれば その波長領域について光学的にうすい と言える。

第3図 温度 20,000[°]Kで Stark効果をうけ た H_a線の半値幅と電子密度 (Uman and Orville, 1964)

§6. 帰還雷撃放電路の性質

放電路中の温度や電子密度を決定する前に,放電路の不透明度とLTEの存在を証明しなければならない。不透明度については,Uman and Orville (1965)によって,NI 多重線の強度比から,放電路が光学的にうすいことが示された。またLTEについては Griem (1964)の判定基準に照らし,完全なLTEが存在しないまでも求めた温度を放 電路温度と呼んでも差し支えないと結論される。

Prueitt(1963)は9つの帰還雷撃について,前節で述べた理論に従い(7)式を5つのNII多重線に適用することによって平均温度 24,200 ~ 28,400 $^{\circ}$ K を得た。温度がわかると Saha 方程式を用いて放電路の電子密度を決定することができる。そのような解析が Uman他(1964 a,b)によって行なわれ, OI, NI, NIIのスペクトル線が 24,000 $^{\circ}$ K

-259 -

付近の温度で放射されたとして、電子密度 $3 \times 10^{24} \text{m}^{-3}$ を得た。放電路の温度と電子密度 がわかると電気伝導度を計算できる。Uman (1964)の計算では 1.8×10^{4} mho/m とな る。

一方 Uman and Orville (1964) はバルマー系列の H_a の Stark 効果によるスペクト ル線の拡がりから電子密度を決定した。第4図はその実験結果と理論曲線の見事な一致を 示している。これから 3つの帰還雷撃について電子密度が $1 \times 10^{23} \sim 5 \times 10^{23} m^3$ である ことがわかった。この値は Saha 方程式から求めたものより信頼度が高い。

第4図 20,000[°]Kにおける雷撃(A1)中のH_αの線 のStark効果から電子密度を求める。 (Uman and Orville, 1964)

っぎに時間分解スペクトルから Orville (1966, 1968)が求めた帰還雷撃の温度変化 の例を第5図に示す。典型的な極大温度は 28,000~31,000 °Kで, 36,000 °Kを越える ことはなく,また,最初の 10 μ sec以内に極大値となり,それから単調に減少することが わかった。これらの時間分解温度を積分すれば Prueitt (1963)の求めた平均温度とよ く一致する。また Orville (1968)は電子密度を時間の関数として求めた。これは世界 で唯一つの例であり第6図に示す。放電の最初の 5 μ secの間,電子密度は 10²⁴ m⁻³ のオ ーダで次の 25 μ sec 間に 1×10²³~ 1.5×10²³ m⁻³の値に減少した。それ以後の 50 μ sec

-260 -

はかなり一定で、 $50\mu \sec$ 以後では $1.5 \times 10^{23} \text{ m}^{-3}$ 以下に下った。 Orville の得たこれら の電子密度は時間積分スペクトルから求めたものと一致している。

このようにして放電路の温度と電子密度が時間の関数としてわかると、放電路の気圧その他の性質を計算することができる。Orville (1968)によれば、温度 30,000 [°]K, 電子密度 10^{24} m⁻³ で気圧のオーダは 10 気圧となる。この場合放電路の気圧は周囲の気圧を 越えているので、放電路は気圧平衡になるまで膨脹する。このことはスペクトルからもわ かる。すなわち、約 13,000 [°]K以上で電子密度 1~2×10²³ m⁻³ であれば気圧は大気圧で あるという Drellishak (1964)の結果から判断して、第6 図は放電路が 10~20 μ sec で大気圧に達したことを示している。

-261 -

 第6図 雷撃中の H_α線の Stark 効果から計算した 放電路の電子密度の変化
 (Orville, 1968)

§7. ストローク間の放電路

3節で略述した如く電光放電は多重性を示し、2回目以後の放電路が最初と同じ放電路 を伝播するためには、帰還雷撃から次の矢型先駆放電までの数 10 msec の間放電路が電離 したままの状態に保たれる必要がある。Brook他(1962)は10 ampのオーダの低電流が 期間中流れ続けている可能性を論じ、これによって旧放電路の電離を保つことができると した。この程度の電離だと写真にもうつらないし、電場の観測にもかかわらない。一方、 McCann(1944)はその電流は 0.1 amp 以下であることを報告しているし、Loeb(19 66)は写真にはうつらない程度の K- change による電離波の存在を示唆した。

これらの説に対してUman and Voshall (1968)は特別の機構を考えなくても,放電路の温度の減衰を熱輸送問題として考え,放電路へのエネルギー入力がない場合の冷却の 割合を計算した。

-262 -

放電路とその周辺を含む空気に対して以下の4つの式が書ける。 エネルギー平衡式:

$$-\nabla \cdot \mathbf{K} \nabla \mathbf{T} + \rho \, \mathbf{C}_{\mathbf{p}} \, \frac{\mathbf{D}\mathbf{T}}{\mathbf{D}\,\mathbf{t}} + \rho \, \frac{\mathbf{D}}{\mathbf{D}\,\mathbf{t}} \left(\frac{\mathbf{v}^2}{2}\right) - \frac{\partial \mathbf{P}}{\partial \,\mathbf{t}} = \mathbf{0} \tag{10}$$

運動量平衡式:

$$\rho \frac{\mathrm{D}\mathbf{v}}{\mathrm{D}t} = -\nabla \mathrm{P} \tag{11}$$

質量保存式:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = 0 \tag{12}$$

状態方程式:

$$\mathbf{P} = \mathbf{P}(\rho, \mathbf{T}) \tag{13}$$

P は気圧, T は絶対温度, ρ は質量密度, \lor は気体速度, C_p は定圧比熱, K は熱伝導率 づある。 D/Dt は

$$\frac{\mathrm{D}}{\mathrm{Dt}} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \tag{14}$$

で定義される。これらの式が成り立つためには、(1) LTE が位置と時間の関数として存 在する、(2) 放射と、重力対流による熱損失がない、(3) 放電路内外の気圧は常にほぼ大 気圧にある等の仮定が必要である。(3)の仮定から(10)式の左辺の第3、4項は0となる。 第3項が▽Pに比例するのは(11)式と較べるとわかる。そこで方程式系は

$$-\nabla \cdot \mathbf{K} \nabla \mathbf{T} + \rho C_{\mathbf{p}} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{t}} + \mathbf{v} \cdot \nabla \mathbf{T} \right) = 0$$
(15)

-263 -

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = 0 \tag{16}$$

(17)

 $P = P(\rho, T) = const.$

となり、 $\rho(T)$, $C_p(T)$, K(T)を与えるとTを位置と時間の関数として解くことがで きる。これを解くためには温度のプロファイルを選ぶ必要があるので更に次の仮定をする。 (4) 放電路は真直で、円筒対称で無限に長い。したがって半径方向以外の空気流はないこ とになる。このようにして計算された結果の1例を第7図に示す。電流の増加が止まった 時点で 8,000 [°]K の初期温度を仮定し、放電路の半径をパラメータとして中心温度が示さ れている。相続く帰還雷撃間の平均継続時間は 40 msecであるから、この時間内にはそれ 程温度が減少しないことがわかる。乾燥した空気は 4,000 [°]K電気伝導度は約1mho/m で 電子密度は 10¹⁹ m⁻³ であるから導電体と言えるが、2,000 [°]K では 10⁻⁶ mho/m、10¹³ m⁻³ 電子密度となり絶縁体となる (Yos, 1963)。したがって 2,000 ~ 4,000 [°]K では放電路 は導体と絶縁体の中間にあると言えるが、矢型先駆を誘い出すのには十分であろう。

-264 -

§8. おわりに

雷の電気に関する研究は雷雲の帯電機構に関連して降水粒子の荷電放電過程と,電光放 電機構に関連して放電路の物性に関する詳しい研究が必要である。ここでは後者について の研究の一部を紹介したが,これらについては残念ながらわが国における研究の歴史も活 動も少ない。わが国における電光放電の研究は,電場と光度変化を観測する現象論的な取 り扱いが主であった。雷放電機構にはまだ疑問の点が多く,とくに多重雷撃のストローク 間における Malan and Schonland (1951)のJストリーマー存在には異論をとなえる者 (小川,1971)もあり,これらを解決するためには,雷雲ならびに電光放電の真に物性論 的研究が必要であることを痛感する。

参 考 文

献

- Brook, M., N. Kitagawa, and E. J. Workman, Quantitative study of strokes and continuing currents in lightning discharges to ground, J. Geophys. Res., 67, 649-659, 1962.
- Drellishak, K. S., Partition functions and Thermodynamic properties of high temperature gases, AEDC-TDR-64-22, 1964.
- Griem, H. R., Plasma Spectroscopy, McGraw-Hill Book Company, New York, 1964.
- Krider, E. P., Time-resolved spectral emissions from individual return strokes in lightning discharges, J. Geophys. Res., 70, 2459-2460, 1965.
- Loeb, L. B., The mechanisms of stepped and dart leaders in cloud-to-ground lightning strokes, J. Geophys. Res., 71, 4711-4721, 1966.
- Malan, D. J., and B. F. J. Schonland, The distribution of electricity in thundercloud, Proc. Roy. Soc. (London), A209, 158-177, 1951.
- McCann, G. D., The measurement of lightning currents in direct strokes, Trans. AIEE, 63, 1157-1164, 1944.
- 小川俊雄, 落雷の放電過程, 大気電気研究, 第4号, 46-49, 1971.
- Orville, R. E., High-speed, time-resolved spectrum of a lightning strokes, Science, 151, 451-452, 1966.

- Orville, R. E., A high-speed time-resolved spectroscopic study of the lightning return stroke, pts. 1, 2, 3, J. Atmospheric Sci., 25, 826-856, 1968.
- Prueitt, M. L., The excitation temperature of lightning, J. Geophys. Res., 68, 803-811, 1963.
- Salanave, L. E., The optical spectrum of lightning, Science, 134, 1395-1399, 1961.
- Salanave, L. E., The optical spectrum of lightning, Advan. Geophys., 10, 83-98, 1964.
- Salanave, L. E., The photographic spectrum of lightning; determination of channel temperature from slitless spectra, in Problems of Atmospheric and Space Electricity, S. C. Coroniti, ed., Elsevier, New York, pp. 371-383, 1965.
- Salanave, L. E., R. E. Orville, and C. N. Richards, Slitless spectra of lightning in the region from 3850 to 6900 angstroms, J. Geophys. Res., 67, 1877-1884, 1962.
- Sampson, D. H., Approximate method for determining when any gas is collisiondominated, Astrophys. J., 144, 96-102, 1966.
- Schumann, W. O., Uber die strahlunglosen, Eigenschwingungen einer leilen den Kugel, die von einer Luftshicht und einer Ionosphärenhülle umgeben ist,
 Z. Naturforschg., 79, 149-154, 1952.
- Uman, M. A., The conductivity of lightning, J. Atmospheric Terrest. Phys., 26, 1215-1219, 1964.
- Uman, M. A., Lightning, McGraw-Hill Book Company, New York, pp. 264, 1969.
- Uman, M. A., and R. E. Orville, Electron density measurement of lightning from Starkbroadening of Hα, J. Geophys. Res., 69, 5151-5154, 1964.
- Uman, M. A., and R. E. Orville, The opacity of lightning, J. Geophys. Res., 70, 5491-5497, 1965.
- Uman, M. A., and R. E. Voshall, Time-interval between lightning strokes and initiation of dart leaders, J. Geophys. Res., 73, 497-506, 1968.
- Uman, M. A., R. E. Orville, and L. E. Salanave, The density, pressure and particle distribution in a lightning stroke near peak temperature, J. Atmospheric Sci., 21, 306-310, 1964a.
- Uman, M. A., R. E. Orville, and L. E. Salanave, The mass density, pressure, and electron density in three lightning strokes near peak temperature, J. Geophys. Res., 69, 5423-5424, 1964b.

Wallace, L., The spectrum of lightning, Astrophys. J., 139, 994-998, 1964.

Yos, J. M., Transport properties of nitrogen, hydrogen, oxygen, and air to 30,000°K, Tech. Mem. RAD-TM-63-7, Avco Corporation, Wilmington, Massachusetts, 1963.