<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>液体ヘリウムの実験のレビュー: 液体ヘリウムの2、3のトピックスと問題点</td>
</tr>
<tr>
<td>著者</td>
<td>生嶋 明</td>
</tr>
<tr>
<td>キーワード</td>
<td>物性研究, 液体ヘリウム, 実験</td>
</tr>
<tr>
<td>部門</td>
<td>物性研究</td>
</tr>
<tr>
<td>書誌情報</td>
<td>物性研究 (1972), 19(1): 63-76</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/88548</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>出版社</td>
</tr>
<tr>
<td>学術機関</td>
<td>京都大学</td>
</tr>
</tbody>
</table>
I* 液体ヘリウムの実験のレビュー （1）

—— 液体 He の 2, 3 のトピックスと問題点 ——

東大物性研究所 生 嶋 明

（8月1日受理）

§1. 緒 言

ここでは液体 He の 2, 3 のトピックスの現状を述べて問題点を指摘したい。He に関する現研究分野を見わたしてレビューを行うことが望ましいのは無論であるが、ここではむしろ著者が具体的な実験を或る程度考えている事柄を中心に話を進めて行きたい。なお、Fermi liquid としての液体 He の研究の面が大きく抜けているが、これは別稿の植原氏のお話を期待している。

§2. 素励起

素励起に関連した研究のポイントは、

(1) 分散曲線の構造 一般に、He³ - He⁴ 全系での分散曲線の構造

(2) Lower branch の形状

——フォノンの分散：γ(T, P, x₃)

ロトンのパラメーター：p₀(T, P, x₃), A(T, P, x₃), μ(T, P, x₃)

(3) 素励起の寿命、幅あるいは素励起間相互作用

と整理できよう。

実験は neutron, 光散乱, 音波などの方法で He⁴ で多くの研究が行われている。まず、この分野でもっとも直接的な手段である neutron の実験は、よく知られた Cowley ら¹) の結果に、最近の Dietrich ら²) の圧力下での成果が加わって、neutron 実験の精度の現状としては少なくとも He⁴ の Lower branch に関するデーターは出揃った。ここですます問題にすべきは、フォノンの分散を与えるパラメーターγの大きさで、Cowley らの音速 u₁ us Q² のプロット（第１図）では、誤差は同図に示されたように特に Q の

* この番号は、Vol.18 No.6 掲載の基研研究会「量子液体と量子固体の理論」でなされた総合講演の順番を意味する。（編集部注）
生嶋 明
小さなところで大きいが（∂u₁/∂Q²）

\[Q = 0 \Rightarrow \alpha > 0 \] のように見受けられる。このことに関連して重要なのは、この問題のきっかけを作った低温度領域での He における超音波の実験である。周知のように、T ≦ 0.6k では、

(1) 吸収係数 \(\alpha_1 \) の絶対値が \(r > 0 \) としたときの 3-phonon 違の期待値に比べて 2～3 倍大きい。（第 2 図）

(2) \(\alpha_1 \propto \omega^4 \) が \(T \geq 0.3k \) では破れる。（第 3 図）

(3) 音速 \(u_1 \) の周波数依存性がやはり上記の取扱いからの予測に合わない。（第 4 図）

(4) 压力下での \(\alpha_1 (T, \omega) \) に異常な shoulder が出る（第 5 図）

という問題点が指摘されていた。これに対する最近の Jäckle など5の考え方は、まず \(\varepsilon = u_1 Q (1 - r Q^2 - \delta Q^4) \) と置いて、\(\frac{\partial \varepsilon}{\partial Q} = u_1 \) を満たす \(Q \) を \(Q_c \) とし（第 6 図）
生崎 明

\[k_B T \ll u_1 Q_e \text{ なら } \alpha = A \omega T^4 \]

\[k_B T \gg u_1 Q_e \text{ なら } \alpha = \frac{A}{3} \left(\frac{u_1 Q_e}{k_B} \right)^3 \omega T \]

であるとするものである。これは \(Q < Q_e \) の phonon は 3-phonon 過程に与かることができるのでに対して \(Q > Q_e \) ではそうではないことを考えに入れたものである。なお、\(k_B T \gg u_1 Q_e \) で \(\alpha_1 \) の実験値が急激に立上っているのは、\(Q > Q_e \) の phonon の幅を考えれば説明できるとされている。しかし、この計算で Jäckle らが用いている \(\tau \) の値は Phillipsらの比熱の実験値（第 7 図）から求めた \(\tau \)（この解析法にも疑念のないこともないが）とは明らかに矛盾しており、この辺を救う考え方はその後いくつか出されてはいるが、現状はやはりかなり混乱しているように見える。ここはやはり直接的な実験で \(\tau \) を出すことが先決であろう。

なお、Raman 散乱の実験が roton 間相互作用に対して極めて有効であることはよく知られている。\(^7\) 現状は少なくとも発表された形では Greytakらの実験から一歩も進んでいないが、実験技術の上からは、100 mK程度までの低温度での実験が行えるようにすること、及び高圧下での実験を行うことが有効であると思われる。He^3 - He^4 系での測定も非常に興味深い。

最後に、第 4 音波で roton のパラメーターを定めた実験\(^8\) を紹介しよう。第 4 音波の音速は、低周波領域で、

\[u_2^2 = \frac{\rho_s}{\rho} u_1^2 + \frac{\rho_n}{\rho} u_2^2 (1 - \frac{2u_1^2}{\tau S}), \text{ 但し } \tau = \frac{C_p}{C_V} \]

\[\beta \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \]

と与えられ、これを変形すれば、

\[\frac{\rho_s}{\rho} = \left(\frac{u_4}{u_1} \right)^2 - \delta \]
で、δは小さな数である。これを求めたΔ(x_3)
を第8図に示す。なお、ついてながら第9図に
m_3^*/mの密度依存性を示す。異なる濃度での
He^3-He^4系での結果が密度で1つに整理でき
るのは興味深い。

\[A(x^3) \]

第8図8)

 Dependence of the effective mass of impurity excitations of
He^3 in solution on the density of the liquid. O–present research; the ar-
row indicates increase in the concentration of solutions; ●–data [16] for a solution with 0.35% He^3; the arrow indicates increase in pressure.
(at lower right, ρ, g/cm^3)

§3. 臨界現象

特にHeの臨界現象で問題にすべきポイントは,
(1) 量子効果が気相・液相転移でどうあらわれるか。
(2) \(\lambda \)転移で、(イ) 真に臨界摂動の本質を見るために何を測定するか（静的量，動的量），
(ウ) He^3不純物の効果，(エ) 壓力の関数としての臨界指数の変化（もし有れば）と \(\lambda \)
転移の特殊性との関連。
(3) Tricritical point 近傍の問題（静的及び動的）。

であろう。

まず、気相液相転移を見ると、He^4では \(T < T_c \) で \(α + β(δ + 1) \) の値を測定誤差
の上限までとっても1.89にしかならないことが甚だ奇妙で9)，これはやはり各臨界指
数の測定精度が再検討されなければならないことを示している。第10図10）はその1例
として比熱のdataを示しているが，これで見るように実験精度は未だという感を免
れない。He^3についてはこの事情はさらに悪く，実験家側の一層の努力が望まれるとこ
ろである。なお，この点に関連して注意すべきことの一つは， \(T_c \) の絶対精度であろう。

\(\lambda \)点では，有名なFairbankらの比熱の測定の後にAhlersが圧力下での測定を行っ
The specific heat of He³ and He⁴ at constant volume along nearly critical isochores [Moldover and Little (10)].

第 10 図¹⁰⁾

さて、约 22 気圧で臨界指数の異常を認めている¹¹⁾。これが事実かどうかはさらに固化の限界圧までの範囲で充分に検討すべきであろう。次に比熱音速との間に Pippard の関係式

\[
1/u_1^2 = \beta_T / V - T \alpha_p^2 / C_p \approx (C_0 - \alpha_0 \lambda T) / \lambda^2 V T C_p - C_0 / \lambda^2 V T C_p
\]

\[
\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P , \quad \beta_T = \frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T
\]

\[
\lambda \equiv \left(\frac{\partial P}{\partial T} \right)_\lambda , \quad C_0 \text{ は定数}
\]

が成り立つかどうかをチェックした実験の結果を第11図に示しておく¹²⁾。もし、この Pippard の関係式が成り立てば、

\[
\Delta u_1 \equiv u_1 - u_1(\lambda) \propto \frac{1}{C_p}
\]

となる答えである。\(T < T_l \) での振舞い（第11図 (b)）は、必ずしも満足していない。

比熱ではこの他圧力下での He⁴ の \(C_p / C_V \) の測定（第12図）¹³⁾ 及び He³ - He⁴ の \(\lambda \) 点
近傍での比熱の測定（第13図）が興味深い。前者は実験自体はまだ充分に信頼できるものではないようであるが、さまざまな圧力下でλ点を見ればC_pあるいは等温圧縮率が見られるかを示している点で意味があると思われる。この点で光散乱の議論もある。後者は、混合系のλ転移に関する基礎データを出した恐らく最初のもので、He³が増すと比熱の発散が次第に大きなεで止まって行く様子がよくわかる。これは最近の川本・高木の理論の取扱いと比較して見るとよいであろう。

λ点近傍での動的な物理量の測定としては、まず第1音波の吸収α_1を挙げよう。この量はFerrellらの議論でも明らかのように、critical modesには関係の薄いものであるが、これまでに比較的多く測定が行われてきている。しかし最近のRudnickのgroupでの測定結果（第14図）を見ると、T_2より下にα_1のピークが認められており、従来の結果このピークをT_2として解析していたという点でここにとどまると再検討せねばならない。なお、RudnickらのピークはPokrovskiiとKhalatnikov
He4 および Mixtures の \(\lambda \) 点近傍の比熱
\[x = 0.0000 \text{ と } x = 0.0110 \] の data は 40.\textdegree J/mole
だけ上にずらせて書いてある。1 組の data のうち大きな方の branch が \(T_{s} \) より上の data.
F. Gasparini et al.14

第 13 図14

が緩和時間 \(\tau \sim \xi / u_{2} \) （\(\xi \) は coherence の長さ，\(u_{2} \) は第 2 音速）で記述されるというものをあることが \(\xi \) の実際の値から確認されるに至っている。

次に第 2 音波に触れてみたい。第 2 音波
はこれが \(\lambda \) 転移の臨界モードであるためにもっとも本質的な量である。現在
までその速度 \(u_{2} \) の測定がもっぱら低
周波で行われて超流動密度 \(\rho_{s} \) が求め
られているが，第 2 音波の吸収 \(\alpha_{2} \) の
測定は比較的古い論文が 1 つ有るだけ
である（第 15 図18）。

第 14 図17

第 15 図18

Fig. 1. Attenuation of first sound. Beginning with the
lowest curve, the frequencies are 600 KHz, 1 MHz,
1.75 MHz, and 3.17 MHz.

Fig. 2. The points were obtained by subtracting the
attenuation in He 1 from that in He II at the same
value of \(\xi = |T_{A} - T| \) using the data of Fig. 1. The
curves are plots of Eq. (2).
周波数範囲での α_2 を測定することは非常に重要であろう。これに加えて充分高周波の第 2 音波によって critical regime で現実し（第 16 図）、u_2, α_2 を測定することは、極めて興味深いことのように思われる。ここではレーザーによるプリラン散乱の利用、あるいは少くとも detector としての利用が 1 つのポイントとなる。これに関連してイタリアのグループによる 15 MHz までの実験結果を第 17 図で見ておきたい。まだ T_λ に充分近づいていないためにここでは格別な異常は見えない。第 2 音波の吸収に対比するものとして熱拡散率があるが、Archbald らの結果（第 18 図）では測定セルの spacing によって何か size 效果が見られるという。この原因はまだわからない。

粘性係数もまた重要な量である。ただ残念なことにいままでの測定では回転粘度計、水晶の振動粘度計などを用いているために、測定子のサイズが大きく温度制御の精度がまだ充分ではない。第 19 図は最新のデータであるが、現状では T_λ で粘性係数の何次の微係数で不連続になるのかを議論することは甚だ
困難であると思われる。

最後に Tricritical point に簡単に触れたい（くわしくは高木伸氏のお話を御参照いただき）。この点は転移の次数の異なる λ 線と相分散線が会合することで興味深い。現在まで比熱（第 20 図 22) ではじめいくつかの静的物理量が測定され、二液混合系との analogy を用いて臨界指数が求められている。ただしその濃度は特に He³ 濃度が独立変数となる場合には極めて悪く、今後の研究が待たれるところである。なお、必ずしも動的な測定ではないが濃度の揺ぎによるレーリー散乱の結果を見ておこう。（第 21 図 23)。

Rayleigh 散乱 3)

第 21 図 23)
§4. Restricted-dimensional System

比較的最近，吸着 He 膜についての種々の測定が行われるようになった。この研究のポイントは，超流動の onset に関する問題，二次元系での励起の問題，磁気的性質（He⁰，He³-He⁴）などで，なお実際には基板との境界部分での He の状態をきちんとおさえなければならないかなり厄介な問題を含んでいる。

実験では比熱，帯磁率，第 3 音波の音速などがこれまでに測られている。まず第 22 図⑴は比熱で，$C \propto T^2$ の振舞いが見られる。この結果及び He³での同様な結果とを第 23 図にまとめてあるが，問題点は，(1) 二次元系として求めたデバイ温度が He³と He⁴
とで同じであること, (2) デバイ温度が coverage と共に減少すること（すなわち Gruneisen 定数 < 0）, (3) 温度に依存しない部分があること, である. この最後の点は表面原子の "skating" という考え方が出されている. これより若干厚い膜で熱を温度の関数として測定し, その極大を与える温度（＝ラムダ点）と超流動 onset の温度とを第 24 図に plot してある. T_{max} と T_{onset} の間は超流動ではないが correlated phase である領域で, この原因が表面の特殊な肋起であるとする考え方その他が出されている. なお, T_{onset} で比熱には全く何の異常も出ないようで, 若干気になることである.

第 24 図$^{24)}$
帯磁率の測定については省略して、最後に第3音波の速度について触れたい。その測定結果は第25図25）ようになる。ポイントは(1)Gingburg–Pitaevskii理論による計算（図中の曲線）に合わせるためには、基板に接している第1層を固体と考えること、healing length とを考慮することが必要であること、(2)第3音波が検出できない膜厚が温度の関数としてあり、これが超流動のonset pointに対応していることである。第3音波の吸収の測定はほとんどない。

参考文献

1）R. A. Cowley et al., Canad. J. Phys. 49, 177 (’71)
2）O. W. Dietrich et al., Phys. Rev. （’72）
3）R. J. Donnelly, Phys. Letters 39A, 221 (’72)
3）B. M. Abraham et al., Phys. Rev. 181, 347 (’69)
同, “Physical Acoustics” Vol. VI.
4）P. R. Roach et al., Phys. Rev. (A)5, 2205 (’72)
5）J. Jacke et al., Phys. Rev. Letters 27, 654 (’71)
6）N. E. Phillips et al., 同上 25, 1260 (’70)
7）T. J. Greytak, 作並のSummer School (’70)
8）N. E. Dyumin et al., Soviet Phys. JETP 29, 406 (’69)
9）P. R. Roach et al., Phys. Rev. Letters 17, 1083 (’66)
10）M. R. Moldover et al., 同上 15, 54 (’65)
11）G. Ahlers, Proc. of LT12 (’70)
12）M. B. Barmatz et al., Phys. Rev. 170, 224 (’68)
13）E. R. Grilly, Phys. Rev. 149, 97 (’66)
15）私信
16）Ferrell et al., Annals of Physics 47, 565 (’68)
液体Heの実験（Review）(1)

生嶋 氏 (東大物性研)

◎ 素励起に関する質疑応答
（生嶋氏）第一音波の吸収係数 α_1 の圧力・温度依存性に関する Jäckle et al. の理論（'71）は，$r<0$ ($\varepsilon_P = CP \cdot (1-rP^2)$) が，その基礎になっているが，比熱の実験（Phillips et al. ('70)（低圧側で $r<0$，高圧になると $r>0$）とは相入れないよう

（鈴木氏）両者の実験とも，r の符号の変わる前後の圧力下でのデータがないから，これらの結果だけからは，必ずしも，矛盾していると言えない。

（生嶋氏）やはり，音速の波数依存性を測定するのが，最も直接的であるよう。

◎ 臨界現象に関する質疑応答
（生嶋氏）He II ($T<T_1$) 相で，T_1 に近づくと，むしろ，Pippard Relation ($du_1 \propto 1/C_P$) からずれるのだが？

（高木氏）Pippard Relation は，T_1 近傍での singular part についての関係式の箇

で，むしろ，C_P の発散がより強い側 ($T<T_1$) で成立しないのは不思議に思える。