ラテックス粒子による

結晶構造形成

東教大・光研 和 達 三 樹

戸田盛和

計算機実験によって発見された Alder 転移(2粒子間に斥力だけが働くという系での固体 - 液体の相転移)は、はたして自然界に実在するのであろうか? 我々はその顕著な一例として単分散ラテックスにおける相転移を紹介する。

ラテックスの発色はラテックス粒子の規則的3次元配列構造による可視光のBragg反射 によることは既に明らかになっているが、近年になって、構造形成を2粒子間に働く引力 と斥力の釣り合いから説明する理論(コロイド化学ではDLVO理論という)と全く矛盾 する実験結果が報告されるようになった。そのいずれの実験も、Alder 転移の考えによっ て統一的に解釈されるように思われる。

剛体球の系では,状態は粒子の体積分率

$$\psi = \frac{4\pi}{3} \frac{Na^{\circ}}{V}$$
 a;粒子の半径 (1)

だけによって決定される。計算機実験によれば

$\psi < 0.50$	無秩序(液体)状態	
~	秩序・無秩序(固・液)共存状態	(2)
> 0.55	秩序(固体,結晶)状態	

となる。したがって、観察している系での相転移が剛体球系のAlder 転移であるためには 条件(2)が満たされなければならない。

実験1 電解質濃度の効果

発色している単分散ラテックスに電解質(例えば, KCℓ)を加えると発色は消え,逆 に発色していない乳白色の試料から電解質を取除いていくと,発色するようになる。すな わち,粒子濃度をたて軸, KCℓ 濃度をよこ軸にして相図を描くと第1図のようになる。 電解質濃度の効果を最も簡単に取入れるには,各粒子が有効半径

-B46-

和達三樹・戸田盛和

$$a = a_{0} + \alpha \kappa^{-1}$$

$$a_{0} ; 実際のラテックスの半径 (3)$$

$$\kappa^{-1} ; Debye length, 電気拡散 2 重層の厚さ 0.20 \alpha ; 1の程度の定数 0.10
た剛体球を考えればよいであろう。 (3) 0.40
税 0.30
 $\alpha = a_{0} + \alpha \kappa^{-1}$

$$0.40
0.30
 0.30
 0.20
 0.10
 0.20
 0.10
 $10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2}$
KCl濃度
第1図 発色, 非発色の条件$$$$

を持った剛体球を考えればよいであろう。 一方, ラテックス粒子の実際の体積分率 Ø は,

$$\phi = \frac{4\pi}{3} \frac{\mathrm{N} a_0^3}{\mathrm{V}} \tag{4}$$

で与えられる。したがって、以上の式(1)、(2)、(3)、(4)をまとめると、

が予想される。例として、 $\alpha = 1.3$ として実験結果と比べてみると(第2図)定性的によ く一致している。

実験2 高イオン濃度での相転移

理論式(5)から推測されることは、イオ ン濃度を非常に高くすると、 κ^{-1} はほとん ど無視でき、剛体球系でのAlder 転移の 条件にさらに近づくのではないかというこ とである。電気2重層や van der Waals 力の影響をさらに小さくするために、各ラ テックス粒子(半径 900 Å)の表面に厚さ 約 50 Å の非イオン活性剤の吸着層をつけ る。各粒子はあたかも半径(900+50)Å の剛体球のように考えられる。その結果は

(5)

発色と非発色の条件. 実線:実験値. 点線: 理論値 (α=1.3).

第 2 図

-B47-

ラテックス粒子による結晶構造形成

第3図のようになり、吸着層の厚さを含ん だ有効体積分率を考えると、高イオン濃度 では, 共存領域は 47 - 54% となってい る。この値は,Alder転移から予想される 50-55%に非常に近い。

実験3 有機相中での相転移

さらに剛体球に近い系を実現するために、 ラテックス粒子をベンゼン中に分散させた。 このような系では van der Waals 力は全 く無視でき、又、親水基の解離がほとんど

第3図 高イオン濃度,高粒子濃度での相図 起らないため、電気的反撥力も非常に小さ

い。しかしこの場合、ラテックス粒子は有機相中で膨む(膨潤効果)ことを考えに入れな くてはならない。膨潤度 r は, Einstein の式

 $\eta_r = 1 + 2.5 \tau \phi$

(6)

から、粘度測定によって求めることができる。その下を用いてラテックスの実効粒子濃度 r Ø を計算すると、いずれの試料に対しても、発色限界は42%という値を与える(第1 表)。この値42%はAlder転移の50%より少し小さいが、最近の実験によれば、ラテ ックス粒子から、線状ポリマーが有機相中に溶けこんでいる効果を考慮すると、さらに理 論値に近づく。

以上のように、単分散ラテックスにおける相転移がAlder 転移であるということは明ら 第1表 有機相中の単分散ラテックス かになった。

ラテックスは結晶模型としても興味深 く、格子欠陥、転位等も顕微鏡を使っ 直接に観察される。粒子径の違った2 のラテックスを用いれば、合金の研究 行うことができるであろう。又、光散 や超音波を用いての臨界現象の研究等 考えられ、その物性学的研究は近い将来

の発色と膨潤度の関係

て種	試料	粒子直径 (Å)	発色限界 粒子濃度 ¢(vol%)	膨潤度 τ	γφ
Ъ	I	1,280	5	8.4	42
	I.	1,160	7	6.0	42
乱	I	1,450	12	3.28	40
Ł	Į	1,430	18	2.3 2	42
来	V	1,400	> 20	2.08	42

-B48-

和達三樹,戸田盛和

に多くの興味ある結果を与えるであろう。

ここで引用した実験結果は,東教大,光研の蓮精教授のグループによるものである。紙 面の都合上,参考文献として,解説記事

和達,巨勢,戸田 "融解現象とラテックス粒子による

結晶模型" 科学 42(1972)646

を掲げておく。参考文献はその文末を参照されたい。

液体・固体における原子の運動

京大工 市 村 孝 雄 上 田 顕

soft core model の計算機実験に関して、その物理的問題については、この研究会で 松田、樋渡両氏からそれぞれ話があったので、ここでは計算機実験を行うにあたって経験 した問題点などについて述べる。なお、分子運動を映画化したので、研究会ではこれを上 映した。

分子力学の方法で必要な諸量を求める際, system size, すなわち粒子数 N をいくつに 選ぶかが重要である。物理的には,たとえば g(r) は大きな r で, s(Q) は小さな Q で N-dependence が強く現われるなど,物理的側面からの制約と,も一つはわれわれの使 用できる計算機の時間をどのくらい確得できるかという研究環境の側面である。われわれ は後者を考慮し, code check の意味も含めて N=32 の場合の計算を進めてきたが(後 に N=108 も計算している),予想よりはうまくいくことが明らかになったので,熱力 学的量のみならず運動学的量ままで計算を行ってきたが,これらについて計算上の問題を 中心として,簡単に報告する。

<u>状態方程式</u> Livermore, Orsay グループの N=500, 864 の場合, とくに転移点 近傍での大きなゆらぎのため、相当長時間の計算を要しているが、 N=32 では最も容易 に求めることができ、しかも Hoover らの N=500の場合との一致は極めてよいことが明 らかとなった。理由は周期的境界条件が一種の cell 的役割をし、 cell 中の粒子が 32 ケ

-B49-