高圧下における融解現象の計算機実験 『

荻田直史,小川 泰*,上田 顕**,
松田博嗣***,小倉久和*,種村正美*
(理研,*京大理,**京大工,***九大理)

高圧下で融解曲線が極大を示す物質に対する理論的モデルの1つである two species model¹⁾ に対するモンテカルロ法による計算機実験を前回²⁾に引き続き行った。その 結果を報告する。

モデルは前回同様次の様に設定されている。系は古典粒子系で,各粒子は $S_i = \pm 1$ で示される内部自由度をもち+1:基底状態,-1:励起状態 (= collasped atom) である。全系のハミルトニアンは

$$H=K+V_1+V_2$$
 (K:運動エネルギー)

$$V_{1} = \sum_{i \langle j} \varepsilon \left(\frac{\sigma_{ij}}{\gamma_{ij}}\right)^{n} \qquad \left(\begin{array}{ccc} \sigma_{ij} = \sigma_{1} & \text{if } s_{i} = s_{j} = +1 \\ = \sigma_{2} & \text{if } s_{i} = s_{j} = -1 \\ = \sqrt{\sigma_{1} \sigma_{2}} & \text{if } s_{i} \times s_{j} = -1 \end{array}\right)$$

 $V_2 = -e_0 \sum_i s_i$ (:励起エネルギー)

パラメーターの値は n=12, $e_0/\epsilon=1$, $\sigma_2/\sigma_1=0.8$ である。全系は粒子数 N=32 個,3次元周期境界条件をつけて構成する。そしてモンテカルロ法により simulate し,配位空間での Markov-chaine を構成しサンプリングを行い PV/NkT をビリアル 定理より求める。

この系はハミルトニアンから予想される様に、低密度及び高密度の極限では、すべての粒子は同じ内部状態にあり、それぞれ $\sigma = \sigma_1$ 及び $\sigma = \sigma_2$ の one species system³⁾ と同じ振舞をする。

Hone species =
$$K + \sum_{i \leq j} \varepsilon (\frac{\sigma}{\tau_{ij}})^n$$

この one species soft core system はよく知られている様にすべての熱力学的量は

—Н 47 —

荻田直史,小川 泰,上田 賢,松田博嗣,小倉久和,種村正美

1個の変数, $\rho^* = \rho(\epsilon/kT)^{3/n}$, $(\rho = N\sigma^3/V)$ で記述されるが, 我々の系に対しても 同様の変数を, $\rho = N\sigma^3/V$ として定義すれば, 両極限では one species system との 比較が可能であり, 系の振舞を予想することが出来る。このことに基づき, $\rho^* = -c$ の予備的な実験を行い前に報告した結果 T*(=kT/ ϵ) ~ 0.15の付近に Melting Curve Maximum (MCM) が現れると期待される。

予備的実験の定性的結果をより定量的にすることを目的として等温実験を行った。実 験の方法は予備的実験の場合とは異なり、次の様なHoover,Roos,et al⁴⁾ により 用いられた方法で行なう。等温線を定める実験に於ては、液相 branch及び固相 branch を別々に、全密度領域について行い、転移点は各相に対して自由エネルギーを計算比較 することによって熱力学的に定める。各 branch は初期配置の違いにより、得られると する。初期配置が randam の場合 Markov-Chaine 内では系は液相 branch にあり固相 branch に移ることはないと考えられる。固相 branch については初期配置を fcc に とっておけば高密度側では問題ないが、低密度側でも同じ branch にとどまる様に、各 粒子を fccの配置をもった cell (Wigner-Seitz cell)の内部に閉じ込めて Simulation を行なう Single occupancy³⁾の方法を用いる。

温度は、MCM 近傍の温度として、T*=0.16,0,15,0.14,それとT*=0.10 及 びT*=0.04を選び、等温線を求めた。その結果が図1の様である。実験は主に 0< $\frac{\langle N_- \rangle}{N} < 1$ の預域について行い(N_: s_i =-1の粒子数)<N_>/N~0,1 の領 域については Hoover et al³⁾の Dataを借用した。

高圧下における融解現象の計算機実験

荻田直史,小川 泰,上田 賢,松田博嗣,小倉久和,種村正美

この状態曲線から、 T*=0.16,0.15,0.14 の各等温線は MC M近傍であると考えられる。又 T*=0.04 は三重点近傍と推定される。各等温線とも、液相 branch の混合領域 $(0 << N_>/N < 1)$ の方が固相 branch のそれよりも広いことは一般的に納得できることである。

T*=0に於ては固相 branch の化学ポテンシャル及び圧力が簡単に計算され,固相 一固相 II の転移点は $\rho_1 = 0.89$, $\rho_2 = 1.53$, $p^{\sigma_1^2}/\epsilon = 3.45$ と計算される。図1の固相 branch の状態曲線の温度変化をみると、 $0.10 < T^* < 0.14$ の間で van der W aals loop が消失することからこの固相 I 一固相 II の転移線が,臨界点を有することがわか る。この事情は、もし $\sigma_1 \sim \sigma_2$ であれば固相一固相転移は T*~0 でしか起り得ないこ とから容易に予想されることである。今の場合、三重点が T*=0.10より下側にあるこ とから固相 I, 固相 II, 液相の三重点が実際に存在する。

転移点の決定には自由エネルギーの計算が必要であるがそれは等温線より求めること 3) が出来る。

$$\frac{F^{e}}{NkT} = \int_{0}^{\rho} \left(\frac{pV}{NkT} - 1 \right) d \ln \rho \qquad F = F^{e} + F^{ideal}$$
$$\frac{G^{e}}{NkT} = \frac{F^{e}}{NkT} + \frac{pV}{NkT}$$

低密度側における pV/NkTの値は先に述べた様に Hoover et al のone species の 結果を用いている。T*=0.14,0.10,0.40 の場合は,低密度側での液相一固相 | の転 移は, almost s_i =1 の領域で起り one species の転移点と一致すると考えられる。そ の点では液相 branch と固相 branch の化学ポテンシャルは等しい。そこで,この点を 起点として高密度側での化学ポテンシャルを各 branch について計算し比較した。 両 branch の化学ポテンシャルが,問題としている領域では常に非常に接近しており, 低密度領域における圧力の振舞が sensitive に転移点に利いてくる為にこの様な方法を 採った。こうして決定した化学ポテンシャルの比較により,高密度側における固相 | 一 液相及び液相一固相 || の転移点を定めた点が図2に示してある。T*=0.10の場合には 状態曲線がまだ安定に定まっていないと思われ,他の温度の場合との consistencyは良 くない。T*=0.04の場合は液相は現われず固相 | 一固相 || の転移点が得られている。

各転移点における傾きは Clausius-Clapeyron 方程式,

 $\frac{dT_{m}^{*}}{dp^{*}} = \frac{\Delta V^{*}}{\Delta S^{*}} \qquad (S^{*} = \frac{S}{Nk}, V^{*} = \frac{V}{\sigma_{1}^{3}})$ ここに、 $\frac{F}{NkT} - \frac{E}{NkT} = \frac{S}{Nk}$ より定めた。図よりMCMはほぼ

 $\begin{cases} kT/\varepsilon \sim 0.15 - 0.16 \\ p^{\sigma_1^3}/\varepsilon \sim 2.3 - 2.5 \\ \rho \sim 0.75 - 0.8 \end{cases}$

にあると考えられる。

融解曲線に沿うエントロピーの「とび」の変化は表1の様になっておりMCM に於て zero になる傾向はないと考えられる。つまりMCM の点は1次転移点であって融解曲 線上の特異点とはならない。

理論的には低密度側での液相 branch は virial 展開の結果と一致し、又高密度側での固相 branch は格子力学による結果と一致するはずである。我々は $T^* = 0.14$ の場合についてこれらとの比較検討を行った。 virial 展開は Hoover et al.の展開係数³⁾を借用し、格子力学に対しては調和振動子近似の範囲で、 Dynamical matrixを直接解いて定めた。結果は表2の様であるが比較的良い一致が得られていると思われる。

Melting point における Entropy gap:△S/Nk

kT∕ε .	F-SI	SI-F	F-SI	
0.14	0.8 2 5 7	1.6931	1.1101	
0.10	0.8257	1.3689	1.1044	
			(0.5844)	
		SI-SI		
0.0 4	0.8 2 5 7	0.5309		
·	L			

 P_2

High density solid phase(S1) $kT \neq \epsilon = 0.14$ $\rho_2 = (\sigma_1 / \sigma_2)^3 \rho_1, \rho_2 / \rho_1 = 0.8$ $\rho_1 = N \rho_1^3 / V.$

	Р V 🖌 N к Т		A e / N k T		
	Hooveretal.	Present (<n->/N%)</n->	LD	Hooveretal.	LD
1.52062	2 2.1 0 7		2 2.7 3 2	1 0.2 5 7	10.163
1.68957	3 0.5 4 6		3 1.0 7 6	12894	12.861
1.80		38.155 (99.88)	38.069		
1.9 0	· · ·	4 5.6 5 6 (9 9.8 6)	4 5.6 1 6		
$2.0\ 2\ 7\ 4\ 9$	56.655	57.368 (99.88)	$5\ 7.1\ 2\ 6$	2 0.3 7 7	2 0.4 3 3
2.10		65.182(99.89)	6 4.7 1 9		
2.20		76.964 (99.90)	$7\ 6.5\ 6\ 2$		
230		90108 (99.99)	90.135		4
240		105.564(99.98)	105.599		
2.50		123051(99.99)	123121		

Low density fluid phase $kT \neq \varepsilon = 0.14$

	PV / NkT			A e / N k T	
P ₁	Hooveretal. (N=32)	Present (< N ->/ N%) (N = 32)	Virial exp. (N = ∞)	Hooveretal $(N = 32)$	Virial exp. $(N = \infty)$
0.0	1.0	1.0 (0.0)	1.0	0.083	0.0
0.08651	1.4 3 9	1.4.2.2 (0.0)	1.4 50	0.477	0.4 0 4
0.17301	2.108	2.133(0.01)	2.123	0.972	0.908
0.25952	3.0 8 1	3.097 (0.01)	3.1.09	1.593	1.537
0.34602	4553	4486 (0.01)	4.520	2.3 8 3	2.325

高圧下における融解現象の計算機実験

自由エネルギーの積分を行う場合,被積分関数に非常に鋭いピークが現われること及び、実験データとして pV/NkTの現在得られている値が、そのピークの近傍で数%の分散を持つこと(これは粒子が内部自由度をもつ為に intrinsic に生じる様である)等々により上述の転移点に対する定量的な精度は充分であるとは言えないが、MCMの点の変数の値についてはほぼ確認出来ると思われる。 $T^* = 0.15, 0.16$ の場合は、one speciesの場合とは全く異った melting curve上の点を通過することはほとんど確実である為上記の方法は直接には適用できず、今後の課題である。

references

E. Rapoport. J. Chem. Phys. <u>46</u> (1967) 2891 ; Y. Kuramoto &
 H. Fnrukawa. Prog. Theor. Phys. <u>47</u> (1972) 1069.

2)物性研究 19 (1973) B19.

3) W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson, A. Barker &
B. C. Brown J. Chem. Phys. <u>52</u> (1970) 4931, 他.