# <sup>3</sup>He の 超 流 動

南カルフォルニア大 真木和美

#### Abstract

Recent status of our understanding of the superfluid phases in liquid <sup>3</sup>He in mili Keivin region is reviewed critically. The new phases (the A phase and the B phase) appear to be described in terms of BCS like condensate with triplet (and very likely P-wave) pairs.

Richiness in dynamical phenomena in superflaid <sup>3</sup>He reflects high degeneracy in possible configurations of condensate for the ground state. This degeneracy is partly lifted due to the dipole interaction energy between nuclear spins of <sup>3</sup>He atoms. Recent theories of NMR and the sound propagation in the superfluid state are reviewed.

# **§**1 序

1972年夏米国ボルダーに於ける国際低温物理学会で、液体  ${}^{3}$ Heの超流動転移に関 連すると考えられる異常が融解曲線上でコーネル大グループによって観測され、異常な センセーションを巻き起したことは末だ記憶に生々しい。実際十分低温では液体  ${}^{3}$ He は 超流動を示すであろうことは既に1957年に Bardeen, Cooper Schrieffer (BCS)による超伝導理論の建設以来、理論的に予想されていたが、これまでの Wheatley らによる超流動状態の探究は 10mK 以上では否定的結果しか得られなかっ

\*) このレビューは研究情報センター構想の一つのテストケースとして著者が基研に 来所され,作製されたものである。

た。

上の Cornell 大グループの実験では低温で液体  ${}^{3}$ Heのエントロピーが固体  ${}^{3}$ He の エントロピーより小さくなること(Pomeranchuk の効果)を利用して 3mK 以下での 固体  ${}^{3}$ He の性質を調べているときに液体の異常に気がついたことにはじまっている。 上のコーネルスの実験の後を追って,超流動  ${}^{3}$ He に関する実験は Cornell, La Jolla, Helsinki, Bell Lab 等のグループによって着実に進展し,既に超流動相 (以下8 相と略記)は少なくとも二相からなること,又,これらの二相は同じ軌道角運 動をもつ対の凝縮によることが明らかになっている。又,これらの二つの相での種々の 性質,すなわち核磁気共鳴(NMR),零音波の伝播,粘性,熱伝導度,静的帯磁率, 第4音波の測定等が既に報告されている。S相に対する理論的理解も NMR に関する Leggett のパイオニア的仕事の後,既に多くの仕事が発表され現段階では A相, B相 に関してかなりはっきりしたモデルが説定されていると考えられている。本稿では 3月 現在の時点にたって今までの超流動  ${}^{3}$ He に関する,実験,理論を整理し,これからの 方向を探ることにする。

# §2 超流動相の静的性質

固体 2-1 相図,先ず第1図に 35 Greytak<sup>1)</sup> らによって決めら T<sub>AB</sub> れた磁場のない時の相図を示す。 この相図は最近 Paul son<sup>2)</sup>らに 気圧 P H~0  $T_{c}$ (atom) よってより精密にされた。 To は正常相(N相)から S相への В PCP 21.5H~ 378G 転移温度を TAB は二つの S相 Ν (A相とB相)の間の転移温度 を示している。又実験的に T に於ける転移は二次であること が、又T<sub>AB</sub> に於ける転移は一 2.4 2.6 次で一般にヒステレシスを示す T(mK) 第1図

先ず本節及び次節でS相に関する実験的事実を概観してみよう。

-212-

ことが知られている。最初の Greytak ら の実験では T<sub>c</sub> 曲線は PCP で折れ曲ると考 えられたが、もっと最近の実験では T<sub>c</sub> はなめらかな一つの曲線であることが示 され た。又、T<sub>AB</sub> は小さな磁場によって大きな影響を受けることも観測されている。<sup>2)</sup> H~378 Gauss のもとでの T<sub>AB</sub> を鎖線で第1図にしめす。この図で最も興味深いの は H=0 の時の B相の出現に関連した T<sub>c</sub> と、H $\neq$ 0 の時の A 相に関連した T<sub>c</sub> が完 全に一致することである。このことは上の実験とは独立に静的帯磁率の測定<sup>3)</sup>からも導 びけることで、これは、A相と B相が共にある一つの軌動角運動対の凝縮相の多様体の 中に属していることを意味する。

後に見るように A 相の性質は Anderson と Brinkman<sup>4)</sup> (AB) によって提出され た,特殊な triplet 凝縮体 (AB 状態) と Consistent であることから, B相はやはり 奇軌道角運動, triplet 対の中の一つの状態と考えられる。

<u>2-2</u> 比熱  $T_c$  での比熱は Webb  $6^{5}$  又, Dundon<sup>6)</sup>らによ って測定されている(第2図)。 比熱の振舞は超伝導転移を行なう 金属電子のものににているが、と びは一般に BCS 理論から予想され れるよりかなり大きい。

$$\frac{\Delta C}{C_{N}} \simeq 1.6 \sim 1.9$$
$$T = T_{c}$$

(= 1.46 BCS 理論)

 $C \qquad A \qquad N \qquad T_c \qquad T \qquad F 2 \ \square$ 

Dundon<sup>6)</sup>らの測定は冷却に核スピンの断熱消磁を用いたもので、今のところ実験の精度はあまりよくないが(温度測定の困難のため)、将来 mK から µK 領域を探究する為には今のところこの方法にかわるものがないという意味で重要である。

<u>2-3</u>スピン帯磁率 スピン帯磁率は Paulson<sup>7)3)</sup>らによって測定された。 A相 ではスピン帯磁率は N 相と同じであるが B 相では帯磁率は N 相よりも小さくなる。 し たがって T<sub>AB</sub> では帯磁率はトビ $\triangle \chi = \chi_A - \chi_B = \chi_N - \chi_B$  をともなって小さくな

$$-213-$$

真木和美 •

る。 $\Delta x$  を圧力の関数として測定した もの<sup>7)</sup>を第3図に示す。融解曲線上で 0.6 は $\Delta x / x_n$  はほぼ 60% に達する。又 Paulson<sup>3)</sup>らは定圧のもとでの  $x_B / x_n$  は redeuced 温度  $t = T / T_c^{\Delta y / x_n}$ を用いると( $T_c$ の近傍では)次の普 辺的関数で書けることを見い出した。

$$\chi_{\rm B}/\chi_{\rm n} = 1 - 4.7 \, (1 - t)$$
(2.1)

実際磁場のもとでは  $T_{AB}$  は常に  $T_c$ より小さくなるため、B相への転移は  $T_c$  より下で起るが、 $T_{AB}$  以下の  $\chi_B / \chi_n \epsilon$  (2.1)を用いて外挿する と、PCP より低圧では  $T_c$  として H=0 の場合の  $T_c$  を得る。

<u>2-4</u> 磁場の効果 上の帯磁率の 振舞と関連して融解曲線上での相図が 外部磁場に非常に敏感なことは Osheroff<sup>8)</sup>ら, Lawson<sup>9)</sup>らによっ て見い出された。融解曲線上の相図は 磁場の関数として第4図のようになる。  $T_{c1}, T_{c2}, T_{AB}$  は磁場 H の関数と して次のように与えられる。





$$T_{c1} - T_{c2} = 0.54 \text{ H} \times 10^{-2} \text{ mK/kOe}$$
 (2.2)

$$T_{AB}(H) - T_{AB}(0) = 0.55 \times 10^{-1} H^2 mK / (kOe)^2$$
 (2.3)

又,既に2.1 に述べたように PCP 近傍での相図は磁場に極度に敏感である。

-214-

(2.4)

2-5 超流動密度  $\rho_s / \rho$ 

最後に Koj ima<sup>10)</sup> らによって CMN の粉末を固くつめた媒質中の<sup>3</sup>Heでの第4音波 が測定されたことを提げよう。実際,この系は pure な液体<sup>3</sup>He と少し異っているか もしれないが,Wheatley<sup>11)</sup> によると $T_c$ は pure な液体<sup>3</sup>He と同じとのことであ る。実際<sup>3</sup>He では第4音波の速度  $C_4$ は

$$C_4^2 / C_1^2 = \rho_s / \rho$$

とかけるので(ここで $C_1$ は第一音波の速 度(即ち普通の音速)),  $C_4$ の温度依 存性から  $\rho_s / \rho$  を求めることができる。 実験によってきめられた  $\rho_s / \rho$  を第5 図に示す。結果は BCS 理論から期待さ れるように

$$\rho_{s} / \rho = A (T_{c} - T) / T_{c}$$
(2.5)

で整理される。

2

# 参考文献

- T.J.Greytak, R.T.Johnson, D.N.Paulson and J.C.Wheatley, PRL <u>31</u> 452 (1973)
- 2) D.N.Paulson, H.Kojima and J.C.Wheatley, preprint
- 3) D.N.Paulson, H.Kojima and J.C.Wheatley, preprint
- 4) P.W.Anderson and W.F.Brinkman, PRL 30 1108 (1973)
- 5) R.A.Webb, T.J.Greytak, R.T.Johnson and J.C.Wheatley, PRL 30 210 (1973)
- 6) J.M.Dundon, D.L.Stolfa and J.M.Goodkind, PRL 30 843 (1973)
- 7) D.N.Paulson, R.T.Johnson and J.C.Wheatley PRL 31 746 (1973)



第 5 図

- 8) D.D.Osheroff, W.J.Gully, R.C.Richardson and D.M.Lee,
   PRL 29 920 (1972)
- D.T.Lawson, W.J.Gully, S.Goldstein, R.C.Richardson and
   D.M.Lee, PRL 30 541 (1973)

10) H.Kojima, D.N.Paulson and J.C.Wheatley, PRL 32 141 (1974)

11) J.C.Wheatley (私信)

#### §3 動的性質

3-1 NMR S相の液体 <sup>3</sup>He に関しての最初の最も重要な実験は Osheroff <sup>1)</sup>らに よる NMR の実験である。磁場のもとでの A 相に於ける横共鳴周波数は予想に反して, Larmor 周波数よりも高周波側に shift することが見い出された。実際異った磁場の もとでの周波数の shift は共鳴周波数の自乗を用いると

$$\Omega_{t}^{2} - \omega_{L}^{2} = (4.956 \times 10^{11} \text{ H}_{z}^{2} / \text{atom}) \bigtriangleup \rho$$
$$- (5.947 \times 10^{12} \text{ H}_{z}^{2} / \text{atom}^{2}) (\bigtriangleup \rho)$$

 $\simeq$  (1.83 × 10<sup>10</sup> H<sub>z</sub><sup>2</sup>/mK) (T<sub>c</sub>-T)

- 
$$(1.12 \times 10^{10} H_z^2 / (mK)^2) (T_c - T)^2$$
 (3.1)

のように書けることが示された。 $\triangle P = P - P(A)$  (P,P(A) は融解曲線上の圧力)  $\omega_L$  は固体での共鳴周波数 (即ち Larmor 周波数) である。又,同じ実験でA 相での 共鳴の強さは N 相と同じであることが示された。これに反して B 相に於いては共鳴周 波数の shift が消え,また共鳴の強さは N 相の半分以下になることが知られている。 上の共鳴に関する Leggett<sup>2)</sup>の仕事,又,その後の発展については後節で述べる。 極 く最近 Osheroff 6<sup>3)</sup>は Leggett<sup>2),4)</sup>の指摘にもとづいて A 相での縦共鳴を観測す ることに成功した。A 相での縦共鳴周波数  $\Omega_\ell$  はすべての温度で横共鳴周波数  $\Omega_t$  と 次の関係のあることが示された。

-216-

。 He の超流動

(3.2)

$$\Omega_{\ell}^{2} = \Omega_{t}^{2} - \omega_{L}^{2}$$

上の式はA相での凝縮体は実際Anderson-Brinkman<sup>5)</sup>によって提出された特殊な triplet 対であることを示している。又、Osheroffら<sup>3)</sup>によるとB相でも縦共鳴が 観測されているが、その磁場依存性は非常に複雑である。

<u>3-2</u>ゼロ音波の伝播 S相での零音波の伝播の測定は Paul son<sup>6)</sup>ら及び Lawson<sup>7)</sup> らによって行なわれた。零音波の減衰αは  $T_c$ の直下でするどいピークをもち,それよ り低温では温度 Cの減少とともに減衰も小さくなる。また音速 C は  $T_c$ の下では温度 とともに減少し T=0 K では第一音速 C<sub>1</sub> に近ずく。第5 図に Paul son<sup>6)</sup>らによる実 験結果を示めす。 a 図は圧力 P= 37.72 atom で N 相から A 相への転移に対応し, b 図は P=19.36 atom で N 相から B 相への転移に対応している。減衰αのピークの



第 5 図

位置は音波の振動数が大きいほど低温側にずれる。又,減衰の構造は N-B 転移の方が 鋭くなっている。音速は T が T = 0 K に近づくにつれて第一音速に近づくことは既に

S波対の場合には Leggett<sup>8)</sup>によって予言されていたが,上の実験はこの Leggett の予言と consistent である。 Lawson<sup>7)</sup>らは又減衰のピークは磁場をかけることによ って二つのピークに分離することを示した。この二つのピークは 2-4 で論じた A 相の 二つの転移に関連していると考えられる。

<u> 3-3 粘 性</u> Alvesalo<sup>9)</sup>らは Pomeranchuk cell 中に張った Nb Ti の細い 針金の振動の減衰を測定することによっ

て A 相及び B 相 では粘性が温度の減少 とともに急激に減少することを見い出し た。(第6図)。 N 相では粘性  $\eta$  は  $T^{-2}$ に比例して(Fermi 液体の理論) 温度の減少とともに増大するが,  $T_{c}$ 以 下では急激に減少をはじめる。及  $T_{AB}$ では  $\eta$  は非連続的に小さくなる。又,  $T_{AB}$ の上側に  $\eta$  はヒステレシス・ルー プを持つ。このことは A 相に関しては 種々の  $\eta$  を与える異った配位が存在す ることを意味しているのかもしれない。



<u>3-4</u> 熱伝導 Greytak<sup>10)</sup> らによって細い capillary 内の熱伝導の測定が行なわれた。実験結果を第7図に示す。熱伝導は S相では異常に増大する。特に A-B 転移あるいは N-B 転移では熱伝導度は非連続的に増大する。一般に準粒子の熱拡散に伴なった熱伝導率は S相では N相より小さくなる(準粒子の数が小さくなるため)。したがって上の熱伝導の振舞いを理解するには He I の場合と同様 S 相では準粒子の bodily flow に伴なった新しい熱輸送が起ると考えなければならない。この現象は二流体モデルを用いれば理解できる。この意味で熱輸送の実験は最初に超流動成分  $\rho_{s}$  の存在を示した実験ということができる。

-218-



第 7 図

#### 参考文献

1) D.D.Osheroff, W.J.Gully, R.C.Richardson, and D.M.Lee, PRL 29 290 (1972)

2) A.J.Leggett, PRL <u>29</u> 1227 (1972)

- 3) D.D.Osheroff and F.W.Brinkman, PRL <u>32</u> 548 (1974)
- 4) A.J.Leggett, PRL <u>31</u> 352 (1973)
- 5) P.W.Anderson and F.W.Brinkman, PRL 30 1108 (1973)
- 6) D.N.Paulson, R.T.Johnson and J.C.Wheatley PRL <u>30</u> 829 (1973)
- D.T.Lawson, W.J.Gully, S.Goldstein, R.C.Richardson, and
   D.M.Lee, PRL <u>30</u> 541 (1973)
- 8) A.J.Leggett, PR <u>147</u> 119 (1966)
- 9) T.A.Alvesalo, Yu. D.Anufriev, H.K.Collau, O.V.Lounasmaa and P.Wennerstrom, PRL <u>30</u> 962 (1973)
- 10) T.J.Greytak, R.T.Johnson, D.N.Paulson and J.C.Wheatley, PRL 31 452 (1973)

-219-

# §4 一般化した BCS 理論

以下の節では § 2, 3 にあげた S 相の性質で BCS モデルを <sup>3</sup>He に適用することに よってどのように理解できるか見てみよう。先ず金属中の電子と液体 <sup>3</sup>He はほぼ同じ 密度を持つので Fermi 運動量は両者についてほぼ等しい。他方 <sup>3</sup>He の質量  $M_{3}_{He}$  は 電子質量  $m_{e}$  の約1万倍であるから ( $M_{3}_{He}$   $/m_{e}$  ~ 0.55×10<sup>4</sup>),両者の Fermi エネルギー  $\epsilon_{F}$  の比はほぼ 10<sup>4</sup> になる。又,Fermi 速度の比もほぼ 10<sup>4</sup> になる。又 興味あることは超伝導転移温度  $T_{c}$  (~1~10K) と <sup>3</sup>He の超流動転移温度  $T_{c}$  (~ 3mK)の比もほぼ 10<sup>4</sup> になる。これを表にまとめてみると次のようになる。従って

|           | - |
|-----------|---|
| -         |   |
|           |   |
| <b>AV</b> |   |
| ~~~       | _ |

|                 | ε <sub>F</sub> | 転移温度 T <sub>c</sub> | T <sub>c</sub> ∕ε <sub>F</sub> |
|-----------------|----------------|---------------------|--------------------------------|
| 金属電子            | $10^4$ K       | 1 ~ 10K             | 10 <sup>-3</sup>               |
| <sup>3</sup> He | 1 K            | $10^{-3}$ K         | $10^{-3}$                      |

超流動<sup>3</sup>He に於いても,超伝導状態と同様,Fermi面の極く近傍のエネルギー,ス ピクトルが大きな変形をうけると考えられる。このことから<sup>3</sup>He に於いてもBCS 的 弱結合の理論が有効であることが期待される。1957年にBCS 理論が発表されると Pitaeuskii<sup>1)</sup>,Brueckner<sup>2)</sup>ら Emery<sup>3)</sup>らによって液体<sup>3</sup>He は十分低温では超 流動性を示すことが指摘された。知られている<sup>3</sup>He 原子間の相互作用から出発して BCS 理論の定式化を行なうことは原子間力の hard core のために困難ではあるが, この問題は原子核理論に於ける Brueckner の方法で処理することができる。実際 Brueckner<sup>2)</sup>らの計算によると常圧下ではS波対には大きな斥力が,D波,F波対に は引力が期待されるが,P波対には殆んど力が働らかない。このことから液体<sup>3</sup>He で の凝縮対はD波対であろうとの予想がなされた。最近になってN相での液体<sup>3</sup>Heの振 舞いは Landau の Fermi液体の理論で期待されるより大きな温度依存性を持つことが 比熱,帯磁率の測定からあきらかになった。これらの現象は液体<sup>3</sup>He でのスピンのゆ

<sup>3</sup>Heの超流動

らぎ (paramagnon) を考慮することによって説明できることが Doniach らによって 示された。超伝導の場合にはこのような paramagnon の交換は Cooper 対に対して 斥力を与えることが知られている。<sup>5)</sup> したがって上の paramagnon は <sup>3</sup>He の超流動 転移にも影響を与えることが期待される。実際 Layzer と Fay<sup>6)</sup> は又 Nakaj ima<sup>7)</sup> はパラマグノン交換項は singlet 対に対しては斥力を, triplet対に対しては引力を 与えることを示した。又, triplet 対に対する引力は P 波対に対して最も大きい。以 上の考察から <sup>3</sup>He の凝縮対として最も可能性のあるものとして P 波対 (triplet), D 波対 (singlet), F 波対 (triplet) が考えられる。又, § 2 の相図及びスピン 帯磁率の振舞いから <u>A-B 相の凝縮対は共に triplet であることが結論される</u>が, こ こでは non-S 凝縮対の性質を少し考察してみる。

4-1 Singlet (D波)対

a)秩序パラメターとグリーン関数

先ず singlet 対に対する秩序パラメター $\triangle(\Omega)$  は

$$\triangle(\Omega) = |\mathcal{G}| < \psi_{\uparrow}(\vec{q}) \psi_{\downarrow}(-\vec{q}) >$$
(4.1)

で定義される。 $\Omega$  は運動量 $\overrightarrow{q}$  で定義される方向を示す。上の表式は4次元南部表示<sup>8)</sup> を用いて

$$\begin{pmatrix} \triangle^{(\Omega)} \\ \triangle^{+}(\Omega) \end{pmatrix} = |\vartheta| \begin{pmatrix} \langle \Psi_{\rightarrow}^{+} \rho_{-} \sigma_{2} \Psi_{\rightarrow} \rangle \\ \langle \Psi_{\rightarrow}^{+} \rho_{+} \sigma_{2} \Psi_{\rightarrow} \rangle \end{pmatrix}$$
(4.2)

のようにも書くことができる。ここで $\Psi_{q}$ ,  $\Psi_{q}^{+}$ は $\psi$ 成分スピノールで

$$\Psi_{\overrightarrow{q}}^{+} = (\Psi_{\overrightarrow{q}\uparrow}^{+}, \Psi_{\overrightarrow{q}\downarrow}^{+}, \Psi_{-\overrightarrow{q}\uparrow}^{-}, \Psi_{-\overrightarrow{q}\downarrow}^{-}), \Psi_{\overrightarrow{q}} = \begin{pmatrix} \Psi_{\overrightarrow{q}\uparrow} \\ \Psi_{\overrightarrow{q}\downarrow} \\ \Psi_{\overrightarrow{q}\downarrow} \\ \Psi_{-\overrightarrow{q}\uparrow} \\ \Psi_{-\overrightarrow{q}\downarrow} \end{pmatrix}$$
(4.3)

-221-

また  $\rho_{\pm} = \rho_1 \pm i \rho_2$  で  $\rho_i$  は粒子ー正孔 空間に作用する Pauli スピンマトリックス である。

磁場 H( / z 軸) のもとでの一粒子グリーン関数は南部表示で

$$G^{-1}(\vec{p}, \omega_{n}) = i \omega_{n} - (\xi_{\vec{p}} + \frac{\omega_{0}}{2}\sigma_{3})\rho_{3} - \sigma_{2}(\rho_{1} \Delta_{1} + \rho_{2} \Delta_{2})$$

$$\xi_{\vec{p}} = \frac{P^{2}}{2m} - \mu, \quad \omega_{0} = r H$$

$$(4.4)$$

又,

$$\triangle^{*}(\Omega) = \triangle_{1}(\Omega) + i \triangle_{2}(\Omega) = \triangle f(\Omega)$$
(4.5)

で  $\omega_n$  は松原周波数, r は <sup>3</sup>He 原子の核磁気モーメント, $\omega_0$  は磁場の中での Larmor energy を表わす。

今の場合準粒子のエネルギーは

$$\mathbf{E}_{\pm}(\vec{\mathbf{p}}) = \left(\xi_{\overrightarrow{\mathbf{p}}}^{2} + \left| \bigtriangleup(\Omega) \right|^{2}\right)^{\frac{1}{2}} \pm \frac{\boldsymbol{\omega}_{0}}{2}$$
(4.6)

で得られる。この表式は Pauli 常磁性が重要な超伝導での準粒子エネルギーの表式<sup>9)</sup> と以ている。

b)ギャップ方程式

さて△ は超伝導の場合と同様次の式から求められる。

$$\Delta(\Omega) = \mathscr{G}_{e} \operatorname{N}(0) \sum_{m} Y_{\ell}^{m}(\Omega) \int Y_{\ell}^{m}(\Omega') \frac{\mathrm{d}\Omega'}{4\pi} \Pi_{0}(\Omega') \Delta(\Omega')$$
(4.7)

$$\Pi_{0}(\Omega) = \int_{\Delta(\Omega)}^{\varepsilon_{0}} d\omega' \frac{\tanh \frac{\omega'}{2T}}{(\omega'^{2} - \Delta^{2}(\Omega))^{\frac{1}{2}}}$$
(4.8)

で  $\epsilon_0$  は cut off エネルギーである。又,  $\mathcal{F}_e$  は今考えている  $\ell$  部分波に対する結合 定数, N(0) は Fermi 面での状態密度である。今,  $\triangle(\Omega)$  についての非線型項を通 じての他の部分波との混合を無視すれば,  $\triangle(\Omega')$  は一般に  $Y_\ell^m(\Omega')$  の一次結合

<sup>3</sup>Heの超流動

で表わされる。

$$\Delta(\Omega') = \sqrt{4\pi} \sum_{m=-\ell}^{\ell} \Delta_m Y_{\ell}^m(\Omega')$$
(4.9)

したがって理論的には最大の自由エネルギーを与える $\triangle(\Omega)$ を(4.2)の範囲で探せ ばよいことになる。 D 波の場合にはこの問題は Anderson と Morel<sup>10)</sup> によって詳し く調べられ,

$$\Delta(\Omega) = \sqrt{4\pi} \Delta\left(\frac{1}{\sqrt{2}} Y_2^0 - \frac{1}{2} (Y_2^2 - Y_2^2)\right)$$
(4.10)

の型の解が最低自由エネルギーを与えることが知られている。自由エネルギーの考察に 入る前に(4.7)式のT~T<sub>c</sub>及びT~0Kの漸近形を調べておくと便利である。T~ T<sub>c</sub>の時には(4.8)を $\triangle$ の巾に展開して,(4.7)は

$$\Delta(\Omega) = \mathcal{F}_{\ell} N(0) \sum_{m} Y_{\ell}^{m}(\Omega) \int \frac{d\Omega'}{4\pi} Y_{\ell}^{-m}(\Omega) \left\{ \ell_{u} \frac{2\tau_{0} \epsilon_{0}}{\pi T} - \frac{7\zeta(3)}{2(2\pi T)^{2}} |\Delta(\Omega')|^{2} \right\} \times \Delta(\Omega')$$

$$\times \Delta(\Omega')$$
(4.11)

 $r_0 = 1.76$ は Euler 定数,  $\zeta(3)$ は Riemann のツェーター関数である。 (4.11)は又,

$$1 = \mathscr{G}_{\ell} N(0) \{ \ell_{n} \frac{2r_{0}\epsilon_{0}}{\pi T} - \frac{7\zeta(3)}{2(2\Pi T)^{2}} \Delta^{2} < |f|^{4} > \}$$
(4.12)

のように変型でき、ここで  $\langle A \rangle = \int \frac{d\Omega}{4\pi} A \quad \chi \quad \langle |f|^2 \rangle = 1$ を用いた。 (4.12)より T<sub>c</sub> の近くでの $\triangle$  は

$$\Delta^{2} = \frac{2 \left(2 \Pi T\right)^{2}}{7 \zeta (3) \beta} \left(1 - \frac{T}{T_{c}}\right)$$

$$\beta = < |f|^{4} >$$
(4.13)

のように求まる。一般  $\ell \neq 0$  対に対しては常に  $\beta > 1$  なので $\triangle^2$  は BCS の場合

(i.e. S 波の場合) より常に小さくなる。他方 T = OK では (4.7) は

$$\Delta = \mathcal{G}_{\ell} N(0) < \ell n \left( \frac{2 \varepsilon_0}{\Delta |f|} \right) |f|^2 > \Delta$$
(4.14)

のように簡単化される。このことから

$$\ell_{u} \alpha = - \langle |f|^{2} \ell_{n} ||f| \rangle$$

で α を定義すると

$$\Delta_0 = \frac{\pi T_c}{r_0} \alpha \tag{4.15}$$

のように T = 0K での $\triangle$ を求めることが出来る。  $\alpha$  は一般に  $\ell \neq 0$  対の時には1よ り小さい。

c) 自由エネルギー, 一般にN相とS相との自由エネルギー差 $\Omega_{SN}$ は

$$\Omega_{\rm SN} = -\langle \int_0^{\triangle} \delta \left( \frac{1}{g_{\ell}} \right) \Delta^2 |\mathbf{f}|^2 \rangle \tag{4.16}$$

から計算できる。先ず T ~ T<sub>c</sub> の時には(4.12)を用いると(4.16) は

$$\Omega_{\rm SN} = -N(0) \frac{7\zeta(3)}{4(2\pi T)^2} \Delta^4 < |f|^4 >$$
  
= -N(0)  $\frac{(2\pi)^2}{7\zeta(3)\beta} (T_{\rm c} - T)^2$  (4.17)

のように求められる。 T<sub>c</sub> の近傍では,最小の  $\beta$  を与える解が一番安定である。 T<sub>c</sub> での比熱のトビは

$$\Delta C = N(0) \frac{2(2\pi)^2}{7\zeta(3)\beta} T_c$$
(4.18)

で与えられる。一般に  $\beta > 1$  なので比熱のトビは BCS(S波) の場合よりも小さくな る。この結論は後に見るように triplet 対に対しても妥当するから,実験で観測され た大きな比熱のトビはこの節の弱結合理論の範囲では説明できない。 T~OK の時に は(4.16) は(4.14)を用いて

<sup>3</sup>He の超流動

$$\Omega_{\rm SN} = -N(0) \frac{1}{2} \Delta_0^2 \tag{4.19}$$

と求めることができる。したがって T = 0K では最大の  $\alpha$  を与える解が最も安定になることが結論される。最後にスピン帯磁率は singlet 対の場合には BCS 理論と同様

$$\boldsymbol{x}_{s} = \boldsymbol{x}_{n} \left( 1 - \langle Y(\triangle(\Omega) \rangle) \right)$$
(4.20)

$$Y(\triangle(\Omega)) = 2\pi T \sum_{n=0}^{\infty} \frac{\triangle^2(\Omega)}{(\omega_n^2 + \triangle^2(\Omega))^{\frac{3}{2}}}, \quad \omega_n = 2\pi T n \quad (4.21)$$

で与えられることに注意しよう。したがって singlet 対についてはスピン帯磁率では 超伝導と同様,常にN相にくらべて小さくなる。又,T=0Kでは $\chi_s = 0$ になる。 このことからA相が singlet 対から成っている可能性は除かれる。又,PCP以下の 圧力ではA相とB相が同しT<sub>c</sub>を持つことより,B相が singlet 対からなっている 可能性も消去することができる。以下より興味ある triplet対の性質を調べてみよう。

4-2 triplet (P波, F波)対

triplet 対の場合には一般には秩序パラメター 🛆 は三つの成分を持つ。

 $\triangle_{\uparrow} \propto \langle \psi_{\uparrow} \psi_{\uparrow} \rangle$ ,  $\triangle_{\downarrow} \propto \langle \psi_{\downarrow} \psi_{\downarrow} \rangle$ ,  $\triangle_{0} \propto \langle \psi_{\uparrow} \psi_{\downarrow} \rangle$  (4.22) あるいは南部表示を用いてもっとコンパクトな型にまとめると,

$$\vec{\Delta}(\Omega) = |\mathcal{G}| < \Psi_{\vec{q}} \rho_{\vec{q}} \sigma_2 \vec{\sigma} \Psi_{\vec{q}} >$$
(4.23)

のように書ける。秩序パラメターが3つの独立成分を持つことから,凝縮体には多様な 可能性がありうる。ここでは簡単のため<sup>a)</sup>  $\overrightarrow{\Delta}(\Omega)$  (スピン部分) が一成分しか持た ない場合(これをAB 解と略記する)<sup>b)</sup>,  $\overrightarrow{\Delta}$ が二成分しかない場合, c)  $\overrightarrow{\Delta}$  が三成 分とも持つ場合にわけて考察する。特に磁場がある場合は a) と b) の場合はESP (equal spin pairing) 状態と呼ばれているものに含まれる。

a) 一成分解(linear, polar)

この解は Anderson と Brinkman<sup>11)</sup>によってパラマグノンの効果を考慮すると最も 安定な解として提出されたものである。今,磁場 H( $\|z$  軸) のある場合には  $\overline{\bigtriangleup}$  の vector は x - y 平面の任意の方向をとることが出来るが,<sup>12)</sup>簡単のために一般性を失 なわずに  $\overline{\bigtriangleup}$   $\|y$  軸 (i.e.  $\bigtriangleup_x = \bigtriangleup_z = 0$ ,  $\bigtriangleup_y \neq 0$ ) ととる。 この時のグリーン 関数は,

$$\mathbf{G}^{-1}\left(\vec{\mathbf{P}}, \ \boldsymbol{\omega}_{\mathrm{n}}\right) = \mathbf{i} \ \boldsymbol{\omega}_{\mathrm{n}} - \left(\boldsymbol{\xi}_{\mathrm{p}} + \frac{\boldsymbol{\omega}_{\mathrm{0}}}{2} \ \boldsymbol{\sigma}_{\mathrm{3}}\right) \ \boldsymbol{\rho}_{\mathrm{3}} - \left(\boldsymbol{\rho}_{\mathrm{1}} \bigtriangleup_{\mathrm{1}} + \boldsymbol{\rho}_{\mathrm{2}} \bigtriangleup_{\mathrm{2}}\right) \quad (4.24)$$

で与えられる。 ξ<sub>0</sub>, ω<sub>0</sub> の定義は (4.5) と同じであるが, 今, △ に関しては,

$$\triangle_{\mathbf{y}}(\Omega) = \triangle_1 + \mathbf{i} \triangle_2 = \triangle \mathbf{f}(\Omega)$$
(4.25)

のように書ける。準粒子のエネルギーは今の場合は

$$E_{\pm}(\vec{P}) = \left(\left(\xi_{p} \pm \frac{\omega_{0}}{2}\right)^{2} + \left|\triangle(\Omega)\right|^{2}\right)^{\frac{1}{2}}$$
(4.26)

で与えられる。 $\overrightarrow{\Delta}$  は一成分しかないのでギャップ方程式,自由エネルギー等,スピンに よらない量は singlet の場合と同じ式を与えられる。(4.13)及び(4.15)の $\beta$ 及び  $\alpha$ の考察から,特に P 波, F 波に対しては<sup>10)</sup>

$$f(\Omega) \propto \sqrt{4\pi} Y_1^{-1}(\Omega)$$
,  $f(\Omega) \propto \sqrt{4\pi} Y_3^{-2}(\Omega)$  (4.27)

がそれぞれ一番安定な解を与えることが知られている。又,今の理論の範囲では $\vec{\Delta}$ の 軸の方向と軌道角運動量部分 f( $\Omega$ )の軸の方向は全然 correlate していないが,後で 見るように<sup>3</sup>He 原子間の双極子相互作用を考慮すると対スピン軸と軌道角運動量部分 の軸が P 波の時には平行になった時が最も安定になる。<sup>13)</sup> この種の解を axial と 呼 ぶ。最後にスピン帯磁率は anisotropic になって

$$\chi_{xx} = \chi_{zz} = \chi_n$$
,  $\chi_{yy} = \chi_n (1 - \langle Y(\triangle(\Omega)) \rangle)$  (4.27)

で与えられる。上の関係は対スピン方向の単位ベクトル ┏(∥ △)を用いて

$$\chi_{ij} = \chi_n \left( \delta_{ij} - e_i e_j < Y(\triangle(\Omega)) > \right)$$
(4.28)

-226-

のように整理することもできる。

実際に静的に  $\chi$  を測定する場合には反磁性によって  $\vec{e}$  は常に外部磁場と直角方向を 向くので  $\chi = \chi_n$  が得られる。従ってこの状態は A 相でのスピン帯磁率の振舞と consistent である。

b) 二成分解(biaxial)

次に  $\overrightarrow{\Delta}$  が二成分持つ場合を考えよう。 a) の場合と同様磁場は z 軸に平行にかかっ ているとすると、  $\overrightarrow{\Delta}$  の二つの零でない成分は常に x-y 平面内にある。 一般性を失な わずに対スピンは x と y 成分を持つとする。この時のグリーン関数は、

$$G^{-1}(\vec{P}, \omega_{n}) = i \omega_{n} - (\xi + \frac{\omega_{0}}{2} \sigma_{3}) \rho_{3} - (\rho_{1} \Delta_{1} + \rho_{2} \Delta_{2} + \sigma_{3} (\rho_{1} \Delta_{3} + \rho_{2} \Delta_{4}))$$
(4.29)

で与えられる。

更に話を簡単にするため $\omega_0 = 0$ の時には up スピン状態とdownスピン状態のエネル ギー・ギャップが同じという仮定をすると、

$$\triangle_1 \triangle_3 + \triangle_2 \triangle_4 = 0 \tag{4.31}$$

が得られる。この場合の準粒子のエネルギーは(4.26)式で与えられる。今  $|\Delta(\Omega)|^2$ は,

$$|\triangle(\Omega)|^{2} = \triangle^{2} \left( |f_{y}(\Omega)|^{2} + |f_{x}(\Omega)|^{2} \right)$$
(4.32)

で与えられる。一般にはこの種の解の基底状態は非常に多くの縮重度を持つ,非常に特殊な場合として a)の場合を含んでいる。双極子相互作用を考慮すると,P波の場合は 殆んどの縮重はとけ,特に,

-227-

最も安定な解の一つになることを示すことができる。<sup>13)</sup>この場合のスピン帯磁率は $\vec{e}_{1,}$  $\vec{e}_{2}$ を二つの  $\vec{\Delta}$  成分の単位 vector,  $f_{1}(\Omega)$ ,  $f_{2}(\Omega)$ を対応する軌道波動関数とすると,

$$\boldsymbol{x}_{ij} = \boldsymbol{x}_{n} \left[ \delta_{ij} - \sum_{\alpha} e_{\alpha i} e_{\alpha j} < \frac{|f_{\alpha}(\Omega)|^{2} Y(\Delta(\Omega))}{\sum_{\alpha} |f_{\alpha}(\Omega)|^{2}} \right]$$
(4.34)

で与えられる。

今,磁場のもとでは vector  $\vec{e}_1$ ,  $\vec{e}_2$  は  $\vec{H}$  と直交するので,

 $x = x_n$ 

が成立する。したがってこの解もA相の候補者と考えられる。

c) 三成分解(Balian - Werthamer解)<sup>14)</sup>

最後に △ が3つの成分を持つ場合を考えよう。 P 波対の場合はこの種の解は Balian と Werthamer<sup>14)</sup> によって最初に研究されたので以下 BW 解と呼ぶ。 この 時には

 $\vec{\Delta} = \vec{e}_{\alpha} f_{\alpha}(\Omega) \tag{4.35}$ 

で与えられる。P波の時には上の解で最も簡単なものは,

$$f_1 = x = \sin \theta \cos \phi$$
,  $f_2 = iy = i\sin \theta \sin \phi$ ,  
 $f_3 = z = \cos \theta$  (4.36)

のものであるが,もっと一般には(x,y,z)は(x,y,z)から回転によって得られる (x', y', z')で置きかえることもできる。磁場のもとでのグリーン関数は,

<sup>3</sup>He の超流動

$$G^{-1} (P, \omega_{n}) = i \omega_{n} - (\xi + \frac{\omega_{0}}{2} \sigma_{3}) \rho_{3} - (\rho_{2} \sigma_{3} \triangle_{1} + \rho_{1} \triangle_{2} + \rho_{2} \sigma_{1} \triangle_{3}), \qquad (4.37)$$

 $\begin{aligned}
\nabla, \ \Delta_{1}, \ \Delta_{2}, \ \Delta_{3} \ t \\
\Delta_{1} &= \Delta \ f_{1}, \quad \Delta_{2} = - \ i \ \Delta \ f_{2}, \quad \Delta_{3} = \Delta \ f_{3} \\
\end{aligned}$ <br/>
で与えられる。磁場のない時には P 波の場合の準粒子エネルギーは,
<br/>  $E_{\pm}(\mathbf{p}) = \left(\xi_{\mathbf{p}}^{2} + \Delta^{2}\right)^{\frac{1}{2}} \\
\qquad \Delta^{2} = \sum_{\alpha} |\Delta_{\alpha}(\Omega)|^{2}
\end{aligned}$ <br/>
(4.38)

で与えられ完全に等方的である(BCSの場合と同じ)。  $\omega_0 \neq 0$ の時には準粒子エ ネルギーは

$$E_{\pm}(p) = \left(\xi_{p}^{2} + |\Delta|^{2} + \frac{\omega_{0}^{2}}{4} \pm \omega_{0} \left(\xi_{p}^{2} + |\Delta_{3}|^{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$$
$$= \left(\left(\sqrt{\xi_{p}^{2}} + |\Delta_{3}|^{2} \pm \frac{\omega_{0}}{2}\right)^{2} + |\Delta|^{2} - |\Delta_{3}|^{2}\right)^{\frac{1}{2}}$$
(4.39)

で与えられる。b) 及び c) の場合のギャップ方程式は各成分について

$$f_{\alpha}(\Omega) = \mathscr{G}_{\ell} N(0) \sum_{m} Y_{\ell}^{m}(\Omega) \int \frac{d\Omega'}{4\pi} Y_{\ell}^{-m}(\Omega') f_{\alpha}(\Omega') \Pi_{0}(\Delta(\Omega'))$$

$$(4.40)$$

のように与えられる。他方,自由エネルギーは $\triangle^2(\Omega)$ の関数として(4.16)で与え られる。特に P 波の B-W 状態では  $\beta = \alpha = 1$  となるので,熱力学的性質は S 波 対に関しての BCS 理論と同じになる。又, a) b)の場合の  $\beta$  あるいは  $\alpha^{-1}$  は 1 よ り大きいので弱結合理論の範囲では triplet 対の中では BW 状態が最も安定であるこ とが結論される。最後にスピン帯磁率は

$$\chi_{ij} = \chi_{n} \left( \delta_{ij} - \sum_{\alpha=1}^{3} < \frac{e_{\alpha i} e_{\alpha j} |f_{\alpha}(\Omega)|^{2}}{\sum_{\alpha'} |f_{\alpha'}(\Omega)|^{2}} Y(\Delta(\Omega)) > \right) \quad (4.41)$$

で与えられる。特に P 波対の BW 状態については (3.41) は,

$$\chi_{ij} = \chi_{n} \left( \delta_{ij} - \frac{1}{3} \sum_{\alpha=1}^{3} e_{\alpha i} e_{\alpha j} Y(\Delta) \right)$$
$$= \chi_{n} \left( 1 - \frac{1}{3} Y(\Delta) \right) \delta_{ij} \qquad (4.42)$$

になる。従って BW 状態では  $\chi$  は常に  $\chi_n$  より小さくなる。このことは A 相は BW 状態で記述することができないことを意味する。

上の結果を表にまとめると次のようになる。

| フピン武公                                       | singlet |                                                                             | triplet                     |                             |                             |                             |                       |                   |
|---------------------------------------------|---------|-----------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|-------------------|
|                                             |         |                                                                             | 一成分(AB)                     |                             | 二成分                         |                             | 三成分(BW)               |                   |
| 角運動量                                        | S       | D                                                                           | Р                           | F                           | Р                           | F                           | Р                     | F                 |
| △(Ω)<br>エネルギー・ギャップ                          | 1       | $\frac{ \frac{1}{\sqrt{2}}Y_{2}^{0} + \frac{1}{2}(Y_{2}^{2} - Y_{2}^{-2}) $ | Y <sub>1</sub> <sup>1</sup> | Y <sub>3</sub> <sup>2</sup> | Y <sub>1</sub> <sup>1</sup> | Y <sub>3</sub> <sup>2</sup> | 1                     |                   |
| α                                           | 1       | 0. 91                                                                       | . 951                       | .89                         | .951                        | .89                         | 1                     |                   |
| β                                           | 1       | $\frac{10}{7}$                                                              | 6⁄5                         | $\frac{210}{143}$           | <sup>6</sup> ⁄5             | $\frac{210}{143}$           | 1                     |                   |
| $\stackrel{\triangle C}{\triangle C}_{BCS}$ | 1       | $\frac{7}{10}$                                                              | <sup>5</sup> ⁄6             | $\frac{143}{210}$           | <sup>5</sup> ⁄6             | $\frac{143}{210}$           | 1                     | < 1               |
| $\chi$ at T=0K                              | 0       | 0                                                                           | x <sub>n</sub>              | x <sub>n</sub>              | x <sub>n</sub>              | x <sub>n</sub>              | $\frac{2}{3}\chi_{n}$ | $\frac{2}{3} x_n$ |

表 2

# <sup>3</sup>He の超流動

これから一般に自由エネルギーは P波 BW 状態を除いては BCS 状態(S波)の場合 より大きくなる。同様に比熱のトビも P 波 BW 状態以外では BCS 状態での比熱の ト ビより小さくなる。又,スピン帯磁率は一成分あるいは二成分 triplet 対状態(これ らをESP状態と呼ぶ)の場合以外ではN相にくらべて小さくなる。従って超流動<sup>3</sup>He の相図はA相をESP状態にB相をBW状態に固定すれば定性的に理解することがで きる。又, §3に述べた NMR の実験は後に見るように A 相が一成分 triplet 対状態 (AB状態)であることを示している。しかし上に見たように triplet 対状態の中で は BW 状態が最も低い自由エネルギーを持つ、したがって今の理論の枠内ではなぜ A 相ではこの高い自由エネルギーを持つ AB 相が現われるのか理解できない。又, N 相 での液体<sup>3</sup>He は多くの点で理想 Fermi 気体と異った振舞いをするが、これらの性質 は Landau の Fermi 液体の理論で統一的に理解できることが知られている。(今パラ マグノンの効果が重要でない十分低温( $T < 10^{-2}$  K)に話を限る)。したがってBCS 理論をS相に適用する時にも Fermi 流体の効果を考慮することが必要である。

4-3 Fermi 液体の効果

15), 16)S相に於ける Fermi 液体の効果は S相が singlet S対である場合に Leggett により精細に検討された。 Fermi 液体の効果は有効二体相互作用をしている系につい て, R.P.A. (あるいは平均場近似)の範囲で応答を求めることと一致している。ダ イアグラム的には二体 bubble の和をとることに対応する。特に Legget  $t^{15}$  は超流動 密度 P /P とスピン帯磁率は Fermi 液体の効果で次のように modify されることを 示した。

$$\rho_{s} \rho = \frac{\rho_{s}^{0} \rho}{1 + \frac{F_{1}}{3} (1 - \rho_{s}^{0} \rho)}$$
(4.43)  
$$\chi \chi_{n} = \frac{(1 + \frac{z_{0}}{4}) \chi^{0} \chi_{n}}{1 + \frac{z_{0}}{4} (\chi^{0} \chi_{n})}$$
(4.44)

(4, 44)

 $F_{1}$ ,  $z_{0}$  は Landau 係数,  $\rho_{s}^{0} / \rho$  は Fermi 液体の効果を考慮しない時の 超流動密

-231-

度(一般にはテンソル)で

$$\rho_{\rm s}^{0} / \rho = 3 < \hat{\mathbf{k}}_{\rm i} \quad \hat{\mathbf{k}}_{\rm j} \quad \Upsilon(\triangle(\Omega)) >$$
(4.45)

で、又、 $\chi^0/\chi_n$  は既に subsection 4-1, 4-2 で求められたものである。ここで  $\hat{k}$  は $\Omega$  で指定される方向をもつ単位 vector である。特に(4.44) 式は,

$$\chi = \chi_{n} \quad (ESP \# !!)$$

$$\chi / \chi_{n} = \frac{\left(1 + \frac{z_{0}}{4}\right)\left(1 - \frac{1}{3} < Y >\right)}{\left(1 + \frac{z_{0}}{4}\left(1 - \frac{1}{3} < Y >\right)\right)} \quad (BW \# !!) \quad (4.46)$$

を与える。

# 参考文献

- 1) L.P.Pitaeushii, JETP 37 (10) 1267 (1960)
- 2) K.A.Brueckner, T.Soda, P.W.Anderson and P.Morel, PR 118 1442 (1960)
- 3) V.J.Emery and A.M.Sessler, PR 119 43 (1960)
- 4) S.Doniach ind S.Engelsberg PRL 17 750 (1966)

5) N.F.Berk and J.R.Schrieffer, PRL 17 433 (1966)

- 6) A.Layzer and D.Fay. Int. J.Mag 1 135 (1971)
- 7) S.Nakajima, PTP 50 1101 (1973)
- 8) Y.Nambu, PR 117 648 (1960)
- 9) K.Maki and T.Tsunoto, PTP 31 945 (1964)
- 10) P.W.Anderson and P.Morel, PR 123 1911 (1961)
- 11) P.W.Anderson and W.F.Brinkman, PRL 30 1108 (1973)
- 12) V.Ambehaokar and N.D.Merncin, PRL 30 81 (1973)
- 13) K.Maki and H.Ebisawa, PTP 50 1452 (1973)
- 14) R.Balian and N.R.Werthamer, PR 131 1553 (1963)

-232-

- 15) A.J.Leggett, PRL 14 536 (1965), PR 140 A1869 (1965)
- 16) A.J.Leggett, PR 147 119 (1966)

# §5 Anderson-Brinkman 機構

前節で見たように静的帯磁率の実験から A 相は a) あるいは b) の型の triplet 対が凝縮していると考えられる。他方一般化した BCS 理論の範囲では BW型解がエネ ルギー的には一番安定である筈なので, A 相にどうして不安定な別の型の triplet 凝 縮が起っているのか理解できない。この dilemna は Anderson と Brinkman<sup>1)</sup>によ って美事に解かれた。最近この理論は, Brinkman et al<sup>2)</sup>及び Kuroda<sup>3)</sup>によって 更に発展,精密化され,おそらく A-B 相の存在の謎 もこの機構を用いて説明されるで あろうと考えられている。この節ではこれらの最近の結果は割愛し,その基本的な考え 方のみを要約するのに留める。既に述べたように triplet 対に対しては paramagnon 交換項は引力の相互作用を与えることが Layzer と Fay<sup>4)</sup>及び独立に Nakaj ima<sup>5)</sup>に よって指摘された。今, N 相での paramagnon 交換による相互作用は, singlet 対に 対しては,

$$\sum_{ij} \alpha_{i} \chi_{ij} (\vec{q}, \omega_{\nu}) \rho_{1} \sigma_{2} \alpha_{i} = \sum_{i} \chi_{ii} (\vec{q}, \omega_{\nu}) \rho_{1} \sigma_{2}$$
(5.1)

から求められることに注目しよう。

ここで、 $\vec{\alpha}_i$ は4次元表示のスピン演算子で

 $\vec{\alpha} = (\rho_3 \sigma_1, \sigma_2, \rho_3 \sigma_3)$ 

で与えられる。

(5.1)の関係数は singlet 対に対するギャップ方程式は

$$\triangle(\Omega) = N(0) \int \frac{\mathrm{d}\Omega'}{4\pi} \left( U(\Omega, \Omega') - \sum_{i} \chi_{ii}(\vec{q}, 0) \right) \Pi_0(\Omega') \triangle(\Omega')$$
(5.2)

のように書けること,あるいは有効相互作用は

-233-

$$\mathcal{G}(\Omega, \Omega') = U(\Omega, \Omega') - \sum_{i} \chi_{ii} \left( P_0 | \vec{k} - \vec{k}' |, 0 \right)$$
(5.3)

で与えられることを意味している。この表示で $U(\Omega, \Omega')$ は Van der Waals 力 による引力部分である。特に paramagnon の効果の強い極限では(i.e.  $\overline{I} \cong 1$ ) (5.3)の第二項は更に簡単になって,

$$\mathcal{G}(\Omega, \Omega') = U(\Omega, \Omega') - \frac{9}{2} I \ell_n \left(1 + \frac{1}{3K_0^2}\right) \sum_m Y_\ell^m(\Omega) Y_\ell^{-m}(\Omega')$$
$$K_0^2 = (1 - \overline{I})$$
(5.4)

上の計算では N相での結果

$$\chi_{ii}(\vec{q},0) \cong I \delta_{ij} \left(1 - \vec{I} + \frac{1}{3} \left(\frac{\vec{q}}{2P_0}\right)^2\right)^{-1}$$

$$\vec{I} = I N(0)$$
(5.5)

を用いた。

同様に triplet 対に対しては paramagnon による交換項は

$$\Phi = \sum_{ij} \chi_{ij} \alpha_i \left( -\rho_2 \sigma_3 \Delta_1 + \rho_1 \Delta_2 + \rho_2 \sigma_1 \Delta_3 \right) \alpha_j$$
 (5.6)

を計算してやれば求めることができる。上の  $\Phi$  は Pauli 行列の交換関係を用いる と,

$$\Phi = -\left[\left(\chi_{11} - \chi_{22} - \chi_{33}\right) \bigtriangleup_{1} + 2\chi_{12} \bigtriangleup_{2} + 2\chi_{13} \bigtriangleup_{3}\right] \rho_{2} \sigma_{3} + \left[\left(\chi_{22} - \chi_{33} - \chi_{11}\right) \bigtriangleup_{2} + 2\chi_{21} \bigtriangleup_{1} + 2\chi_{23} \bigtriangleup_{3}\right] \rho_{1} + \left[\left(\chi_{33} - \chi_{11} - \chi_{22}\right) \bigtriangleup_{3} + 2\chi_{13} \bigtriangleup_{1} + 2\chi_{23} \bigtriangleup_{2}\right] \rho_{2} \sigma_{1} \quad (5.7)$$

のように変形できる。この表式から paramagnon 変換項を考慮すると一般にギャップ 方程式は、

-234-

<sup>3</sup>Heの超流動

$$\Delta_{i}(\Omega) = \sum_{j} \int \mathcal{G}_{ij}(\Omega, \Omega') \operatorname{N}(0) \Pi_{0}(\Omega') \Delta_{j}(\Omega')$$
(5.8)

$$\mathscr{G}_{ij}(\Omega,\Omega') = \delta_{ij} \left[ U(\Omega,\Omega') + \sum_{k} \varkappa_{kk}(\vec{q},0) \right] - 2 \varkappa_{ij}(\vec{q},0)$$
(5.9)

のように求まる。上の表式は U( $\Omega, \Omega'$ )の項は Van der Waals 力を表わす。 又, 上の表式で簡単のために  $\chi_{ij}(q, \omega_{\nu})$ の  $\omega_{\nu}$  依存性は無視した。 しかし定量的な計 算をする為には一般には  $\omega_{\nu}$  依存性を無視することが出来ない。

N相では $\chi_{ij}(\vec{q},\omega_{\nu})$ は対角要素のみを持つので, paramagnon 交換項は前節で 記述した triplet 対のいずれに対しても同じ $T_c$ を与えることに注意しよう。一般に  $T_c$ 以下では $\chi_{ij}(\vec{q},\omega_{\nu})$ は異方性をもち,かつ一般には非対角要素も持つので,種 々の triplet 対の配位について,異なった相互作用を与えることになる。もし paramagnon 交換項が十分に大きいならば,一番大きな相互作用を与える配位が最も安定 になる。今グリーン関数が

$$G^{-1}(p, \omega_{n}) = i \omega_{n} - \xi \rho_{3} - (-\rho_{2} \sigma_{3} \triangle_{1} + \rho_{1} \triangle_{2} + \rho_{2} \sigma_{1} \triangle_{3})$$

$$(5.10)$$

で与えられる場合の $\chi_{ij}$  ( $\vec{q}, \omega_{\nu}$ )を求めてみよう。上の記述と同様に簡単の為  $\frac{\omega_{\nu}}{vq} \ll 1$ を仮定すると $\chi_{ij}$  ( $\vec{q}, \omega_{\nu}$ )は<sup>3)</sup>

$$\chi_{ij}(\vec{q},0) = \frac{(\delta_{ij} \chi^{0}(\vec{q}) + \chi_{ij}^{1}(\vec{q}))}{1 - \overline{I}(\delta_{ij} \chi^{0}(\vec{q}) + \chi_{ij}^{1}(\vec{q}))}$$
(5.11)

で < > は  $\vec{q}$  - vector に垂直な平面内での平均をとることを意味する。上  $\Omega \perp \vec{q}$  の(5.12)を導びく時に  $| \triangle (\Omega) | \ll vq \ll E_F$  を仮定した。

話を簡単にする為に、上の表式を用いて、前節で議論した AB 状態及び BW 状態に ついての有効相互作用常数を求めてみよう。 AB 状態については対スピンは一成分しか 持たないので $\Delta_1 = \Delta_3 = 0$ ,  $\Delta_2 = \Delta(\Omega)$  とすると、 $\Delta(\Omega)$  についての相互作用 常数は、

 $\begin{aligned} \mathscr{G}_{AB}(\Omega,\Omega') &= U(\Omega,\Omega') + \left(\chi_{11}(\vec{q}) + \chi_{33}(\vec{q}) - \chi_{22}(\vec{q})\right) \\ &= U(\Omega,\Omega') + \left(2\chi_{N}(\vec{q}) - \chi_{22}(\vec{q})\right) > U(\Omega,\Omega') + \chi_{N}(\vec{q}) \\ &\qquad (5.13) \end{aligned}$ 

 $zz\overline{c}, \ \chi_{N}(\vec{q}) = \chi^{0}(\vec{q}) / (1 - \vec{I} \ \chi^{0}(\vec{q}))$ (5.14)

したがって Tc 以下ではAB状態では paramagnon 交換項はN相の場合より大きくな る。他方 BW 状態では  $\chi_{ii}(\vec{q}, \omega_{\nu})$ の対角要素は一般に N 相の場合にくらべて小さく なるので、 S相に転移することによって paramagnon 交換項は N相の場合より小さく なる。したがって、このことからもし paramagnon 交換項が十分大きな時には、Tc の直下では spin に関する対称性の最も低い AB状態が最も安定になると考えられる。 しかし低温ではこの状態が実現されるかという問題は(5.8),あるいは $\chi_{ii}(\vec{q}, \omega_{\nu})$ の  $\omega_{\nu}$  依存性も入れたもっと一般的な  $\chi_{ij}(\vec{q},\omega_{\nu})$  を用いてなされなければならない ので,ここではその問題には入らないことにする。最近の計算によれば,paramagnon 交換項の大きさの違いにもかかわらず十分低温では BW状態の方がより安定になること を示しているようである。したがって Anderson-Brinkman の機構を考慮することに よって第一節で述べた<sup>3</sup>HeのS相の二つの相(A相, B相)の存在を定性的には理解 できる。又(5.8)のギャップ方程式と consistent に Ginzbary Landau 方程式を 組立ててやると、AB相に関しては  $|\Delta|^4$ の係数は一般に弱結合モデルの場合より小 さくなるので、AB機構を考慮すると、T<sub>c</sub>に於ける比熱のとびは弱結合モデルから予 想されるより大きくなり,<sup>1)</sup> このことも§1 で述べた Webb<sup>6)</sup> らの比熱の測定と consistent である。したがってAB機構がS相の相図を定量的に説明することがで

きるかどうかに関しては末だ問題があるにしても,この謎に満ちた相図を少なくとも定 性的に明らかにしたという意味で非常に重要である。

# 参考文献

- P.W.Anderson and W.F.Brinkman. PRL <u>30</u> 1108 (1973),
   P.R. <u>A</u> 8 2732 (1973)
- 2) W.F.Brinkman, J.Serene and P.W.Anderson, preprint
- 3) Y.Kuroda, preprint
- 4) A.Layzer and D.Fay, Int. J.Mag <u>1</u> 135 (1971)
- 5) S.Nakajima, PTP 50 1101 (1973)
- 6) R.A.Webb, T.J.Greytak, R.T.Johnson and J.C.Wheatley, PRL 30 210 (1973)

#### §6 核磁気共鳴の理論

既に§3で述べたようにNMRの実験<sup>1),2)</sup>はA相の凝縮体の構造をきめるのに基本的 な役割をはたした。本節では主にNMR に関する Leggett<sup>3)~5)</sup>の理論を紹介すること にする。Osheroff 6<sup>1)</sup>はA相の<sup>3</sup>He のような非磁性系で共鳴周波数が Larmor周波 数から shift するという驚ろくべき実験結果を報告したが、Leggett<sup>3),4)</sup>は上の shift は<sup>3</sup>He の核スピン間の双極子相互作用による自発的スピン軌道対称の破れ (SBSOS, Spontaneous breakdown of Spin orbit symmetry)によることを 指摘し,又,上の考えに基ずいて和則を巧みに用いることによって、shift の表式を 陽に求めることに成功した。又、対スピン vector  $\vec{\Delta}$  と核スピン vector  $\vec{S}$ を含む現 象論的エネルギー表式から出発して、横共鳴、縦共鳴の共鳴周波数を基底状態が種々の 対スピン配位をとる時に求めることに成功した。<sup>5)</sup> この最後の Leggett の結果は最近 の Osheroff 6<sup>2)</sup>の実験によって美事に検証された。

<u>6-1</u>SBSOS 既に§4で述べたように凝縮対がtriplet対から成っている時には、一般に対スピン vector  $\overrightarrow{\Delta}$ と軌道角運動量 vector  $\overrightarrow{L}$ の方向に関連した自由度を持つ。しかし <sup>3</sup>He 原子間の相互作用が、Landau の Fermi液体理論の基本仮定の

ようにスピンによらない項と、スピン交換項のみで書ける範囲では、この理論の枠内に は $\overrightarrow{\Delta}$ の方向と $\overrightarrow{L}$ の方向を関係ずける項は存在しない。したがって、このモデルでは基 底状態は $\overrightarrow{\Delta}$ の方向と $\overrightarrow{L}$ の方向とで二重に縮退していることになる。 <sup>3</sup>He 原子スピン間 の双極子相互作用は非常に小さいけれども、 $\overrightarrow{\Delta}$ と $\overrightarrow{L}$ の方向に相関を導入するという意 味で基本的な意味をもつ。(<sup>3</sup>He 原子間の spin - orbit 相互作用を同様の役割をはた すことができるが、これは双極子相互作用よりもっと小さい。今の場合 v<sub>F</sub>/c ~ 10<sup>-6</sup> なので spin - orbit 相互作用は普通の相互作用の 10<sup>-12</sup> になる。)特に AB状態に話 しを限ると、 $\overrightarrow{\Delta}$ と $\overrightarrow{L}$ との相関は非常に簡単になる。基底状態での双極子エネルギーは

$$\langle H_{d} \rangle = \frac{4\pi}{3} r^{2} T^{2} \sum_{n} \sum_{m} \int \frac{d p^{3}}{(2\pi)^{3}} \int \frac{d^{3} p'}{(2\pi)^{3}}$$
$$T_{r} \left\{ \hat{F}(\vec{p}, \omega_{n}) \alpha_{\mu} \Lambda_{\mu\nu} \widetilde{F}(\vec{p}', \omega_{m}) \alpha_{\nu} \right\}$$
$$+ c.c.$$
(6.1)

ここで 
$$\frac{4\pi}{3} r^2 \Lambda_{\mu\nu} \alpha_{\mu} \alpha_{\nu} k 双極子エネルギーのフーリェ変換で$$

$$A_{\mu\nu} = 3n_{\mu}n_{\nu} - \delta_{\mu\nu}, \quad n_{\mu} = (\vec{p}_{\mu} - \vec{p}_{\mu}')/(|\vec{p} - \vec{p}'|)$$

 $\alpha_{\mu}$  は 4 次元表元の Pauli 行列, $\widetilde{F}(\vec{p}, \omega_n)$  は行列型の Goikov の F 関数である。 上の表式はギャップ方程式を用いると

$$\langle H_{d} \rangle = -\frac{8\pi}{3} \frac{\tilde{r}^{2}}{g^{2}} \sum_{ij} \int \frac{d\Omega}{4\pi} \int \frac{d\Omega'}{4\pi} \left\{ \triangle_{i}^{*}(\Omega) \Lambda_{ij}(\Omega, \Omega') \triangle_{j}(\Omega') \right\}$$
  
+ c,c. (6.2)

のように変形できる。上の変形で

$$\sum_{i=1}^{3} \Lambda_{ii} (\Omega, \Omega') = 0$$
 (6.3)

を用いた。

P 波対のAB 状態では(6.2)を更に簡単にすることが出来る。 △ の方向の単位。

vector を t としよう。又, 軌道部分は L (単位 vector)の方向に対称軸を持つ  $Y_1^{-1}(\Omega)$  関数で与えられるとすると(6.2) は

$$\langle H_{d} \rangle = -\frac{8\pi}{5} \frac{r^{2}}{g^{2}} (\overrightarrow{L}, \overrightarrow{t})^{2} \bigtriangleup^{2} (T)$$
 (6.4)

のようになる。従って P 波の AB 状態では L と t が平行になった配位が双極子エネ ルギーを考慮すると最も安定になることがわかる。 F 波対の場合には 軌道部分として  $Y_3^2(\Omega)$  から回転によって得られるものを考慮すると、  $\langle H_d \rangle = 0$  を与える。し たがってもし F 波対の最も安定な軌道波動関数が  $Y_3^2(\Omega)$  で与えられるとすれば、 F 波対の場合には双極子相互作用を導入しても L の方向と  $\Delta$  の方向の自由度に関連した 縮退はとけないことになる。

<u>6-2</u>Leggett の和則, Leggett<sup>3)</sup>は更にA相での実験が非常に鋭い共鳴線 を与えることに着目し,動的スピン帯磁率は一つの極によって近似できると仮定すれば, 共鳴周波数は和則を用いて次のように求められることを示した。今系のHamiltonian としては,

$$H = H_0 + H_L + H_d$$
 (6.5)

とし、 $H_0$  は total spin 演算子  $\vec{S}$  と可換な部分、 $H_L$  は Larmor 周波数を与える 部分、 $H_d$  は双極子エネルギーとする。

$$\vec{S} = \sum_{i} \vec{S}_{i}$$

$$\mathcal{I}_{L} = \frac{1}{2} \omega_{L} S_{z}$$
(6.6)

以下では Leggett の元の取扱いは二・三の小さな誤りを含んでいたので、これらを訂 正した取扱いを示す。先ず、横共鳴は

$$\chi_{+=}(\omega) = \langle [S_{+}, S_{-}] \rangle (\omega)$$
(6.7)

を考察することから導びかれる。

$$S_{\pm} = S_{x} \pm i S_{y} , \qquad (6.8)$$

<(A, B)> は A, B の遅延積を意味する。  $S_{+,}$  S\_の同時交換子は  $2S_z$ を与えることより、

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \chi_{+-}''(\omega) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \mathscr{I}_{\mathrm{m}} < [S_{+}, S_{-}] > (\omega) = 2 < S_{\mathrm{z}} >$$
$$= 2\chi \omega_{\mathrm{L}}$$
(6.9)

が導びかれる。上の式で  $\chi$  は静的帯磁率である他方 single pole dominance (SPD) を仮定すれば共鳴周波数 $\Omega_t$  は

$$\Omega_{t} = \langle \omega \rangle = \left( \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \,\omega \,\chi_{+-}^{\prime\prime}(\omega) \right) / \left( \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \,\chi_{+-}^{\prime\prime}(\omega) \right) \quad (6.10)$$

で表わされる。分子は、又、

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \omega \chi_{+-}''(\omega) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2} \omega \mathscr{I}_{\mathrm{m}} \left( \langle [(\mathrm{H}, \mathrm{S}_{+}], \mathrm{S}_{-}] \rangle (\omega) \right) \\ = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \left\{ \omega_{\mathrm{L}} \mathscr{I}_{\mathrm{m}} \langle [\mathrm{S}_{+}, \mathrm{S}_{-}] \rangle + \mathscr{I}_{\mathrm{m}} \langle [(\mathrm{H}_{\mathrm{d}}, \mathrm{S}_{+}], \mathrm{S}_{-}] \rangle \right\}$$

$$(6.11)$$

従って

$$\Omega_{t} = \omega_{L} + \int_{-\infty}^{\infty} \frac{\langle (H_{d}, S_{+}) S_{-} \rangle \rangle}{2 \chi \omega_{L}} \frac{d\omega}{2\pi}$$
$$= \omega_{L} - \frac{\langle (S_{+}(H_{d}, S_{-})) \rangle^{0}}{2 \chi \omega_{L}}$$
(6.12)

上の表式で <〔〔〕〕><sup>0</sup> は同時交換子(equal time commutator)を表わす。 Leggett<sup>3)</sup>の元の導出では  $\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \omega \chi''_{+-}(\omega) \geq \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{1}{\omega} \chi''_{+-}(\omega)$ を比 較したが  $\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{1}{\omega} \chi''_{+-}(\omega) = \chi'_{+-}(0)$  は一般に(特にS相では双極子相互作 用を取入れると)  $\chi$  とは等しくなる。縦共鳴の場合には同様に

$$\chi_{zz}(\omega) = \langle [S_{z}, S_{z}] \rangle(\omega)$$
(6.13)

を考慮すると,

$$\Omega_{\ell}^{2} = \left[ \int_{0}^{\infty} \frac{\mathrm{d}\omega}{\pi} \omega \chi_{zz}''(\omega) \right] / \left[ \int_{0}^{\infty} \frac{\mathrm{d}\omega}{\pi} \frac{1}{\omega} \chi_{zz}''(\omega) \right]$$
$$= -\frac{1}{\chi} < \left[ S_{z}, \left[ H_{d}, S_{z} \right] \right] >^{0}$$
(6.14)

が得られる。

このようにして Leggett は双極子相互作用を考慮すると、 Osheroff らの実験で観 測された shift が説明できること、更に shift を持つためには凝縮対は triplet 対 でなければならないことを示した。

<u>6-3</u>Leggettの現象論<sup>5)</sup>和則を用いた共鳴周波数の shift の計算は,動的 帯磁率が一つの極に dominate されているという crucial な仮定をする必要があった。 その意味で上の理論は self-contained とは考えられない。 この困難を乗り越える ため, Leggett は次のような半現象論的取扱いを提出した。上の Subsectionで見た ように NMR に於ては Hamiltonian の details にはよらず total スピン Sと交換 しない部分が非常に重要である。したがって S と非可換な部分だけを用いて運動方程 式を作る可能性が考えられる。このような観点に立つと,有効エネルギー(Hamiltonian)として

$$E = E(S) + E_d$$
(6.15)

$$E(S) = \frac{1}{2} r^{2} \chi^{-1} \vec{S}^{2} - r \vec{S} \cdot \underline{H}(t)$$
 (6.16)

$$E_{d} = \frac{8\pi r^{2}}{3} \int \frac{d\Omega}{4\pi} \int \frac{d\Omega'}{4\pi} \left\{ \overrightarrow{\Delta}^{+}(\Omega) \cdot \overrightarrow{\Delta}(\Omega') - 3\left( \overrightarrow{n} \overrightarrow{\Delta}^{+}(\Omega) \right) \left( \overrightarrow{n} \cdot \overrightarrow{\Delta}(\Omega) \right) \right\}$$
(6.17)

-241-

でH(t)は全外磁場(ラヂオ周波数場も含む)である。又, (6.17)は(6.2)を書き 直したものに過ぎない。さて $\triangle$ に対してと同様に $\vec{S}$ についても $\vec{S}(\Omega)$ [ $\Omega$ で指定さ れる方向の運動量を持つ粒子についてのスピン演算子]を導入するのが以下の考察に便 利である。今 $\vec{S}(\Omega)$  $\vec{\triangle}(\Omega)$  を演算子と考えると、次の交換関係を満す。

$$(\vec{S}_{i}, \vec{S}_{j}) = i \epsilon_{ijk} \vec{S}_{k}$$
 (6.18)

$$\langle \vec{s}_{i}, \vec{\Delta}_{j}(\Omega) \rangle = i \epsilon_{ijk} \vec{\Delta}_{k}(\Omega)$$
 (6.19)

$$(S_i, \vec{\Delta}_j^+(\Omega)) = i \epsilon_{ijk} \vec{\Delta}_k^+(\Omega)$$
 (6.20)

$$\left[\vec{\Delta}_{i}(\Omega), \vec{\Delta}_{j}^{+}(\Omega)\right] = i \varepsilon_{ijk} \vec{S}_{k}(\Omega) \left[\frac{1}{2}\delta(\Omega - \Omega') - \frac{1}{2}\delta(\Omega + \Omega')\right]$$
(6.21)

特に(6.19), (6.20) は  $\vec{S}$  の方向を指定すると  $\vec{S}$  と直角方向の  $\triangle$  は同時に指定 することが出来ない,ことを意味している。上の交換関係と(6.15)を用いると次の運 動方程式が得られる。

$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{H} + \int \frac{d\Omega}{4\pi} \{ \vec{\Delta}(\Omega) \times \vec{J}(\Omega) + c.c. \}$$
(6.22)

$$\frac{\mathrm{d}}{\mathrm{d}\,\mathrm{t}}\,\overrightarrow{\bigtriangleup}(\Omega)\,=\,r\,\overrightarrow{\bigtriangleup}\,\times\,\overrightarrow{\mathrm{H}}\,+\,\overrightarrow{\mathrm{S}}(\Omega)\,\times\,\overrightarrow{\mathrm{J}}(\Omega) \tag{6.23}$$

ここで,

$$\vec{H} = -\delta E / \delta \vec{S}$$

$$\vec{\mathbf{J}}(\Omega) = -\delta \mathbf{E} / \delta \vec{\Delta}(\Omega) \equiv -\vec{\mathbf{J}}(-\Omega)$$
(6.24)

で与えられる。更に H,  $J(\Omega)$  は双極子エネルギーの高次の項を無視すると、

$$\vec{H} = -\tau \vec{\mathcal{I}}(t)$$
,  $\vec{J}(\Omega) = \vec{J}_D(\Omega) \equiv -\delta E_D / \delta \vec{\Delta}(\Omega)$  (6.25)

$$-242-$$

の近似ができる。更に、 $R_D = \int_{4\pi}^{d\Omega} \{ \overrightarrow{\Delta}(\Omega) \times \overrightarrow{J}_D(\Omega) + c,c. \}$ の時間微分は (6.23)を用いると((6.23)の右辺の第二項は $H_d$ についての高次の項になるので 無視する)

$$\frac{\partial}{\partial t} R_{\rm D} = \sum_{j} \Phi_{ij} \left( \vec{\Delta}(\Omega) \right) H_{j}$$
(6.26)
$$\Phi_{ij} \left( \vec{\Delta}(\Omega) \right) = 4 \pi r^{2} R_{\rm e} \left( \iint \frac{d\Omega}{4\pi} \frac{d\Omega'}{4\pi} \left\{ \left( \vec{n} \vec{\Delta}^{+}(\Omega) \right) \left( \vec{n} \vec{\Delta}(\Omega') \right) \delta_{ij} - \left( \vec{n} \cdot \vec{\Delta}^{+}(\Omega) \right) n_{j} \vec{\Delta}_{i} \left( \Omega' \right) - \left( \vec{n} \times \vec{\Delta}(\Omega) \right)_{i} \left( \vec{n} \times \vec{\Delta}(\Omega') \right)_{j} \right\} \right)$$
(6.27)

更に $\vec{\Delta}$ 及び $\vec{S}$ のゆらぎは小さいと仮定して上の $\Phi_{ij}$ を平衡状態の $\vec{\Delta}(\Omega)$ で計算す ると $\vec{S}$ のゆらぎ $\vec{S}'$ は次の式を満すことが示せる。

$$(\omega^{2} - \widehat{\Omega}^{2}) \overrightarrow{S}' - i \omega (\overrightarrow{\omega}_{L} \times \overrightarrow{S}') = -r^{-1} \chi \{ \widehat{\Omega}^{2} \mathscr{U}_{rf} + i \omega (\overrightarrow{\omega}_{L} \times \mathscr{U}_{r\cdot f}) \}$$

$$(\widehat{\Omega}^{2})_{ij} = r^{2} \chi^{-1} \Phi_{ij}^{0}$$

$$(6.29)$$

で、  $\Phi_{ij}^{0}$  は  $\Phi_{ij}(\vec{\Delta}(\Omega))$  の平衡状態での平均を表わす。上の式から、

$$\chi_{zz}(\omega) = \chi \left(\frac{\Omega_z^2}{\Omega_z^2 - \omega^2}\right)$$
(6.30)

$$\chi_{\rm XX}(\omega) = \chi \left[ 1 - \frac{\omega^2 (\omega^2 - \Omega_j^2)}{D(\omega)} \right]$$

$$\chi_{yy}(\omega) = \chi \left[1 - \frac{\omega^2 (\omega^2 - \Omega_x^2)}{D(\omega)}\right]$$

-243-

$$\chi_{xy}(\omega) = -\chi_{xy}(\omega) = \chi \left[\frac{i \omega^3 \omega_L}{D(\omega)}\right]$$

$$D(\omega) = (\omega^2 - \Omega_X^2)(\omega^2 - \Omega_y^2) - \omega^2 \omega_L^2$$
(6.31)

のように求められる。今 $(\hat{\Omega}^2)_{ij}$ は主軸をx軸, y軸, z軸方向にとり, その対角 成分を $\Omega_{x,j}^2$ ,  $\Omega_{y,j}^2$ ,  $\Omega_z^2$  と仮定した。後で見るように, AB 状態に対しては,

$$\Omega_{\rm X}^2 = \Omega_{\rm Z}^2 = \Omega^2 \cdot \Omega_{\rm y}^2 = 0$$

のように取ることが出来るので,上の式は更に,

$$\chi_{ZZ}(\omega) = \chi \left(\frac{\Omega^{2}}{\Omega^{2} - \omega^{2}}\right)$$

$$\chi_{XX}(\omega) = \chi \left(\frac{\Omega^{2} + \omega_{L}^{2}}{\Omega^{2} + \omega_{L}^{2} - \omega^{2}}\right)$$

$$\chi_{yy}(\omega) = \chi \left(\frac{\omega_{L}^{2}}{\Omega^{2} + \omega_{L}^{2} - \omega^{2}}\right)$$

$$\chi_{xy}(\omega) = -\chi_{xy}(\omega) = -\chi \frac{i \omega \omega_{L}}{(\Omega^{2} + \omega_{L}^{2} - \omega^{2})}$$
(6.32)

のようになる。

# 参考文献

- 1) D.D.Osheroii, W.J.Gully, R.C.Ridardson, and D.M.Lee, PRL 29 290 (1972)
- 2) D.D.Osheroff and F.W.Brinkman, PRL <u>30</u> 1108 (1974)
- 3) A.J.Leggett, PRL 29 1227 (1972)

- 4) A.J.Leggett, Journal of Physics C, Solid State Phys <u>6</u> 3187 (1973)
- 5) A.J.Leggett, PRL 31 352 (1973) and preprint.

#### §7 動的スピン帯磁率

上の Leggett の取扱いではいくつかの現象論的仮定を導入する必要があった。した がって,これらの仮定が成立しているかどうかは実験との比較によってしか知ることが できない。しかし NMR の問題は微視的観点から考察することもできる。実際この問題 はあるモデルから出発して動的スピン帯磁率を explicit に求めることに帰着する。 このような立場から Maki-Ebisawa<sup>1)</sup>は次の Hamiltonian を考察した。

$$\mathcal{X} = \mathcal{X}_{0} + \mathcal{X}_{L} + \mathcal{X}_{I} + \mathcal{X}_{d}$$
(7.1)

ここで $H_0$  は <sup>3</sup> $H_e$  原子の動的エネルギーと pairing 相互作用,  $H_L$  は磁場 H ( $/ O_z$ ) の中での Larmor energy を,  $H_1$  は paramagnon モデルに用いられた spin 交換エネルギーを, 最後に  $H_d$  は双極子エネルギーを表わす。 以下問題を簡単にする ため, A 相の基底状態は AB 状態で与えられているとする。 この時の一粒子グリーン 関数は

$$G^{-1}(\vec{p}, \omega_{n}) = i \omega_{n} - \left(\xi + \frac{\Omega_{0}}{2}\sigma_{3}\right)\rho_{3} - \left(\rho_{1} \Delta_{1} + \rho_{2} \Delta_{2}\right)$$
$$\Omega_{0} = \omega_{0} / (1 - \overline{1}), \quad \overline{1} = I N(0) \quad (\Xi - \frac{1}{4} Z_{0}) \quad (7.2)$$

で与えられるものとする。上のグリーン関数は $\omega_0$  がくりこまれた Larmor 周波数 $\Omega_0$  で置き換えられている点を除いては(4.24)と同じである。この置き換えは以下 RPA 近似で帯磁率を求めるのと consistent な近似である。したがって一般に RPA 以上 の近似を行なう時には、それに応じて $\Omega_0$  をあらためて定義する必要がある。上の秩序 パラメターの選択は  $\overrightarrow{\Delta}(/ oy)$  ととったことに対応している。

<u>7-1</u> ギャップ方程式 先ず動的スピン帯磁率の計算にとりかかる前に、ギャップ 方程式を見てみよう。今、双極子項も考慮するとギャップ方程式は(4.7)の代りに

$$\Delta(\Omega) = N(0) \int \frac{d\Omega'}{4\pi} \Pi_0(\Omega') \left\{ \begin{array}{l} \mathcal{G}(\Omega, \Omega') \Delta(\Omega') \\ -\frac{4\pi}{3} \tau^2 (\Lambda_{33}(\Omega, \Omega') + \Lambda_{11}(\Omega, \Omega') - \Lambda_{22}(\Omega, \Omega')) \Delta(\Omega') \right\} \\ = N(0) \int \frac{d\Omega'}{4\pi} \Pi_0(\Omega') \left\{ \begin{array}{l} \mathcal{G}(\Omega, \Omega') \Delta(\Omega') + \\ +\frac{8\pi}{3} \tau^2 \Lambda_{22}(\Omega, \Omega') \Delta(\Omega') \end{array} \right\}$$
(7.3)

上の式で $\Delta(\Omega) = \Delta_1(\Omega) + i \Delta_2(\Omega)$ ,  $\Pi_0(\Omega')$ は既に(4.8)で定義されている。  $\Lambda_{ii}(\Omega, \Omega')$ を含んだ項は双極子エネルギーからの寄与で, explicit には

$$\frac{4\pi}{3}r^2 \Lambda_{\mu\nu} \partial_{\mu} \widetilde{\Delta} \alpha_{\nu} \qquad (\widetilde{\Delta} = \rho_1 \Delta_1 + \rho_2 \Delta_2)$$

から求められる。今,規格化された波動関数 f(Ω)

 $\triangle(\Omega) = \triangle f(\Omega)$ 

を用い、又、異なった角運動量をもつた状態との混合を無視する近似では(7.3)は

$$I = N(0) \{ g < f | \Pi_0 | f > + \frac{8\pi}{3} r^2 < f | \Lambda_{22} | \Pi_0 | f > \}$$
(7.4)

< f  $|\Pi_0|$  f > =  $\int \frac{d\Omega}{4\pi} |f(\Omega)|^2 |\Pi_0(\Omega)|$ 

$$< f | \Lambda_{22} \Pi_0 | f > = \int \frac{d\Omega}{4\pi} \int \frac{d\Omega'}{4\pi} f^*(\Omega) \Lambda_{22}(\Omega, \Omega') \Pi_0(\Omega') f(\Omega')$$

$$(7.5)$$

のように書ける。したがって上の式から,最も安定な解は,最大の結合定数を得るよう に f(Ω)を選ぶことによってきまる。(7.4)は双極子相互作用のない時には,結合定

-246-

数は f (Ω) の orientation にはよらないことを示している。 双極子相互作用は極め て小さいけれども f (Ω) の orientation をきめる上では本質的である。 従って (7.4) 式は SBSOS<sup>2)</sup>を取り込んでいる。今凝縮対が P 波の時には f (Ω) =  $(4\pi)^{\frac{1}{2}}$ Y<sub>1</sub><sup>1</sup>(Ω) が一番安定な解を与えることが知られている。したがって Y<sub>1</sub><sup>1</sup>(Ω) を適当に 回転して一番大きな < f |  $A_{22}$  | f > を与えるものを探せばよい。これは

$$f(\Omega) = (\frac{3}{2})^{\frac{1}{2}} (x+iz)$$

をとればよいことが容易に示せる。このことは  $f(\Omega)$ の対称軸は y 軸(即ち $\overrightarrow{\Delta}$ の方向)と平行にとったものになっている。この時の有効結合常数は

$$\mathscr{G}_{0} = \mathscr{G} + \frac{8\pi}{3} r^{2} < f | \Lambda_{22} | f > = \mathscr{G} + \frac{4}{5} \pi r^{2}$$
 (7.6)

で与えられる。同様の考察は F 波対に対してもできる。この時には f(Ω)  $\propto Y_3^2$ (Ω) が一番安定な解を与えることが知られている。しかし,上の関数については如何なる orientation をとっても  $\langle f | A_{22} | f \rangle = 0$  を与えるので, F 波対に関しては,双 極子エネルギーは基底状態のスピン・軌道方向に対しての縮退をとくことができないこ とを意味している。<sup>1),3)</sup> したがってもし F 波対については f(Ω)  $\propto Y_3^2$ (Ω) で与えら れるならば,以下に見るように NMR 周波数の shift は現われないことになる。この ことは A 相の凝縮対の候補者から F 波対は排除されることを意味している。<sup>1),3)</sup>

<u>7-2</u>動的スピン帯磁率 さて動的スピン帯磁率はスピン演算子の遅延積で表現 される。一方,遅延積は温度グリーン関数から容易に求められる。従って我々の問題は スピン演算子の温度グリーン関数を求めることに帰着する。この問題で本質的なのは, triplet 対の場合には基底状態は双極子エネルギーに伴った小さなエネルギー分岐を 無視すれば,種々のスピン・軌道成分をもった秩序パラメターのゆらぎと縮退している ことである。(この事情はS波対の超伝導には起らない)。特に今一様極限( $\vec{q} \rightarrow 0$ ) のスピン遅延積に関しては、基底状態と同じ軌道成分を持ち,異なるスピン成分を持っ たゆらぎが couple してくる。この問題を一番統一的に取扱うには RPA近似を用いれ ばよい。特に静的極限では RPA 近似の範囲で Landau の Fermi流体の効果を取り入

-247-

れることができることはLeggett<sup>4)</sup>によって既に示されている。 この為には次の Bethe - Salpeter 方程式を解けばよい,<sup>1)</sup>

$$\widetilde{\phi} = -\operatorname{T} \sum_{n} \int \frac{d^{3}p'}{(2\pi)^{3}} \mathscr{G}(\Omega, \Omega') \operatorname{P}_{1} \left( \operatorname{G}(\overrightarrow{p'}, \omega_{n}) \widetilde{\phi} \operatorname{G}(\overrightarrow{p'}, \omega_{n-\nu}) \right) - \operatorname{I} \operatorname{T} \sum_{n} \int \frac{d^{3}p'}{(2\pi)^{3}} \operatorname{P}_{2} \left( \operatorname{G}(\overrightarrow{p'}, \omega_{n}) \widetilde{\phi} \operatorname{G}(\overrightarrow{p'}, \omega_{n-\nu}) \right) - \frac{4\pi\tau^{2}}{3} \operatorname{T} \sum_{n} \int \frac{d^{3}p'}{(2\pi)^{3}} \mathscr{a}_{\mu} \operatorname{A}_{\mu\nu} \left( \operatorname{G}(\overrightarrow{p'}, \omega_{n}) \widetilde{\phi} \operatorname{G}(\overrightarrow{p'}, \omega_{n-\nu}) \right) \mathscr{a}_{\nu}$$
(7.7)

で  $\hat{\phi}$  はスピン及び秩序パラメターのゆらぎを記述する。ラヂオ波のもとでの ゆらぎに 関しては上の式に非同次項が加わるが、上の式では無視した。又、 $P_1$ ,  $P_2$  はそれぞ れ二粒子(二空孔) channel, 粒子一空孔 channel を選らぶ射影演算子である。上の 式では RPA の精神に基づいて相互作用 vertex として裸の相互作用、 $g(\Omega, \Omega')$ 及 び I を用いたが、この部分にそれぞれの相互作用に対応する既約相互作用核(irreducible vertex)を用いれば RPA より進んだ近似で上のゆらぎを議論することも原 理的には可能である。さて横帯磁率に関しては

$$\widetilde{\phi} = \rho_1 \sigma_1 \phi_1 + \rho_2 \sigma_1 \phi_2 + \alpha_1 \Sigma_1 + \alpha_2 \Sigma_2$$
(7.8)

をとればよいことが判る。(7.8)を(7.7)に代入して両辺を整理してやると,

$$\begin{split} \phi_{+}(\Omega) &= \mathrm{N}(0) \int \frac{\mathrm{d}\Omega'}{4\pi} \left( \mathcal{G}(\Omega, \Omega') + \frac{8\pi}{3} r^{2} \Lambda_{33}(\Omega, \Omega') \right) \\ \left\{ \left( \Pi_{0}(\Omega') - \frac{1}{2} \left( \Omega_{0}^{2} - \omega^{2} + 2 \left| \Delta(\Omega) \right|^{2} \right) \mathrm{F} \right) \phi_{+}(\Omega') - \left( \Delta(\Omega') \right)^{2} \mathrm{F} \phi_{-}(\Omega') \right. \\ \left. - \frac{1}{2} \Delta(\Omega) \mathrm{F} \left( \left( \Omega_{0} - \omega \right) \Sigma_{+} - \left( \Omega_{0} + \omega \right) \Sigma_{-} \right) \right\} \\ \phi_{-}(\Omega) &= \mathrm{N}(0) \int \frac{\mathrm{d}\Omega'}{4\pi} \left( \mathcal{G}(\Omega, \Omega') + \frac{8\pi}{3} r^{2} \Lambda_{33}(\Omega, \Omega') \right) \end{split}$$

-248-

$$\times \left\{ \left[ \Pi_{0} \left( \Omega' \right) - \frac{1}{2} \left( \Omega_{0}^{2} - \omega^{2} + 2 \left| \Delta(\Omega) \right|^{2} \right) F \right] \phi_{-} \left( \Omega' \right) - \left( \Delta^{*}(\Omega') \right)^{2} F \phi_{+}(\Omega') \right. \\ \left. + \frac{1}{2} \Delta^{*}(\Omega') F \left[ \left( \Omega_{0} - \omega \right) \Sigma_{+} - \left( \Omega_{0} + \omega \right) \Sigma_{-} \right] \right\} \right]$$

$$\Sigma_{+} = \overline{I} \left\{ \frac{1}{\Omega_{0} + \omega} \left( \Omega_{0} - \left( \Omega_{0} - \omega \right) < \left| \Delta \right|^{2} F \right) \Sigma_{+} + \left| \Delta \right|^{2} F \right\} \right\} \\ \left. - \frac{1}{2} \left( \Omega_{0} - \omega \right) < \left( \Delta^{*} \phi_{+} - \Delta \phi_{-} \right) F \right\} \right\}$$

$$\Sigma_{-} = \overline{I} \left\{ \frac{1}{\Omega_{0} - \omega} \left( \Omega_{0} - \left( \Omega_{0} + \omega \right) < \left| \Delta \right|^{2} F \right) \Sigma_{-} + \left| \Delta \right|^{2} F \right\} \right\}$$

$$(7.9)$$

ここで

$$\phi_{\pm} = \phi_1 \pm i \phi_2$$
,  $\Sigma_{\pm} = \Sigma_1 \pm i \Sigma_2$ 

$$F = \int_{\Delta(\Omega)}^{\infty} d\omega' \frac{\tanh(\omega'/2T)}{\sqrt{\omega'^2 - \Delta^2(\Omega)}} \left( \frac{\omega(2\omega' - \omega) + \Omega_0^2}{(\omega^2 - \Omega_0^2)[(2\omega' - \omega)^2 - \Omega_0^2] + 4\Omega_0^2 \Delta^2(\Omega)} - \frac{\omega(2\omega' + \omega) - \Omega_0^2}{(\omega^2 - \Omega_0^2)[(2\omega' + \omega)^2 - \Omega_0^2] + 4\Omega_0^2 \Delta^2(\Omega)} \right)$$
(7.10)

st,  $<_{A}(\Omega)>$  d,

$$< A(\Omega) > = \int \frac{d\Omega}{4\pi} A(\Omega)$$

を意味する。上の式は先ず $\phi_+(\Omega)$ ,  $\phi_-(\Omega)$ について解くことができる。 さらに  $\phi_+(\Omega)$ ,  $\phi_-(\Omega)$ は基底状態と同じ軌道部分を持つことが容易にわかる。解は,

$$\phi_{+}(\Omega) = \phi_{\mathbf{I}} f(\Omega), \quad \phi_{-}(\Omega) = -\phi_{\mathbf{I}} f^{*}(\Omega)$$
(7.11)

-249-

のよう表わされ ø<sub>1</sub> は

$$\phi_{\mathbf{I}} = \mathcal{N}(0) \quad \left( \mathcal{G} + \frac{8\pi}{3} r^{2} < \mathbf{f} \mid \Lambda_{33} \mid \mathbf{f} > \right)$$

$$\times \left\{ < \mathbf{f} \mid \Pi_{0} - \frac{1}{2} \left( \Omega_{0}^{2} - \omega^{2} \right) \mathbf{F} \mid \mathbf{f} > \phi_{\mathbf{I}} - \frac{\Delta}{2} < \mathbf{f} \mid \mathbf{F} \mid \mathbf{f} > \left( \left( \Omega_{0} - \omega \right) \boldsymbol{\Sigma}_{+} - \left( \Omega_{0} + \omega \right) \boldsymbol{\Sigma}_{-} \right) \right\}$$

$$(7.12)$$

あるいは上の式はギャップ方程式(7.4)を用いると

$$\phi_{\mathrm{I}} = -\triangle [(\Omega_{0} - \omega) \Sigma_{+} - (\Omega_{0} + \omega) \Sigma_{-}] / (\Omega_{0}^{2} + \mathrm{A} < \mathrm{F} >_{\mathrm{f}}^{-1} - \omega^{2})$$
(7.13)

$$A = 2 N (0)^{-1} \{ \left( g + \frac{8\pi}{3} r^{2} < f \mid A_{33} \mid f > \right)^{-1} \left( g + \frac{8\pi}{3} r^{2} < f \mid A_{22} \mid f > \right)^{-1} \}$$

$$= \frac{1}{g^{2} N (0)} \frac{16\pi}{3} r^{2} < f \mid A_{22} - A_{33} \mid f >$$

$$< F > c = < f \mid F \mid f >$$

$$(7.14)$$

 $X, < F >_{f} = < f |F| f >$ 

で与えられる。今ゆらぎは  $\vec{\bigtriangleup}$  (  $\neq$   $O_z$  ) の配位を持つから上のAはゆらぎ(第8 図で点線で書いたスピン・vector) に ついての双極子エネルギーと基底状態で の双極子エネルギーとの差に比列するの で, 常に nonnegative な量である。又  $\phi_+(\Omega)$ ,  $\phi_-(\Omega)$  に関する (7.11)の表 式はラヂオ波によって凝縮対のスピンが ゆらぐ時に, 対スピンの長さは一定でそ の方向が Z軸の方向に回転することを表 わしている。又, (7.13)は磁場のもと でのゆらぎは,



第 义 8

<sup>3</sup>He の超流動

$$\omega^{2} = \Omega_{0}^{2} + A < F > \frac{1}{f}$$
(7.14)

で与えられる共鳴振動数を持つことを意味している。特に  $\omega \to \Omega_0$  の極限では (7.10) の F 関数は、すべての T<sub>c</sub> 以下の温度で

$$\lim_{\omega \to \Omega_0} \mathbf{F} = \left( 2 \Delta^2(\Omega) \right)^{-1}$$
(7.15)

の極限を持つことを考慮すると(7.14)は

$$\omega^{2} \cong \Omega_{0}^{2} + 2 \mathrm{A} \Delta^{2} \qquad (\text{for } \Omega_{0}^{2} \gg 2 \mathrm{A} \Delta^{2}) \qquad (7.16)$$

のように簡単化される。さてこのようにして求まった  $\phi_+(\Omega)$ ,  $\phi_-(\Omega)$  を (7.9) の 最後の2式に代入すると動的帯磁率は容易に

$$\chi_{+-}(\omega) = \chi_{-+}(-\omega) = \left[ \left( \omega_0 - \omega \right) \Omega_0 + \frac{\left[ 2 \overline{1} \Omega_0^2 - \left( \Omega_0 - \omega \right)^2 \right]}{\Omega_0^2 - \omega^2 + A < F >_f^{-1}} A \Delta^2 \right] \mathcal{D}^{-1}(\omega)$$

$$\chi_{++}(\omega) = \chi_{--}(\omega) = -A \bigtriangleup^2(\Omega_0^2 - \omega^2) / (\Omega_0^2 - \omega^2 + A < F >_f^{-1}) \mathscr{D}^{-1}(\omega)$$

$$\mathcal{D}^{-1}(\omega) = \omega_0^{2} + \frac{2\bar{1}((1-\bar{1})\Omega_0^{2} + \omega^{2})}{\Omega_0^{2} - \omega^{2} + A < F >_{f}^{-1}} A \bigtriangleup^{2} - \omega^{2}$$
(7.17)

のように与えられる。

同様に縦帯磁率に関しては(7.7)に

$$\widetilde{\phi} = \rho_1 \sigma_3 \phi_1 + \rho_2 \sigma_3 \phi_2 + \alpha_3 \Sigma_3$$
(7.18)

を導入して計算してやればよく、最終結果は

$$\chi_{zz}(\omega) = \frac{2 |\Delta|^2 A'}{A < F_1 >_{f}^{-1} - 2 \overline{I} |\Delta|^2 A' - \omega^2}$$
(7.19)

-251-

$$A' = 2 N(0)^{-1} \left\{ \left( g + \frac{8\pi}{3} r^2 < f \mid A_{11} \mid f > \right)^{-1} - \left( g + \frac{8\pi}{3} r^2 < f \mid A_{22} \mid f > \right)^{-1} \right\}$$
$$= \frac{1}{g^2 N(0)} \frac{16\pi r^2}{3} < f \mid A_{22} - A_{11} \mid f >$$
(7.20)

又, F, 関数は

$$F_{1} = \frac{1}{\omega} \int_{\Delta}^{\infty} d\omega' \frac{\tanh(\omega'/2T)}{\sqrt{\omega'^{2} - \Delta^{2}(\Omega)}} \left[\frac{1}{2\omega' - \omega} - \frac{1}{2\omega' + \omega}\right] \quad (7.21)$$

で与えられる。又,縦帯磁率の場合には対スピンは x - y 平面内でゆらぐことになる。 今基底状態として AB 状態をとると P 波対の場合には基底状態の対称性から

$$A = A' = \frac{1}{g^2 N(0)} \frac{12\pi}{5} r^2$$
(7.22)

になることが示せる。他方F波対の場合には

$$\mathbf{A} = \mathbf{A'} = \mathbf{0}$$

が得られる。今横共鳴〔(7.17)〕について最も簡単な表式は高磁場極限( $\Omega_0^2 \gg 2A$  $\triangle^2$ )の時に得られる。この時 NMR 振動数は  $\omega^2 \cong \omega_0^2$  であるから, これを代入す ると

$$\chi_{+-}(\omega) = \chi_{-+}(-\omega) \cong \frac{(\omega_0 - \omega) \Omega_0 + A \Delta^2}{(\omega_0^2 + 2(1 - \overline{1}) A \Delta^2 - \omega^2)}$$
(7.23)

$$\chi_{++}(\omega) = \chi_{--}(\omega) = -\frac{A \Delta^2}{(\omega_0^2 + 2(1-\overline{1}) A \Delta^2 - \omega^2)}$$
(7.24)

したがって高磁場極限では横共鳴振動数は

$$\Omega_{t}^{2} = \omega_{0}^{2} + 2(1-\overline{I}) A \Delta^{2}$$
(7.25)

<sup>3</sup>He の超流動

<sup>5)</sup> の実験とも consistent である。既に見たように F 波対の場合には A=0 になるの で, F 波対の可能性は今のモデルに立つ限り除外できる。<sup>1),3)</sup>

<u>7-3</u> T=0Kの振舞い (7.17)及び(7.19)は RPA の範囲で動的スピン 帯磁率を完全に記述するが、F 関数は非常に複雑な振舞を示すので、 一般に共鳴振動 数を議論することはかなり困難である。ただ、T=okの時には積分の中の tanh 関数 は 1 になるので  $\omega'$  積分は容易にでき、

$$F = \frac{-2}{(\omega^2 - \Omega_0^2)^{\frac{1}{2}} (\omega^2 - \Omega_0^2 - 4\Delta^2(\Omega))^{\frac{1}{2}}} \operatorname{arcth} \left( \frac{\omega^2 - \Omega_0^2}{\omega^2 - \Omega_0^2 - 4\Delta^2(\Omega)} \right)^{\frac{1}{2}} \right)$$
$$T = 0 K \qquad (7.26)$$

のようになる。更に T = 0K では、 $\omega$ ,  $\Omega_0$  は一般に (非常に高磁場の場合を除いて)  $\triangle$  より小さいので、この限り

$$F \cong (2 \triangle^2(\Omega))^{-1}$$

あるいは

$$\langle F \rangle_{f} = (2 \Delta^{2})^{-1} \qquad (\omega, \Omega_{0} \ll \Delta) \qquad (7.27)$$

で近似できる。この表式を(7。17)及び(7.19)に代入すると

$$\chi_{+-}(\omega) = \chi_{-+}(-\omega) = \frac{(\omega_0 - \omega) \Omega_0 + \Delta^2 A}{(\Omega_t^2 - \omega^2)}$$
$$\chi_{++}(\omega) = \chi_{--}(\omega) = -\frac{\Delta^2 A}{(\Omega_t^2 - \omega^2)}$$
$$\chi_{zz}(\omega) = \frac{2\Delta^2 A}{(\Omega_\ell^2 - \omega^2)}$$

(7.28)

$$-253-$$

で  $\Omega_t^{2}$  は既に (7.25) で定義されている。又,  $\Omega_{\ell}^{2}$  は

$$\Omega_{\ell}^{2} = 2(1-\overline{1}) A \bigtriangleup^{2} = \Omega_{t}^{2} - \omega_{0}^{2}$$
 (7.29)

最後に結果は Leggett の現象論及び最近の Osheroff  $6^{6}$ の実験と完全に一致する。 又,実際用いた条件の違いにかかわらず(7.28)の横帯磁率は(7.23),(7.24)と 一致することに注目しよう。正確な表式の求まるもう一つの極限は $\Omega_0^2 \cong \omega_0^2 + 2(1$ Ī) A  $\Delta^2$  の時である。この時には既に述べたように

$$\lim_{\omega \to \Omega_0} \mathbf{F} = \left( 2 \Delta^2(\Omega) \right)^{-1} \tag{7.30}$$

の関係を用いれば、やはり横帯磁率は(7.23)、(7.24)で与えられることが判る。したがって横帯磁率に関しては 1) T = 0Kの場合、 2)  $\Omega_0^2 \ge 2(1-\overline{1}) A \triangle^2$ の場合にはいずれも(7.25) で与えられる共鳴周波数を持つことを結論できる。

<u>7-4</u> RPAの困難 上の結果から RPA 近似は実験を非常にうまく記述する ように思われる。しかしそれが本当かどうかを完全に check するのは $\Omega_0 \rightarrow 0$ の極限も調べてみる必要がある。 $\Omega_0^2 \ll 2(1-\overline{I}) \wedge \Delta^2$ の場合には先ず Fの中の $\Omega_0$ を 0 にとることができて F 関数は F<sub>1</sub> 関数になる。更に T<sub>c</sub>の極く近傍を除けば $\omega < \Delta$  なので、この極限では F 関数は explicit に求まる。

$$F = \frac{\pi}{8 T \triangle (\Omega)} - \frac{7 \zeta (3)}{2 (2\pi T)^2} \quad \text{for} \quad T \cong T_c$$
(7.31)

これから  $\langle F \rangle_{f}$  は T<sub>c</sub> の近傍では(P波対に対しては)

$$\langle F \rangle_{f} = \frac{\pi^{2}}{32} \left(\frac{3}{2}\right)^{\frac{1}{2}} \frac{1}{T\Delta} - \frac{7 \zeta(3)}{2 (2\pi T)^{2}}$$
 (7.32)

この表式を (7.17) に代入すると、 $T_c$ の近傍での  $\Omega_0 \rightarrow 0$  極限では横共鳴周波数 は

$$\Omega_{t}^{2} = 2\left[\frac{16}{\pi^{2}}\left(\frac{2}{3}\right)^{\frac{1}{2}}\frac{\mathrm{T}}{\Delta} - \overline{\mathrm{I}}\right] \mathrm{A} \Delta^{2}$$
(7.33)

-254-

また $\Omega_{\ell}^{2}$  は任意の外場 H に対して(T<sub>c</sub>の近傍では),

$$\Omega_{\ell}^{2} = 2 \left[ \frac{16}{\pi^{2}} \left( \frac{2}{3} \right)^{\frac{1}{2}} \frac{\mathrm{T}}{\Delta} - \overline{\mathrm{I}} \right] \mathrm{A} \Delta^{2}$$

$$(7.34)$$

が成立することになる。他方最近の Osheroff  $6^{6}$ の実験によると、(7.29)が一般の 温度及び磁場のもとで成立している。したがって一般の温度での縦共鳴周波数,及び弱 磁場の横共鳴周波数に関しては T=0K の場合を除いて RPA 近似は正しくない結果 を与える。このことはおそらく我々の計算が本質的には collisionless 極限であるこ とと関連しているものと考えられる。実際 S 相での準粒子は paramagnon 散乱によっ て比較的短かい寿命  $\tau$  を持っている。(i.e.  $T = T_c$ の近傍では  $\tau \bigtriangleup \sim 10 \sim 10^2$ )

したがって我々の興味をもっている 周波数に対しては十分τω <<< 1 の条件が成立していると考えられる。 この問題を考慮するためには原理的 には RPA に含まれていない第9図 のようなダイアグラムからの各既約 ダイアグラムへの寄与を考えればよ い。ここでwavy line は paramagnon 伝播子である。しかしこの 計算を実際行なうのは今のところ不 可能ではないにしてもかなり難かし い。

最後に最近 Takagi<sup>3)</sup>は(7.1) のモデル Hamiltonian から出発

第 9 义

して,基底状態については explicit な仮定を置くことなく,双極子相互作用に関して モーメント展開を行なうと高磁場極限に関しては Leggett 及び我々の結果がもっと一 般的な枠組の中で求まることを示したことを附け加えておこう。

-255-

今まで動的スピン帯磁率の $\vec{q} = 0$ 極限に話を限って来たが、運動量依存性は RPA の範囲で容易に取入れることができる。特に運動量 $\vec{q}$ に依存する項が、双極子エネル ギー項より小さい時には異った軌道波動関数を伴ったゆらぎの効果は無視することがで きて、計算は $\vec{q} = 0$ の時と殆んど平行に進めることができる。その結果は

$$\chi_{+-}(\vec{q},\omega) = \chi_{-+}(\vec{q},-\omega) = N_{+-}(\vec{q},\omega) / D(\vec{q},\omega)$$
$$\chi_{++}(\vec{q},\omega) = \chi_{--}(\vec{q},\omega) = N_{++}(\vec{q},\omega) / D(\vec{q},\omega)$$
(7.35)

$$D(\vec{q},\omega) = \omega_0^2 + \frac{2 \vec{I} \triangle^2 \left[ (1-\vec{I}) \Omega_0^2 + \omega^2 \right] u \ll 1 \gg}{\Omega_0^2 - \omega^2 + u}$$
$$- \omega^2 \left[ 1 + \frac{2 \vec{I} \left[ (3-2\vec{I}) \Omega_0^2 + \omega^2 \right]}{(\Omega_0^2 - \omega^2)^2} \left( \frac{1}{3} v^2 q^2 - 2 \triangle^2 \ll \zeta^2 \gg \right) \right]$$

$$N_{+-}(\vec{q},\omega) = N(0) \left[ \Omega_0(\omega_0 + \omega) - \frac{\Delta^2 \left[ (\Omega_0 + \omega)^2 - 2\bar{I} \Omega_0^2 \right] u \ll 1 \right]}{\Omega_0^2 - \omega^2 + u} + \frac{\omega}{(\Omega_0^2 - \omega^2)^2} \left[ (\Omega_0 + \omega)^3 - 4\bar{I} \omega \Omega_0^2 \right] \left( \frac{1}{3} v^2 q^2 - 2\Delta^2 \ll \zeta^2 \right]$$

$$N_{++}(\vec{q},\omega) = N(0)(\Omega_0^2 - \omega^2) u \bigtriangleup^2 \ll 1 \gg / (\Omega_0^2 - \omega^2 + u)$$
(7.36)

 $\ll K \gg = < f | K F | f >$ 

 $\zeta^2 = (\vec{v}, \vec{q})^2$ ,  $u = (\ll \zeta^2 \gg + A) \ll 1 \gg^{-1}$  (7.37)

又, A は既に(7.22)で定義されたものである。

一般に  $D(\vec{q}, \omega)$  の零点はスピン波の分散を与える。特に T = 0K の時には  $F = (2 | \triangle (\Omega) |^2)^{-1}$  を用いるとスピン波の分散が

<sup>3</sup>He の超流動

$$\omega^{2} = \omega_{0}^{2} + 2(1-\overline{I}) \bigtriangleup^{2} A + \frac{1}{3}(1-\overline{I}) v^{2} q^{2}$$
(7.38)

で与えられることが判る。この分散は NMR 周波数に関連した異方性エネルギー項を除 くと,超伝導状態での Anderson-Bogoliubov ホノンのエネルギー分散とよく似てい る。また高磁場の領域では分散は

$$\omega^{2} = \omega_{0}^{2} + 2(1-\overline{I}) \bigtriangleup^{2} (A + \ll \zeta^{2} \gg)$$
$$- 2(1-\overline{I})^{2} / \overline{I} \left(\frac{1}{3}v^{2}q^{2} - 2\bigtriangleup^{2} \ll \zeta^{2} \gg\right) \quad (7.39)$$

で与えられる。特に T 二 T, の近傍では上の式は

$$\omega^{2} = \omega_{0}^{2} + 2(1-\overline{I}) \bigtriangleup^{2} A - \frac{2(1-\overline{I})^{2}}{3} v^{2} q^{2} + \frac{(1-\overline{I})(2-\overline{I})}{\overline{I}} \frac{7\zeta(3)\bigtriangleup^{2}}{5(2\pi T)^{2}} v^{2}(q_{\parallel}^{2} + 2q_{\perp}^{2}) \quad (7.40)$$

のようになる。ここで q<sub>∥</sub> と q<sub>⊥</sub> はそれぞれ運動量の軌道波動関数の対称軸に平行成 分と垂直成分である。 T=0K ではスピン波の分散は等方的であるが,一般に T  $\neq$  0K では分散は凝縮対の異方性を反映して異方的になる。(7.40)の表式は,又,T>T<sub>c</sub> の paramagnon の分散となんらかにつながることに注意しよう。同様な計算は他の極 限についても出来るが,一般に高温で低磁場での振舞は RPA 近似では不十分だと思わ れるので,この領域でのスピン波の振舞は hydrodynamic limitでもう一度検討し直 す必要があると考えられる。縦帯磁率に関連して,T=0Kの時には一般の磁場のもと で,

$$\omega^{2} = 2(1-\overline{I}) A \bigtriangleup^{2} + \frac{1}{3}(1-\overline{I}) v^{2} q^{2}$$
 (7.41)

で記述されるスピン波が存在することも指摘しておこう。スピン波の存在は凝縮相は triplet 対から成る場合には常に存在するので,スピン波の実験的検証は triplet 対の構造を明らかにする上で極めて希ましい。

-257-

# 参考文献

- K.Maki and H.Ebisawa, Prog. Theor. Phys. <u>50</u> 1452 (1973),
   <u>51</u> No 3 (1974) and PRL <u>32</u> 520 (1974)
- A.J.Leggett, Journal of Physics C, Solid state Phys.
  6 3187 (1973)
- 3) S. Takagi, preprint
- 4) A.J.Leggett, PR 140 A1869 (1965) and 147 119 (1966)
- 5) D.D.Osheroff, W.J.Gally, R.C.Richardson, and
   D.M.Lee, PRL 29 920 (1972)
- 6) D.D.Osheroff and W.F.Brinkman, PRL 32 584 (1974)
- 7) K.Maki, Physics Letters 46A 173 (1973)
- K.Maki, and H.Ebisawa, J.Cow Temp Phys. <u>13</u> 213 (1974)
   (in press)

### §8 零音波の伝播

§3で述べたように、S相に於ける零音波の伝播についての実験は Paulson<sup>1)</sup> ら及 び Lawson<sup>2)</sup> らによって独立に行なわれた。この節では零音波の伝播についての Ebisawa-Maki の理論<sup>3)</sup>を紹介することにする。同等の結果は Wőlfle<sup>4)</sup>によって 独立に Betbeder - Matibet と Nozières<sup>5)</sup> による運動論的方程式を用いて導びか れている。S相に於ける零音波の伝播は既に Leggett<sup>6)</sup>によって凝縮対が singlet S 波対の場合に考察されていた。特に音波は N相での零音波速度から温度の低下に伴 なってだんだん小さくなり、T=0K では第一音波速度になることが示されていた。し かし Leggett の計算では常に hydrodynamic極限に限られていたので,音波の減衰に ついての考察はできなかった。又、実際<sup>3</sup>He では triplet (P波)対の凝縮対からな っているので S 相の場合と異なって種々の低エネルギーをもっと秩序パラメターのゆら ぎが存在するので理論の定式化にはこれらのゆらぎと密度のゆらぎとの間の結合を取り 入れることが必要になる。又、動的スピン帯磁率では本質的であった双極子エネルギー は多分 T<sub>c</sub> の極く近傍でしか重要でないので以下の考察にはとり入れないことにする。

#### 8-1 A相での零音波の伝播

先ず話を簡単にするために AB 状態で記述される A 相での音波の伝播を考えよう。 音波の伝播は密度演算子 n の遅延積を求めることによってきめられる。<sup>3)</sup> 一粒子グリー ン関数としては (7.2) で与えられたものをとる。ただ今の話には磁場は全然影響を与 えないので  $\Omega_0 = 0$  の場合を考える。密度 n のゆらぎは縦流 (longitudinal current) j 及び秩序度のゆらぎと結合するので、今の話ではこれらのゆらぎを consistent に 取扱う必要がある。動的スピン帯磁率の場合と同様 RPA の範囲では、上の取扱いは簡 単にできて、次の Bethe-Salpeter 方程式を解くことに帰着できる。

$$\widetilde{\phi} = -T \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} \mathscr{G}(\Omega, \Omega') P_{1} \{ G(\overrightarrow{p}, \omega_{n}) \widetilde{\phi} G(\overrightarrow{p} - \overrightarrow{q}, \omega_{n-\nu}) \}$$

$$- \operatorname{T} \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} \left( \Gamma_{0} + \Gamma_{1} \cos \chi \right) \operatorname{P}_{2} \left\{ \operatorname{G}(\overrightarrow{p}, \omega_{n}) \widetilde{\phi} \operatorname{G}(\overrightarrow{p-q}, \omega_{n-\nu}) \right\}$$

$$(8.1)$$

ここに,

$$\widetilde{\phi} = \frac{1}{2} \left( \rho_{-} \phi_{+} + \rho_{+} \phi_{-} \right) + \nu_{0} \rho_{3} + \nu_{1} z'$$

$$z' = \vec{v} \cdot \vec{q} / vq$$
(8.2)

上の式で  $P_1$ ,  $P_2$  の演算子は (7.7) にでてきたものと同じである。又,  $\Gamma_0 \geq \Gamma_1$ は 既約二体散乱行列の S 波及び P 波成分で, Landau の Fermi 液体のパラメターとは<sup>6)</sup>

$$F_0 = 2N(0) \Gamma_0$$
,  $F_1 = 2N(0) \Gamma_1$  (8.3)

で関係づけられている。 更に  $\chi$  は  $\Omega \ge \Omega'$  の間の角度を現わす。(8.2)の  $\phi$  で は最初の項が秩序度のゆらぎを,  $\nu_0 \ge \nu_1$  はそれぞれ密度及び縦流のゆらぎをあらわ す。スピン帯磁率の計算の場合と同様,上の式(8.1) は次のように簡単化できる。

$$\phi_{+}(\Omega) = \mathcal{N}(0) \int \frac{\mathrm{d}\Omega'}{4\pi} g(\Omega, \Omega') \left\{ \left[ \Pi_{0}(\Omega') - \frac{1}{2} \left( \zeta^{2} - \omega^{2} + 2 \left| \Delta \right|^{2} \right) \mathbf{F} \right] \phi_{+}$$

-259-

$$-(\triangle(\Omega'))^{2} \operatorname{F} \phi_{-} + (\omega \nu_{0} + \zeta z' \nu_{1}) \operatorname{F} \triangle(\Omega') \}$$

$$\phi_{-}(\Omega) = \operatorname{N}(0) \int \frac{\mathrm{d}\Omega'}{4\pi} \mathscr{G}(\Omega, \Omega') \{ [\Pi_{0}(\Omega') - \frac{1}{2} (\zeta^{2} - \omega^{2} + 2|\Delta|^{2}) \operatorname{F}] \phi_{-} - (\triangle^{*}(\Omega'))^{2} \operatorname{F} \phi_{+} - (\omega \nu_{0} + \zeta z' \nu_{1}) \operatorname{F} \triangle^{*}(\Omega') \}$$

$$\begin{split} \nu_{0} &= \mathbf{F}_{0} \left\{ < \frac{\zeta^{2}}{\omega^{2} - \zeta^{2}} - \frac{2\omega^{2}}{\omega^{2} - \zeta^{2}} \left| \Delta \right|^{2} \mathbf{F} > \nu_{0} \right. \\ &+ \omega < \frac{\zeta z'}{\omega^{2} - \zeta^{2}} \left( 1 - 2\left| \Delta \right|^{2} \mathbf{F} \right) > \nu_{1} \\ &+ \frac{\omega}{2} < \left( \Delta \left( \Omega \right) \phi_{-} - \Delta^{*} \left( \Omega \right) \phi_{+} \right) \mathbf{F} > \right\} , \end{split}$$

$$\nu_{1} = F_{1} \left\{ \langle \left[ \frac{\zeta^{2}}{\omega^{2} - \zeta^{2}} \left( 1 - 2 \left| \Delta \right|^{2} F \right) \right] z'^{2} > \nu_{1} \right\}$$

$$+ \omega < \frac{\zeta z'}{\omega^2 - \zeta^2} (1 - 2 |\Delta|^2 F) > \nu_0$$
  
+  $\frac{1}{2} < z' \zeta (\Delta(\Omega) \phi_- - \Delta^*(\Omega) \phi_+) F > \}$  (8.4)

्**र**,

$$\mathbf{F} = \frac{\int d\omega'}{|\Delta(\Omega)|} \frac{\tanh(\omega'/2\mathbf{T})}{\sqrt{\omega'^2 - |\Delta(\Omega)|^2}} \times \left[\frac{\omega(2\omega'-\omega) + \zeta^2}{(\omega^2 - \zeta^2)[(2\omega'-\omega)^2 - \zeta^2] + 4\zeta^2|\Delta(\Omega)|^2}\right]$$

$$-\frac{\omega\left(2\omega'+\omega\right)-\zeta^{2}}{\left(\omega^{2}-\zeta^{2}\right)\left[\left(2\omega'+\omega\right)^{2}-\zeta^{2}\right]+4\zeta^{2}\left|\bigtriangleup\left(\Omega\right)\right|^{2}}\right]$$
(8.5)

Q

$$< A(\Omega) > = \int \frac{d\Omega}{4\pi} A(\Omega)$$
,  $\zeta = \vec{v} \vec{q}$ 

を意味する。

# <sup>3</sup>Heの超流動

さて上の式を解けばよいが,先ず $\phi_+, \phi_-$ に対する式は $\phi_-(\Omega) = - \phi_+^*(\Omega)$ の 解をもつことに注目しよう。従って

$$\phi_{+}(\Omega) = \sum_{n} a_{n} f_{n}(\Omega)$$

$$\phi_{-}(\Omega) = -\sum_{n} a_{n} f_{n}^{*}(\Omega)$$
(8.6)
$$\chi, \ \triangle(\Omega) = \triangle f_{0}(\Omega)$$

 $f_n(\Omega)$ は今考えている(P波の)球面調和関数  $Y_L^m(\Omega)$  と用いて  $\{f_n\} \rightarrow \{\sqrt{4\pi} Y_L^m(\Omega)\}$ と対応されることができる。(8.6)を  $\phi_+, \phi_-$ の式に代入して両辺をくらべると、

$$a_{0} = N(0) \mathscr{G} \{ < 0 | \Pi_{0} - \frac{1}{2} (\zeta^{2} - \omega^{2}) F | 0 > a_{0} + \frac{1}{2} \sum_{n \neq 0} < 0 | (\omega^{2} - \zeta^{2}) F | n > a_{n} + \Delta (< 0 | F | 0 > \omega \nu_{0} + < 0 | \zeta z' F | 0 > \nu_{1} ) \}$$

$$a_{n} = N(0) \mathscr{G} \{ < n | \Pi_{0} - \frac{1}{2} (\zeta^{2} - \omega^{2} - 2 | \Delta |^{2}) F | n > a_{n} + \frac{1}{2} < n | (\omega^{2} - \zeta^{2}) F | 0 > a_{0} + \frac{1}{2} < n | (\omega^{2} - \zeta^{2}) F | 0 > a_{0} + \Delta (< n | F | 0 > \omega \nu_{0} + < n | \zeta z' F | 0 > \nu_{1} \}$$

$$(8.7)$$

が得られる。上の導出で $n(\neq 0)$ , $m(\neq 0)$ のゆらぎの間の結合は無視した。又,

$$< n | A | m > = \int \frac{d\Omega}{4\pi} f_n^*(\Omega) A(\Omega) f_m(\Omega)$$
 (8.8)

を意味する。今, ギャップ方程式

0

$$1 = N(0) \ \mathcal{G} < 0 | \Pi_0 | 0 >$$
(8.9)

を用いると(8.7)は

$$\begin{aligned} a_{0} &\cong -\frac{2 \bigtriangleup \omega}{L_{0} - \sum_{n \neq 0} (L_{n} L_{n}^{+} \swarrow E_{n})} \left\{ \begin{array}{l} \nu_{0} F_{0} + s^{-1} \nu_{1} G_{0} - \\ &- \sum_{n \neq 0} \frac{L_{n}}{E_{n}} (\nu_{0} F_{n} + s^{-1} \nu_{1} G_{n}) \right\} \\ a_{n} &\cong -\frac{2\bigtriangleup \omega}{E_{n}} \left\{ \begin{array}{l} \nu_{0} F_{n} + s^{-1} \nu_{1} G_{n} - \frac{L_{n}}{L_{0}} (\nu_{0} F_{0} + s^{-1} \nu_{1} G_{0}) \right\} \\ (8.10) \\ F_{n} &= < n |F| 0 >, \quad F_{n}^{+} = < 0 |F| n > \\ G_{n} &= < n |z'^{2}F| 0 >, \quad G_{n}^{+} = < 0 |z'^{2}F| n > \\ L_{n} &= \omega^{2} (F_{n} - s^{-2} G_{n}) \\ E_{n} &= < n |(\omega^{2} - 2 |\bigtriangleup|^{2}) F| n > + 2 (< n |\Pi_{0}| n > - < 0 |\Pi_{0}| 0 >) \\ S &= \omega \swarrow v_{F} q = c \swarrow v_{F} \end{aligned}$$

又は c は音速を表わす。 (8.10) を導びくのに s<sup>-2</sup> ≪ 1 を考慮した。 このように して求められた。  $\phi_+$  及び  $\phi_-$  を  $\nu_0$  と  $\nu_1$  を式に導入して s<sup>-2</sup>についての高次の項を 落すと (8.4) は

$$\nu_{0} = F_{0} \{ [w(s) - 2 \Delta^{2} s^{-4} (K_{0} + K_{1})] (\nu_{0} + s \nu_{1}) \}$$
  

$$\nu_{1} = F_{1} \{ -\frac{1}{3} \nu_{1} + s [w(s) - 2 \Delta^{2} s^{-4} (K_{0} + K_{1})] (\nu_{0} + s \nu_{1}) \}$$
(8.12)

$$\omega(s) = \frac{s}{2} \ell_n \left(\frac{s+1}{s-1}\right) - 1,$$

又,

$$K_{0} = \langle 0 | z'^{2} F | 0 \rangle - \frac{(\langle 0 | z'^{2} F | 0 \rangle)^{2}}{\langle 0 | F | 0 \rangle},$$

$$K_{1} = -\omega^{2} \sum_{n \neq 0} \frac{G_{n} G_{n}^{+}}{E_{n}}$$

$$(8.13)$$

のように簡単な式が得られる。(8.12)に非同次項をつけ加えて ν<sub>0</sub> について解けば, 密度演算子の遅延積は

$$\langle [n,n] \rangle (\omega,q) = \frac{N(\overrightarrow{q},\omega)}{\mathscr{D}(\overrightarrow{q},\omega)}$$

$$N(\overrightarrow{q},\omega) = (1+\frac{1}{3}F_{1}) F_{0}[w(s) - 2\bigtriangleup^{2} s^{-4}(K_{0}+K_{1})]$$

$$\mathscr{D}(\overrightarrow{q},\omega) = (1+\frac{1}{3}F_{1}) - (F_{0}(1+\frac{1}{3}F_{1}) + s^{2}F_{1}] \cdot (w(s) - 2\bigtriangleup^{2} s^{-4}(K_{0}+K_{1})]$$

$$(8.14)$$

のように求まる。音波の分散は(8.14)の極によってきめられるので,

$$\omega(s) - s^{-4} = \frac{1 + \frac{1}{3} F_1}{F_0 (1 + \frac{1}{3} F_1) + s^2 F_1}$$
 (8.16)

あるいは,

$$s = \left\{ \frac{1}{3} \left[ F_0 \left( 1 + \frac{F_1}{3} \right) + \frac{3}{5} F_1 \right] + \frac{1}{5s^2} F_0 \left( 1 + \frac{1}{3} F_1 \right) - \left( F_1 + s^{-2} F_0 \left( 1 + \frac{1}{3} F_1 \right) \right) E \right\}^{\frac{1}{2}}$$
(8.17)

$$\Xi = 2 \Delta^2 (K_0 + K_1)$$
 (8.18)

から求めることができる。特に(8.17)の実部は音速( <sup>c</sup>/v<sub>F</sub>)を, 虚部は音波の減

衰を現わす。以上の計算では凝縮対の型を陽に仮定しなかったので、上の結果は任意の 部分波をもった AB型の triplet 凝縮対に適用できる。又、密度のゆらぎと結合する 秩序パラメタのゆらぎは基底状態と同じスピン配位をもっているので、軌道波動関数部 分のみ異ったゆらぎである。したがって上の計算では凝縮対のスピン部分は陽に現われ ない。このことは実際具体的計算で示せるように、(8.17)は singlet 対の凝縮体に ついても成立することを意味している。

P波対に関しては,

$$f_{0}(\Omega) = \sqrt{\frac{3}{2}} (x + iy), \quad f_{1}(\Omega) = \sqrt{\frac{3}{2}} (-x + iy),$$
$$f_{2}(\Omega) = \sqrt{3^{2}}$$
(8.19)

のようにとると上の E を explicit に計算することができる。 §9 で見たように、 今 のグリーン関数 (7.2) については双極子相互作用を考慮すると  $f_0(\Omega) = \sqrt{\frac{3}{2}} (x + iz)$  になるが、 (8.19) は新らしい座標軸を定義し直したものと考えてもよい。 以下で問題になるのは、音波の波 vector  $\vec{q}$  が軌道波動関数の対称軸 ((8.19) の場 合は z 軸、又、もとの波動関数については y 軸) に対してどういう角度をもっている かということで、音速 c 及び減衰率  $\alpha$  は  $\vec{q}$  と軌道波動関数の対称軸との角度  $\theta$  の関 数になる。<sup>3)</sup> 特に  $T_c$  の近くの E は F 関数の漸近型

$$\mathbf{F} \cong \frac{\pi}{\omega} \frac{\tanh(\omega/4\mathrm{T})}{(4|\triangle(\Omega)|^2 - \omega^2)^{\frac{1}{2}}} \quad (\mathrm{T} \lesssim \mathrm{T_c})$$
(8.20)

を用いると簡単になる。  $\theta = \frac{\pi}{2}$ ,  $\frac{\pi}{4}$ , 0 の場合の S の  $T_c$  近傍での実部と虚部は Ebisawa – Maki<sup>3)</sup> によって P 波対の場合に数値的に計算された。これらを第8図~ 第13図に示す。上の計算で簡単のため $\triangle$ (T) は BCS の関係で記述できると仮定し た。一般に減衰率は準粒子対励起と秩序度のゆらぎ(集団モード)の励起に関連した構 造をもっている。準粒子励起に関連した構造は 値  $\omega = \sqrt{6} \triangle$ (T)(=  $2 \triangle_{Max}$ )の とこで対数的発散を示す。また集団モードの励起に関連した構造は上の閾値より低温側 で大きな peak を持つ。また準粒子励起に関連した対数的発散は丁度集団モードの励起

<sup>3</sup>Heの超流動

に関連した項で cancell されて最終的に  $\underline{B}$  の中には現われない。第8図  $\left(\theta = \frac{\theta}{2}\right)$ , 第10図 ( $\theta = \frac{\pi}{4}$ )では減衰率の構造は殆んど集団モードの励起からの寄与で決められ ているが、第12図( $\theta = 0$ )の場合は音波は集団運動と結合しないので、減衰率の構 造は全く準粒子対励起によって決まっている。音速のほうは(第9図( $\theta = \frac{\pi}{2}$ ), 第 10図  $\left(\theta = \frac{\pi}{4}\right)$ , 第13図  $\left(\theta = \frac{\pi}{2}\right)$  は減衰率の構造を反映した構造の後は温度の 減少とともに小さくなってT=0K では第一音速に近ずくことが示せる。また,T= OK では凝縮対の異方性にもかかわらず,音速は等方的になる。 以上のことから音波 の伝播の実験は S 相の集団モード (即ち秩序パラメタのゆらぎ) について非常に重要な 情報を与える。ただ実験の分析で一番大事なのは凝縮対の対称軸がどちらに向いている かであるが、磁場をかけると対称軸は常に磁場に垂直な平面内のいずれかの方向に向く ので(§7の議論を参照)磁場に平行に音波を送ってやれば  $\theta = \frac{\pi}{2}$  の配位は簡単に実 現できる。又、一様流に対しては運動エネルギーの考察から、対称軸は流れに平行にな ることが期待できるので、このような機構の組合わせで、凝縮対の対称軸の方向を一意 的に方向ずけることが可能になるかもしれない。以上の零音波の他に S 相では横零音 波という一種の横波を伝播することもできることが知られている。この波の存在は既に N相の場合に Landau によって予言されているが,恐らく実験的困難のため末だ検証 されていない。 S 相に関してはこの横波は集団運動に対しての新らしい情報を与える と期待されるが、ここではこの問題には立ち入らないことにする。

**8-2** B相(?) での零音波の伝播

同様な分析は triplet BW 状態についても,簡単に拡張できる。<sup>7)</sup> その為には先ず 一粒子グリーン関数として(4.37)で与えられるものも考える。(今, $\omega_0 = 0$  と とる)

音波の伝播は、この時もやはり(8.1)を解けば決められることが示せる。 但し、 $G(\vec{p}, \omega_n)$ としては(4.37)で与えられたものを、又、 $\phi$ としては

$$\widetilde{\phi} = -\rho_2 \sigma_3 \phi_1 - \rho_1 \phi_2 - \rho_2 \sigma_1 \phi_3 + \nu_0 \rho_3 + \nu_1 z'$$
(8.21)

をとらなければならない。特に P 波の BW 状態に対しては、(4.37)は



Fig. 8. The imaginary part of the function  $\Xi_1(u, \pi/2)$  which is proportional to the attenuation coefficient of the collisionless sound is shown as functions of the reduced temperature  $t=T/T_c$  for  $\omega/T_c=0.5$ , 0.75 and 1.



Fig.10. The imaginary part of the function  $\Xi_1(u, \pi/4)$  is shown as functions of the reduced temperature t for  $\omega/T_c=0.5$ , 0.75 and 1. 第 10 図



Fig. 9. The real part of the function  $-\Xi_1(u, \pi/2)$ , which is proportional to the shift in the sound velocity is shown as functions of the reduced temperature t for  $\omega/T_c=0$ , 0.5, 0.75 and 1.

.05

ο

ø







# 第11図

$$\begin{split} \phi_{\mathbf{i}}(\Omega) &= \operatorname{N}(0) \int \frac{\mathrm{d}\Omega'}{4\pi} \mathscr{G}(\Omega, \Omega') \left\{ \left[ \Pi_{0} - \frac{1}{2} \left( \zeta^{2} - \omega^{2} + 4 \left| \Delta \right|^{2} \right) \mathbf{F} \right] \phi_{\mathbf{i}}(\Omega') \right. \\ &+ 2 \bigtriangleup_{\mathbf{i}}(\Omega') \left( \sum_{\mathbf{j}} \bigtriangleup_{\mathbf{j}}(\Omega') \phi_{\mathbf{j}}(\Omega') \right) \mathbf{F} \\ &+ \mathbf{i} \left( \omega \ \nu_{0} + \zeta \ \mathbf{z'} \ \nu_{1} \right) \bigtriangleup_{\mathbf{i}}(\Omega') \mathbf{F} \right\} \\ \nu_{0} &= \operatorname{F}_{0} \left\{ \langle \frac{\zeta^{2}}{\omega^{2} - \zeta^{2}} - \frac{2\omega^{2} \left| \Delta \right|^{2}}{\omega^{2} - \zeta^{2}} \mathbf{F} > \nu_{0} + \omega \langle \frac{\zeta \ \mathbf{z'}}{\omega^{2} - \zeta^{2}} \left( 1 - 2 \left| \Delta \right|^{2} \mathbf{F} \right) > \nu_{1} \\ &+ \mathbf{i} \omega \langle \sum_{\mathbf{i}} \bigtriangleup_{\mathbf{i}} \phi_{\mathbf{i}} \rangle \mathbf{F} \right\} \\ \nu_{1} &= \operatorname{F}_{1} \left\{ \langle \frac{\zeta^{2}}{\omega^{2} - \zeta^{2}} \left( 1 - 2 \left| \Delta \right|^{2} \mathbf{F} \right) \ \mathbf{z'}^{2} > \nu_{1} + \omega \langle \frac{\zeta \ \mathbf{z'}}{\omega^{2} - \zeta^{2}} \left( 1 - 2 \left| \Delta \right|^{2} \mathbf{F} \right) \rangle \nu_{0} \\ &+ \mathbf{i} \langle \zeta \ \sum_{\mathbf{i}} \bigtriangleup_{\mathbf{i}} \phi_{\mathbf{i}} \rangle \mathbf{F} \right\} \end{aligned}$$

$$(8.22)$$

のように簡単化される。又, F 関数は既に (8.5) で定義されたものと同じだが, 今の 場合△(Ω) は

$$\left| \bigtriangleup(\Omega) \right|^{2} = \sum_{i} \left| \bigtriangleup_{i}(\Omega) \right|^{2}$$

で与えられる。

先ず  $\phi_i(\Omega)$  について解く為めに基底状態として

 $f_{0} = x | 1 > + y | 2 > + z | 3 > \quad (\equiv \{ \triangle_{1} = x \triangle, \ \triangle_{2} = y \triangle, \ \triangle_{3} = z \triangle \})$ (8.23)

をとる。実際には双極子相互作用を考慮すると、上の軌道波動関数を z 軸のまわりに  $\theta \left( \equiv \cos^{-1} \left( \frac{1}{4} \right) \right)$ 回転さしたもの、

$$f_0' = x' | 1 > + y' | 2 > + z | 3 >$$
 (8.24)

 $x' = x \cos \theta - y \sin \theta$ ,  $y' = x \sin \theta + y \cos \theta$ 

$$-267-$$

が一番安定と考えられている。しかし後で見るように、 P 波の BW 状態では音波の伝播は全く等方的になるので、  $f_0$  を (8.23)のようにとっても (8.24) のようにとっても結果はかわらない。従って簡単の為以下では  $f_0$  として (8.23)を考える。 秩序 パラメタのゆらぎは

$$\hat{\phi} = \sum_{i=1}^{3} \phi_{i} | i \rangle = \sum_{n=1}^{5} a_{n} f_{n}$$
(8.25)

のように展開できる。今 $\zeta^2$ の項を通して  $f_0$  と結合できる基底状態は

$$f_{1} = \sqrt{\frac{3}{2}} (z | 2 > + y | 3 >), \quad f_{2} = \sqrt{\frac{3}{2}} (z | 1 > + x | 3 >)$$

$$f_{3} = \sqrt{\frac{3}{2}} (y | 1 > + x | 2 >), \quad f_{4} = \sqrt{\frac{3}{2}} (x | 1 > - y | 2 >)$$

$$f_{5} = \sqrt{\frac{1}{2}} (x | 1 > + y | 2 > - 2z | 3 >) \quad (8.26)$$

で与えられる。これらのゆらぎは f<sub>0</sub> の軌道成分を回転した時に得られる新らしい状態 の generator になっていることに注目しよう。(8.25)を(8.22)の最初の式に代 入し,両辺を整理すると

$$a_{0} = -\frac{2 \ i \bigtriangleup}{(L_{0} - \omega^{2} \ s^{-4} \ \sum_{n=1}^{5} \frac{G_{n}^{2}}{L_{n}})} (\omega \ \nu_{0} + \frac{1}{3} \omega \ s^{-1} \nu_{1} + \omega^{3} \ s^{-3} \sum_{n=1}^{5} \frac{G_{n}}{L_{n}} \nu_{1})$$

$$a_{n} = -\frac{2 i \bigtriangleup \omega s^{-1}}{L_{n}} G_{n} \left(\nu_{1} + \frac{\omega^{2} s^{-1}}{L_{0}} \left(\nu_{0} + \frac{s^{-1}}{3} \nu_{1}\right)\right)$$
(8.27)

但し,

$$L_0 = \omega^2 (1 - \frac{1}{3} s^{-2})$$

<sup>3</sup>He の超流動

$$L_{n} = \omega^{2} - \frac{12}{5} \Delta^{2} + 0 s^{-2}$$

$$G_{n} = \langle n | z'^{2} | 0 \rangle, \quad s = c / v_{F}$$
(8.28)

で与えられる。(8.28)を導くにはギャップ方程式を用いた。 このようにして求めら れた  $\phi_1$  を (8.22)の  $\nu_0$  及び  $\nu_1$  についての式に代入すると

$$\nu_{0} = F_{0} [w(s) - s^{-4} E] (\nu_{0} + s \nu_{1})$$

$$\nu_{1} = F_{1} \{ -\frac{1}{3} \nu_{1} + s [w(s) - s^{-4} E] (\nu_{0} + s \nu_{1}) \}$$
(8.29)
$$F_{0} = w(s) H F K (8.13) F F F h T V D s V_{1}$$

ここで, w(s)は既に(8.13)で与えられている。又,

$$E = 2 \bigtriangleup^{2} F \{ \langle z'^{4} \rangle - \langle z'^{2} \rangle^{2} + K_{1} \} = 2 \bigtriangleup^{2} F \{ \frac{4}{45} + K_{1} \}$$
(8.30)

$$K_{1} = -\omega^{2} \sum_{n=1}^{5} \frac{G_{n}}{L_{n}} = -\frac{\omega^{2}}{\omega^{2} - \frac{12}{5} \Delta^{2}} \cdot \frac{8}{225}$$
(8.31)

上の計算で z' は direction cosines ( $\alpha$ ,  $\beta$ , r)を用いて z' =  $\alpha_x + \beta_y + r_z$  のように現わされた。

上のK<sub>1</sub>を Eの表式に代入すると,

$$E = \frac{8\triangle^2}{15} \frac{(\omega^2 - 4\triangle^2)}{(5\omega^2 - 12\triangle^2)} F$$
(8.32)

が得られる。予想したように BW 状態では E は全く等方的である。 このことは音波が 凝縮対のスピン方向を見分けることが出来ないことから容易に理解される。実際 P 波 BW 状態についてはエネルギー・ギャップも等方的である。 音波の分散はこの E を 用いると A 相の場合と同様 (8.17) で与えられる。 T  $\cong$  T<sub>c</sub> の時には (8.20) で与 えられる F の漸近型を用いると

$$\Xi \cong \frac{8 \operatorname{T}_{c}}{15\omega} \bigtriangleup^{2} \frac{\tanh \frac{\omega}{4\mathrm{T}}}{(12 \bigtriangleup^{2} - 5 \omega^{2})} (4 \bigtriangleup^{2} - \omega^{2})^{\frac{1}{2}}$$
(8.33)

で与えられる。

上のSの虚部(減衰)と実部(音速)を shematicrlly に第14図と第15図に示 す。先ず減衰に関しては $T = T_c$ から $\omega \leq 2 \triangle$ (T)の間に準粒子励起を伴った減衰



第14図

第15図

(あるいは音波の吸収)が起る。次に $\omega = 2\sqrt{\frac{3}{5}} \triangle(T)$ のところで集団モード(秩 序パラメタのゆらぎ)の励起にともなったる関数型の音波の吸収が起る。それ以下の温 度では今のモデル (collisionless (無衝突)極限)では音波の吸収は零になる。他方 音速のほうは $\omega = 2\triangle(T)$ よりも低温では先ず増大し、 $\omega = 2\sqrt{\frac{3}{5}} \triangle(T)$ の点で発 散し、その以下の温度では急速に第一音速に近ずく。 Bの発散する点ではもはや(8.17) を用いることは出来ない。既に§3で述べたように B相での音波の伝播は Paulson<sup>2)</sup>6 によって測定されている。実際 B相での減衰の構造は A 相の場合よりはずっと鋭いが 第14図から期待されるものとは大部異なっている。唯この計算は collisionless 極 限のものであるが、準粒子の寿命の効果をとり入れると、この結果がどのように変更を うけるかを調べることは非常に重要な今後の課題である。最後に上の BW 状態では横 音波の分散が簡単に求まることを指摘しておこう。横音波の分散は横流 (transverse current)の遅延積の極から求まるが, BW 状態ではこの極は

$$1 - 3(s^{2} - 1) w(s) = 6 (F_{2}^{-1} - \frac{4}{75} \frac{\omega^{2} s^{-2} \Delta^{2}}{(\omega^{2} - \frac{12}{5} \Delta^{2})}F) \times (1 - 2 \Delta^{2} F)^{-1}$$
(8.34)

から求められる。上の式は右辺が1より大きい時には音波に対応する解を持つ。今,長 波長極限の音波についてはこの条件は

$$F_1 \ge 6 (1 - 2 \triangle^2 F)^{-1}$$
 (8.35)

とかける。実際 $(1-2\triangle^2 F)^{-1}$ の係数は温度の減少とともに1より増大しT=0Kで は無限大になるので、横音波はT<sub>c</sub>以下ではT<sub>c</sub>の近傍のある温度範囲でしか存在しな いことが結論できる。この結果はLeggett<sup>6)</sup>が singlet S波の凝縮対について得た 結果と非常に似ている。

# 参考文献

D.M.Paulson, R.T.Johnson and J.C.Wheatley PRL 30 829 (1973)
 D.T.Lawson, W.J.Gully, S.Goldstein,

R.C.Richardson, and D.M.Lee, PRL 30 541 (1973)

- 3) H.Ebisawa and K.Maki, Prog. Theor. Phys. <u>51</u> 337 (1974)
- 4) P.Wőlfle, PRL 30 1169 (1973)
- 5) O.Betbeder-Matibet and P.Nozières, Ann. Phys. (Newyork)
   51 392 (1969)
- 6) A.J.Leggett, PR <u>147</u> 119 (1966)
- 7) K.Maki, J.Low Temp Phys. to be published

-271-

# §9 集団運動

§6~§8を通じてNMR及び零音波の実験はS相の集団モード(秩序パラメタのゆ らぎ)の存在と深く関連していることを見て来た。実際,超伝導の場合と比較すると, 超流動<sup>3</sup>He での現象の多様性は基底状態の凝縮対が triplet 奇角運動量対であるため に,非常に多くの低エネルギーをもった秩序パラメタのゆらぎが存在することに由来す る。具体的には凝縮対のスピン自由度のゆらぎに関連してスピン波が,軌道自由度のゆ らぎに関連してある種の密度波や横波があらわれることを見てきたが,この他に種々の 波の存在が現象論的に予言されている。

9-1 第一音波と第二音波

He I での集団モードと関連して,超流動<sup>3</sup>He でも第一音波や第二音波が存在すると 考えるのは非常に自然である。実際§8では collisonless 極限での音波の伝播も考え たが,準粒子の寿命  $\tau$  が音波の振動数  $\omega$  にくらべて短い時 ( $\tau \omega \ll 1$ )には非常に簡 単な音波の分散が得られることが Wolfle<sup>1)</sup>によって示された。実際 Wolfle は Betheder – Matibet と Nozières<sup>2)</sup>による式を一般化して  $\tau \omega \ll 1$  の極限では第 一音速及び第二音速はそれぞれ

$$u_1^2 = \frac{1}{3} v_F^2 (1 + F_0) (1 + F_1 / 3)$$
(9.1)

$$u_{2}^{2} = v_{F}^{2} \left(\frac{m^{*}}{m}\right) \frac{T}{2\mu} \left[\rho \stackrel{\wedge}{q} \cdot \stackrel{\sim}{\sigma} \rho_{n}^{-1} \cdot \stackrel{\sim}{\sigma} q - \left(\stackrel{\wedge}{q} \cdot \stackrel{\sim}{\sigma} \stackrel{\wedge}{q}\right)^{2}\right]$$
(9.2)

9-2 第四音波と軌道回転波

Koj ima  $6^{3}$ によって第四音波の実験の行なわれるずっと前に、第四音波と軌道回転 波の存在は現象論的モデルを用いて de Gennes<sup>4)</sup>によって予言されていた。第四音波 5) 1) についての現象論はその後 Saslow, Wolfle によって精密化された。Wolfle による と第四音波の音速は

$$u_4^2 = \frac{1}{m} \left(\frac{\partial \mu}{\partial \rho}\right) \stackrel{\wedge}{q} \stackrel{\leftrightarrow}{\rho}_{s} \stackrel{\wedge}{q} = u_1^2 \stackrel{\wedge}{q} \stackrel{\leftrightarrow}{\rho}_{s} \stackrel{\wedge}{q} / \rho$$
(9.3)

ρ<sub>s</sub> は超流動密度テンソルで書けることが示された。筆者<sup>6)</sup> は最近微視的モデルに基ずいて(9.3)の結果が導びけることを示した。軌道回転波についての実験は末だないが、 興味ある問題は系を回転することによって軌道回転波を励起できるかどうかということである。

#### 参考文献

1) P.Wőlfle, PRL 31 1437 (1973)

- 2) O.Betbeder-Matibet and P.Nozières, Ann. Phys. (New York)
  51, 392 (1969)
- 3) H.Kojima, D.N. Paulson, and J.C. Wheatley, PRL 32 141 (1974)
- 4) P.G. de Gennes, PL, 44A 271 (1973) and preprint

5) W.M. Saslow, PRL 31 870 (1973)

6) K.Maki, submitted to Prog. Theor. Phys.

#### §10 結 語

以上の取扱いから明らかなように、準粒子の寿命の効果の解明が次の理論の発展の為に 要求される。これと関連してS相での粘性、熱伝導度、スピンdiffusion等が明らかに されなければならない。又、動的スピン帯磁率に対するRPA近似による取扱いと、実験 との間の不一致も準粒子の寿命の効果を理論の中に取入れることによって解消されると筆 者は考える。又、音波の伝播に関しても実験と定量的比較にたえる理論を構成するために は、準粒子の寿命の問題を避けて通ることは出来ないであろう。

もっと広い観点に立つと、これまでの実験は非常に限定された条件のもとにしかなされていない。特に次の問題が明らかにされることが希ましい。1) 一様流の中でのS 相の振舞い。2) 回転している系でのS 相の振舞い。3) 強い磁場(H~10~100kOe) の

もとでのS相の振舞い。特に 2) に関してはS相での渦糸状態の可能性を明らかにする ことは非常に重要である。又,上に提げた問題の他に超流動<sup>3</sup>He でのJosephson効果, 近接効果,熱力学的ゆらぎの効果, closely packed 系の性質,電子 buble の性質, vortex ring の挙動,Kapitza 抵抗とこのように見てくると枚挙にいとまない問題 が末だ解明を待っている。超伝導の分野をよく耕作された田野に比較すれば,超流動 <sup>3</sup>He の分野は広大な処女地に比較できる。われわれは末だこの巨大な原生林のほんの 一部に小さな一筋か二筋の道すじをつけた段階にある。<sup>3</sup>He の超流動は今後われわれ に尽きることのない新らしい驚きを,問題を, challenge を提供してくれるように思 われる。

この原稿を書くにあたって非常に快い一ヵ月を基研で過さして下さった川崎恭治氏及 び基研のメンバーの方々に感謝します。又,研究の途上多くの便宜を与えて下さった東 京大学物性研の中嶋貞雄先生に感謝します。又,中嶋貞雄先生,恒藤敏彦先生,A・Le ggett氏,都築俊夫氏,海老沢丕道氏,黒田義浩氏,高木伸氏にはいろいろ有益な議 論を感謝します。











第13図