m(T), χ (T)が通常の1スピン当りの自発磁化および帯磁率に当り、表1に示すように、(III)の温度領域ではStanley-Kaplan型の磁気的相になっている。

m(T)が常に0であるのは, Bethe 格子が reducible であることにより, χ (T) が低温で発散するのは,各格子点のm番目の近接格子点数が,m と共に指数関数的に 増大することに負うている。3次元空間の現実の物質でこのような相が生ずるかどうか はよく判らないが,例えば random なスピン系などで,相互作用をもつスピン同志のつ ながりが reducible lattice に近いような場合には,低温まで自発磁化の発生が押え られ、大きい帯磁率をもつ場合があるかも知れない。

本報告のくわしい結果は Prog. Theor. Phys. 51 (1974), 1053 にある。

ソフトコアモデルの固相一液相転移

東北大工 桂 重 俊

研究会では1)第2近接相互作用を有する Beth 格子, 2) ソフトコアモデルの固相 - 液相転移, 3) ランダムな Bethe 格子, について述べたが 1) は ref.1 に 3) は ref.2 に発表したので本稿では研究会でのべたときの訂正を含めて 2) について書 いておく。

格子気体のモデルを考え同じ site には1個の分子しか入ることが出来ず、1st neighbor の相互作用を -2J としたモデル ($H=-2J\sum_{nn}\nu_i\nu_j,\nu_i=0,1, J<0$ で引力)を考える。このモデルを Bethe 近似(無限に大きい Bethe 格子の厳密解)で 扱うには ref. 1 の磁性体の磁場磁化特性を格子気体の圧力体積特性にやきなおせばよ い。 disordered state (液相) と ordered state (固相) との存在の可能性を考 える。

 $x = e^{-J / kT}$, $x \ell_{\alpha,\beta} = u_{\alpha,\beta}$, $z \equiv x^{q} y = fugacity$

-A9 -

桂 重俊

とすると α -sublattice, β -sublattice の密度 ρ_{α} , ρ_{β} は(I.3.4)により

$$\rho_{\alpha} = \frac{z (1 + u_{\beta} x^{2})^{q}}{(1 + u_{\beta})^{q} + z (1 + u_{\beta} / x^{2})^{q}} (= \frac{1 - \sigma_{\alpha}}{2})$$
(1a)

$$\rho_{\beta} = \frac{z (1 + u_{\alpha} / x^{2})^{q}}{(1 + u_{\alpha})^{q} + z (1 + u_{\alpha} / x^{2})^{q}}$$
(1b)

 \mathbf{o}

Q

となる。

q t cordination number σa_{α} , u_{β} t

$$u_{\alpha} = z \left(\frac{1+u_{\beta} x^{2}}{1+u_{\beta}}\right)^{q-1}, \quad u_{\beta} = z \left(\frac{1+u_{\alpha} x^{2}}{1+u_{\alpha}}\right)^{q-1}$$
 (2)

をみたすように定まる (I.3.2)。 明に $u_{\alpha} = u_{\beta} = u$ の解があり, これが disordered state である。 (2) の $u_{\alpha} \neq u_{\beta}$ の解が ordered state を与える。 disordered state では (2) より $u_{\alpha} = u_{\beta}$ とおき

$$z = u \left(\frac{1+u}{1+u/x^2} \right)^{q-1}$$

を(1) で $u_{\alpha} = u_{\beta} = u$ とおいたものに入れると,

$$\rho = \frac{u + u^2 / x^2}{1 + 2u + u^2 / x^2}$$
(3)

圧力pは

$$\frac{p}{kT} = \int_0^u \rho \, \frac{d \log z}{du} \, du \tag{4}$$

積分を行った後(3)よりuを ρ で表し、これを(4)の結果に入れると

$$\frac{p}{kT} \equiv S_1(\rho) = (q-1) \log (1-\rho)$$

ソフトコアモデルの固相一液相転移

$$-\frac{q}{2}\log\frac{(1-2\rho)-2x^{-2}(1-\rho)+\sqrt{(1-2\rho)^{2}+4x^{-2}\rho(1-\rho)}}{2(1-x^{-2})}$$
(5)

これは quasi-chemical approximation によって得られる状態式³⁾と等価である。 x→∞で Burley の hard core lattice gas (1st neighbor infinite repulsion)の disordered state の状態式⁴⁾に一致する。

次に q = 3 の ordered state を考える。(2)の分母を払ったものを辺々引算して $u_{\alpha} - u_{\beta}$ でわると

$$1 - u_{\alpha}u_{\beta} + \frac{2z}{x^{2}} + \frac{u_{\alpha} + u_{\beta}}{x^{4}} z = 0$$
 (6)

(6) に(2)の第2式を入れると u_αを定める式として

$$\left(1+\frac{z}{x^{4}}\right)^{2}u_{\alpha}^{2}+\left(-z+2+\frac{4z}{x^{2}}+\frac{z}{x^{4}}+\frac{2z^{2}}{x^{6}}\right)u_{\alpha}+\left(1+\frac{z}{x^{2}}\right)^{2}=0$$
(7)

を得る。この2根が u_{α} , u_{β} を与える。 (1a) に (2a) より求めた z を入れると

$$\rho = \frac{1}{2} \left(\rho_{\alpha} + \rho_{\beta} \right) = \frac{1}{2} \frac{u_{\alpha} + u_{\beta} + 2u_{\alpha} u_{\beta} / x^{2}}{1 + u_{\alpha} + u_{\beta} + u_{\alpha} u_{\beta} / x^{2}}$$
(8)

(7)の根と係数の関係を用いて ρ を u_{α} , u_{β} の代りに z で表わすと

$$\rho = \frac{1}{2} \frac{2 - z \left(1 - 3x^{-2}\right)}{1 - z \left(1 - 3x^{-2}\right) + x^{-6} z^2}$$
(9)

(9) より

O

Q

¢

$$z = \frac{4(1-\rho)}{(1-2\rho)(1-3x^{-2}) + \sqrt{(1-2\rho)^2(1-3x^{-2})^2 + 16x^{-6}\rho(1-\rho)}}$$
(10)

ordered state 圧力 p は

$$\frac{p}{kT} = \left(\frac{p}{kT}\right)_{c} + \int_{z_{c}}^{z} \frac{\rho}{z} dz$$
(11)

-A11-

松田博嗣

で与えられる。 z_c は ordered state と disordered stateの交わる点の fugacityの値(の内の小さい方), $(p/kT)_c$ はその点における disordered stateの値である。

ordered state と disordered state の転移点は (7)が等根をもつ点であるから (7) の判別式を D とすると D=0 より

$$\frac{z_{c1}}{z_{c2}} = \frac{8}{1 - 6x^{-2} - 3x^{-4} \pm \sqrt{(1 - 6x^{-2} - 3x^{-4})^2 - 64x^{-6}}}$$
(12)

(12) で $z_{c1} = z_{c2}$ となる点が転移温度 x_c を与える。($x_c = 3$, T/|J| = 0.910239) 故に ordered state の圧力 pは (11)(5)(9)(12) より

$$\frac{p}{kT} = s_1(\rho_{c1}) + s_2(z(\rho)) - s_2(z_{c1})$$
(13)

で与えられる。ここに

$$s_{2}(z) = -\frac{1}{2} \log \left| \frac{x^{2}}{x^{2}} + (3 - x^{2}) \frac{1}{z} + x^{-4} \right|$$
 (14)

となる。 $s_1(\rho_{c1})$ は(12)の z_{c1} の値を(9)に入れた ρ_{c1} の値に対する(5)の disordered stateの p/kTの値, $s_2(z(\rho))$ は(10)の z を (14)に入れたも の, $s_2(z_{c1})$ は(12)の z_{c1} を(14)に入れたものである。hard core limit $x \rightarrow \infty$ で Runnels⁵⁾の ordered state の状態式

$$p / kT = \log (1 - \rho) - \frac{1}{2} \log (1 - 2\rho) + \log 2$$
 (15)

を再現する。

密度が ordered state の最大値 $\rho(z_{c2})$ をこえると再び disordered state にも どりその圧力 p は (5) の $s_1(\rho) [= s_1(\rho_{c1}) + s_2(z_{c2}) - s_2(z_{c1}) + s_1(\rho) - s_1(\rho_{c2})]$ で与えられる。

Fig.1に圧力体積特性を示す。引力の場合の状態図も比較の為に示した。 斥力のと き $0 < T < T_c$ ($x_c < x < \infty$)に於て 2次の fluid-solid 転移がある。 Fig. 2 に 転移点の p-T 図を示す。融点極大の現象が見られる。引力のとき $0 < T < T'_c$ ($0 < x < x'_c$) で 1次の gas-liquid 転移が存在する。気相 — 液相転移の臨界温度は

1 st neighbor infinite repulsion の有限の Bethe 格子が表面効果により転移 がなくなることは Runnels⁵⁾により論ぜられている。

Reference

0

- 1) S.Katsura and M.Takizawa, Prog. Theor. Phys. 51 82 (1974)
- 2) S.Katsura and F.Matsubara, Canad. J.Phys. 52 120 (1974)
- 3) F.Cernushi and H.Eyring, J.Chem. Phys. 7 547 (1939)
- 4) D.M. Burley, Proc. Phys. Soc. 75 262 (1960)
- 5) L.K.Runnels, J.Math. Phys. <u>8</u> 2081 (1968)