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Abstract   

Biochemical signals related to a mechanosensory mechanism by which cells sense 

mechanical stimuli have been gradually clarified by biological approaches such as blocking specific 

signaling pathways; however, mechanical signals such as deformation/strain, which is transduced into 

biochemical signals through this mechanism, particularly at the cellular structural component level in a 

single cell, have not yet been clearly understood. This in vitro study focuses on an intracellular 

calcium signaling response to an applied localized deformation in a single osteoblast-like MC3T3-E1 

cell, and observed localized deformation of a cell membrane and the calcium ion flux from an 

extracellular medium. The localized deformation was applied to a cell by indenting a microsphere onto 

the cell membrane using a glass microneedle. The cellular calcium signaling response and cell 

membrane deformation were simultaneously observed using fluorescent dyes in a vertical section 

under a confocal laser-scanning microscope with high spatial and temporal resolutions. Our results 

observed in the vertical section showed that the initiation point of the calcium ion flux is collocated at 

the displaced microsphere around which stretch membrane deformation was observed. 
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Introduction 

 It has been proposed that the activities of cells, which are elemental components of living 

organs and tissues, are modulated by not only biochemical factors but also mechanical factors such as 

stress and/or strain (van der Meulen and Huiskes, 2002; Sato et al., 2006). It was reported that 

mechanical stimuli affect the activities of osteoblasts, which are known as bone-forming cells, and 

regulate various processes such as cell proliferation (Buckley et al., 1988), PGE2 production (Smalt et 

al., 1997; Fermor et al., 1998), and bone-specific gene expression (Roelofsen et al., 1995). These 

cellular responses to mechanical stimuli are believed to arise from the transduction mechanism from 

mechanical signals to biochemical signals, which is called mechanotransduction (Duncan and Turner, 

1995). In addition, a mechanosensory mechanism by which cells sense a mechanical stimulus and 

transduce it to biochemical signals is believed to exist; however, this mechanism is still not clearly 

understood. Some candidate elemental components playing roles in this mechanism have been 

proposed, for example, stretch-activated (SA) channels (Naruse et al., 1998) and the cytoskeletal 

structural system including actin fibers and integrins (Duncan and Turner, 1995; Ingber, 1998; Adachi 

et al., 2003; Sato et al., 2004, 2007). Moreover, approaches using advanced techniques in molecular 

biology and biochemistry gradually clarify biochemical signaling pathways downstream of 

mechanotransduction (Labrador et al., 2003; Mullender et al., 2004). 

 To clarify this mechanosensory mechanism from the viewpoint of cell biomechanics, it is 

important to understand mechanical conditions related to this mechanism. Previous in vitro 

experimental studies revealed the characteristics of a cellular response in a controlled mechanical 

environment. For example, controlled stretching due to a deformation of an elastic substrate 

(Binderman et al., 1988; Jones et al., 1991) or shear stress induced by extracellular fluid flow (Reich 

and Frangos, 1993; Klein-Nulend et al., 1997; Jacobs et al., 1998) was applied to cells, and cellular 

responses to applied stimuli were quantitatively evaluated. In most of these studies, homogeneous 

deformation or force was applied to a population of cells, so that only the average cellular response 
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was evaluated. Therefore, to understand mechanical conditions sensed by a cell through the 

mechanosensory mechanism, it is indispensable to develop techniques to evaluate these local 

mechanical conditions particularly at the cellular structural component level, such as the local 

deformation/strain of a cell membrane with the substructures of actin filaments and its cross-linking 

proteins just beneath the membrane. 

To investigate the relationship between the local deformation of structural components and 

cellular responses, a mechanical stimulus should be locally applied to a single cell. A conventional 

method of applying local deformation to a single cell is the microperturbation method, which involves 

a direct indentation onto the cell membrane using a glass microneedle with a tip diameter of about 1 - 

10 μm. This method enables the application of a mechanical stimulus to the targeted single cell. 

Therefore, researchers use this method, for example, to evaluate the characteristics of intercellular 

signaling communication (Xia and Ferrier, 1992; Guilak et al., 1999). However, these experimental 

studies only evaluated the overall characteristics of cellular responses, and local signaling responses 

such as calcium ion flux from an extracellular medium due to local membrane deformation have not 

been considered. 

The objective of this study was to develop an in vitro technique of applying local 

deformation to the membrane of a single cell under experimental conditions that enable us to conduct 

the simultaneous observation of cell membrane deformation and calcium signaling response in a 

vertical section in addition to a conventional horizontal section. Localized deformation was applied to 

an osteoblast-like MC3T3-E1 cell by indenting a microsphere onto the cell membrane using a glass 

microneedle. The applied localized deformation induced a highly localized response, calcium ion flux 

from an extracellular medium, which enabled us to determine its signaling initiation point. A change in 

intracellular calcium ion concentration ([Ca2+]i), which exists upstream of biochemical signaling 

cascades and plays a triggering role in succeeding downstream signals, was observed. The cell 

membrane deformation and the change in [Ca2+]i were simultaneously observed using a multiple 
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fluorescent labeling technique and a confocal laser scanning microscope with high spatial and 

temporal resolutions. From the images observed in vertical sections, the initiation point of the cellular 

calcium signaling response was determined, and the deformation behavior of the cell membrane 

around the initiation point was investigated. 

 

Materials and Methods 

Cell culture 

Osteoblast-like MC3T3-E1 cells (Kodama et al., 1983; Quarles et al., 1992) obtained from 

the RIKEN BioResource Center (RIKEN BRC) were plated on a glass-bottom culture dish (φ = 35 

mm) at a density of 6.0×104 cells / dish. The cells were incubated in the α-minimum essential medium 

(α-MEM, ICN Biomedicals), which contains 10% fetal bovine serum (FBS, ICN Biomedicals), and in 

95 % air - 5 % CO2 humidified 37°C atmosphere. After 12-hours preincubation after plating, the cells 

were used in the experiment. 

 

Observation of cell membrane and intracellular calcium ion 

 After preincubation, the cell membrane and intracellular calcium ions were labeled using 

fluorescent dyes. The cell membrane was labeled by incubating the cells in Opti-MEM (Invitrogen) 

containing 20 μM Vybrant DiI (Molecular Probes) for 4 min at 37 ℃. After rinsing with PBS, the 

intracellular calcium ions were labeled by incubating the cells in Opti-MEM containing 5 μM Fluo 

4-AM (Molecular Probes) for 40 min at 25 ℃. Finally, after rinsing with PBS, the medium was 

replaced with α-MEM for observation. Fluorescence images were obtained using a confocal laser 

scanning microscope (LSM 510, Carl Zeiss) with a 100× oil immersion objective lens. All the 

obtained images were recorded in PC as intensity data at an eight-bit resolution.  

To obtain vertical section images, a galvano-stage unit (Carl Zeiss) was mounted on the 

microscope stage. Synchronized with laser scanning, the galvano-stage unit moves the glass-bottom 
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culture dish vertically up and down. This synchronized movement enables us to obtain vertical section 

images with a high temporal resolution. In this study, we obtained vertical section images with 30 scan 

lines of 10 μm height in a vertical plane at a rate of 0.25 sec per image. 

 

Application of localized mechanical stimulus 

 To apply localized deformation as a mechanical stimulus to a single cell, the cell 

membrane was indented with a microsphere adhering to the cell membrane using a glass microneedle. 

The polybead carboxylate microsphere (Polyscience) with a diameter of 1.0 μm was coated with 

fibronectin (Morinaga Bioscience Research Center) to enhance its adherence to the cell membrane and 

placed in the medium during calcium fluorescent indicator loading for 40 min for it to adhere to the 

cell membrane. Figure 1 shows a schematic of the mechanical stimulus application. The glass 

microneedle with a 1.0-μm-diameter tip was placed above the microsphere adhering to the cell 

membrane using a three-dimensional micromanipulator (ONW-135, Narishige), as shown in Fig.1(a). 

As shown in Fig.1(b), the microneedle was then moved downward to push the microsphere onto the 

cell membrane and form an indentation. In this tapping process, it was not possible to perfectly control 

the indentation direction vertically because the roundly polished needle tip was used to tap the round 

microsphere. Cells with damage in the membrane due to the indentation were discarded by monitoring 

a change in fluorescence intensity with time; when the membrane was damaged, the intensity rapidly 

decreased below the basal level, while the intensity in undamaged cells decreased back to the basal 

level in a few minutes. 

 

Measurement of strain distribution on cell membrane 

 The distribution of strain on the cell membrane due to the application of local deformation 

was measured by the following method of image analysis (Sato et al., 2007). The displacement field of 

the fluorescently labeled cell membrane with DiI, a lipophilic membrane stain, was measured by the 
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image correlation method between the obtained time sequential images using image processing 

software (Flow-vec 32, Library). Grid points at 10 pixel intervals were then set on the observed region, 

and triangle finite elements were formed by closing the grid points by considering them as nodal 

points. To obtain the relatively large displacement vector from the initial state to the state at which the 

cellular calcium signaling response was observed, all the stepwise displacements measured from each 

sequential image at 0.25 sec intervals were summed up. That is, the total strains of the triangle 

elements were obtained by integrating each incremental displacement vector at each node. To evaluate 

the deformation behavior of the cell membrane, Green’s strain was calculated from the obtained 

displacement field, and the magnitude and direction of the maximum principal strain were calculated. 

 

Results 

Calcium signaling response to applied local deformation observed in horizontal section 

Calcium signaling response to the applied local deformation, known as an influx of calcium 

ions from the extracellular medium through ion channels on the membrane (Xia and Ferrier, 1992; 

Guilak et al., 1994), was observed in a conventionally observed horizontal plane, as shown in Fig.2. 

This figure shows the magnified images of the cell around its center within a rectangular region of 

28.0×13.5 μm2 (512×246 pixels), that is, the entire cell body is not shown. Figure 2(a) shows the 

initial state of the cell before the mechanical stimulus application, Fig.2(b) shows the state at the time 

point t = 0 sec defined immediately before the initiation of the cellular calcium response, and Figs.2(c) 

and (d) show the states at t = 0.23 and 0.46 sec, respectively, after the initiation of the calcium 

signaling response. The upper row shows the cell membrane labeled with Vybrant DiI, the middle row 

shows [Ca2+]i labeled with Fluo 4, and the lower row shows a line profile of Fluo 4 fluorescence 

intensity. The line profile indicates the distribution of Fluo 4 fluorescence intensity on the line (A - A’) 

indicated in Fig.2(a).  

At the initial state, the fluorescence intensity of Fluo 4 distributed homogeneously in the 
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entire cell body, as shown in the middle row of Fig.2(a). At t = 0.0 sec, as shown in Fig.2(b), the 

adhered microsphere was indented onto the cell membrane using the glass microneedle at the point 

indicated by an arrowhead (m) in the upper row of Fig.2(b). A white spot due to the microsphere 

indentation was observed in the fluorescence image of Fluo 4, as shown in the middle row of Fig.2(b). 

This spot was also observed in the line profile indicated by an arrowhead (p) in the lower row of 

Fig.2(b). Figure 2(c) shows the state at t = 0.23 sec, at which the microsphere slightly moved in the 

direction of an arrowhead (n) in the upper row owing to the indentation. At this time point, a local 

increase in the fluorescence intensity of Fluo 4 was observed in the front region of the translated 

microsphere, which could be confirmed in the line profile of fluorescence intensity, as indicated by an 

arrowhead (q) in the lower row of Fig.2(c). This localized increase in the fluorescence intensity of 

Fluo 4 could be considered as the initiation point of the cellular calcium signaling response to the 

applied local deformation. Subsequently, the increase in the fluorescence intensity of Fluo 4 

propagated to the adjacent region of the initiation point at t = 0.46 sec, as indicated by an arrowhead 

(r) in Fig.2(d). This result observed in the horizontal section is consistent with that observed in the cell 

to which a microneedle tip was directly indented and moved horizontally on the cell membrane (Sato 

et al., 2007). In addition, the transient increase in the intracellular calcium ion concentration due to the 

mechanical perturbation gradually decreases to the basal level in a few minutes (Adachi et al., 2003; 

Sato et al., 2007). 

 

Calcium signaling response to applied local deformation observed in vertical section 

 Calcium signaling response to the applied local deformation was observed in a vertical 

section, as shown in Fig.3. The observed cell in Fig.3 is different from that observed in the horizontal 

section shown in the last section. In this figure, the left column shows the fluorescence images of the 

cell membrane labeled with Vybrant DiI, the center column shows the fluorescence images of [Ca2+]i 

labeled with Fluo 4, and the right column shows the analyzed images of Vybrant DiI and Fluo 4 within 
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a rectangular region of 23.0×10.0 μm2 (512×224 pixels). In the analyzed images (right column), the 

binarized image of Vybrant DiI and the contour image of Fluo 4 were superimposed. In addition, to 

reduce the noise in the obtained image data, data smoothing was carried out, that is, pixel data were 

averaged within the surrounding 7×7 pixel square. Figure 3(a) shows the initial state before the 

indentation of the microsphere, Fig.3(b) shows the state at the time point t = 0 sec defined immediately 

before the initiation of the cellular calcium response, and Figs.3(c) and (d) show the states at t = 0.25 

and 0.50 sec, respectively. 

In the initial state shown in Fig.3(a), the fluorescence intensity of Fluo 4 distributed 

homogeneously in the cytosol, which is the inner area of the cell membrane. At t = 0.0 sec, as shown 

in Fig.3(b), the microsphere was indented onto the cell membrane, and a dimple due to the indentation 

was observed in the fluorescence image of Vybrant DiI, as indicated by an arrowhead (p) in the left 

column of Fig.3(b). At this time point, a change in the fluorescence intensity of Fluo 4 was not 

observed. Figure 3(c) shows the state at t = 0.25 sec, at which a local increase in the fluorescence 

intensity of Fluo 4 was observed underneath the microsphere indentation, as indicated by an 

arrowhead (q) in the right column of Fig.3(c). Subsequently, the local increase in the fluorescence 

intensity of Fluo 4 propagated to the entire cytosol region at t = 0.50 sec, as shown in black in 

Fig.3(d). 

 Figure 4 shows the distribution of the principal strain ε1 of the cell membrane in the observed 

vertical section at the time of the initiation of the calcium signaling response. Figures 4(a) and (b) 

indicate a fluorescence image of the cell membrane labeled with Vybrant DiI and a superimposed 

image of the Fluo 4 contour and binarized cell membrane images, respectively. The magnitude and 

direction of the principal strain ε1 were analyzed in the area indicated by a rectangle in Fig.4(a), and 

are shown in Figs.4(c) and (d). The initiation point of the local calcium signaling response was 

collocated at the displaced microsphere, as indicated by an arrow (p) in Fig.4(b). Around the point of 

the calcium influx from the extracellular medium, as indicated in Fig.4(e) as a magnified image of the 
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dotted rectangles in Figs.4(c) and (d), the stretching strain was observed along the cell membrane as 

shown in Figs.4(c) and (d). The average magnitude of the principal strain ε1 at the point was evaluated 

as ε1 = 0.55±0.23 (Mean±S.D., number of cells n = 6), that is a stretching strain. 

 

Discussion 

 In this study, we developed a novel in vitro technique of applying local deformation to the 

membrane of a single cell and to simultaneously observe the deformation and calcium signaling 

response in vertical sections as well as in conventionally observed horizontal sections. In particular, 

the vertical section images obtained with a high temporal resolution give us significant information 

about the location and mechanical conditions at the initiation point of the calcium ion influx from the 

extracellular medium in the vicinity of the applied local deformation. 

In previous studies, various characteristics of cellular responses to applied mechanical 

stimuli were evaluated. For example, the application of strain at magnitudes of 200 - 1000 μ strain to 

osteoblasts via elastic culture substrate stretching induces increases in cell proliferation rate (Brighton 

et al., 1991), PGE2 production level (Harell et al., 1977), and bone-specific gene expression level 

(Roelofsen et al., 1995). The application of a large magnitude of stretching (from 10 to 30 %) affects 

the release of reactive oxygen species (Yamamoto et al., 2005), and the application of cyclic stretching 

induces the downregulation of the expression of HB-GAM, a heparin-binding growth-associated 

molecule (Liedert et al., 2004). In these studies, changes in surrounding mechanical environmental 

conditions, such as substrate deformation, were considered as the controlled mechanical stimuli to the 

cells. However, to clarify the mechanosensory mechanism from the viewpoint of cell biomechanics, 

the evaluation of the mechanical conditions, such as local cell membrane deformation, which activates 

the mechanosensory mechanism at the cell structural component level, is indispensable. Therefore, our 

attempt to directly apply local deformation to the cell membrane and to simultaneously observe the 

deformation and calcium signaling response are important fundamental steps to gaining insights into 
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the relationship between the local mechanical conditions and the initiation of cellular responses. 

 From the observations of vertical sections, the calcium signaling response was locally 

initiated underneath the cell membrane owing to the indentation of the adhered microsphere. This 

result may support the hypothesis that the local deformation due to the microsphere indentation is 

sensed as a mechanical signal and transduced into intracellular biochemical signals through 

mechanisms such as that involving stretch-activated (SA) channels (Duncan and Misler, 1989; 

Guharay and Sachs, 1984; Kanzaki et al., 1999) existing in the cell membrane. On the other hand, at 

the whole-cell level, the cytoskeletal system including actin stress fibers and adhesive protein integrins 

is believed to play very important roles in the mechanosensory mechanism. Previous reports suggested 

the importance of the cytoskeletal system in the mechanosensory mechanism (Duncan and Turner 

1995; Ingber, 1998). It was proposed that the cytoskeletal structure transmits or even amplifies the 

mechanical stimulus applied from the extracellular environment into the transducing mechanism. We 

have also reported that the amount of organized actin structures affects the sensitivity of the cellular 

calcium signaling response to the mechanical stimulus in osteoblast-like cells (Sato et al., 2004) and 

suggested the possibility that the aligned actin cytoskeletal structure causes the directional dependence 

of the response (Adachi et al., 2003). Because the highly localized deformation was applied to the cell 

in this study, the contribution of the cytoskeletal structure spread in the cell in the mechanosensory 

mechanism was possibly underestimated in this study. Therefore, to clarify the mechanosensory 

mechanism, studies at the subcellular level such as this study and those at the cellular level have to be 

complementarily carried out. 

 Because mechanical forces, such as tension, in the membrane are supported by the cortex 

with actin filaments and its cross-linking proteins just beneath the cell membrane, the local 

deformation was applied to the membrane with these substructures in this study. To label and visualize 

the cell membrane, we used the DiI, which is a lipophilic membrane stain. However, in the 

displacement/strain analysis using an image correlation method, it was impossible to extract the 
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membrane itself automatically from the original images observed. Thus, the displacement/strain 

analysis was conducted in an entire area using the fluorescent images of the DiI, even though the 

displacement/strain inside a cell has no meaning but that on the membrane has meaning. After the 

analysis, we then determined the strain values on the membrane around the area where an initial 

increase in calcium ion concentration was observed. 

To obtain vertical section images, we used the galvano-stage unit mounted on the microscope 

stage. This unit moves the culture dish with cells vertically up and down at a frequency of 4 Hz; 0.25 

sec per one vertical image with 30 scan lines in the range of 10 μm in the vertical direction. This 

technique enables us to obtain vertical section images with a high temporal resolution. However, 

because the microneedle is also mounted on the same stage with the dish, a relative motion between 

the cells and the needle tip is unavoidable. This is one reason why we used a microsphere to locally 

deform the cell membrane by tapping it using a microneedle. The other reason is that we expected the 

direct application of the deformation to the membrane using a microsphere; the microsphere was 

coated with fibronectin that binds to the integrin receptors on the membrane. 

Strain on the cell membrane was calculated from the displacement field that was measured 

using the image correlation method. Image resolutions obtained in the experiment were 0.045 

μm/pixel in the horizontal section, and 0.33 μm/slice, each slice was interpolated with 7 pixels, in the 

vertical direction. Considering that the image correlation method possesses sub-pixel information, the 

accuracy of the displacement measured in this study could be estimated about 0.1 – 0.2 μm, that is less 

than about 7 % of the actual microsphere displacement. In the strain analysis, the reference 

length-measures were set 0.45 μm (10 pixels) in the horizontal section and 0.99 μm (3 slices) in the 

vertical direction. Thus, the accuracy of the strain measurement in vertical direction was less than that 

in the horizontal section. To match the accuracy in all directions which is desirable to conduct 

three-dimensional strain analysis, the limitation of the measuring rate in the vertical direction needs to 

be improved.  
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Despite of the several limitations, we demonstrated the quantitative evaluation of strain 

magnitude at the initiation point of the cellular calcium signaling response to the local membrane 

deformation in adhered osteoblast-like cells. The quantitative evaluation of mechanical conditions that 

activate the mechanosensory mechanism has already been conducted; for example, Sokabe et al. 

(1991) reported that the activation of SA channels depends on the magnitude of tension in the cell 

membrane, as determined by the micropipette aspiration and patch clamp measurement techniques. 

However, in their experimental system, suspended cells were used. That is, mechanical conditions 

such as tension in the cell membrane and the cytoskeletal structure in suspended cells might be 

different from those in the adhered cells such as osteoblasts. Therefore, the quantitative evaluation of 

mechanical conditions at the cellular structural component level using cells in the adherent state would 

be more appropriate for gaining insight the mechanosensory mechanism. Even though our observation 

was conducted under very simple and limited conditions, it could be considered as the fundamental 

first step in evaluating mechanical conditions that activate the mechanosensory mechanism. Higher 

temporal and spatial resolutions than those used in this study are desired to discuss the characteristics 

of the mechanosensory mechanism in detail.   

 One of the important future directions of this study is the observation of other major cellular 

structural components such as cytoskeletal actin fibers and focal adhesion complexes including 

integrins. In this present study, even though we only focused on the deformation behavior of the cell 

membrane, the evaluation of the strain magnitude of the membrane at the initiation point of the 

calcium signaling response possibly provides us valuable information about mechanical conditions 

that activate SA channels existing in the cell membrane. As discussed previously, the contribution of 

the cytoskeletal structure to the mechanosensory mechanism is significant. In addition, the 

microsphere was adhered to the cell membrane through integrin receptors that are believed to connect 

to the actin cytoskeletal structural system. Thus, the local deformation due to the indentation of the 

microsphere was transmitted to the cytoskeletal structure and cell membrane. Therefore, the 
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observation of other major structural components is indispensable in discussing the relationship 

between the complex mechanical conditions of the cellular structure and the activation of the 

mechanosensory mechanism.  

 

Conclusions 

In this study, a novel technique was proposed for the simultaneous observation of the 

calcium signaling response and membrane deformation in a single cell due to a localized mechanical 

stimulus. In particular, vertical section images were obtained with a high temporal resolution, enabling 

us to observe the initiation point of the calcium ion influx from the extracellular medium. Combined 

with an image correlation method with a high precision for displacement/strain analysis, the future 

applications of the novel technique to the research in the field of mechanobiology are greatly expected. 
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Figures 
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Fig.1: Schematic of local deformation application to single osteoblast-like cell. The fibronectin-coated 

microsphere (φ = 1.0 μm) adhering to the cell membrane was indented downward onto the cell using a 

glass microneedle with a 1.0-μm-diameter tip attached to a three-dimensional micromanipulator. 
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Fig.2: Observed images of cell membrane and intracellular calcium ion in two-dimensional horizontal 

section using confocal laser scanning microscope. The upper row shows the cell membrane labeled 

with Vybrant DiI, the middle row shows the intracellular calcium ion concentration labeled with Fluo 

4, and the lower row shows the line profile of the fluorescence intensity of Fluo 4. The microsphere 

was indented at the point indicated by arrowheads (m) and (p) at t = 0 sec. Owing to the indentation, 

the microsphere moved in the direction of an arrowhead (n) at t = 0.23 sec. At this time point, a local 

increase in the fluorescence intensity of Fluo 4 was observed in the region adjacent to the microsphere, 

as indicated by an arrowhead (q). At t = 0.46 sec, the increase in fluorescence intensity propagated to 

the adjacent region, as indicated by an arrowhead (r). 
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Fig.3: Observed images of cell membrane and intracellular calcium ion in vertical section. The left 

column shows the cell membrane labeled with Vybrant DiI, the middle column shows the intracellular 

calcium ion concentration labeled with Fluo 4, and the right column shows the superimposed images 

of the contour image of Fluo 4 and the binarized image of Vybrant DiI. The microsphere was indented 

at the point indicated by an arrowhead (p) at t = 0 sec. At t = 0.25 sec, a local increase in the 

fluorescence intensity of Fluo 4 was observed underneath the microsphere, as indicated by an 

arrowhead (q) in the superimposed image (c). 
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Fig.4: Distribution of principal strain ε1 around initiation point of calcium signaling response observed 

in vertical section. (a) and (b) indicate the fluorescence image of the cell membrane (Vybrant DiI) and 

the superimposed image of the Fluo 4 contour image and the binarized image of the cell membrane 

(Vybrant DiI), respectively. The initiation point of the calcium signaling response was detected in the 

region adjacent to the indented microsphere, as indicated by an arrowhead (p) in Fig.4(b). Figures 4(c) 

and (d) indicate the magnitude and directions of the principal strain around the initiation point of the 

calcium signaling response, respectively. The analyzed area is indicated by a rectangle in (a). 

Stretching strain was observed along the cell membrane, as shown in (d). The average magnitude of 

the strain was evaluated as ε1 = 0.55±0.23 (mean±S.D., number of cells n = 6).  
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