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Abstract
Molecular dynamics simulations were carried out for a nanoscale spherical bubble in
water at room temperature. The pressure difference between inside and outside of the
bubble was investigated and the surface tension was evaluated with assumption of the
Young-Laplace (Y-L) equation. The obtained surface tension shows little dependence
on the bubble size and agrees with that of flat surface. Thus it is confirmed that the Y-L
equation holds for nanobubbles in water. Based on the Y-L equation and the density-
dependence of the liquid pressure, mechanical stability of a bubble in a finite system
was discussed. The existence of mechanical instability leads to a mechanical definition
of critical nucleus size in cavitation nucleation.
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1. Introduction

Macroscopic force balance of a spherical microbubble of radius R is often described by
the Young-Laplace (Y-L) equation

pvap = pliq +
2γ
R
, (1)

where pvap is the pressure inside the bubble, pliq is the pressure of surrounding liquid, and γ is
the surface tension. The applicability of Eq. (1) has been questioned in the case of microbub-
bles and nanobubbles, because the pressure difference Δp ≡ pvap − pliq diverges as the size
decreases, R→ 0.

Using a simple model (Lennard-Jones liquid), we carried out molecular simulations of
nano-scale vapor bubbles (i.e., bubbles containing no other gas than saturated vapor) to in-
vestigate Δp and evaluate γ.(1) We found that the Y-L equation holds even for nanobubbles,
and that the surface tension and the saturated vapor pressure are almost independent of the
bubble size. However, the molecular interaction we used is a short-ranged one; long-ranged
interactions such as the Coulombic one may change the situation. In this paper, therefore, we
investigate nanobubbles in water, where Coulombic interactions are supposed to play impor-
tant roles.

2. Simulation Method

We performed canonical ensemble (N, T,V constant) molecular dynamics simulation of
water molecules with TIP4P model interaction(2) (combination of Lennard-Jones type inter-
action and Coulombic ones) confined in a cubic simulation cell. The cell size was fixed to
be V = 9.5 × 9.5 × 9.5 (nm)3. Water molecules were treated as rigid rotors. Normal peri-
odic boundary conditions were assumed for all three directions. The Coulombic interactions
were calculated with the Ewald summation technique, and the interactions in real space were
truncated at 1.6 nm; no long-range corrections were adopted.∗Received 25 June, 2008 (No. 08-0433)
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Table 1 Simulation conditions: number of molecules N, initial radius of the cavity
Rinit , and radius of the bubble at equilibrium R (evaluated in §.3.2).

N Rinit [nm] R [nm]
System 1 26,811 1.1 1.70
System 2 26,695 1.3 1.91
System 3 26,580 1.5 2.03
System 4 25,942 2.0 2.38

Fig. 1 Cross-sectional view of a simulated nanobubble in water; System 1.

Fig. 2 Examples of cavity volume change during the simulation.

First, 27,000 water molecules were uniformly placed in the cell; the mass density of the
initial configuration is 0.9413×103 kg/m3, which corresponds to a stretched, or “super-heated”
state. We equilibrated the system at room temperature T = 300 K, and no cavitation was
observed under this condition. After the equilibration, we removed molecules in a spherical
region of radius Rinit at the center of the cell to make a “bubble”, and continued the simulation.

We successfully obtained four stable systems, each of which contains a single spherical
“nanobubble” of different size. The system parameters are shown in Table 1. An example of
snapshots is shown in Fig. 1 as a sectional view; as simulation goes on, the bubble slightly
migrates from the original position.

3. Results and Discussion

3.1. Detection of Cavities
We divide the system into small cubic meshes of size 9.5/200 nm and count the vacant

mesh points, or “cavities”, to roughly estimate the position and the volume of the bubble.
Examples of volume change are shown in Fig. 2. We found that the time evolution of cavity
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Fig. 3 Density profile of the nanobubble in each system; N is the number of water
molecules.

volume strongly depends on Rinit; for Rinit = 1.1 nm (System 1) or larger, the bubble al-
most monotonically expands to reach some equilibrium, while the bubble with Rinit = 1.0 nm
rapidly shrinks and finally disappears. This instability will be discussed later in §3.5.

For the four systems shown in Table 1, we executed sufficiently long MD simulations
(typically 200 ps) to accumulate molecular configurations for analyses of bubbles at equilib-
rium.

3.2. Density Profile
By use of the position vector �ri of cavity mesh points (i = 1, . . . ,N), we define the

position of bubble center �r0 as �r0 ≡ 1
N

N∑

i=1
�ri. Assuming the spherical symmetry around �r0, we

calculate the density profile ρ(r) as a function of the radial distance r. The results are shown
in Fig. 3.

Each profile is well fitted to a hyperbolic function(3) as

ρ(r) =
ρliq + ρvap

2
+
ρliq − ρvap

2
tanh
( r − R
w

)
, (2)

where the liquid density ρliq, the vapor density ρvap, the bubble radius R, and the interface
width w are the fitting parameters. In our simulations of water at 300 K, however, the saturated
vapor density is so low that the inside of the bubble is almost always empty; thus we set
ρvap = 0 for all four systems. Also we found that the width w has little dependence on the
bubble size; w = 0.199–0.210 nm for all systems. The obtained liquid density ρliq is discussed
in §3.3.

The radius R of the largest bubble (System 4) is 2.38 nm; the cell size is 9.5 nm and
we believe that the periodic boundary conditions have practically no interference with bubble
properties.

3.3. Pressure and Density
We evaluate the liquid pressure pliq via a usual virial expression in the bulk liquid region

far from the bubble; here we use the region of r > R + 1 nm. The results are plotted against
the bubble radius R in Fig. 4.

As similar to the systems of Lennard-Jones liquid(1), the obtained liquid pressure shows
a large negative value, which suggests that the surrounding liquid is in a highly stretched state.
This is confirmed from the liquid density ρliq obtained in Eq. (2), as plotted in Fig. 5. Here
also shown is a result of planar surface system, which consists of a water membrane of area
4.43 × 4.43 (nm)2 with 3,000 water molecules at T = 300 K.
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Fig. 4 Liquid pressure depending on the bubble radius. The error bars show the
standard deviation obtained by dividing the total simulation into partial runs
of 10 ps.

Fig. 5 Density of surrounding liquid depending on the bubble radius. The data at
R = ∞ is the density of a planar surface system.

Fig. 6 Surface tension of a nanobubble estimated with the Young-Laplace equation.
The errors are evaluated from the uncertainty of the liquid pressure.

3.4. Surface Tension
Now having data of the pressure difference Δp = pvap−pliq � −pliq and the bubble size R,

we can evaluate the surface tension γ by assuming the Y-L equation (1). The results are shown
in Fig. 6. Similar to the Lennard-Jones case again,(1) γ has no discernible R dependence, and
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Fig. 7 Local ratio of hydrogen atoms: the bubble case (System 1, open square and solid
curve) is compared with the case of planar surface (closed square and dotted
curve). The horizontal axis is shifted so that the center position of the density
profile agrees with each other.

agrees with the value of planar surface.
Note that, in this evaluation of γ, we have not distinguished the radius R in Eq. (2), or

equimolar surface, and the surface of tension Rs.(3) As the bubble size becomes smaller, the
difference between R and Rs may have more importance, as in the case of droplets.(4) From
practical points of view, however, it will be more convenient if we can deduce the pressure
difference Δp directly from the bubble radius R via Eq. (1); the above results just show that
we can use the bulk value of γ in this approach. Detailed analyses at molecular levels may
reveal some small difference between R and Rs dependence of γ.

It is well known that water molecules have some orientational order near the liquid sur-
face(5) – (7). There is a possibility that, in the case of nano-scale bubble surface, the orientational
ordering is affected (probably weakened) by the large curvature. To roughly investigate the

ordering, we plotted in Fig. 7 the local ratio of hydrogen atoms,
nH/2

nO + nH/2
, where nH and

nO are the local number density of hydrogen and oxygen, respectively. The ordering looks
similar to the case of planar surface; in the vapor side exists a hydrogen-rich region, which
means that water molecules on the surface protrude their hydrogen into the vapor phase. The
details of molecular orientation are to be analyzed.

3.5. Bubble Stability
As mentioned in §3.1, we sometimes observed unstable bubbles, which shrink and vanish

as the simulation proceeds. Here we discuss the bubble stability from a viewpoint of pressure
balance.

Consider a spherical bubble of radius R in a simulation cell of finite volume V . Two
liquid pressures should be considered. The Y-L equation, Eq. (1), gives

pliq = pvap − 2γ
R
≡ pYL (3)

Another pressure, psys, is determined from the density of the liquid through an equation of
state.

psys ≡ p(ρliq, T ), (4)

When the vapor density is low as in the case of here-considered water at room temperature,
the density ρliq depends on the bubble radius as

ρliq � mN

V − 4π
3 R3
, (5)

926



Journal of Fluid
Science and Technology

Vol.3, No.8, 2008

Fig. 8 Pressure vs. density for liquid water in stretched states. The solid line is least
square fitting to a linear function.

Fig. 9 Stability of a spherical bubble; the pressure PYL (solid curve) derived from the
Young-Laplace equation is compared with Psys (dotted) defined in Eq. (6) with
the parameters of System 1. In general, there exist two crosspoints, a stable
radius (open circle) and an unstable one (closed circle).

where N is the number of molecules and m is the molecular mass. Note that we approximated
in Eq. (5) that the vapor density is negligibly small; taking account of finite vapor density
instead of the vacuum approximation is straightforward, but it would lead to a too cumbersome
equation.

Now that the pressure is well approximated to be a linear function of ρliq in the range of
stretched states here considered, as shown in Fig. 8, the liquid pressure is expressed as

psys = A
mN

V − 4π
3 R3

+ B, (6)

where the constants A and B are determined by least square fitting. The radius R of a bubble
with pressure balance should therefore satisfy the equation

pvap − 2γ
R
= A

mN

V − 4π
3 R3

+ B (7)

Now plotted in Fig. 9 are pYL and psys as functions of the radius R, with parameters
N = 26, 811 (System 1) and V = 9.5 × 9.5 × 9.5 (nm)3 as an example. There exist two
solutions for pYL = psys when the system parameters (N and V) are appropriately chosen. The
bubble should shrink in the case of pYL < psys, and will expand when pYL > psys. Thus, the
solution of larger R corresponds to the stable bubble. The solution of smaller R is unstable,
which means that a bubble smaller than this should vanish. For the case of System 1 as shown
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in Fig. 9, a bubble with initial radius Rinit < 1 nm will shrink and vanish, which agrees with
our observation (Fig. 2). This suggests that the threshold of unstable R gives a mechanical
description of the critical nucleus in bubble nucleation (cavitation) process; comparison with
thermodynamic description of nucleation models will be made elsewhere.

When we use smaller N or larger V , the curve of psys shifts to more negative pressure;
the radius of the unstable bubble decreases and the stable bubble becomes larger. In contrast,
there may not be solutions with larger N or smaller V , which of course means that vapor
bubbles cannot exist in such dense (or high pressure) liquid.

These results are for finite systems with N molecules in volume V . When we consider an
α-times larger system (i.e., with αN molecules in αV), Eq. (7) becomes

pvap − 2γ
R
= A

mαN

αV − 4π
3 R3

+ B = A
mN

V − 4π
3

R3

α

+ B (8)

The curve of pvap in Fig. 9 tells that, under conditions similar to the one considered here, the
stable radius increases about α1/3 times while the unstable one is almost the same. Thus, in the
infinite system (α→ ∞), there will be no stable bubbles; once the size of a bubble exceeds the
instability threshold, it increases infinitely. A similar discussion of stability/instability about
gas bubbles was given by Ward et al.(8) for gas bubbles.

4. Summary

Our molecular simulation of nano-scale spherical vapor bubbles (radius 1.7–2.4 nm) at
equilibrium in water at room temperature reveals that

( 1 ) The liquid surrounding the bubble is in a highly stretched state and has large negative
pressure.

( 2 ) The surface tension evaluated by assuming the macroscopic Young-Laplace equation
is little dependent on the bubble size and agrees with the bulk value (surface tension of planar
surface).
These conclusions are the same as our previous study with the Lennard-Jones liquid(1); in
short, the Young-Laplace equation is applicable even to nanobubbles.

As for a bubble in a system of finite volume, we have shown, based on the Y-L equation
and the equation of state of stretched liquid, that the pressure balance equation has stable and
unstable solutions; the latter has little dependence on the system size and corresponds to the
critical nucleus in bubble nucleation process.

We have so far considered “ideal” bubbles, which have no adsorption on their surface.
In practical cases of water and aqueous solutions, however, various adsorbents (especially
ionic ones) can drastically change the situations. For example, microbubbles have often been
shown to have negative charge,(9), (10) mainly due to adsorption of hydroxide (OH−) ions. The
reported ζ potential (−50 ∼ −80 mV) suggests that the surface concentration is not very high
(typically 3− 5× 10−5e per 1 (nm)2, where e is the elementary charge), but they can still affect
surface properties and mechanical stability of bubbles. Further investigation of ion adsorption
from molecular viewpoints is required.
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