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Abstract 

A stochastic model is treated of bi-directional horizontal ground motions (2DGM).  It 

is shown that, in comparison with the Penzien-Watabe model (1975), the cross power spectral 

density (PSD) function between 2DGM along the building structural axes can be treated in a 

more general manner by using an extended Penzien-Watabe model introduced in this paper.  

The auto PSD functions of 2DGM along the building structural axes are assumed to be given 

and the cross PSD function between these 2DGM is treated as a complex unknown function.  

A critical excitation problem is then considered for a one-story one-span moment resisting 

three-dimensional frame.  The corner-fiber stress at the column-end is taken as the objective 

function and the worst cross PSD function of the 2DGM is determined so that the maximum 

corner-fiber stress at the column-end is maximized.  It is shown that the real part 

(co-spectrum) and the imaginary part (quad-spectrum) of the worst cross PSD function can be 

obtained by a devised algorithm including the interchange of the double maximization 

procedure in the time and frequency domains. 
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1. Introduction 

The ground motion is a realization in space and simultaneous consideration of multiple 

components of ground motion is inevitable in the reliable design of structures [1, 2].  It is 

assumed practically that there exists a set of principal axes in the ground motions [3, 4].  It is 

well recognized in the literature that the principal axes are functions of time and change their 

directions during the ground shaking.  In the current structural design practice, the effect of 

the multi-component ground motions is often taken into account by use of the SRSS method 

(square root of the sum of the squares) or the CQC3 method (extended Complete Quadratic 

Combination rule [5]).   

In the SRSS method, the maximum responses under respective ground motions are 

combined by the rule of SRSS.  The SRSS method assumes the statistical independence 

among the respective ground motions.  However, the multi-component ground motions have 

some statistical dependence. 

On the other hand, the CQC3 rule is well known as a response spectrum method which 

can take into account the effect of correlation between the components of ground motions.  

Although an absolute value of a cross power spectral density (PSD) function has been 

described by the correlation coefficient, the CQC3 rule can not treat directly, in the sense of 

direct treatment of both real and imaginary parts, the cross PSD functions of multi-component 

ground motions.  Menun and Der Kiureghian [6] and Lopez et al. [7] employed the CQC3 

method as the response evaluation method and discussed the critical states, e.g. a critical 

loading combination or a critical incident angle.  Athanatopoulou [8] investigated the effect 

of incident angle of ground motions on structural response without use of the Penzien-Watabe 

model [3] and pointed out the significance of considering multiple inputs in the practical 

seismic design.  The approach is applicable only to a set of recorded motions.  In this paper, 

the cross PSD function in terms of both real and imaginary parts will be discussed in more 

detail from the viewpoint of critical excitation. 

A problem of critical excitation is considered in this paper for a one-story one-span 

moment resisting three-dimensional (3-D) frame subjected to bi-directional horizontal ground 

motions (2DGM).  Because the horizontal ground motions are known to be influential to 
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most of ordinary building structures, only horizontal ground motions are treated here.  The 

two horizontal ground accelerations are modeled as nonstationary random processes whose 

auto PSD functions are known.  A critical excitation problem is formulated such that the 

worst cross PSD function of the 2DGM is determined for the maximum mean-squares 

extreme-fiber stress of the column at the top.  It is found that the real part (co-spectrum, e.g. 

see Nigam [9]) and the imaginary part (quad-spectrum) of the worst cross PSD function can 

be obtained by a devised algorithm including the interchange of the double maximization 

procedure in the time and frequency domains. 

The critical excitation problems have been treated extensively by many researchers, e.g. 

Drenick [10], Shinozuka [11], Iyengar and Manohar [12], Manohar and Sarkar [13], Abbas 

and Manohar [14-16], Takewaki [17-22].  The works by Sarkar and Manohar [23,24], Abbas 

and Manohar [15, 16]) are concerned with the present paper.  Sarkar and Manohar [23,24] 

and Abbas and Manohar [15] formulated interesting problems and solved the problems via 

sophisticated mathematical insights.  In particular, they revealed that the critical correlation 

occurs under the condition of perfect coincidence of the multiple-support inputs with the 

corresponding transfer functions.  Furthermore Abbas and Manohar [15] discussed a critical 

excitation problem of a stack-like structure subjected to horizontal and vertical simultaneous 

inputs with the reliability index as the objective function.  They determined the critical PSD 

matrix using response surface models.  The present paper formulates a similar problem for a 

different model (multi-component input) with different variables in the complex plane of the 

cross PSD function of ground motions.  Especially the relationship of the building principal 

axes with the ground-motion principal axes produces an interesting aspect. 

 

2. Penzien-Watabe model and extended Penzien-Watabe model  

2.1 Penzien-Watabe model  

The CQC3 rule is based on the Penzien-Watabe model (P-W model; [3]).  The P-W 

model assumes the existence of the principal axes Z1 and Z2 along which the correlation 

coefficient of ground motions is zero.  One principal axis in the horizontal plane is directed 

to the fault and the other is perpendicular to the former one. 
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Although the CQC3 rule is a known method of response analysis for 2DGM, the 

correlation between 2DGM is fixed rigidly.  In order to generalize the correlation between 

the 2DGM in a feasible complex plane of the cross PSD function, a new ground input model 

is proposed in this paper.  Then, the CQC3 rule can be regarded as a special case of response 

evaluation using the input model proposed in this paper.  This will be explained later in 

section 5.  A brief explanation is shown in Fig.1 in the form of flow chart.          

Consider a one-story one-span 3-D frame.  It is assumed that two axes X1 and X2 are 

perpendicular to each other and along the building structural axes.  Let 
1

( )ZS ω  and 

2
( )ZS ω  denote the auto PSD functions along the principal axes Z1, Z2 of ground motions 

respectively.  According to the P-W model, 2DGM along Z1, Z2 are regarded to be 

completely uncorrelated.  The auto PSD functions of ground motions along X1, X2 are 

determined from the auto PSD functions of 2DGM along Z1, Z2.  The auto PSD functions 

along X1, X2 are described by 11 ( )S ω  and 22 ( )S ω , respectively.  

It can be shown (see Appendix 1) that the sum of 
1

( )ZS ω  and 
2

( )ZS ω  is to be 

equal to the sum of 11 ( )S ω  and 22 ( )S ω .  Furthermore, the coherence function between 

2DGM along X1 and X2 is also denoted as 
 

o rg
12

2 2 2
org o rg

org
(1 ) s in 2

1 (1 ) cos 2
( , )

( )

γ θ
ρ

γ γ θ
γ θ

−
=

+ − −
 (1) 

 

where orgγ =
2 1

( ) / ( )Z ZS Sω ω .  θ  is the angle of rotation (incident angle) between the two 

horizontal axes Z1, X1.  Fig.2 shows the coherence function expressed by Eq.(1) with various 

values of orgγ  for varied rotation (incident) angle.  In Fig.2, when orgγ  is zero, the 

coherence function 12ρ  is reduced to 1 at any θ  except 0θ =  and / 2θ π= .  This 

means that the components along X1 and X2 have perfect correlation under uni-directional 

ground motion along the major principal axis of ground motion. 

 

2.2 Extended Penzien-Watabe model  

The P-W model is often used in the modeling of multi-component ground motions.  

Although the coherence function of 2DGM along X1 and X2 can be given in terms of orgγ  
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and θ  as shown in Eq.(1), the cross PSD function can not be treated directly in the CQC3 

rule.  For that reason, it is supposed in this paper that the cross PSD function between 

2DGM along X1 and X2 can take any value in the feasible complex plane.  From the 

definition of the coherence function, the co-spectrum (real part of cross PSD) ( )12C ω  and 

quad-spectrum (imaginary part of cross PSD) ( )12Q ω  must satisfy the following relation. 
 

{ }22 2
12 12 12 org 11 22,( ) ( ) ( ) ( ) ( )C Q S Sρ γ θω ω ω ω+ ≤  (2) 

 

This model is called the extended P-W model hereafter.  It may be possible to incorporate 

the extended P-W model into the stochastic response evaluation method.  In that case, a new 

critical excitation problem can be constructed in which the critical cross PSD function is 

searched in the feasible complex plane represented by Eq.(2).  This method can be regarded 

as an extended method of the CQC3 rule based on the P-W model.     

 

3. Stochastic response to 2DGM described by extended Penzien-Watabe model    

3.1 Definition of nonstationary ground motion   

It is assumed here that the one-directional horizontal motions can be described by the 

following uniformly modulated nonstationary model. 

( ) ( ) ( ) ( 1, 2)gi i iu t c t w t i= =   (3) 
 
where ( )ic t  is an envelope function and ( )iw t  is a stationary random process.  The 

envelope function is given by 
 

1

2
0 0

0 1
0.24( )

1

( ) ( )          (0 )
( ) 1.0                 ( )

( )    ( )

i

i
t t

i f

c t t t t t
c t t t t

c t e t t t− −

= ≤ ≤
= ≤ ≤

= ≤ ≤　   
(4)

 

The auto PSD function of ( )iw t  in Eq.(3) is assumed to be given by 

2( )
, 0 max( ) /{2 ( ) } ( 1, 2)i

ii iV hS S T c t iω π== =   (5) 

where T is the time duration and h is the damping ratio.  ( )
, 0
i

V hS =  is the velocity response 

spectrum for null damping ratio. 
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3.2 Stochastic response evaluation in frequency domain  

3.2.1 Structure model   

Consider a 3-D frame subjected to 2DGM 1 2,g gu u  along the building structural axes 

X1, X2.  It is assumed that the center of mass is coincident with the center of stiffness and the 

torsional response does not occur so long as there is no rotational input.  The columns have a 

square-tube cross section and the beams have a wide-flange cross section as shown in Fig.3.  

The story height is H and the span length of the plane frame of interest in the first part of this 

section is 1L .  The span length in the other direction is denoted by 2L .  Let , , ,b c cE I I Z  

denote the Young’s modulus of beam and column, the second moment of area of beam, that of 

column and the section modulus of column, respectively.  The mass on one plane frame is 

denoted by 1m . 

 Assume that each plane frame of the 3-D model can be expressed by an SDOF model.  

The equivalent horizontal stiffness of the SDOF model is expressed by (see Appendix 2) 
 

1
1 3

1

12 {1 6( ) ( )}

{2 3( ) ( )}
c b c

b c

EI I I H L
k

H I I H L

+ ⋅
=

+ ⋅
 (6) 

 
The extreme-fiber stress at the top of the column under one-directional horizontal motion may 

be expressed by (see Appendix 2) 

1
1 1 1( ) {6 /( )} ( )BA b c Bt EI Z L A u tσσ θ= =  (7) 

where [ ]1 1 118 {2 3( ) ( )}b c b cA EI HL Z I I H Lσ ≡ + ⋅ . 

Let 1 1 1k mω =  denote the fundamental natural circular frequency in the horizontal 

vibration of the SDOF model.  The horizontal displacement of the floor can be derived as 

( ) ( )1 1 10
{ } ( )

t
gu t u g t dτ τ τ= − −∫   

(8)
 

where 1 ( )g t  is the well-known unit impulse response function.   

Using Eqs. (7) and (8), 1 ( )BA tσ  can be expressed as 
 

1
1 1 10

( ) { ( )} ( )
t

BA gt A u g t dσσ τ τ τ= − −∫
  

(9)
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Let 2 ( )BA tσ  denote the extreme-fiber stress at the top of the column under another 

horizontal motion 2gu .  The same equations as those in the direction 1X  can be used only 

by replacing 1L  by 2L  and other parameters in the direction 1X  by those in the direction 

2X .  The sum of the extreme-fiber stresses at the top of the column under 2DGM may be 

expressed by 

1 2( ) ( ) ( )BA BAf t t tσ σ= +   (10) 

 
3.2.2 Stochastic response evaluation in frequency domain  

The auto-correlation function of ( )f t  defined in Eq.(10) can be expressed by 

[ ] 1 1 1 2
1 2 1 2 1 2

2 1 2 2
1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

BA BA BA BA

BA BA BA BA

E f t f t E t t E t t

E t t E t t

σ σ σ σ

σ σ σ σ

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦　　　　　　　　   

(11)
 

where [ ]E ⋅  denotes the ensemble mean.  The mean-squares extreme-fiber stresses in 

directions 1X  and 2X  derived from Eq.(11) may be expressed by (See Appendix 3)   
1 2 2 2 2

1 11[ ( ) ] { ( ; ) ( ; ) } ( )BA c sE t A B t B t S dσσ ω ω ω ω
∞

−∞
= +∫   (12) 

2 2 2 2 2
2 22[ ( ) ] { ( ; ) ( ; ) } ( )BA c sE t A C t C t S dσσ ω ω ω ω

∞

−∞
= +∫   (13) 

( ; ), ( ; ), ( ; ), ( ; )c s c sB t B t C t C tω ω ω ω  are defined in Appendix 3.
 

The cross terms in Eq.(11) can be transformed into (See Appendix 4)   
 1 2 2 1

1 2 1 12 2 12

[ ( ) ( )] [ ( ) ( )]

2 { ( ; ) ( ) ( ; ) ( )}

BA BA BA BAE t t E t t

A A f t C f t Q dσ σ

σ σ σ σ

ω ω ω ω ω
∞

−∞

+

= +∫
  

(14)

  
where 12C  and 12Q  are the co-spectrum and quad-spectrum of the cross PSD function and  

1( ; ) ( ; ) ( ; ) ( ; ) ( ; )c c s sf t B t C t B t C tω ω ω ω ω= +   (15a) 

2( ; ) ( ; ) ( ; ) ( ; ) ( ; )c s s cf t B t C t B t C tω ω ω ω ω= −   (15b) 
 

Finally the mean-squares of the sum of extreme-fiber stresses at the top of the column 

under 2DGM may be expressed by 
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1 2 2

2 2 2
1 11

1 2 1 12 2 12

2 2 2
2 22

[{ ( ) ( )} ]

{ ( ; ) ( ; ) } ( )

2 { ( ; ) ( ) ( ; ) ( )}

{ ( ; ) ( ; ) } ( )

BA BA

c s

c s

E t t

A B t B t S d

A A f t C f t Q d

A C t C t S d

σ

σ σ

σ

σ σ

ω ω ω ω

ω ω ω ω ω

ω ω ω ω

∞

−∞
∞

−∞
∞

−∞

+

= +

+ +

+ +

∫

∫

∫

　　

　　

  (16) 

 

4. Critical excitation method for worst cross PSD function between 2DGM 

The critical excitation problem may be stated as: Find the cross PSD function 

12 12 12( ) ( )+i ( )S C Qω ω ω=  of 2DGM so as to achieve 
12

1 2 2
( )

max max [{ ( ) ( )} ]BA BA
S t

E t t
ω

σ σ+ . 

When the time t is fixed and the frequency ω  is specified, the transfer functions 

1 ( ; )f t ω  and 2 ( ; )f t ω  defined in Eqs.(15a, b) can be regarded as coefficients, not 

functions of t and ω .  Therefore the integrand in the second term of Eq.(16) can be regarded 

as the function 12 12( , )z C Q  of 12C  and 12Q . 
 

12 12 1 12 2 12( , ) ( ; ) ( ) ( ; ) ( )z C Q f t C f t Qω ω ω ω= +   (17) 

Fig.4 illustrates the structure of the critical excitation problem.  The critical excitation 

problem is to maximize  

{ }*
12 12 1 2 1 12 2 12( , ) 2 ( ; ) ( ) ( ; ) ( )z C Q A A f t C f t Qσ σ ω ω ω ω= +   (18) 

under the constraint (2).  The critical co-spectrum and quad-spectrum can then be obtained 

analytically as  

22 11
12 12 org 1 2 2

1 2

( ) ( )
( ) ( , ) ( ; )

( ; ) ( ; )

S S
C f t

f t f t

ω ω
ω ρ γ θ ω

ω ω
=

+   
(19a)

 
 

22 11
12 12 org 2 2 2

1 2

( ) ( )
( ) ( , ) ( ; )

( ; ) ( ; )

S S
Q f t

f t f t

ω ω
ω ρ γ θ ω

ω ω
=

+   
(19b)

 
 

It should be noted that Eqs.(19a,b) include the coherence function 12 org( , )ρ γ θ  and are 

different from the equations derived in Reference [25].  Abbas and Manohar [15] had 

obtained a similar result for a different problem of multiple inputs. 

Fig.5 indicates the solution algorithm.  Substitution of Eqs.(19a, b) into Eq.(14) leads 
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to the expression of the cross term. 

 1 2 2 1

2 2
12 org 1 2 1 2 22 11

( ) ( ) ( ) ( )

2 ( , ) ( ; ) ( ; ) ( ) ( )

BA BA BA BAE t t E t t

A A f t f t S S dσ σ

σ σ σ σ

ρ γ θ ω ω ω ω ω
∞

−∞

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦

= +∫   
(20)

 

 

5. Numerical Example  

5.1 Response to 2DGM with the constraint of sum of auto PSD functions  

In most of the current structural design practice, safety and functionality checks are 

made with respect to one-directional earthquake input.  This is because the ground motion 

model for multi-component inputs is complicated and a well-accepted model of practical use 

has never been presented except a few (e.g. Eurocode, IBC International Code).  In addition, 

it may be understood that an approximate safety margin is incorporated in the magnitude of 

one-directional input.  In this section, the effect of bi-directional input on the seismic 

response is investigated through the comparison with the response by CQC3 rule (perfectly 

correlated; although CQC3 does not correspond to the perfectly correlated case, this 

terminology is used symbolically) or SRSS rule (uncorrelated).  The effect of correlation of 

2DGM on the response is also clarified.  Fig.6 shows the flow chart of the aim in this section 

and the relationship with section 5.2.  The given structural parameters are shown in Tables 1 

and 2. 

Consider the case where the auto PSD function ratio in two directions X1, X2 is varied 

under the condition that the sum of the auto PSD functions in two directions is constant.  

This is because the intensity of the uni-directional input as the combined component of 

two-directional input should be regarded to be constant.  For uni-directional input ( org 0γ = ) 

along the major principal axis of ground motion, the coherence function between the ground 

motions along the building structural axes is fixed to 1.0 (See Eq. (1)).  The auto PSD 

function ratios along the building structural axes are chosen as 22 11/S Sγ = =0, 0.25, 0.75 and 

1.0.  The 2DGM along the building structural axes with the auto PSD function ratio of 1.0 

and coherence=1.0 coincides with the uni-directional input along the major ground principal 
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axis of 4θ π= .  The common envelope function 1 2( ), ( )c t c t  is shown in Fig.7.  The 

parameters in Eq.(4) are taken as 0 3c = (s), 1 12.5c = (s) and 40.0fc = (s) here.  

Figs.8(a)-(c) indicate the auto PSD functions of 1 2( ), ( )w t w t  for various γ  with the 

constraint of sum of auto PSD functions.  The simulated ground acceleration using this PSD 

functions has the maximum value of about 1G.  The span length 2L  is specified as 15(m) 

and the span length 1L  has been varied continuously from 10(m) to 30(m).  

Fig.9 shows the comparison of the response to critically correlated 2DGM along the 

building structural axes with the response to uncorrelated bi-directional input.  The curve 

indicated as ‘uncorrelated’ corresponds to the SRSS response and the curve indicated as 

‘critically correlated’ presents the critical response derived in this paper.  In addition, the 

responses to 2DGM which have fixed correlation functions, i.e. 12 11 22C S S=  and 

12 0Q = (“Perfectly correlated” without phase delay), 12 12 11 22 / 2C Q S S= =  (case 2), 

12 0C =  and 12 11 22Q S S=  (case 3), are also plotted.  It can be seen that the critical 

response and the response to the input model with 12 11 22C S S=  and 12Q =0 almost 

coincide in the model with the span of 1L =15(m). 

It can be observed from Fig.9 that the critical response is amplified around 1L =15(m) 

where the lengths of span in two directions are equal and the natural frequencies of the model 

in two directions are equal. It can also be observed that, as the span length 1L  becomes 

longer than 15(m), the critical response for the input model of 0.25γ =  becomes larger than 

those for 0.75,1.0γ = 　 .  This is because, as the span becomes longer, a horizontal stiffness 

along the long span decreases.  It can be concluded that the critical incident angle of 

multi-component ground motions may exist depending on the combination of structural 

stiffnesses due to difference in span lengths.     

Fig.10 shows the increase ratio of the critical response to 2DGM of various auto PSD 

function ratios from the SRSS response.  In this case, the increased ratio is about 40% at 

1L =15(m).  This implies that most of the present design code using only one-directional 

input ( 0γ = ) for safety check are not sufficient for extreme loading. 

Fig.11 shows the co-spectrum and quad-spectrum of the critical cross PSD function for 

1γ =  and 1L =25(m). 
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5.2 Response to 2DGM described by extended Penzien-Watabe model: analysis from the 

viewpoint of critical incident angle 

Since the analytical solution has been obtained as Eqs.19(a, b), the critical incident 

angle can be searched parametrically in an efficient manner for which the response quantity 

can be maximized for each combination of span length.  The right figure in Fig.6 shows the 

flow chart indicating the aim in this section.  While the auto PSD function ratio along the 

building structural axes has been treated directly in section 5.1, the auto PSD functions along 

the principal axes of ground motions are treated directly in this section.  In other words, the 

physical meaning of ground motions is taken into account in detail in this section. 

Consider the case where the ratio orgγ  of the auto PSD functions along the principal 

axes of ground motions is assumed to be fixed to 0.0, 0.25, 0.75, 1.0 and the angle between 

the two sets of axes is varied continuously from 0(rad) to 2π (rad).  The structural plan is 

given as 1 15L = (m), 2 25L = (m).   

Figs.12(a)-(d) show the comparison of the critical response with the corresponding 

SRSS response in the case of four ratios orgγ  under various incident angles.  The auto PSD 

functions along the building structural axes are determined from those along the principal 

axes of ground motions in terms of θ  and orgγ  (See Appendix 1).  Since the case of 

org 0.0γ =  shown in Fig.12(a) can be regarded as the uni-directional input along the ground 

major principal axis, some cases in this figure have already been shown in Figs.9(a)-(d).  

Figs.9(a)-(d) at span 25(m)=  correspond to Fig.12(a) at 0[rad]θ = , 0.078 [rad]θ π=  

( 14.0°) = , 0.20 [rad]( 36.9°)θ π= =  and / 4[rad]( 45°)θ π= = , respectively.  From 

Figs.12(a)-(c), it can be understood that there exists a critical incident angle which maximizes 

the response quantity by considering the effect of critical correlation between 2DGM along 

the building structural axes.  It should be noted that, while Lopez et al (2000) used the P-W 

model, the present paper introduced the extended P-W model and took into account the 

critical cross PSD function between 2DGM. 

The critical response and the corresponding SRSS response have the same value at 

0.0θ =  and 2θ π=  in Figs.12(a)-(c).  This is because, in the case of org 0.0γ =  shown 
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in Fig.12(a), there is no component of ground motion along the other building structural axis 

at 0.0θ =  or 2θ π=  and the effect of the correlation of the 2DGM does not exist.  While 

in the case of org 0.0γ ≠ , i.e. in Figs.12(b), (c), the coherence function ( )12 org ,ρ γ θ  based 

on the P-W model is 0.0 at 0.0θ =  or 2θ π=  and the cross term of Eq.(11) does not exist.  

In Fig.12(d), there is no differences between two lines.  This is because 2DGM along the 

building structural axes are uncorrelated due to 12 org( , ) 0.0ρ γ θ =  for org 1.0γ = .  

Comparing Fig.12(a) with Figs.12(b)-(d), it can be observed that the maximum value, shown 

in Figs.12(b)-(d), of the response to the 2DGM along the principal axes of ground motions 

does not exceed that to the uni-directional input shown in Fig.12(a).  This may result from 

the fact that (1) the coherence is 1.0 in Fig.12(a) and is smaller than 1.0 in Figs.12(b)-(d) and 

(2) the concentrated uni-directional input is more effective in maximizing the extreme-fiber 

stress. 

Under the constraint of sum of auto PSD functions along the principal axes of ground 

motions, it may be concluded that the response evaluation to the uni-directional input along 

the principal axes of ground motions ( org 0.0γ = ) is sufficient as far as the maximum value of 

response quantity is concerned. 

 

5.3 Comparison of response to critically correlated 2DGM with that to perfectly correlated 

2DGM  

In order to understand the property of the critically correlated ground motions more 

deeply, the comparison with the perfectly correlated ground motions without time delay has 

been made.  The structural plan is given as 1 15(m)L = , 2 25(m)L = .  Fig.13(a) shows two 

horizontal ground motions with the critical correlation for input model of org 0γ =  and 

0.106 [rad](=19.0°)θ π= (critical incident angle shown in Fig.12(a)).  This set has been 

generated by using random numbers.  On the other hand, Fig.13(b) indicates two horizontal 

ground motions with the perfect correlation without time delay for org 0γ =  and 

0.106 [rad](=19.0°)θ π= .  Fig.14 illustrates the root-mean-square of column-end 

extreme-fiber stress to these two sets of horizontal ground motions.  It can be observed that 

the response to the critically correlated ground motions could become about 1.5 times larger 
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than that to the perfectly correlated ground motions without time delay. 

 

5.4 Analysis of recorded 2DGM  

The correlation between recorded 2DGM should be compared with the result of the 

critical excitation method developed in this paper.  In this section, the coherence function 

between the recorded 2DGM (El Centro NS and EW during Imperial Valley 1940, SCT1 NS 

and EW during Mexico Michoacan 1985) is calculated. 

The auto PSD functions and cross PSD functions have been calculated from the Fourier 

transforms by using the Welch-Bartlett’s method.  The starting time of the window with the 

duration T (5s in El Centro and 10s in SCT1) was changed successively (time-lag of 0.02s) 

and the corresponding set of data for the 100 windows was chosen to represent candidates of 

the ensemble mean.  Then the procedure of ensemble mean was taken of the functions 

computed from the Fourier transforms. 

Fig.15(a) shows the representative acceleration records of El Centro NS and EW and 

Fig.15(b) illustrates the cross PSD function of both motions.  For these data, Fig.15(c) 

indicates the coherence function.  It has been understood from several parametric analyses 

that the coherence function is affected significantly by the portion of ground motions.  On 

the other hand, Figs.16(a)-(c) illustrate the corresponding ones for SCT1 NS and EW.  It can 

be seen that the cross PSD function of SCT1 NS and EW has a peculiar characteristic due to 

the predominant period of these motions.  In Fig.16(c), the cases of the numbers 200 and 300 

of windows have also been examined in using the Welch-Bartlett’s method.  It can be 

observed that the coherence strongly depends on the type of earthquake ground motions.  

Furthermore, as stated, the coherence also depends on the portion of ground motions (this data 

are not shown here due to page limit).  The prediction of the coherence function before its 

occurrence is quite difficult and the critical excitation method will provide a meaningful 

insight even in these circumstances. 

As for the reality of critical excitation methods, a severe ground motion attacked 

recently (July 16, 2007) the city of Kashiwazaki, Niigata Prefecture in Japan and many old 

wood houses were destroyed.  It has been reported that a peculiar ground motion as shown in 



 14

Fig.17(a) has been observed and the ground motion had a predominant period of 2.5 (s).  This 

period is thought to be resonant with the natural period of old wood houses with heavy 

roofs.  This ground motion is very similar to one, shown in Fig.17(b), predicted in Reference 

(Takewaki 2004a).  It should be noted that a large nuclear reactor facility is located in the city 

of Kashiwazaki and that facility had relatively minor damage.  Further damage investigation 

is being conducted even now.  This ground motion strongly supports the importance of 

introducing the critical excitation methods especially for important structures. 

 

6. Conclusions 

An extended Penzien-Watabe model has been proposed in which the cross PSD function 

of 2DGM can be treated in a more relaxed manner.  While only the coherence function, i.e. 

the absolute value of the cross PSD function, can be treated in the P-W model, the direct 

treatment of the cross PSD function has been made possible in the extended P-W model.  

The following conclusions have been derived. 

(1) A critical excitation problem has been formulated for a one-story one-span moment 

resisting 3-D frame subjected to the 2DGM obeying the proposed extended P-W model.  

The objective function is the corner-fiber stress at the column-end.  The extended P-W 

model is an extended version of the P-W model including an additional information on the 

cross PSD function as a complex function. 

(2) The mean-squares corner-fiber stress at the column-end has been shown to be the sum of 

the term due to the 2DGM and that due to their correlation.  Since the auto PSD 

functions of 2DGM are given and prescribed, the maximization in the critical excitation 

problem means the maximization of the correlation term of 2DGM. 

(3) The real part (co-spectrum) and the imaginary part (quad-spectrum) of the worst cross 

PSD function can be obtained by a devised algorithm including the interchange of the 

double maximization procedure in the time and cross PSD function domains. 

(4) Numerical examples indicate that the proposed algorithm can work very well.  The 

root-mean-square corner-fiber stress at the column-end to the critical combination of the 

2DGM becomes more than ten percent larger than that by the SRSS estimate of 
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corner-fiber stress at the column-end due to the 2DGM.  When the horizontal stiffnesses 

along the building structural axes coincide with each other, the response to the critical 

excitation becomes about forty ( 2 ) percent larger than that by the SRSS estimate.  

(5) Analytical solutions, Eqs.(19a, b), have enabled the efficient parametric analysis of critical 

incident angle (see Fig.12). 

(6) The coherence function between the 2DGM of recorded earthquakes has been calculated.  

The coherence strongly depends on the type of earthquake ground motions and the 

prediction of the coherence function before its occurrence is quite difficult.  The critical 

excitation method will provide a meaningful insight even in these circumstances. 
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Appendix 1: Computation of coherence function and transformation of PSD matrices  

     Let 1gu  and 2gu  denote the ground-motion accelerations along the building 

structural axes 1X  and 2X , respectively.  Under the 2DGM along the principal axes of 

ground motions in the P-W model, 1gu  and 2gu  are described by    

1 1

22

cos sin
sin cos

g z

zg

u u
uu

θ θ
θ θ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭
　  (A1) 

where 1zu  and 2zu  are the ground-motion accelerations along the principal axes of ground 

motions.  θ  denotes the angle between two sets of horizontal axes (=incident angle).   

Let ( )ZZ ωS  denote the auto PSD matrix of the components along the principal axes of 

ground motions.  Then the PSD matrix, consisting of 11S , 22S , 12S , 21S , of the 

components along the building structural axes may be described as 
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S

ω
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⎣ ⎦

S   (A3) 

The coherence function between the components of ground motions along the building 

structural axes is defined by  
 

1 2
12

2 2
1 2

g g

g g

E u u

E u E u
ρ =

⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (A4) 

 
where [ ]E ⋅  denotes the ensemble mean.  It is assumed in the P-W model that there is no 

correlation between the 2DGM along the principal axes of ground motions (i.e. 

1 2[ ] 0z zE u u = ).  Let orgγ  denote the ratio of the auto PSD functions 
2 2 1 1

( ) / ( )Z Z Z ZS Sω ω  

along the principal axes of ground motions.  Substitution of 1gu  and 2gu  in Eq.(A1) into 

Eq.(A4) and some manipulations provide       
o rg

12
2 2 2

org o rg

org
(1 ) s in 2

1 (1 ) cos 2
( , )

( )

γ θ
ρ

γ γ θ
γ θ

−
=

+ − −
 (A5) 

 

Appendix 2: Horizontal stiffness of frame  

Let 1u  and ABφ  denote the horizontal displacement of the upper node in the frame 

and the angle of member rotation of column, respectively.  When the horizontal force is 

denoted by 1P , the horizontal stiffness of the plane frame can be expressed as 
 

1 1 1 1/ / ( )ABk P u P H φ= = ⋅
 

(A6) 
 

The extreme-fiber stress at the top of the column under one-directional horizontal input may 

be expressed by   

( )1
1{6 / ( )}BA b c Bt EI Z Lσ θ=

 
(A7) 

From the moment equilibrium around the node B, the angle of rotation of the node B can be 

expressed by 
 

13 /[2 3( ) ( )]B AB b cI I H Lθ φ= + ⋅  (A8) 
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Eq.(A8) and the equation of story equilibrium provide 
 

2
1 1

1
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12 {1 6( ) ( )}
b c

AB
c b c

P H I I H L

EI I I H L
φ

+ ⋅
=
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(A9)

 
 
Then the story stiffness can be expressed by 
 

1
1 3

1

12 {1 6( ) ( )}

{2 3( ) ( )}
c b c

b c

EI I I H L
k

H I I H L

+ ⋅
=

+ ⋅  
(A10)

 

 

Appendix 3: Stochastic response 1  

The auto-correlation function of 1 ( )BA tσ  can be expressed by 

 

[ ]1 2

1 1
1 2

2
1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 20 0
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(A11)

 

The auto-correlation function of 1 ( )w t  can be described in terms of the auto PSD function 

11 ( )S ω  by 
 

[ ] 1 2i ( )
1 1 1 2 11( ) ( ) ( )E w w S e dω τ ττ τ ω ω

∞ −
−∞

= ∫  (A12) 
 Eq.(A11) can then be modified to 
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(A13)

 

By substituting 1 2t t t= = , 1 2τ τ τ= =  in Eq.(A13), the mean-squares 1 2[ ( ) ]BAE tσ  can 

be derived as  
1 2 2 2 2

1 11[ ( ) ] { ( ; ) ( ; ) } ( )BA c sE t A B t B t S dσσ ω ω ω ω
∞

−∞
= +∫  (A14)

 

 
where   

1 10
( ; ) ( ) ( ) cos

t
cB t c g t dω τ τ ωτ τ≡ −∫  

(A15a)
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1 10
( ; ) ( ) ( )sin

t
sB t c g t dω τ τ ωτ τ≡ −∫  

(A15b)
 

 
On the other hand, the component in the direction 2X  may be transformed into 

[ ]1 2

2 2
1 2

2
2 2 1 2 2 2 1 1 2 2 2 2 1 2 2 1 20 0

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

BA BA

t t

E t t

A c c g t g t E w w d dσ

σ σ

τ τ τ τ τ τ τ τ

⎡ ⎤
⎣ ⎦

⎡ ⎤= − −⎣ ⎦∫ ∫  

(A16)

 

The auto-correlation function of 2 ( )w t  can be described in terms of the auto PSD function 

22 ( )S ω  by 
 

[ ] 1 2i ( )
2 1 2 2 22( ) ( ) ( )E w w S e dω τ ττ τ ω ω

∞ −
−∞

= ∫  (A17) 

The mean-squares 2 2[ ( ) ]BAE tσ  can be derived as 

2 2 2 2 2
2 22[ ( ) ] { ( ; ) ( ; ) } ( )BA c sE t A C t C t S dσσ ω ω ω ω

∞

−∞
= +∫  (A18)

 

 
where   

2 20
( ; ) ( ) ( ) cos

t
cC t c g t dω τ τ ωτ τ≡ −∫  

(A19a)
 

2 20
( ; ) ( ) ( )sin

t
sC t c g t dω τ τ ωτ τ≡ −∫  

(A19b)
 

 

Appendix 4: Stochastic response 2 

The cross-correlation function of 1 ( )BA tσ  and 2 ( )BA tσ  can be expressed as  

[ ]1 2

1 2
1 2

1 2 1 1 2 2 1 1 1 2 2 2 1 1 2 2 1 20 0
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(A20)

 

The cross-correlation function of 1 ( )w t  and 2 ( )w t  can be described in terms of the cross 

PSD function 12 ( )S ω  by 
 

[ ] 1 2i ( )
1 1 2 2 12( ) ( ) ( )E w w S e dω τ ττ τ ω ω

∞ −
−∞

= ∫   (A21) 
 

Let us introduce the definition of the cross PSD function 12 12 12( ) ( )+i ( )S C Qω ω ω= .  
Then Eq.(A21) can be expressed by 
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The cross term can be modified into 
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(A23)  

Another cross-correlation function 2 1
1 2[ ( ) ( )]BA BAE t tσ σ  may be described by  
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(A24)  

 
By combining both cross terms, the corresponding term can be expressed finally by 
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Table 1 Structural member properties 
 

column beam 

Cross-section (mm) □-1500×1500×50 H-1200×600×40×32 
Cross-sectional area (mm2) 2.90×105 8.57×104 

Second moment of area (mm4) 1.02×1011
 1.99×1010

 
Mass per unit length (kg/m) 2273 673 

 

Table 2 Geometrical and structural parameters 
 

Span length (m) 2 15.0L =  
horizontal stiffness 1k  (N/mm) 7.62×108

 
horizontal stiffness 2k  (N/mm) 7.62×108

 
mass 1m  (kg) 3.87×106

 
mass 2m  (kg) 3.87×106

 
horizontal natural period 1T  (s) 0.448 
horizontal natural period 2T  (s) 0.448 
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Fig.1 Comparison of extended P-W model with P-W model   
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Fig.2 Coherence function of 2DGM with various auto PSD ratios with respect to various 

incident angles in the Penzien-Watabe model 
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Fig.3 One-story one-span plane frame consisting of beam of wide-flange cross-section and 

column of square-tube cross-section 
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Fig.4  Schematic illustration of the present critical excitation problem 
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Fig.5 Schematic diagram of the proposed procedure (order interchange of double 

maximization procedure including sub-problem optimization) 
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Fig.6 Relationship between numerical analysis of Section 5.1 and 5.2 
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Fig.7 Envelope function of horizontal ground motion 
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Fig.8  Three combinations of the auto PSD functions of 2DGM along the building structural 
axes with the constraint of sum of the auto PSD functions  
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Fig.9  Comparison of the response to the critically correlated 2DGM of various auto PSD 

function ratios with the responses to other inputs 
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Fig.10 Increase ratio of critical response from SRSS response 
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Fig.11  Co-spectrum and quad-spectrum for 1γ =  and 1L =25m 
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Fig.12 Root-mean-square extreme-fiber stress of column with respect to the angle between 
the two sets of axes to the critically correlated 2DGM and to the uncorrelated 2DGM 
(various auto PSD function ratios along the principal axes of ground motions) 
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Fig.13 One sample set of Monte Carlo simulation of the 2DGM; (a) critically correlated, (b) 
perfectly correlated 
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Fig.14 Comparison of the column-end extreme-fiber stress to the critically correlated 2DGM 
with that to the perfectly correlated ones   
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Fig.15 (a) Acceleration records of El Centro NS and EW during Imperial Valley 1940,     

(b) Cross PSD function (co-spectrum and quad-spectrum), (c) Coherence function 
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Fig.16 (a) Acceleration records of SCT1 EW and NS during Mexico Michoacan 1985,     

(b) Cross PSD function (co-spectrum and quad-spectrum), (c) Coherence function 
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Fig.17 (a) Critical-type ground motion in recent earthquake near nuclear reactor facilities,  
(b) Corresponding theoretical one predicted before its occurrence 


