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Synopsis.

A rigorous verification is made that the Meissner state has the minimum magne

tostatic energy. The tricky structure of the magnetic energy is analyzed for a system

comprised of two doubly connected superconductors, clarifying the profound meaning

of the Zeeman energy and the Meissner state. Through emphasizing the correct way

of treating the magnetic energy of an externally applied field, a new thermodynamics

for Curie-Langevin-Debye paramagnetism, for Larmor diamagnetism, and for supercon

ductor has been developed. Since the thermodynamical energy of a many electron sys

tem cannot be identical to the Hamiltonian of the system, Miss. Van Leeuwen's theo

rem on the absence of diamagnetism in classical systems is wrong. The new thermo

dynamics allows easy derivation of the London equation and it gives a new way of

understanding thermodynamically the normal-superconducting transition in a magnetic

field.

§ 1. Introduction

In the process of reorganizing classical electromagnetism in the framework of

modern physicsl), it has been found that the superconductor in magnetism just corres

ponds to the conductor in electricity. In a stationary field, the former assumes a sur

face current state producing H=O inside, just like as the latter of the surface charge

state with E=O inside. We have succeeded in proving rigorously that the surface cur-

rent state or the Meissner state of the superconductor has the minimum magnetic energy

locally, just as the surface charge state of the conductor has the minimum electric energy.

Encouraged by this simple correspondence we have tried to reinterpret the physics

of the superconductor within the framework of Maxwell-Lorentz electromagnetism. We

found that there has been in the past a complicated mixture of detours and misunder

standings. We believe that Miss Van Leeuwen's theorem is correct mathematically but

is wrong physically. There has been no adequate thermodynamics for diamagnetism

and especially for perfect diamagnetism. The understanding of boundary effects in the

physics of a Fermi gas has been inadequate and' the difference between classical physics

and quantum physics has been also misunderstood. There is a definite reason for the

presence of such a confusion, because magnetism and magnetic energy are very tricky
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Introduction .of A New Principle in the Theory of Magnetism II

subjects, the physics of which, especially, of the energy transfer in the Maxwell-Lorentz

equations, has not ~een well understood before.

It should be pointed out that, although all the description in this paper are made

in terms of classical physics, the method of analysis and .the conclusion should be iden

tical quantum mechanically. We believe that quantum mechanics is necessary to get per

fect conduction, but once perfect conduction can be assumed, the Meissner effect is a

classical property of the perfect conductor.

Paper I of our study has been published in "Bussei Kenkyu" in English2 ) already.

From our experience, we prefered to publish this more detailed first paper in this no

referee Journal. Although in this paper, we frequently summarize the result of paper I,

it is strongly recommended that the readers should read paper I before trying to under

stand this paper II.

It should be noted that all the physics in this paper stand on the postulate that

magnetization always comes from persistent currents. We have succeeded in obtaining a

very accurate persistent current model of the electron 3), which, of course, presents one

of the necessary supports to this paper. The more rigorous explanation of the meaning

of magnetic energy will be given in paper III soon28).

§2. Magnetic Energy of A System of Superconductors

Let us assume that there are 1, 2, ..... , N superconductors with stationary persis

tent currents. Then the macroscopic total magnetic energy of the system, Urn' is

(/J. = CIL·· AI·
I . I J J

J

(1)

( 2)

in which M j and L ij are the total current of a closed circuit Ci , and the mutual induc

tance of the circuits i and j. Here we use the MKS rationalized symmetrical unit system

(MKS rationalized Gauss system, or, MKS Heaviside-Lorentz system)* for convenience.

We call this sytem the MKSP system, in which P stands for physical. We have subdivid

ed all the currents into a number of closed loop circuits i with infinitesimally small cross

* We recommend that this system be used for research and education, and that the MKSA system

be used for the electrical engineering. Since the two systems are both MKS and rationalized, the

compatibility is extremely good.
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sections. <l>i is the total magnetic flux in the loop Ci . There is no requirement on

each Ci , so that Ci and Cj may cross or the shape of Ck may be qui~e artificial, but

is still allowable if Mk is assumed to be zero initially.

Let us make the variation of Urn with respect to <S(Mi ). Then

oU = .2'L· ·Lt1.0(Lt1.)m .. I.] J J
I, J

1
=.2'-(/).0(Lt1·)

i C J 1

From Eq. (3), in the minimum energy state, we must have the relation

(/). = 0
1

(3)

When we have no further requirement, Eq. (3) leads to a trivial solution in which nb

current remains. Let us impose one more physical condition to the variation of ·Eq. (3).

Namely, in the minimization procedure we require that only the variations which are

confined to a small micro region are allowable.

This requirement comes from two physical reasons. One reason is thermodynami

cal, which states that the the change in a system occurs always locally so as to reduce

the total free energy of the system. The other reason is related to the requirements

for interfacing between microscopic Maxwell-Lorentz electromagnetism and macroscopic

Maxwell electromagnetism. From the Maxwell equations, on any path CA.' the relation
I

1 8(/)). .
IC ).i E • d 1 = - C at 1 ( 4)

is present. The assumption of perfect conductor does not necessarily indicate that

E=O (5)

inside, since there are kinetic energy phenomena. Nevertheless, when we assume further

that the mass of the current carriers is infinitesimally small, macroscopically we cannot

allow the change of the flux in the perfect conductor. But, microscopically, in the

Maxwell-Lorentz electromagnetism, it is theoretically quite possible to assume a small

change of the flux <l>A" because this is accomplished by only a small successive change
I

of the route of each current carrier in the Maxwell-Lorentz world. Then, the condition

stated in Eq. (3) is only required for the loop Ci's that can converge to a point with

a continuous deformation of the loop inside of the conductor. Therefore, in the mini

mum magnetic energy state, all the persistent currents should be on the surface and

-210-



Introduction of A New Principle in the Theory of Magnetism II

there is no magnetic field inside the pertect conductor. Such a condition simply corres

ponds to the Meissner state. Of course the minimum energy state is important in ther

modynamics, because, when the corresponding state is not associated with an appreciable

decrease in the entropy the state must be realized and we believe that such is the case

for our problem. A similar conclusion has been reached before from a different approach4 ).

What we hope to emphasize here is the expectation that the Meissner effect is a

classical phenomenon and that, since the electric current in conductors in general is

known to be a drift current, there must be a general classical principle which maintain

the surface drift current dynamically.

§3. Tricky Dynamical Structure of the Magnetic Energy

Although it is well known that the statistical physics for th~ magnetism of a mag

netic entity which has permanent magnetic moments, and, for an entity which has no

permanent magnetic moments must be different S),6), there has been no detailed analysis

of the difference. Let us start our analysis from the case of two doubly connected

superconductors, C1 and C2 with purely surface persistent currents II and 12 (Fig. 1).

Here we assume the presence of an idealized superconductor from the first. After cer

tain long classically strict calculations2) we have finally

_ 2
ilL - L u L 12 - L 12

( 6)

(7)

Here, L 11, L 12 and L 12 are the effective self- and mutual- inductances of the total cir

cuits C1 and C2 , and, <PI and <1>2 are the total magnetic flux confined in the circuits

C1 and C2 respectively. Eq. (6) is quite rigorous and the only assumption needed is

the superposition principle.

We regard Eq. (6) as the fundamental equation for the magnetic energy for analy

sing our problem.
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(a)

(b)

Fig. I Two doubly connected idealized superconductors C1 and C2 •

C2 's is the cross section of a spherical shell C2 with holes in its
two poles.
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Introduction of ANew Principle in the Theory of Magnetism II

Now from Eq. (6), we get in general

(8)

First we shall analyze the case where a permanent magnetic moment, such as elec

tron spin3), is present. Then C2 represents this microscopic entity with a permanent

magnetic moment and C1 represents a macroscopic current loop. Since, in this case,

the main current distribution in C2 and C1 are determined separately and independently*,

it is reasonable to assume2 )

OL 22 = 0, oLu - a

Then we have

(9)

of]>2
oU - I --

m 2 C (10)

From Eq. (4)7),2),

0(/), .
IE -= fffv E· Jo tdV,= oAfC ,

where 5A~ is the work given to the current I~ through the induced electric field E.

When the current is supplied by a source, this energy is given to the source, and, when

the current is a persistent current and the current has another mechanism of keeping

the energy, then

(12)

i. e., it transforms into the increase of the potential-like energy of the persistent current

system ~,Uk~. (k is taken from the word "kinetic") On the other hand,2)

* Rigorous comparison of the order of the magnitudes of these imdependent and dependent

current intensities are given in Ref. (2).
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(13)

Here, H21 is the magnetic field supplied from C1 to C2 and 1J.2 is the magnetic

moment of C2 • In deriving Eg. (13), we have made a few reasonable approximations. 2)

Now we get

( 14)

Here* indicates that the variation should be performed only for the mutual location of

1J2 and C1 ·

Eg. (14) represents the fundamental origin of the famous Zeeman energy expression

and we believe that the Zeeman expression is just an effective Hamiltonian, the variation

of which represents the change of the total energy of the system.

In order to understand the implication of Eg. (14), we need one more structure

of the problem. In this case, when the current of C1 is maintained constant, then

after a lengthy calculation we can get

so that

When, C1 is an idealized superconductor for which no electromagnetic energy can be

received through induction,

and again

can be obtained. This means, that the usual treatment for an atom using the usual

Hamiltonian is effectively all right, and the excess energy may be radiated from the

considered atom, just according to the usual way of understanding. The analytical
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procedure to obtain this result will, however, be left to a paper in near future. 28) In

these processe,s, how~ver, 8Uk1 is definitely involved and this transfer of energy can have

a certain serious meaning in the thermodynamics of some magnetizable materials.

Next let us extend the analysis to the case where no rigid permanent magnetic

moment can be assumed. From Eq. (4), we get

1 1 , 12 (15)

1 ( 2 2
2 L 22 (/) 1 - 2 L 12 (/) 1 (/) 2 + L 11 (/) 2) (/) l' (/) 2

2c LtL

2 2
_ 1 ( L 12 ) 2 1 (/) 2
- - L 11 - -- II + -- --2- I l' (/)2

2 L 22 2L 22 c

2 2
1 (/)IlL12 2

--- --2 +-(L 22 ---)1 22L 11 C 2 L 11

(16)

( 17)

( 18)

Now, let us fix the locations of the two conductors in their most symmetric configur

ation such as shown in Fig. 1(b), and consider only the change induced by the change·

in the two independent variable taken from II, 12 , <PI and <P2. Then

Here, in the third column we show the minimum magnetic energy condition under the

given restrictions. In the forth and fifth columns, Meissner or Zeeman mean that the

corresponding state. has parallel or antiparallel magnetic moments of the two conductors.

The forth column indicates the situation deduced if only the magnetic energy is
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considered and the fifth indicates the situation deduced from all the energies involved,

the actual situation expected physically.

As we see, the situation is very delicate and tricky. We regard that the most im

portant are cases I and III. Since the entity 2 can see only the magnetic field from

C1, this physical si!uation corresponds to constant 11. Case I tells us that, if there is

no other condition, the <1>2 =0 state has the minimum magnetic energy. It will be

easy to see that this state just corresponds to the Meissner state of a simply connected

superconductor. In case IV when we require that the magnitude of <1>2 is constant,

then, from Eq. (17), the energy has no dependence on the sign of <1>2. In case Ill,

although the magnetic energy Urn becomes minimum when the magnetic moment by 12

is antiparallel to the magnetic field by 11, we know from Eq. (14) that the total energy

becomes minimum in the Zeeman state. When there is a current 12 in a magnetic

field, 8 21 , then the current must receive a Lorentz force which exerts a torque upon

C2 • When there is another energy and momentum .reservoir, such as the lattice, in C2 ,

then the system release the Zeeman energy of Eq. (14) to this reservoir, and C2 will

start a rotation. When, however, there is no such reservoir, then C2 will start Larmor

precession, keeping the Zeeman energy constant, which, of course, cannot maintain

eternally. This is the reason that we conclude the Zeeman state will be its final type.

The same principle cannot work in case I, because the presence of 12 is not guaranteed.

Case II as compared case I demonstrates tricky structure of the magnetic energy show

ing that a slight change in the fixed conditons results in a completely different math

ematical. result. Of course we know from the general principle of physics that, as

the requirement for C2 , case I is physically simple but case II is not, although we

can construct ,case II by using a superconductor for C1 2),7). Case III, IV and V

are quite similar. The difference between cases IV and V corresponds to the 'differ

ence between case I and II. The spin magnetic moment of the electron will be close

to case III3). Although there are slight differences in these case, there is a difinite

torque exerting towards the minimum Zeeman energy state.

In conclusion, we can say that the case with a permanent magnetic moment and

the case with no permanenet magnetic moment must be distinguished. The Zeeman

state is for the former, but, for the latter, the Meissner state will be realized because

this state definitely has the minimum magnetic energy and there is no further dynamical

requirement.
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In these analyses, we have assumed that the processes are quasi-static, i. e., C1 and

C2 are assumed to couple electromagnetically tightly, and we have neglected the time

for the electromagnetic wave to travel from C2 to C1 or from C1 to C2 . At first

glance, it looks that this may not be the case when the diameter of C2 is extremely

large. Careful analysis, however, has shown7) that, even in the latter case, the changing

electromagnetic field constructs a local mode which couples tightly with the change of

the electromagnetic quantities of the source and there are no appreciable radiating elec

tromagnetic waves. In both these situations, since C2 can see only the magnetic field

at the location of C2 , we can conclude that the major physical phenomena for C2 must

be not different in the two cases. In the following calculations, although we frequently

use the idealized electromagnetically tightly coupled superconductor as the source of the

applied magnetic field, this is just for the purpose of simplification and general applica

bility of the results must still be present.

§4. New Statistical Thermodynamics of Magnetizable Materials.

In order to reorganize the physics of materials in a magnetic field taking into ac

count the role of the magnetic energy correctly, the obvious procedure is to find out the

material function which is to be minimized. We found that this can be done by exploring

the statistical thermodynamics of the system. Now, the thermodynamics of ferromagnets,

and diamagnets has been believed to be well understood 8),9),10),11). However, there are

some different opinion 12) and different approaches I3), and we believe that the thermo

dynamics has not been well understood.

Let us present our analysis. For simplicity we assume as the specimen a unit

volume material taken from a very long cylindrical specimen, 2, which is immersed in

a magentic field of a similar long coaxial cylindrical superconducting coil, 1, which main

tains a supercurren t for supplying the magnetic field to the specimen. In this way we

can reglect the boundary or shape effect of the problem. In order to avoid unnecessary

complicaitons, we shall make every kind of simplification hereafter.

A. Curie-Langevin-Debye's Paramagnetism

Let us first assume that the magnetic elements in the specimen have freely rota

table permanent magnetic moments and they are present independently, or well separated.
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Then the important microscopic energy relation is Eq. (14) and we know from a general

principle in physics that the energy released from the system is present initially at the

place where the change has been generated. The the total entropy S of the system

will be represented by

(22)

where M is the magnetization and UL is the energy of the lattice or the energy which

is not related directly to the electromagnetism. The magnetism related energies of

From Eq. (24), the equation

dUL = TdS+ HdM

should apply. Eq. (25) can be justified from the following two considerations.

1), when the heat dQ is given to the system, then

dUL = TdSL = TdS - TdSM

= TdS -'- dQM = TdS +HdM

(23)

(24)

( 25)

(26)

where SL and SM are the entropies of the lattice and the paramagnetic system, respec

tively. From Eq. (14), it is obvious that

HdM= - dQM = - TdS M

is the energy or the heat released from the paramagnetic system to the lattice.

2), when dQ =0, and dM =FO, then

dS= °
and

( 27)

(28)

(29)

Since Eq. (25) has been justified in these two cases, it should be correct generally.

We know that there is a radiation energy equation 14)
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- cff EX H- otds = fff (E- oD+H- oB+E - jot )dV

--. JJJ (H - oH + H - 0M ) dV .

(30)

Eq. (27) tells that, in this case, the energy expressed by H·oM is transformed exclusive

ly into the increase of the energy UL .

The Halmholtz free energy, enthalpy, and Gibbs free energy, Fl, %1, and Gl, are

F l = UL - TS

Jil = UL - HM

0 1 = UL - TS - HM

dF l =- SdF+HdM

dvUl = TdS - MdH

dOl = - SdT- MdH

(31)

(32)

(33)

From thermodynamics, we can conclude that at constant temperature and constant mag

netic field, G 1 should be minimized. When we can assume that UL is not dependent

on M, we get the usual Zeeman energy type statistics from Eq. (33). It should be noted

that we can use

HdB (34)

(35)

in Eq. (25) if we add
HZ

2
to the internal energy UL . This is strictly allowed physically also from Eq. (30).

Then we have

( 36)

dUll = TdS + HdB

Jill = U II - HB

G II = U II - HB - TS

dpII = - SdT + lIdB

d,J{II = TdS - BdlI
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M2 B 2

= V L + 2 -2 - TS

H2

= V L - 2 - lIM -TS dGII = - SdT - BdH (40)

At constant temperature T and applied magnetic field H, GIl should be minimized and

the result is identical to the case of Eq. (33).

It should be noted that in this treatment we do not regard the Zeeman energy

as a part of the internal energy, because, from Eq. (14), it is definitely related to the

external world. (H2 /2) will also be related to the external world. But, mathematically,

we can add it to the internal energy without introducing any different result. This is

because,' from Eqs. (29) and (30), in this idealized Curre-Langevin-Debye paramagnetism,

this part can be regarded as a strictly reversible magnetic potential energy.

B. . Larmor Diamagnetism

Two physically identical treatments I and II are also possible in this case. Now

there is an important difference between diamagnetism and paramagnetism. In paramag

netism, it is at least theoretically.possible to take off the magnetic field from the speci

men adiabatically while keeping the magnetization practically constatn.Maxwell's demon

can do this work without consuming energy theoretically. But in diamagnetism, this is

not possible because the magnetization is due to the Larmor precession, which can ex

ist only in the presence of a magnetic field. We have to admit that magnetic field

and magnetization are inseparable in diamagnetism.

Now, let us assume an idealized non-conductive diamagnet such as the molecular

crystal. The total energy in this case is

V total = V + V + IV i + U .
m kl i k2 L

Let us define the internal energy

or

VI = vtotal - V - V
kl m
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Then
s=S(U I

, B)
and we have concluded that

dUI = TdS -MdB

(45)

(46)

The second term of Eq. (46) is quite important and is based on the energy transfer re

lation of the Maxwell equations and the Maxwell-Lorentz equations?). In this case, the

magnetic energy of the Maxwell-Lorentz world, urn' can be classified as

u = fff~ dV= fff~ dV+ fff (h') dV (47)
m 2 ·22

where

h = B, h' = h - B , h' = 0 . (48)

(50 )

we should regard the first term as the macroscopic long range magnetic energy, Vm' in

the Maxwell world and the second term as a part of the internal energy

(49)

because, in the Larmor diamagnetism, the short range magnetic energy must couple in

separably with the motion of the electrons 28). This classificaiton of the magnetic energy

is not possible in the Curie-Langevin-Debye paramagnetism, because one of the component

of B, i. e., M is concentrated in very small regions where the permanent magnetic mo

ments are present, and, as shown in Eqs. (36) and (37), H is more important than B

there. Now in the present case, in terms of Eq. (30), we get

B2

H· dB= d(-) -M . dB
2

Then, -M·dB must be the work given to VI. This conclusion can be justified from

the Maxwell-Lorentz equations also. We have?)

II'
V'X hI' = _. +

c

1ah
V'Xe

cat

1ae l'

cat
(51)

(52)

(53)
ah ael'

- c V'. (e X hI' ) = hI' 0 - + e 0 II' + e·
at at

ah ae p

- cffseXhl'ods= fffv [h~o-+eo IP+e o
- ]dV'. (54)at ,at
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Here

Jf f I I' dV = ~ - e "v~
ill

(55)

is the effective current of the persistent electron movements which are contribution to

the Larmor diamagnetism, and hM and eM are the magnetic and electric fields which are

associated with these electron movements. hM and eM can be defind in each place local

ly by taking a small needle volume along the magnetization 7). Further, it is geometri

cally reasonable to assume

- effs e X hI' ° cis = - effs e • hI' X dS = 0 (56)

at the surface of the specimen volume7). Eq. (56) means that e and hM are not cor

related and the energy transfer through magnetomechanical actions such as magnetostri

ction are neglected. Then,

aB ah ' ae~- fIfv M· at d ~ = III v [ e • I I' + (hI') I. at + (E + e I ) ° at ] dV (57)

where

(hP)/= hP - h P = hP-M

h /= h - h = h -H- M

e / = e - e = e - E

(58)

(59)

When w.e assume that, in a small needle region, the only origin of the magnetic moment

related fluctuation is due to the change in hM, we can derive from Eq. (57)

aB a (h / )2+ (e / )
- fffv M· at dV = fff [ e • I I' + at { 2 }J dV (60)

Obviously eolM is the work given to fUk2 and, from the argument of Eqs. (47), (48),

and (49), we can conclude that,

- M • 0 B = 0( ~U~2 ) ( 61)
1

which is in excellent agreement with the interpretation of Eq. (50). It is to be noted,

however, that there is a question whether the usual Hamiltonian does include the term

(h / )2"
III dV

2

-222-



Introduction of A ~ew Principle in the Theory of Magnetism II

of Eq. (47), or not. This is one of the essential parts of our study, for which an im

portant analysis will be given in §'s 5 and 6. The conclusive analysis will be given in

paper 1112 8). From Eq. (44) Urn is not included in UI and we have the relation (46).

Then

0 1 = U I - TS + MB , dOl = - SdT + BdM

F I = U I
- TS

J{l = U l +MB

dF I = - SdT -MdB

dJ{1 = TdS + BdM

(62)

(63)

(64)

( 65)

duce

Now, in the actual experiment, we have to fix T and H. Therefore, let us intro-

Then,

dI = TdS -MdH (66)

F' = I - TS = U +.EU i + M
2

- TS
L i k2 2

dF' = - SdT - MdH

aF'
S=-(aT)H

(67)

( 68)

Therefore the free energy F' should be minimized. Now it becomes large when IMI in

creases. As we see, M 2/2 seems to play the role of the intrinsic internal energy of the

diamagnet. This situation will be analyzed more in detail in §6.

In this case also it is possible to make another treatment in which the magnetic

energy, Urn 7).

B2

Urn = 2 (69)

is included in U. When this has been done, then

U II = U +.EU i + ~
L i k2 2

dU II = TdS + HdB

Jill = UII - lIB

dF = I1dB - SDT

del! = TdS - BdH

-223-
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GII=UII-TS-HB=U +~Ui +M
2

_H
2

-TS
L i k2 2 2

dGll = - SdT - BdH

(73)

(74)

The equilibrium condition at constant T and H is to minimize the Gibbs free energy GIl.

Now from Eqs. (74) or (67),

aGIl

B = - ( 8H )T (75)

a . aM as
M= -( 8H)T (U L + fU~2) - M( aH)T + T( aH)T (76)

a .
= - ( aH ) T ( fU ~2 - TS ) (77)

since (DM/DR) will be very small in a usual weak diamagnet. This is an important point

which we shall discuss later for the Fermi gas. From Eq. (44), ~U~2 can include all
1

the internal interactions of the diamagnetic entities and this is usually represented by

the Hamiltonian of the entities. Then Eq. (77) tells us that a ~nd of Helmholtz free

energy constructed from this Hamiltonian can in practionse give accurate magnetization

predictions, provided that the resultant diamagnetic moment is small.

c. Superconductor or An Idealized Fermi-Gas.

Now let us analyze the case of the superconductor. As we all know, this is a

difficult problem and it will be not possible to construct a rigorous framework of ther

modynamics without assumptions. We believe, however, that we have succeeded in con

structing a fairly reasonable thermodynamical description. It is to be noted that, by

the study of part 12), we can regard the superconductor as merely a perfect conductor.

Quantum effects are important in obtaining perfect conduction, but thre is not so much

mystery after that.

At first we should point out that the previous thermodynamical treatments 15),16)

of the superconductor are inadequate in that they regard all the· body as a single uni

form subject. Since the major volume of a superconductor in an external magnetic

field has no magnetic field, its thermodynamical energy must be identical to the energy

which is present without the application of the magnetic field. Then, since the surface

current layer is in intimate contact with the internal body, some thermodynamical func-
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tion will be identical over the entire body of the superconductor, irrespectively of the

presence of the magnetic field and the drift current.

Let us take a thin coaxial cylindrical shell unit volume in the superconductor and

apply the second procedure of the diamagnet, with an additional condition that M = 0

and j =F O. We know 2) in this case that, since the magnetic field energy couples intrin

sically with the other energies, this seems the only adequate procedure. Here, we assume

that the shell is so thin* that it can be located inside of the surface current layer and

the penetrated magnetic field H is uniform over this volume. Then

. H2

U= UL + fU~2 +2 (78)

will be obtained. Here ~U~2 will mean all the internal energies of the electron system,
1

which are composed of the kinetic energy of the electrons and the electrons and the

electric interaction energy with the lattice and the microscopic electric and magnetic

mutual correlation energies of the electrons. The macroscopic magnetic interaction

energy will be treated separately. Since we know that B is identical to H in the super

conductor, we put B =H from the first. Then the entropy

S= S(U, H)

and from Eqs. (70) and (30),

dU= TdS + HdH

(79)

(80)

can be obtained. In Eqs. (79) and (80), we have already assumed that thermodynamically,

the current densi ty j(r) is not independent of the magnetic field strength H. In ceriving

the last term of Eq. (80) from Eq. (40), the only one doubt concerns the effect of the·

E-jot term. We, however, have concluded that this term, in contrast to e-I IL Of of the

ideal diamagnet, cannot be distinguished from the heat input in our itenerant conduction

I electron system, and should be regarded as having been represented by TdS already.

This will be an important assumption for which the relation to quantum effect should

be discussed. One should remember, however, that the Joule heat in a normal conduc

tor is regarded as nothing but hte heat input and we keep the same physical interpret

ation in this case. Then

. H 2

F = U - TS = UL + fU~2 + 2 - TS

* Could be as thin as the width of a few A.
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dF=-SdT +HdH

and, as in Eq. (73),

G= F-H 2 =U + ,SUi - H
2

- TS
L i k2 2

dG= -SdT -HdH

(82)

(83)

(84)

Eqs. (83) and (84) tell us that the Gibbs free energy in this case is dependent on the

magnitude of the penetrating magnetic field H with a negative sign as compared with

the positive sign of the same term in the Helmholtz free energy F. Thermodynamically,

the Gibbs function is important for phase equilibrium 17). Let us assume that the num

ber of the interior conduction electrons which are commuting rapidly is a constant and

that normal thermodynamics is still effective in this case. Then form Gibbs-Duhem's

theorem, the Gibbs function G should be a constant over the whole volume of the

superconductor 17). Then it is obvious that G must be independent of H, so that, in

the surface current region,

must be correct. Here, A means the increase from the value at H = o. When we as

sume further that

JS = 0 (85)

because all the electrons may have only a constant shift of their velocity in the veloci

ty space because of the action of the magnetic field 2), then we can expect

This equation has turned out to be identical to the London equation. If we can assume

and

J(IU i
) = n~ v 2

i k2 82 D
(87)

(88)

where ns is the number of the superconducting electrons and vD is their drift velocity,

we can derive easily

H = Ho exp (-J n, • ..!:- 1J ) '\l ( ( 89)
m C
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VD = Ho exp (- j n, • --=- 7J )ve (90)
J nsm m c

Here; (~, fl, n are the cartesian coordinates, of which fl is the normal to the surface

boundary and ~ is parallel to the circumferential direction. Eq. (87) is the relation nor

mally accepted. This relation can be derived in this paper from Eq. (109), or, from Eq.

(87) of Ref. (2), thermodynamically, in which the magnetic energy has an identities of

2- e v-A HI· m =
=-- =--L1(.EU 1 )=-_v 2

c 2n n . k2 2 D
S S 1

(93)

(91)

(92)

( M
2

~ ~)
2 2

formation, the Gibbs function of the normal phase must be calculated.

B2

Un=Un+.EU i +-
L i k2 2

F n = Un + .sUi + B
2

- TS 2
L i k2 2

B2

On = UL+ fU~2 +2 -HB-TS n

= un + .EU i + B
2

- TS n
L i k2 2

Although here is an interface between quantum physics, the Maxwell-Lorentz classical

physics, and the Maxwell physics, we believe that the relation (87) itself can still be

understood classically. Since there must be strong electric Coulomb correlations, the

movement of the electron system is essentially collective and thermodynamical, and ns

will be accurately constant. Then because of Eq. (109), the increase in the kinetic

energy has to be cancelled by the corresponding decrease in the total magnetic energy

which results in Eq. (86).

In §6,and paper lIP8), we shall give the fundamental electrodynamical principle

which leads to these proposed relations. A very important new magnetic electron-elec

tron interaction term will be introduced there.

In order to check the critical field for the normal to superconducting phase trans

Then

Then the phase equilibrium atH = He is

H2 2
un+(m i )n __C-TSO=US(H)+(.sU i )S-!!--TS s (94)

L i k 2 2 L i k2 H 2 H

= ut(O)+(~U~2)~ - TSo
I
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(95)

Therefore,

H2

,'in (H ) = d's (0) + _c
c 2

Here:7 means the usually used Helmholtz free energy which neglects the magnetic energy.

Although this way of thinking is quite different from the existing theory 15),16),18), the

final result is similar. What makes the superconductor different from the diamagnet is

the difference between Eqs. (70) and (80). For the diamagnet, since there is M, there

is a microscopic persistent current reservoir the increase in the energy of which being

represented by -MdB, but for the superconductor, there is no such explicit microscopic

reservoir. As we see in Eq. (87), however, there is an implicit reservoir in the total

kinetic energy of the electrons, when the magnetic field H has penetrated.

Now, in the superconductor, what free energy should be minimized? This is a

different problem, since the system is not homogeneous and one of the independent

parameters, i. e., external field intensity, Hext, is implicit in all the hitherto described

equations.

§ 5. Thermodynamical Function of A Superconductor and Classical Derivation of the

London Equation

In §4, we have already derived the London equation (90). Here, we shall derive

the same equation from another point of view.

Now the total energy utotal of the system will be

U to tal = J' fJ [U (r) + ~U i (c) + {H( r ) }2 J dV
J. L i k2 2

and the total entropy S total will be

S total = III s ( u , H ) dV

Then

JS total = III [( :~)H LlU+ ( :~)u LlHJ dV

Llutotal = TLlstotal - IIIT( :~)u LlHdV

= T LIS total + JJJ HL1H dV
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In deriving Eq. (99), Eq. (80) is employed. Now, from Eq. (99),

H = H ext + Hint (100)

aH
int

J H = [ 1 + ( ) ] J Hext (101)
aHext S

Here, Hint means the magnetic field induced internally. Then, the total Helmholtz free

energy

F total = Utotal - TS total (102)

aH
int

-dF total = - S total LIT + [ Ilf H ( 1 + aH
ext

) dV] LlHext (103)

so that, at constant temperature and external magneti.c field, Ftotal(T, Hextj,

Ftotal = Iff [u + zu i + H
2

- TS] dV
L i k2 2 (104)

should be minimized. In this way, we get the thermodynamical funCtion which contains

magnetic energy term with its original sign. This is essentially different from the case

of a diamagnet, as is seen from Eq. (73). This situation comes from the fact that H is

not an independent quantity in this case, as is shown in Eq. (l00).

Noticing that the boundary effect is essential, it is not so easy to minimize ptotal

at constant T and Hext. However, as we mentioned already, the superconductor is an

ideal material for magnetism and, the fact that the drift current exactly obeys Maxwell's

equations encourages us to believe that there must be a general simple principle in the

solution of Eq. (104).

Let us direct our attention to the kinematical motion of a single charge after the

equilibrium has been attained. Then its Hamiltonian will be

7/ = [p + ~ A (r ) J
J,l __~ - e ¢ (r,)

2m
( 105)

This ~harge could be a Cooper pair of the two electrons.

We shall assume for convenience, however, that this charge is that of an electron.

Here A(r) and <j>(r) are the final stationary self consistent vector and scalar potentials in

the specimen. Eq. (105) represents the kinetic and electric interaction energies of ~UL
1
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in Eq. (104). Although we know that, if A(r) and ¢(r) are stationary, Eq. (105) repre-

(106)

It is an' interesting feature of the structure of electromagnetism that the macroscopic

electric and magnetic energies are expressed by the first and second terms of the last

expression of Eq. (106) 1),7). Here, we have enumerated all the charges, including those

of ion cores and of the external magnetic field source. By an elementary calculation,

it is easy to show that the radiation energies which are traveling in space are extremely
-2

small in this kind of problem in which the highest velocity is less that 10c and the

motion of each electron is not correlated for the radiation 7) In this quasistatic situa

tion, all the electron movements can be regarded as tightly coupled to the total elec

tromagnetic energy with Eq. (106). The second term of the last expression of Eq. (l06)

is the magnetic orbit-orbit interaction, which is usually not only neglected but also dis

regarded in elementary Hamiltonians of atoms. In our problem, since the first term

must be nearly constant and the third terms is inseparable from the kinetic energy of
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the electrons this is the most important term 28). Now, the effective parts of the elec

tromagnetic energies of Eq. (106), which are related to i-th electron, are

Here,

Vi (t )
L1 . (u + u ) = e· ¢. ( r ., t) + e· A· (r., t)

1 e mil 1 1 1 1
C

ClO7)

¢.(r.)=~
1 I j~i

e·1

4 7r r··IJ
~ ¢( [.)

1

A·(r.)=~
1 1 j~i 411: r·· c

I)

~A(r) (l08)

We know that, in the actual situation, in which all the electrons are distributed quite

uniformly, 1>i (ri) and 1> (ri) or Ai (ri) and A (ri) are not different. Eq. (105) does not

contain the magnetic interaction energy of the second term of Eq. (107). A fundamen

tal detailed explanation of this point will be given in paper III. In this way, we get the

thermodynamical energy expression of a single electron as 2)

. V' = [p + fA( [) ] 2 _ e ¢ (r)
2m

ev· A( [)

c

(109)

Accordingly we get an important conclusion that the thermodynamical energy expression

of an electron is different from the Hamiltonian of the same electron in this case. Now

let us change the viewpoint. Since we are dealing with a collective motion of an enor

mous number of electrons, let us regard Eq. (109) as a representative expression of a

number of electrons which have cylindrically identical kinematical state at every sym

metrical portion of a thin cylindrical shell in the specimen. Then we can regard Eq.

(109) as the thermodynamical weight of the electrons at the location r. Then when we

have fixed the location r and observe the momentum distribution of the electrons which

pass through this location, we should expect from symmetry that

p = 0 ,
= e

mv=-A(r)
c

(110)

provided that the derived solution can satisfy selfconsistency requirement. Here double

bar means average over electrons. This is just the London equation 2). (In normal con-
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ductors, because of the presence of the scattering by the lattice, the additional re

quirement would be v = 0, which will lead to inconsistency with Eq. (II 0). )

Physically, Eq. (I09) tells that the thermodynamical energy is considerablly raised

for the paramagnetic surface electrons which rotate clockwise in the boundary area mak

ing repeated collisions 19),2) and the number of these electrons diminishes by the ther

mal processes. It is easy to show that the increase can be as high as several tens of

electron volts for a centimeter sized specimen 2). Therefore, it is easy to realize that

the Meissner state can be generated, as a result of the thermal annihilation of these

high energy paramagnetic electrons 2). It also should be mentioned that when the

magnetic field is applied to a superconductor from outside, this change of state occurs

dynamically and adiabatically as well by the action of the induced electric field E at

the surface 2). Therefore, actually, the famous figure 5 of Ref. (5) will never be realized.

It is also to be noted that, if the specimen is not simply connected, then the well

known technical gauge change is necessary in Eq. (II 0), because otherwise self-consistency

cannot be obtained.

§6. Environmental Situations and Discussions

In part 2>, we have concluded that there was an insufficient understanding in the

treatment of the magnetic energy of an externally applied 'magnetic field, and after in

trodUcing a correct way of processing this energy, it was stated that Miss Van Leeuwen's

theorem must be wrong, that perfect conduction must lead to the Meissner effect,

and that the usual treatment of Landau's diamagnetism will be incorrect in that it dis

regards the high magnetic energy of the orbitally paramagnetic electrons 23)""'27).

We believe that this paper has established these statments in terms of thermo

dynamical functions for the idealized paramagnet, diamagnet, and superconductor.

Here, we shall discuss several of the important points of our study. The first one

is the physical meaing of the vector potential A. We insist that, as shown in Eq. (I 08),

we should regard the vector potential A in the Lorentz gauge as a real physical entity

and other than the mathematical technical gauge transformation, there is no physically

significant freedom for the gauge transformation 7). Only one exception is the propa

gating wave, but, under given experimental conditions, they must also be uniquely de

termined. Detailed discussion on this most important problem will be made in paper

III28), in which the presence of a fundamental orbit-orbit interaction of two moving
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electrons will be established. In our situation, this interaction reduces to the form of

( - ev 1 ). ( - ev 2 )

2411: r 12 C

which represents the fundamental element for constructing the vector potential A(r) in·

free space. Therefore, under the given physical situation, there is no gauge freedom for

the vector potential in the space. This situation is physically, identical to the case of

the Coulomb electric potential

for which no gauge freedom is considered usually. In Fig. 2, we show some examples.

In (a) we have an infinitely long cylindrical coil, in which the vector potential A extends

outside of the coil where there is no magnetic field H. The existence of this A can be

manifested when we change the current of the coil. Then we have a definite electric field of

1 8A
E=--

c at (111)

which must be cylindrically symmetric. As is shown in (b), the shape of the line of

force of A must be different for the case of a coil with a circular cross section from

that with a rectangular cross section. This must be reflecte'd in Eq. (Ill), even if there

is no magnetic field H. In (c), we show another example, in which the case of a super

conductor ring with surface current is presented. Now the vector potential A must

have an axial symmetry and it is present even inside of the ring. But, since

V7XA=O (112)

inside of the superconductor, this A does not have any action upon the electron in a

stationary state, so that we must use a special technical gauge for obtaining the London

equation in this case. But when we can change the surface current, for instance, this

true A should have an action to create an electric field according to Eq. (II I). But,

of course, the effect of the perfect conduction of the ring must be taken in to account.

The next point of discussion is concerning the famous relation 29) in magnetism of

aJf
=-j.l
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Fig. 2. Examples of the vector potential A, which is associated with a stationary magnetic

field, and the electric field - ~ ~~, which is induced by the change in the electric current

of the source of the magnetic field. (a), solenoid coil. (b), cross sections of a cylindrical
coil and a rectangular coil. (c), superconducting toroid with a magneti c flux inside.
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in which IJ. is the total magnetic moment of the system. As has been analyzed in

§6 of paper 12), this equation is not generrally correct. This equation, however, in

some cases is misunderstood as the fefinition of the magnetic moment of the system.

Therefore, we shall analyze this problem further from our thermodynamical point of

view.

Now since Eq. (I13) is a result of an adiabatic change, we can use our result

and Eq. (30) as follows. In an ideal paramagnet, we have from Eq. (32)

Js = -M

[ 8(UL -HM)J --
. s - M

8H

Eq. (113) is correct, provided that we use

In an ideal diamagnet, we get from Eq. (66).

. M2

8(UL+fU~2+2)
[----.,....------

8H

This means that Eq. (113) is not exactly correct, but if we assume

dM
M· dH ~ M

then Eq. (113) is approximately corect if we take

J/= U + ..EU i
L . k2

1

(114)

(115)

( 116)

(117)

(118)

as the Hamiltonian. Note that we remarked on this situation when discussjng Eq.

(61). The same conclusion can be derived directly from Eq. (30).

- c ffs E X H· dB = fffv H· oB dV

Therefore, if we neglect M2 /2 and disregard the B2 /2 term as the magnetic energy'

of the space, we get Eq. (113).

We can also verify the incorrectness of Eq. (113) by using a microscopic current

model. As shown in Fig. 3, let us assume a very small needle shaped persistent cur

rent system C2 in the magnetic field of very large superconductor ring C1 . C2 is

assumed to move on the symmetry axis of C1 • Now the microscopically defined
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Fig. 3. (a), Small needle specimen C2 placed in a magnetic field of large supercon
ductor ring C1 • (b), a small needle volume ~V taken inside of C2 .

total magnetic energy of the system, Urn' is (see Eq. (1»

( 120)

in which M'A and M j are the differential current intensities of the closed current loops

A and i, in C1 and C2 respectively. Current loop A is very large, but current loop i

could be microscopic Of could be macroscopic.

Then, if we displaced C2 by 8r and change 8 21 the magnetic field produced by

C1 , by 8H21 , the variation of Urn is
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(121)

In obtaining the last equality of Eq. (121), we have assumed that, in the process of the

differential displacement of the location of C2 , or 0rH21' .

Or LAIJ. = 0 , o L·· = 0r I)
(122)

because the route of the current is already determined by the other conditions and the

introduction of DrH21 , or Dre, only introduce an acceleration of current along the route,

or a change in the velocity of current flow at each location, and not a change of the

relative location of the paths of C1 or C2 . G1 and G2 are the non-magnetic self-ener

gies of C1 and C2 • Now

(123)

gives the work given to the total system from outside.' Eq. (123) is consistent with the

well-known expression of the mechanical fo'rce which is operationg upon C2 , i. e.

( 124)

because

(125)

and

(126)

For the purpose of simplification, when we assume further that C1 is an ideal supercon

ductor, then

and

.G z = J/z

could be the Hamiltonians of the system C2 • Therefore we get
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This is a very important general equation which is .detinitely different from I;:q. (113).

We can get Eq. (113) only when

aUm-- = 0or
The correctness of our procedure will be rechecked as follows. Let us take a

small needle volume Li V in C2 , as shown in (b) of Fig. 3. Then the change of the

magnetic energy of LiV is

(131)

ou~Y = fffJyh. ob dV= fff (H + hP )( oR + oh P ) dV

(132)

in which h# is the magnetic field produced by the magnetic moment Ili inside of the

volume LiV.On the other hand, in general

= ~( - 0 g~) - ~ p. • oH
• 1 . 1 21
1 1

= - ~ogf'- fffJyMo oB dV
1

ou~Y + ~ogf = fffJy(H ° oB) dV
1

(133)

( 134)

Therefore" we get the exact agreement with Eq. (30). Now let us check the meaning

of Eq. (I 29).

In the case of a single electron, although urn can be well defined, because of a

certain complicated structure, Eq. (I13) is still applicable, which will be explained in

paper 111 28).

In the case of a paramagnet, Eqs. (114) and (129) tell us that

(135)
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Here, we have assumed a unit volume for convenience. This is justified by the mean-

ing of the Zeeman energy - (HoM), as analyzed in Eq. (14). But we should be careful

that, when we have used - (H 0 M) as the Hamiltonian, this means that we have replaced

the ~icroscopic expression J/2 + urn in Eq. (135) with the macroscopi expression - (HoM).

In the case of a diamagnet, we have

° M2

8 ( UL + ~~2 + -2 ) 8 ( + )
I J _ [ J/ 2 Urn

8H s - 8H ] s

and, in the argument of Eq. (61), we have assumed that

( 137)

Now, in Eqs. (120) and (121), we can rewrite

f
o • r r ( hI + h2 )2or Urn = JJoo 0 [ J dV

2

= fffoo(h I " oh l + hI" oh 2 +h 2 • oh l + h 2 " oh 2 ) °dV

+ ,I. L ~ i 0 ( L1 I.u ) j I i + °I
o
L ij L1 I i 0 ( L1 Ii)

'" I I J

Here, h} and h2 are the magnetic fields produced by C}' and C2 respectively and

(139)

Further we have assumed that

o G = 0r I (140)

and

(141)

is the interaction of the small induced variation 8r h} with h2 which is localized and

can be set equal to zero. Physically
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or,

(142)

Therefore from Eq. (138)

~ ~ L·· 0 (LlI·L1I.
.. 1J r 1 I
1 J

(143)

(144)

(145)

This means that we have microscopically derived and confirmed Eqs. (136) and (137)

from our persistent current model.

In the case of the idealized conduction electron system, the situation is not

simple. We believe, however, that the logical sequence from Eq. (120) to Eq. (130)

is still effective, but that the condigurations of the closed current loops may be

strongly time ·dependent. This means that BUm is also involved in this case and

there must be Eddy current or diamagnetically induced electric current phenomena,

which will cause Eq. (113) to be incorrect. Eq. (131) through (134) may not be

valid, since there is no clear magnetization M inside. We have found that there is

a very clever way to analyze the problem utilizing the results already obtained for

the diamagnet. In Fig. 4, we show a very large solenoid coil C1, and also very

large number of fine cylindrical specimens Sl, S2, ... , Si' ,.. , SN' which are distribut

ed uniformly inside of the Coil C1 as shown in (b). Then, we can regard the total

set of specimens as a single insulating material with the magnetization

MV = ~ p..V 1

in which V is the volume where ~. i is located. Then, when we change "ext' the

magnetic field from C1, Eq. (30) can be used to show that the total energy entered in

V is

fJfvHext • oB dV = fffvHext· o( Hext + M) dV

= fJJv-v J.L Hext ·oHext dV + fffv Hext • oHext dV + Hext • o( ~/1i )
J.L V
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Fig. 4. Millions of fine cylindrical specimens S" S2, ... ,
SN located inside of a large solenoidal coil C1 • (a), side
view, (b), cross section.
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Here, VJ.L is the volume of the specimens in V, and Band M are the artificially defined

Band M of the system; On the other hand, the usual interpretation of Eq. (30) gives

that the total electromagnetic energy entered in the specimen volume as

fffy [o(~) + o(~ ) + ( E • j ) 0 tJ dV
I-t 2 2

( 147)

Here, by assumption, there is no M nor P. We know that Eq. (147) is identical to

fffy 0 ( H
2

) dV + 0.J{
I-t 2

(148)

since the electric energy can always be directly included in the Hamiltonian, but, the

long range nonoscillating magnetic energy is not 22). .Jf' means the Hamiltonian includ

ing the electromagnetic short range interaction energies of e' and h'. (e. g., see Eq. (60)).

Now

H = H ext +Hint

and from Eqs. (146) and (148),

(149)

o.Jl'i = - Ili· oHex, + 0 [Hext • Il i ] - Iffv i [0 (Hex' °H int ) + o( ~in:)J dV

(150)

Here, we have taken only one specimen for simplification. When we can assume cylind

rical symmetry, then the J.li can be transformed into an integration of the effective mag

netization, M*7), as defined by

M* = Hint

Then, we get

Pi = fffv ..HintdV
I

(151)

H. 2

o.J{~ = - Pi • oHext dV - fffy o(~) dV
2

= - fffy. Hint • oHext dV - fffy. Hint· oH int dV
I I
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(155)
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Therefore, if we could assume that

or H ext ~ oR int (153)

we can get Eq. (113), but, as we know already, this is not always true. Typical case

is the superconductor and, in this case,

in almost all the volume~. We have the similar situation in a classical Fermi gas 2),

and high temperature plasma. The transient phenomena of Eddy currents in highly con

ductive materials correspond essentially to the same situation.

Here, we should notice one interesting correspondence to the diamagnet. From

Eqs. (137), (136) and (144), we have

. M2

or (u -u / ) = 0(-)
m m 2

h' 2

u~ = fffoo -2- dV

and from Eqs. (129) and (152) we have

H 2 M*2
o(u -u/)=O(~)=o(-)

r m m 2 2

( 156)

( 157)

Therefore, the two expressions are essentially identical, if we regard Hint as the magne

tization M*. This means that the idealized conduction electron system and the diamag

net are similar in the structure of their macroscopic magnetic energies. Since u:n can

be assumed constant or can be included in the Hamiltonian 22), from Eq. (129), the ap

plicability of Eq. (113) depends on whether or not

M· oM or M* • 0 M* (158)

can be assumed to be neglegible as compared with

M· oH ext or M*·oHext ( 159)

This means that, in a weak magnet, we can in practics usually still use Eq. (113)

and the famous Boltzmann factor

exp [- fiJi ] ( 160)

On the other hand we cannot use Eq. (113) or (160) for the strongly magnetizable

materials or the phenomena, appearing in superconductors and plasmas or for situations
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where Eddy currents are important.

We must be careful to understand the relation (I55) and (I 57), because these equ

ations show only that the total magnetic energy will increase when the magnetic field

is supplied from an idealized superconductor (Fig. 3) and the specimen has been displac

ed into the location where the magnetic field is more intense, and do not indicate that

the electromagnetic energy needed to magnetize the diamagnet is propotional to M2 /2.

As has been shown in Eq. (30), this energy is definitely lower for the diamagnet than

for the paramagnet and, for an idealized perfact diamagnet, no energy at all is necessary

to magnetize the specimen up to its highest magnetization M* =-Hext" We should recall

the tricky dynamical structure of the magnetic energy as has been discussed in §3.

In conclusion, we have established an entirely new way of understanding magnetism

of magnetizable materials. The meaning of the magnetic energy of the orbital motion

of electrons becomes quite different from what it was in the conventional theory. The

difference from the old way of treating magnetic are most distinct for the case of the

superconductor and. the new treatment brings an essentially new way of understanding

the Meissner effect of the superconductor.

In terms of mathematical strictness the famous representation

exp [ -,BJt']

is usually incorrect, because there will be another factor such as

IIf M
2

dV
2

of Eq. (67),

2

IIf.!:!.- dV
2

of Eq. (14), or,

eV i • A(r )
I-
I C

( 161)

( 162)

(163)

(164)

of Eq. )107), to be added to.JI.

In a weak magnet, however, Eqs. (I13) and (I 61) are still practically correct, be

cause the necessary correction is small.

We can however, definitely say that Miss. Van Leeuwen's theorem is wrong and

the treatment of Landau's diamagnetism must be carefully done because the expression
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of the magnetic energy of the orbital motion of electrons becomes entirely different from

what is predicted by conventional electromagnetism.
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