松原武生

Such temperature dependences of C_p , β_i and s_{ij}^T can be understood phenomenologically by "Pippard's relations". The important result of the phenomenological theory is that the specific heat at constant volume, C_V , and the adiabatic elastic compliances, s_{ij}^S , remain finite through the phase transition. In fact s_{ij}^S 's have been found to show a finite cusp at T_N , and C_V calculated from the value of C_p using a thermodynamic relation appears to show a very small anomaly. These facts must be taken into account in constructing a microscopic theory of the antiferroelectric phase transition in NaNO₂.

Anomalous temperature dependences of the electrostrictive constants, Q_{2i} (i = 1, 2, 3), and the interpretation of them in connection with the critical behavior of ϵ_2 will be mentioned also.

On Mechanism of Anomalous Polarization Reversal in NaNO₂

Wataru KINASE

Department of Physics, School of Science and Engineering, Waseda University, Nishiokubo, Shinjuku, Tokyo

Polarization reversal in NaNO₂ is carried out through rotation of NO₂-radical. Such phenomena of ferroelectric polarization reversal caused by the rotation of radicals seem uncommon. In this paper attention is paid to the fact that there is the relation $a_c > a_b > a_a$ among the electronic polarizabilities of the NO₂-radical, where they are given as $a_a = 2.336 \, \text{A}^3$, $a_b = 3.128 \, \text{A}^3$ and $a_c = 4.909 \, \text{A}^3$ (Kinase, Ohi and Ishikawa: J. Phys. Soc. Japan 24 (1968) 431). It is noticed that the electronic polarizability of NO₂ in the direction of P_s becomes maximum by the 90°-rotation of NO₂ round the a-axis, which is caused by the relation $a_c > a_b$ The fact that dipole interaction becomes strong in the region near the point of the 90°-rotation of NO₂ round the a-axis is thought to make the polarization reversal easy. From this point of view the polarization reversal is explained in this paper by using a *complex Ising model* taking account

of the 90°-rotation.

There are two sorts of rotations, namely clockwise and counterclockwise. It is considered that uniformity of the rotations is favorable, because the dipole interaction in the direction of the c-axis will become stronger by the uniform rotation. Moreover taking account of the fact that the refractive index is maximum in the direction of the c-axis, mechanism of the anomalous rapid sidewise propagation of the polarization reversal in NaNO₂ will be explained, where the strong internal field is induced in the direction of the c-axis accompanied by the NO₂-rotation round the a-axis.

Soft Zone-Boundary Phonon Modes in CsPbCl₃*

Y. Fujii[†] and G. Shirane

Brookhaven National Laboratory Upton, New York 11973

It was previously reported that three successive phase transitions of the perovskite crystal CsPbCl₃ ($T_C = 47$, 42 and $37^{\circ}C$) are caused by the condensation of the zone-boundary phonon modes M_3 and R_{25} at the $M(\frac{1}{2}, \frac{1}{2}, 0)$ and the $(R, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ points respectively [Y. Fujii, S. Hoshino, Y. Yamada and G. Shirane, Phys. Rev. B9, 4549 (1974)]. Inelastic neutron scattering experiments have been carried out in its cubic phase (T>47°C) in order to investigate properties of these two phonons, both of which correspond to the rotational vibration of the PbCl₆ octahedra around the <100> axis.

The temperature dependence of the energy-profile of the M_3 as well as the R_{25} phonons was precisely measured up to the temperature of about 300° above the transition point. Both phonons were found to remain overdamped throughout this temperature range. With a least-squares method, the observed phonon profiles were fitted by a damped-harmonic-oscillator formula convoluted with the resolution function. This analysis gave the value of ω_0^2/Γ (ω_0 : harmonic frequency, Γ : damping constant) as a function of