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The irradiance distribution function of light-waves propagated through turbulent media has

been investigated both experimentally and theoretically by many authors, but no successful
1 - 3

theoretical attempt has been made to account for the experimental fact that the

irradiance distribution is close to the Gaussian distribution with respect to the logarithm of

irradiance even in the region where the variance of irradiance scintillation is saturated. In this

paper, a cluster approximation is applied to the solutions of moment equation of 4th and higher

orders to express those moments in terms of the lower order ones and the irradiance

distribution function is analytically derived based on the obtained expression of moment of

irradiance for various orders.

It is physically expected that, if 1/1 denotes the (scalar) wave function, the distribution function

P(I) with respect to the irradiance 1= 1/1 *1/1 will be uniquely determined when the moments

< IV>, v = 1, 2, ... are given for all orders. Mathematically, it is true when < IV > has the

asymptotic form

< IV > ~ exp ( vE c ), v,....., 00, ( 1 )

and is analytic on the right half-plane of v-complex plane, and P(I) is then given by the

integral 4

1 ioo-€
P (I) = --.J dv I -v-l < IV>,

2m -iOO-€

€= + o. (2)
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It is however practically impossible to evaluate < IV> for all orders ofv except for the special

case where the irradiance scintillation is caused purely by the wondering of narrow wave beam

3 - 5 On the other hand, according to the cluster expansion 6 based on the moment

equations of the wave function, the normalized moment of irradiance mv == < IV> f < I >v,

v = 1, 2, 3, ... can be expressed in terms of the lower order ones as follows:

Here, if the convergnece of series is good enough to keep only the first two terms of the series

(3), we obtain the approximate expression

(4 )

Here, if I ( v - 2 ) ~/ I ::;;;; 1 , as is assumed, Eq. (4) is also expressed by

Both expressions (4) and (5) give the correct values for the orders of v = 1,2,3 and, to the first

order of approximation of ~, also for the higher orders.

In Table 1, the recent experimental values of mv observed by Gracheva et a1. 2 are shown along

Table I

~ Experimental Theoretical & Error (%) Log-normal Experimental

~ = 0.0262 ~ = 0.0346 (~= 0) fLog-normal

2 2.18 2.18 2.18 2.18 1.0

3 9.76 9.76 9.58 (1.8%) 10.36 0.94

4 79.32 85.0 (7.2%) 79.32 107.32 0.74

5 XXXX 1374 1165 2424 (0.57;0.48)
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with the corresponding theoretical values by (5). The parameter .1 critically depends on the

value of m 3 , and therefore two values of.1 are prepared, one being determined by the value of

m 3 and the other by m4 . The first value gives rise to the error of 7.2 % forn 4 whereas the

second one to the error of only 1.8 % for m 3 .

Note that .1 > 0 and .1 ~ 1. The first point can be confirmed also theoretically to the first

order of approximation which is valid when the distance of wave propagation is short enough.

It is also worthwhile to check the third term in the series (3): according to the experimental

values given in Table 1,

log ( m4 m2 6 / m 3 4 ) =4.3735 + 6 X 0.7793 - 4 X 2.2783 = - 0.064,

which is just 0.7 % of the cancelled values. Therefore the above value will be certainly within

the range of experimental error, and the large cancellation will mean that the third term is very

small to be negiected or m4 ""' m3
4

/ m2 6 which is exactly the expression obtained by the first

two terms of the series or by (4). Thus, we may conclude, to the extent of the existing

experimen tal data, that the agreement of the experimental and theoretical values is very good.

The essential difference between the expressions (4) and (5) for < IV > is that, as v~ 00, (4)

tends to the unphysical expression exp [ - t v3 k 1 .1' ]~ 0 whereas (5) tends to exp [ t v k 1 /

.1 ] and therefore satisfies the condition of applicability (1) for the integral representation (2)

of P(I). Therefore, if we use the expression (5) for < IV > in the integral (2), the distribution

function peE) with respect to the log-irradiance E = log ( I / < I» is given by

1 ioo-e
P (E) = P (I) dI / dE = -.J dv exp [ t v (v - 1 ) k 1 {I + (v - 2 ).1} - 1 -1) E ]

2m -i 00 _ €

(6 )

j
Vo ( a / b) exp [ - t( a2 + b2

) l' 11 (ab ), E < Ee
= exp ( - t a2 ) 8 (E - Ee ) +

0, E > Ee .

Here II (X ) is the modified Bessel function of the 1st order and
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In the practically important range of E where a ~ b ~ 1 and E I Ec <{ 1,

(8 )

F=a-b~k 112 [Elk +l+ l~(E/k _l)(E/k _~)]
1 122 12 12'

which tends to the log-normal distribution Po (E) as ~ ~ O. In Fig. 1 is shown the ratio
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FIG. 1. Ratio of the distribution function of log-irradiance P (E)
to the log-normal distribution function Po (E). K1 = 0.7793 and
1, .Il = 0.05;2, .Il = 0.0346;3, .Il = 0.015.

P (E) I Po (E) against the variable FI .Il = 0= (E I K1 + t )K1 ih, and in Fig. 2 is shown the

corresponding cumulative distribution function Pc (E) for the same values of the parameters.

The details of the theory were published elsewhere 7
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FIG. 2. Cumulative-probability distribution function Pc (E).
The values of the parameters are the same as those in Fig. 1 for
each curve.
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~ C: fh, CBF \:~ffl ~ tL -c V\ Qm~f}17t~, ~§j~~(1)fJI!~tJ~ G)j(fht;: t (1) \:lli~il

;t Q ;: t 'c J:: -:::> -c lE L v\*6*tJ~¥J.tJ~;h, Q ;: t ~~ L 1;: 0 ;: (1)~~'j:~~~f-~c~.&Gf,

CBF ""fT\: ~Cf~GtL -c V\ Q~jJJji7t:ffl~JJJI¥J~~~f-~c"':)V\ -c t~ ffi~~(1)~~ ~ ffl
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) tX ~c model independent (1):15" rt. ~ ffl V\ -c

4 He ~c Jiffl L t;:~~~c "':) V\ -c j£'" Q 0
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