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The irradiance distribution function of light—waves propagated through turbulent media has
been investigated both experimentally and theoretically by many authors, but no successful
theoretical attempt has been made to account for the experimental fact L that the
irradiance distribution is close to the Gaussian distribution with respect to the logarithm of
irradiance even in the region where the variance of irradiance scintillation is saturated. In this
paper, a cluster approximation is applied to the solutions of moment equation of 4th and higher
orders to express those moments in terms of the lower order ones and the irradiance
distribution function is analytically derived based on the obtained expression of moment of

irradiance for various orders.

It is physically expected that, if ¥ denotes the (scalar) wave function, the distribution function
P(I) with respect to the irradiance 1= y*y will be uniquely determined when the moments
<IP>,v=1, 2, .. are given for all orders. Mathematically, it is true when <I” > has the

asymptotic form

<IV>SCXP(VEC), V~°°: (1)

and is analytic on the right half—plane of v—complex plane, and P(I) is then given by the
integral *

P()=_1_ im_ed [TVl > =+0 2
@ f v , € . (2)
2771 ~i°°f€
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It is however practically impossible to evaluate < I” > for all orders of v except for the special
case where the irradiance scintillation is caused purely by the wondering of narrow wave beam
3 =5 On the other hand, according to the cluster expansion © based on the moment
equations of the wave function, the normalized moment of irradiance m,=<I">/<1>%,

v=1, 2, 3, ... can be expressed in terms of the lower order ones as follows:
m, = exp [ (%) Qogm, + (%) fog (my /m, )+ (%) Rog (my m,® /my®) 4], (3)

Here, if the convergnece of series is good enough to keep only the first two terms of the series

(3), we obtain the approximate expression

m, ~exp [ v (v— 1)k {1-(r=2)4"}],

(4)
k;=R0gm,, A'=1 —-;—Qogm3/920gm2
Here, if (v -2)A"I< 1 , as is assumed, Eq. (4) is also expressed by
m,~exp [2v(v— 1)k {1+(r—-2)A}"1], A=A"(1-A )y '~A". (5)

Both expressions (4) and (5) give the correct values for the orders of v = 1, 2, 3 and, to the first

order of approximation of A, also for the higher orders.

In Table 1, the recent experimental values of m,, observed by Gracheva et al. 2 are shown along

Table 1
m,, Experimental Theoretical & Error (%) Log—normal| Experimental
v A= 0.0262 A =0.0346 (A=0) | /Log—normal
2 2.18 2.18 2.18 2.18 1.0
3 9.76 9.76 9.58 (1.8%) 10.36 0.94
4 79.32 85.0(7.2%) 79.32 107.32 0.74
5 XXXX 1374 1165 2424 (0.57,0.48)
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with the corresponding theoretical values by (5). The parameter A critically depends on the
value of mj, and therefore two values of A are prepared, one being determined by the value of
m, and the other by m,. The first value gives rise to the error of 7.2 % for m, whereas the

second one to the error of only 1.8 % for mj.

Note that A >0 and A <1. The first point can be confirmed also theoretically to the first
order of approximation which is valid when the distance of wave propagation is short enough.
It is also worthwhile to check the third term in the series (3): according to the experimental

values given in Table 1,

log (mym,® /m3*)=4.3735+6X 0.7793 — 4 X 2.2783 = — 0.064,

which is just 0.7 % of the cancelled values. Therefore the above value will be certainly within
the range of experimental error, and the large cancellation will mean that the third term is very
small to be negiected or m, ~ m34 / m26 which is exactly the expression obtained by the first
two terms of the series or by (4). Thus, we may conclude, to the extent of the existing

experimental data, that the agreement of the experimental and theoretical values is very good.

The essential difference between the expressions (4) and (5) for <I” > is that, as v > oo, (4)

tends to the unphysical expression exp [ — % v3k,; A" ]~ 0 whereas (5) tends to exp [ % vk,

A ] and therefore satisfies the condition of applicability (1) for the integral representation (2)
of P(I). Therefore, if we use the expression (5) for <I” > in the integral (2), the distribution
function P(E) with respect to the log—irradiance E=log (I1/<I1>) is given by

ico—€
P(E)=P(I)dl/dE=1—'f dv exp[%v(v-l)k1{1+(V—2)A}_l—vE]
2m J e
(6)
vo(a/b)exp[—~+(a®2+b%)] 1, (ab), EXE
=exp (—La?)§5 (E—Ec)+| ° 2 ! )
: 0, E>Ec.

Here I, (X ) is the modified Bessel function of the 1st order and

—F88 —



THEORY OF IRRADIANCE DISTRIBUTION FUNCTION IN TURBULENT MEDIA

vo=AT1-2, Ec=k; /(24), a= [(1+py)k, /A2 b=[2p, (Ec~E)]L/ 2. (7)
In the practically important range of E where a~b>1 and E/E. <1,

P(E)~(27k, ) 2exp (= L F2),
(8)

F=a—b~k, 2 [E/k, +1+ LA(E/k, -1 -3
LB R L AR - ) (E/K, - 2))

bl

which tends to the log—normal distribution P, (E) as A—~>0. In Fig. 1 is shown the ratio

P(E)! Po(E)

0.1 L L 1

. -u2
(E*K,12) K]

FIG. 1. Ratio of the distribution function of log—irradiance P (E)
to the log—normal distribution function PO (E). K;=0.7793 and
1, A=10.05;2, A=0.0346;3, A =0.015.

P (E) /P, (E) against the variable Fl 5 - o= (E/K, + % VK, 1/2, and in Fig. 2 is shown the
corresponding cumulative distribution function P¢ (E) for the same values of the parameters.

The details of the theory were published elsewhere .
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FIG. 2. Cumulative—probability distribution function P¢ (E).
The values of the parameters are the same as those in Fig. 1 for
each curve.
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O— BABHHEER 2 4> 1 RIEBose BT R DRBE ORBIRICK T 5 FiE =2 v ¥—%
';mﬁgm%skqubammaﬁgztﬁﬁ%m%E&KKMﬁ&%K*wEhé
TEBRDR-oTND, ZORRIEMEROEREHVTHENLDL—HLTWSEZ
LG, T O EEEE Bose B FRICH LTELWERERW 4 5251 0L
Exbhd,

¥ 7o, EEEROBRCETARBAE LT, 2285 BISNTUW: FEIEDHEE,
B EOHE O EERFROFEC OV T, B Tsujii LEHO—A NIk -T, —
AR SR TS, M5 He ORMEICIE S B & T Feenberg o8 i A5 IS HI K
% (CBF ) BERBREDPR) I —HLIREREEX S LVIRATHRCFMEL TS
A3, 1%&ic%E L (X charged Bose gasicE L2 & %, BERFOEVPBEELER L —
BLANC & DHIBS RTINS Berdahl ») i CBF & SEFZIR OB ORER & O
W, HHREBICH T DEEOD b E D SHHBEAS <o b 0> KHHILE

&, CBF THERAIRTWAHEES Y, EHEEOHEB» LROIZ LD TEIH
ZBZERE S>TIELWERBENINEZ LR LI, ZOFEIEEHFIIRES T,
CBF THTRHALA TV 2EHELSALHEERF o W T HEMEROER LA

WTHRMNT ALENRDLZ L ETRLTWS,
T & TIE 1 ke OLieb-Linigeri Bz it 4 2 IR F O RE R OBRE 2 R, %

NRBEBREFBEL T NI & ’5:7_T<‘J‘03) &IZ model independent O J5 & v T
‘He WEAL ERICH>W T3,
EYREEREROWRTIE,
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