筑波大·物理 溜 渕 継 博

高 野 文 彦

§1. はじめに

近年, ランダム磁性体の性質が多くの人々により調べられている 1 ⁽¹⁾とくに興味が もたれているのは ferro bond (J>0) と antiferro bond (J<0) が quenched の条件で ランダムに分布している場合で, このときには低温で ferroでも antiferro でもない新し い秩序状態; spin 配向の分布はランダムであるが, para 状態とは異なり各 spin が熱的 な動揺に対して安定な状態:が出現する。 "random ordered phase" (ROP)^{2),3)} はその ような状態の一つで, 結晶格子点上に数種の原子がランダムに配列した体系を想定して いる。 "ground-state" (G)⁴⁾, "glass-like phase" (GLP)^{5),6)} も ROP の一種と考えること ができる。一方, 金属中の磁性不純物原子間に, 距離に関して振動する long-range な相 互作用 (RKKY) が働いている場合には "spin glass" と呼ばれる状態が出現する。

ここでは random Ising spin 系 (quenched bond mixtures) に対して有効場近似(ある いは有効ハミルトニアンの方法)¹¹⁾を適用し、para 状態から ROP への転移温度 T_c を 求める。有効場近似は最も簡単な場合には Bethe 近似と一致し、さらに近似を高め るのが比較的容易である。実際の計算には有効場近似と同等な近似を与える Oguchi の方法¹²⁾を用いる。

§ 2. 有効場近似

自由エネルギーの近似法の一つに Oguchi の方法¹²⁾がある。この方法ではハミルトニアンH で記述される系の自由エネルギーFを、モデル・ハミルトニアンH₀を用いて、

$$F_{1} = -\frac{1}{\beta} \log T_{r} e^{-\beta H_{0}} - \frac{1}{\beta} \sum_{\alpha} \log \langle e^{-\beta V_{\alpha}} \rangle \quad (\beta = \frac{1}{kT})$$
(1)

$$V \equiv H - H_0 = \sum_{\alpha} V_{\alpha}$$
 (2)

$$\left\{ \langle A \rangle = T_r e^{-\beta H_0} A / T_r e^{-\beta H_0} \right\}$$
(3)

-24-

の停留値で近似する。このとき, V の分割のしかた: {α}によって近似の精度が異なる。

二種の bond JA, JB がランダムに配列した Ising 系のハミルトニアンH及びモデル・ハ ミルトニアンH₀ を

$$\cdot \quad \beta_{\rm H} = -\sum_{\langle ij \rangle} K_{ij} \sigma_j \sigma_j \quad (K_{ij} = \frac{J_{\rm A}}{2\,\rm kT} \text{ or } \frac{J_{\rm B}}{2\,\rm kT})$$
(4)

$$\beta H_0 = -\sum_i X_i \sigma_i$$
 (5)

と書く。ここで X_i は変分パラメー タである。Vの分割方法としては、 次の二つの場合を考える; (a) 最隣 接 spin 対からなる cluster ($\alpha = < ij >$) への分割(図1-a), (b) 最小の loop を形成する cluster ($\alpha = (ij \cdots kl)$) への分割(図1-b)。

図 1. cluster への分割(z=4の場合)

$$\beta V_{\alpha} = \beta V_{ij}$$

$$= -K_{ij} \sigma_{i} \sigma_{j} + \frac{1}{z} (X_{i} \sigma_{i} + X_{i} \sigma_{j})$$
(6)

より(1)式は,

$$\beta F_{1} = (z-1) \sum_{i} \log 2 \operatorname{ch} X_{i}$$

$$- \sum_{\langle ij \rangle} \log \left[2^{2} \operatorname{ch} K_{ij} \operatorname{ch} X'_{i} \operatorname{ch} X'_{j} (1+\operatorname{th} X'_{i} \operatorname{th} X'_{j} \operatorname{th} K_{ij}) \right]$$

$$(7)$$

$$X'_{i} = \frac{z-1}{z} X_{i}$$

$$(8)$$

となる。ここで, z は最隣接格子点の数である。停留値の条件;

$$-25-$$

溜渕継博・高野文彦

$$\frac{\partial}{\partial X_{i}} \left(\beta F_{1}\right) = 0 \tag{9}$$

より,

$$\operatorname{th} X_{i} = \frac{1}{z} \sum_{(\alpha)}^{z} \frac{\operatorname{th} X_{i}' + \operatorname{th} X_{j}' \operatorname{th} K_{ij}}{1 + \operatorname{th} X_{i}' \operatorname{th} X_{j}' \operatorname{th} K_{ij}}$$
(10)

を得る。 \sum_{α}^{z} は i-th spin を含む z 個の cluster についての和を意味する。 (α)_i (10) 式の右辺の各項は 2 体の有効ハミルトニアン¹¹⁾

$$\beta H_{\alpha}' = -K_{ij} \sigma_i \sigma_j - (X_i' \sigma_i + X_j' \sigma_j)$$
(11)

における spin の平均値< $\sigma_i >_{\alpha}$ であり、左辺は分子場 X_i が働いている spin の平均値< $<\sigma_i >_1$ に等しい。すなわち、(10)式は

$$\langle \sigma_{i} \rangle_{1} = \frac{1}{z} \sum_{(\alpha)_{i}}^{z} \langle \sigma_{i} \rangle_{\alpha}$$
 (12)

と書けて、ここで行った近似が有効場近似であることがわかる。

§§2-(b) $\alpha = (ij \cdots kl)$ の場合

z が偶数の場合を考えて、 V を最小のloop からなる cluster (図1-b) に分割する と、(12)と同様な式;

$$\langle \sigma_i \rangle_1 = \frac{2}{z} \sum_{(\alpha)_i}^{z/2} \langle \sigma_i \rangle_{\alpha} \quad (\langle \sigma_i \rangle_1 = \operatorname{th} X_i)$$
 (13)

が成り立つ。(13)式の< $\sigma_i >_{\alpha}$ は u 体の有効ハミルトニアン (u は最小の loop を構成 する spin 数)

$$\beta H_{\alpha}^{"} = -K_{ij} \sigma_{i} \sigma_{j} - \dots - K_{k\ell} \sigma_{k} \sigma_{\ell} - K_{\ell i} \sigma_{\ell} \sigma_{i}$$
$$- (X_{i}^{"} \sigma_{i} + \dots + X_{k}^{"} \sigma_{k} + X_{\ell}^{"} \sigma_{\ell})$$
(14)

$$\therefore X_i'' = \frac{z-2}{z} X_i$$
 (15)

-26-

における i-th spinの平均値で,正方格子(u=4)では

と書ける。ここで $\overset{\cdot}{i}$ は th $X_{i}^{''}$, $\overset{-}{i}_{j}$ は th K_{ij} を, また, $\overset{n}{\Sigma}$ (……) は cluster α に含まれる() 中の形のグラフ n 個の和を意味する。たとえば,

$$\sum_{\alpha}^{4} \left(\underbrace{}_{i} \right) = \underbrace{}_{i} \underbrace{}_{j}^{k} + \underbrace{}_{j} \underbrace{}_{k}^{k} + \underbrace{}_{i} \underbrace{}_{k}^{k} + \underbrace{}_{i} \underbrace{}_{j}^{k} + \underbrace{}_{i} \underbrace{}_{j} + \underbrace{}_{i} \underbrace{}_{i} + \underbrace{}_{i} + \underbrace{}_{i} \underbrace{\phantom{$$

である。

§ 3. order parameter と T_c の式

今考えている quenched system は並進対称性を持たない¹⁾ので各 site の spin には異な る大きさ・符号をもった分子場が働いている。しかしながら,分子場の大きさの分布を 正確に考慮するのは困難である。そこで,ここでは Ono⁴⁾, Oguchi³⁾ らと同様に各 site に働く分子場の絶対値はすべて等しいと仮定する;

$$X_{i} = \ell_{i} X \quad (\ell_{i} = \pm 1, X \ge 0)$$
(18)

XはROPのorder parameter である。

(10),(16)式から T_cを決定する式を求めると,

(a)
$$\frac{1}{z-1} = \frac{\overline{1}}{z} \sum_{(\alpha)_{i}}^{z} \ell_{i} \ell_{j} \operatorname{th} K_{ijc} \qquad (K_{ijc} = \frac{J_{ij}}{2 \, k \, T_{c}})$$
(19)

(b)
$$\frac{1}{\frac{z}{2}-1} = \frac{2}{z} \sum_{(\alpha)_{i}}^{z/2} B_{\alpha_{i}}$$
 (20)

-27-

$$B_{\alpha i} = \left[\left(\frac{1}{i-j} + \frac{1}{i-j} \right) \ell_i \ell_j + \left(\frac{k}{i-j} + \frac{\ell}{i-k} \right) \ell_i \ell_k + \left(\frac{\ell}{i+j-k} \right) \ell_i \ell_k + \left(\frac{\ell}{i+j-k} \right) \ell_i \ell_j \right] (u=4)$$

となる。ここで横棒は configurational average を表わす。 pure system では (19) 式は Bethe 近似の結果に一致し, (20) 式はより進んだ近似式となる。

§ 4. Configurational average (ca)

 $\ell_i \ell_j$ th $K_{ij} > 0$ であるような< ij > を "right bond" (r-bond) , そうでないものを "wrong bond" (w-bond)と呼ぶ⁴⁾ことにすれば, spin^{*)} 配列を指定することは各 bond が r であるかwであるかを指定することと同等である。ただし、与えられた bond 配列

のもとに r-bond, w-bond を自由に配置することはできず, ある任意の loop に奇数本の antiferro bond があればその loop には奇数本の w-bond が必ず入っていなければならない(図2)

以下では antiferro bond が偶数本入った最小の loop を "e-loop"図 2. 奇数本入ったものを "o-loop" と呼ぶことにする (図 2)。 関係

さて,(19),(20)式の ca を実行するためには cluster 内 の各種 bond 配列, spin 配列の出現確率を A-bond の濃度 C_A (あるいは B-bond の濃度 $C_B = 1 - C_A$)の関数として求め めることが必要である。bond 配列を固定したときの spin 配 列は,各 site の spin を最も安定化させるように決まる。こ e * 0

図 2. loop と bond の 関係の例。実線は, ferro bond, 点線は antiferro bond, Xは w-bond · e, o はそ れぞれ e, o-loop を 表わす。

の効果を考慮するために、我々は次の二つの方法を採用した;(i)最も高い T_c を与える spin 配列をとる、(ii) local にエネルギーを minimize する。

以下、2次元正方格子(u = z = 4)で $J_A = -J_B \equiv J$ (>0)の場合に限って話を進める。

*) ここでは "spin の熱平均"を単に "spin" と呼ぶ。

§§4-(i) T_c を高くする方法

この方法は (20) 式のように loop を考慮した式が与えられた場合に有効である。 T_c を高くするためには w-bond を中心の spin から遠ざければよく(図3), (20) 式より

(i-b) :
$$1 = 2 \frac{\operatorname{th} K_{c} + \operatorname{th}^{2} K_{c} + \operatorname{th}^{3} K_{c}}{1 + \operatorname{th}^{4} K_{c}} C_{e}$$

+ $\frac{\operatorname{th} K_{c}}{1 + \operatorname{th}^{2} K_{c}} C_{0} \qquad (K_{c} = \frac{J}{2 \operatorname{k} T_{c}})$ (21)

を得る。ここで C_e, C_o は e, o-loop の出現確率

$$C_{e} = C_{A}^{4} + 6 C_{A}^{2} C_{B}^{2} + C_{B}^{2}$$
(22)

$$C_o = 4 C_A^3 C_B + 4 C_A C_B^3 = 1 - C_e$$
 (23)

である。こうして得られた結果(図7)はこ この近似: (b) における T_c の上限を与える ものと考えられる。

 $J_A = -J_B$ の場合には A(B)-bond と r(w)-bond の相対位置は重要でないので、ま ず、図4に示す6種のloop 配列の出現確率 $P_i(i = 1 \sim 6) \delta C_A, C_B$ の関数として表わ す(表1);

図 3. T_cを高くする spin 配 列。実線はAまたは, B-bond.

$$p_{1} = C_{A}^{12} + C_{B}^{12} + 4 \left(C_{A}^{10} C_{B}^{2} + C_{A}^{2} C_{B}^{10} \right) + 16 \left(C_{A}^{9} C_{B}^{3} + C_{A}^{3} C_{B}^{9} \right) + \cdots , \quad (24)$$

etc.

ここで,

$$p_1 + 4 p_2 + 4 p_3 + 2 p_4 + 4 p_5 + p_6 = 1$$
 (25)

図 4. エネルギーを最低にする spin 配列。
図形 (a), (b) はそれぞれ
$$2p_4 \times \frac{1}{3}$$
, $2p_4 \times \frac{2}{3}$ の確率で出現
する。

表 1

	$C_{A}^{12}+C_{B}^{12}$	$\mathrm{C}_{A}^{11}\mathrm{C}_{B}^{}+\mathrm{C}_{A}^{}\mathrm{C}_{B}^{11}$	$C_A^{11}C_B^2 + C_A^2C_B^{10}$	$C_A^9 C_B^3 + C_A^3 C_B^9$	$\mathrm{C}^{8}_{A}\mathrm{C}^{4}_{B}{}+\mathrm{C}^{4}_{A}\mathrm{C}^{8}_{B}$	$\mathrm{C}_{A}^{7}\mathrm{C}_{B}^{5}\mathrm{+}\mathrm{C}_{A}^{5}\mathrm{C}_{B}^{7}$	$C^6_A C^6_B$
p ₁	1	0	4	16	23	48	72
p ₂	0	2	4	10	32	52	56
p ₃	0	1	4	13	32	50	56
p ₄	0	0	6	16	. 24	48	68
p ₅	0	0	4	16	32	48	- 56
p ₆	0	0	2	16	40	48	44

$$P_{1} = p_{1} + 4p_{2} + \frac{4}{3}p_{4} \equiv P_{1}'$$

$$4P_{2} = 4p_{3} + 4p_{5} \equiv P_{2}'$$

$$4P_{3} = \frac{2}{3}p_{4} \equiv P_{3}'$$

$$2P_{4} = p_{6} \equiv P_{4}'$$

$$\sum_{i=1}^{4} P_{i}' = 1$$

$$(26)$$

図 5. cluster (a) の spin 配列

$$\begin{split} & Q_1 = p_1 + 2p_2 + \frac{2}{3}p_4 = Q_1' \\ & 4Q_2 = 2p_2 \equiv Q_2' \\ & 4Q_3 = 4p_3 + 2p_5 \equiv Q_3' \\ & 8Q_4 = 2p_5 \equiv Q_4' \\ & 4Q_5 = \frac{2}{3}p_4 \equiv Q_5' \\ & 2Q_6 = \frac{1}{3}p_4 \equiv Q_6' \\ & 2Q_7 = \frac{1}{3}p_4 \equiv Q_7' \end{split}$$

(Ż7)

$$2Q_8 = p_6 \equiv Q'_8$$
$$\sum_{i=1}^8 Q'_i = 1$$

図 6. cluster (b) の spin 配列

(26), (27)式の確率を用いて(19), (20)式の ca を実行すると,

.

$$(||,-a|) : \frac{1}{3} = (P_1 + 2P_2) \text{ th } K_c$$

$$(28)$$

$$(||,-b|) : 1 = (Q_1 + 2Q_2 + 2Q_3) 2 \frac{\text{th } K_c + \text{th}^2 K_c + \text{th}^3 K_c}{1 + \text{th}^4 K_c}$$

$$+ (2Q_2 + 4Q_4 + 4Q_5) 2 \frac{\text{th } K_c}{1 + \text{th}^4 K_c}$$

$$(29)$$

を得る。(28), (29)式で図3,4の[]内の図形に対応する項が現われないのは、 それらの図形では中心の spin の符号を変えても図形は変化せず、そこに働く分子場が 0だからである。 (28), (29)式の数値解を, Ono が行った "Bethe 近似"及び計算機シュミレーションの結果とともに図7,表2に示す。

§ 5. Discussion

我々の得た結果 (ji-a) と Ono の 結果^{4)**}は pure system (C_A =1 or 0) ではともに Bethe 近似の結果に一致 するが、 C_A =0.5 の場合には、 T_C に関して約 20%の差が生じてくる (表2)。この差は ca のとり方の 相違に起因している: Ono^{4)**} は T_c を計算する際に

$$\frac{1}{3} = \overline{\ell_i \, \ell_j \, \text{th } K_{ij}}$$

$$= (R-W) \text{ th } K_c \qquad (30)$$

$$R \equiv C_e + \frac{3}{4}C_o$$

$$(31)$$

 $W = \frac{1}{4}C_0$

図7. 2次元正方格子のT_c, 鎖線は (1-b),実線は(ij-a),(ij-b) が重なったもの,破線は Onoの "Bethe 近似"^{4)**},点線は計算機 シュミレーション^{4)*}

	$k T_{c}(C_{A}=1)/J$	$k T_{c} (C_{A} = 0.5) / J$	$T_{c}(0.5)/T_{c}(1)$
(j-b)	1.3854	1.1250	0.8121
(∥—a)	1.4427	0.8756	0.6069
(∥-b)	1.3854	0.8388	0.6055
Ono ^{4)**}	1.4427	1.0466	0.7254

表	2
-	

と同等な式を用いた。ここで R, W はそれぞれ r-bond, w-bond の出現確率であり、最 小の loop に関してエネルギーを minimize する spin 配列から決定された。 (30) 式は, (19) 式で一本の bond についてだけ ca をとったものであり、一つの site のまわりの 溜渕継博・高野文彦

w-bond の数が r-bond の数より多い場合も考慮していることになるので良い近似方法と は思われない。計算機によるシュミレーション^{4)*}の結果(図7)を見ると、(jj-a)で は $T_c(C_A)/T_c(1)$ の値が Ono の結果^{4)**}よりも改善されていることがわかる。 $T_c(C_A)/T_c(1)$ の値が (jj-a) と (jj-b)の場合でほとんど変化しないのは、 caのと り方が両者で基本的に同一(図4の spin 配列を考えている)なためと思われる。

なお、方法 (i-b), (i-b) を cuctus tree に適用すると厳密解^{4)***}が得られる。

参考文献

1) 小口武彦, 日本物理学会誌 31 (1976) 866.

2) Y. Ueno and T. Oguchi, J. Phys. Soc. Japan 40 (1976) 1513.

3) T. Oguchi and Y. Ueno, J. Phys. Soc. Japan 41 (1976) 1123.

4) I. Ono, J. Phys. Soc. Japan 41 (1976) 345*, 2127**, 2129***.

5) F. Matsubara and M. Sakata, Progr. theor. Phys. 55 (1976) 671.

6) S. Katsura, Progr. theor. Phys. 55 (1976) 1049.

7) S. F. Edwards and P. W. Anderson, J. Phys. F:Metal Phys. 5 (1975) 965.

8) K. H. Fischer, Phys. Rev. Letters 34 (1975) 1438.

9) D. Sherrington and S. Kirkpatrick, Phys. Rev. Letters 35 (1975) 1792.

10) J. M. Luttinger, Phys. Rev. Letters 37 (1976) 778.

11) 小口武彦, "磁性体の統計理論"(裳華房), 第2章.

12) A. Oguchi, Progr. theor. Phys. 56 (1976) 1442.