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Summary 

Phthalocyanines with high peripheral substitutions and free from potential 

contamination by regioisomers have been synthesized and evaluated as photosensitizers 

for dye-sensitized solar cell applications.  Each of the sterically hindered precursor 

compounds was accomplished by the Suzuki-Miyaura cross-coupling reactions with the 

arylchloride and corresponding boronic acids.  Metal free phthalocyanine-sensitized 

solar cell showed no photocurrent generation due to its low excited singlet state 

(LUMO) compared with the conduction band of the TiO2.  Upon zinc metalation, the 

LUMO level of the phthalocyanine was pushed up, and this variation afforded the 

exergonic free energy change for the electron injection.  The zinc 

phthalocyanine-sensitized solar cell displayed 0.57 % of power conversion efficiency 

(η) and 4.9 % of maximal IPCE in the near infrared region.  More importantly, the cell 

prepared with and without the presence of chenodeoxycholic acid revealed no 

difference in the power conversion efficiency.  This implies that the well-known 

aggregation tendency of phthalocyanines that is considered to enhance the 

self-quenching of the phthalocyanine excited singlet state is effectively suppressed by 

the high degree of substitutions.  Significance of the driving force for the electron 

injection and the distance between the dye core and the TiO2 surface is also highlighted 

for devising high performance phthalocyanine photosensitizers. 
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Introduction 

Exhaustion of the fossil fuels and the global energy concerns have never been 

recognized as seriously as recent days.  In this context, research activities to acquire 

energy from the sun, as a clean and inexhaustible resource, are being extensively 

exploited.1  After the seminal report of Grätzel et al,2  dye-sensitized solar cells 

(DSSCs) with mesoporous TiO2 have been regarded as one of the most promising 

candidates among a variety of regenerative energy sources developed to date.  The 

fundamental aspects of the DSSCs have been well documented based on the widespread 

research efforts to disclose the nature of the devices including interfacial photoinduced 

electron transfer, role of mesoporous semiconductor electrode, and electrolyte.3  From 

the practical and industrial point of view, however, the improvement in the performance 

has been rather stagnated during the last two decades.  The main reason for this would 

be attributed to the limited light-harvesting capabilities of the existing dyes, especially 

for the near-infrared region.4  As such, to devise and develop novel photosensitizer 

dyes that can effectively harvest the red light is the urgent task to make the DSSCs 

practically viable.  

Phathalocyanines are the proper choice for this objective due to their strong Q 

band light absorption properties at around 700 nm.5  Their extreme stabilities against 

thermal, chemical, and photochemical reactions are definitively the desirable features 

for the long-term and outdoor robustness for the DSSCs.  Applications of 

phthalocyanines for DSSCs as photosensitizers, however, have not been successful.6  

Notoriously poor solubility to common organic solvents and high tendency of 
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aggregations have been attributed to the main reason for impeding to reveal their 

potentials for DSSCs.  Recent study by Torres et al. demonstrated the usefulness of 

phthalocyanines for red light-harvesting provided that the degree of aggregation is 

partially diminished by introducing three bulky t-butyl groups into the macrocycle 

plane.7  The directionality in the excited state of the dye was also emphasized as an 

important factor for efficient light-harvesting.  However, the reported compound is the 

mixture of the regioisomers, and this may result in the formation of rather complex 

monolayer on the TiO2 surface, making it difficult to disclose the relationship between 

the monolayer structure and the photovoltaic properties.  More importantly, the cell 

performance is still aided with the co-adsorption of chenodeoxycholic acid which is 

well-known to suppress the dye aggregation on the TiO2 surface.  Although the power 

conversion efficiency is the highest among the reported phthalocyanine-sensitized TiO2 

cell (η =3.5 %), it is much lower than those of Ru dye-based DSSCs (η =10-11 %).2-4  

Therefore, further studies are still needed to elucidate the close relationship between the 

molecular structure and the photovoltaic properties toward the improvement of cell 

performances.   

Herein we report the synthesis and photovoltaic properties of a novel highly 

substituted zinc phthalocyanine carboxylic acid (ZnPc) and its metal free counterpart 

(H2Pc) as depicted in Figure 1.  The compounds retain sterically hindered eight phenyl 

groups where the neighboring phenyl rings are rotated each other with respect to the 

phthalocyanine plane to avoid the steric congestion around the ortho-protons.  

Moreover, the six phenyl groups also possess bulky t-butyl moieties.  Therefore, ZnPc 
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and H2Pc are expected to show high solubility toward common organic solvents and the 

reduced tendency of aggregation.  Since the two neighboring β positions are occupied 

by the same functional groups, the target compound can be isolated free from the 

problem of regioisomeric mixtures.  Two carboxylic acid binding groups could 

guarantee the stable immobilization of the phthalocyanine onto the TiO2 surface.  

Additionally, intramolecular push-pull character afforded by electron-donating (t-butyl) 

and electron-withdrawing (carboxylic acid) groups would be anticipated to make the 

efficient electron transfer from the phthalocyanine excited singlet state to the 

conduction band (CB) of the TiO2.   

 

Figure 1 

 

Results and Discussion 

Synthesis  Syntheses of phthalocyanines used in this study were achieved by the 

statistical condensation method.8  A key step in this protocol is the preparation of the 

adequate phthalonitrile precursors.  Synthetic routes to H2Pc and ZnPc are displayed in 

Scheme 1.  Precursor compound 1 was accomplished by the Suzuki-Miyaura 

cross-coupling reaction between the 4,5-dichlorophthalonitrile and 

4-t-butylphenylboronic acid.  The Suzuki-Miyaura coupling is one of the most widely 

used reactions for C-C bond formation.9  However, it is well known that the coupling 

reactions for the substrates with high steric hindrance or for the arylchlorides are 

ineffective, as for the substrate in this study.  To attain the desired compound, we have 
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employed electron-rich and sterically hindered ligand, 

2-(2’,6’-dimethoxybiphenyl)dicyclohexylphosphine (S-Phos).10   
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Because the electron-rich ligand with high steric hindrance such as S-Phos or P(t-Bu)3 

makes the palladium (0) coordinatively unsaturated, the cross-coupling reactions even 

for the difficult substrates proceeded smoothly with moderate to good yield. 11  

Precursor compound 2 was also achieved through the Suzuki-Miyaura cross-coupling 

between 4,5-dichlorophthalonitrile and 4-(methoxycarbonylphenyl)boronic acid, but it 

needed longer reaction time compared with that of 1.  Owing to the presence of ester 

group, the boronic acid would be an inferior nucleophile compared with 
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4-t-butylphenylboronic acid, and it could be the reason of the longer reaction time.   

After obtaining the precursor compounds, we have tried to prepare the desired 

cyclotetramer by statistical condensation of 1 and 2 in 1-pentanol in the presence of 

DBU.  Although we have expected to obtain 2,3,9,10,16,17-hexakis(4-t-butylphenyl)- 

23,24-bis(4-methoxycarbonylphenyl)phthalocyanine, we have reached a result to get the 

mixture of two phthalocyanine compounds.  The compounds showed two molecular 

ion peaks at 1630.7 and 1686.8 with the intensity ratio of 1:3 on the mass spectrometry 

(MALDI-TOF).  Each of the peaks corresponds to 2,3,9,10,16,17-hexakis(4-t-butyl- 

phenyl)-23-(4-methoxycarbonylphenyl)-24-(4-pentoxycarbonylphenyl)phthalocyanine, 

and 2,3,9,10,16,17-hexakis(4-t-butylphenyl)-23,24-bis(4-pentoxycarbonylphenyl)- 

phthalocyanine, respectively.  We believed that the exchange reaction between the 

acetate and pentanoate was occurred during the cyclo-condensation reaction, as is 

already reported.6(g),(h)  Because both of the compounds would afford the same target 

compound (i.e., H2Pc) by hydrolysis, the mixture was directly employed for the next 

reaction without further purification.  The basic hydrolysis of the compounds in 

THF/methanol containing aqueous potassium hydroxide solution afforded the 

corresponding phthalocyanine carboxylic acid, H2Pc.  To achieve the zinc 

phthalocyanine carboxylic acid (ZnPc), zinc (II) was inserted into the core of the 

phthalocyanine esters beforehand by the treatment of zinc acetate.  The resulting 

compounds displayed the molecular ion peaks at 1692.5 and 1748.6 on the mass 

spectrometry (MALDI-TOF).  Each of the peaks corresponds to 

2,3,9,10,16,17-hexakis(4-t-butylphenyl)-23-(4-methoxycarbonylphenyl)-24-(4- 
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pentoxycarbonylphenyl)phthalocyanatozinc (II) and 2,3,9,10,16,17-hexakis- 

(4-t-butylphenyl)-23,24-bis(4-pentoxycarbonylphenyl)phthalocyanatozinc (II), 

respectively.  The basic hydrolysis of the compounds in THF/methanol containing 

aqueous potassium hydroxide solution afforded the corresponding zinc phthalocyanine 

carboxylic acid, ZnPc.  Structures of all the new compounds were verified by 

spectroscopic analyses including 1H NMR, 13C NMR, FT-IR, mass spectra, and 

elemental analyses. 

Optical and Electrochemical Properties  UV-visible absorption spectra for H2PC 

and ZnPc in THF are displayed in Figure 2.  Each of the compounds showed the 

characteristic optical feature of the zinc and metal free phthalocyanine, respectively.  

The peak positions at B and Q bands regions are summarized in Table 1.  The steady 

state fluorescence spectra of the phthalocyanines were also measured in THF and the 

wavelengths for emission maxima are listed in Table 1.  The Stokes shifts are 

determined to be 68.2 cm-1 for H2Pc and 165.6 cm-1 for ZnPc.  This fairly small value 

suggests that the variations in the atomic coordinates during the electronic transitions 

are small for both of the compounds.  From the intersection of the normalized 

absorption and emission spectra, the zero-zero excitation energies (E0-0) are determined 

to be 1.73 eV for H2Pc and 1.78 eV for ZnPc in THF.12 
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Figure 2 and TABLE 1 

 

To determine the first oxidation potential (Eox) of the phthalocyanines, 

differential pulse voltammetry (DPV) 13  measurements were performed in DMF 

containing 0.1M tetrabutylammonium hexafluorophosphate (TBAP) as a supporting 

electrolyte and the results are summarized in Table 1.  Both H2Pc and ZnPc display 

one oxidation peak corresponding to the phthalocyanine radical cation under the same 

sweep conditions (-0.1 V to +0.8 V vs Ag/AgNO3).  The oxidation potential of H2Pc 

appears at +1.27 V (vs NHE), whereas that of ZnPc is determined to be +0.94 V (vs 

NHE).  It indicates that the phthalocyanine is easier to be oxidized upon zinc (II) 

metalation, as reported for the other phthalocyanine compound.14  This variation 

results in the important consequence for the electron injection from the excited state dye 

(LUMO) to the CB of the TiO2 (vide infra).  On the basis of the spectroscopic and 

electrochemical measurements, driving forces for electron injection from the LUMO of 

the dye to the CB of the TiO2 (-0.5 V vs NHE) (ΔGinj)15 and the regeneration of the dye 
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radical cation by I-/I3
- redox couple (+0.5V vs NHE) (ΔGreg)15 for the 

phthalocyanine-sensitized solar cells are evaluated (Table 1).  Both of the processes for 

ZnPc-sensitized TiO2 cell are thermodynamically feasible, whereas the electron 

injection from the excited H2Pc to the CB of the TiO2 is thermodynamically uphill. 

DFT Calculations  DFT calculations were employed to gain insight into the 

equilibrium geometry and electronic structures for the molecular orbitals of the 

phthalocyanines.  The calculated structures do not show negative frequencies, 

implying that the optimized geometries are in the global energy minima.16  Figure 3 

illustrates the electron density distributions of H2Pc and ZnPc in their respective 

LUMOs.  Sufficient electron densities around the carboxylic acid binding group on the 

LUMO of dye are required for the good electronic coupling between the excited state of 

dye and 3d orbital of TiO2.17  Apart from our expectations, there exists electron density 

distribution near carboxylic acid binding groups neither of the phthalocyanines.   

 

Figure 3 
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Photovoltaic and Photoelectrochemical Properties of Phthalocyanine-Sensitized 

TiO2 Cells  Mesoporous TiO2 films (10-µm-thick) were prepared from colloidal 

suspension of TiO2 nanoparticles (P25) (see Experimental Section).  The TiO2 

electrodes were immersed into THF containing 0.05 mM phthalocyanine at room 

temperature to give the phthalocyanine-modified TiO2 electrodes.  Since the 

light-harvesting ability and consequently the cell performance are, to a large extent, 

controlled by the surface coverage (Γ) of the dye on the TiO2 surface, first we examined 

the immersing time dependency of the Γ value for the phthalocyanines.  Both of the 

dyes showed similar and rather slow adsorption rates, and reached saturated coverage 

(Γ) on the surface for about 10h of immersing time (Figure 4).  Total amounts of the 

dyes adsorbed on the TiO2 surface were determined by measuring the changes in the 

absorbance of the dye solutions before and after immersing the TiO2 films.  Dye 

concentrations on the TiO2 films (0.25 cm2 of area with thickness of 10 µm) are 

determined to be about 1.4 × 10-10 mol cm-2.  Assuming that (i) the phthalocyanine 

molecule is a rectangular hexahedron and (ii) the phthalocyanine molecules are densely 

packed onto the TiO2 surface with a perpendicular orientation, the occupied area of one 
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molecule on the TiO2 surface is calculated to be ca. 103 Å2 (4.3 × 24.0 Å2).  

Accordingly, the Γ value is estimated to be 1.6 x 10-10 mol cm-2, which is close to the 

experimental value.  The TiO2 electrodes modified with H2Pc and ZnPc are denoted as 

TiO2/H2Pc and TiO2/ZnPc, respectively. 

 

Figure 4 

 

To judge the potential of H2Pc and ZnPc as a photosensitizer for DSSC, we evaluated 

their cell performances using P25 TiO2 film.  A 10-µm-thick TiO2 electrode was 

modified with H2Pc (0.05 mM) which was dissolved in THF for the immersing time of 

1-72 h.  The H2Pc-sensitized TiO2 cell showed no power conversion due to the lower 

energy level of the H2Pc excited singlet state (-0.46 V vs NHE) than that of the CB of 

the TiO2 (-0.5 V vs NHE).15  In contrast, the η values of the ZnPc-sensitized cell 

gradually increased with increasing the immersing time to reach maximum η values 

(ηmax) of ca. 0.6 % for 12 h.  The power conversion efficiency (η) is derived from the 

equation: η = JSC × VOC × ff, where JSC is the short circuit current, VOC is the open 
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circuit potential, and ff is the fill factor.  Further increase of the immersing time of up 

to 72 h exhibited no noticeable changes in the η values.  The time profiles of the 

η values (Figure 5) correlate well with those of the Γ values (vide supra).  This is in 

sharp contrast with the porphyrin-sensitized TiO2 cells in which at first the η values are 

increased and then decreased significantly with increasing the immersing time.4b,18 The 

representative photocurrent-voltage characteristics of ZnPc-sensitized TiO2 cells with 

the immersing time of 12 h is depicted in Figure 6; η=0.57 ± 0.03 % with JSC=1.47 ± 

0.05 mA cm-2, VOC=0.54 ± 0.02 V, and ff =0.71 ± 0.03.   

 

Figures 5 and 6  

 

For phthalocyanine-sensitized TiO2 cell, co-adsorbates such as chenodeoxycholic acid 

have been employed to reduce the tendency of dye aggregations on the TiO2 surface.6,7  

For instance, previous report by Sundström et al. materialized the double enhanced 

performance by introducing the co-adsorbates into the immersing bath (η=0.29% in the 

absence of the co-adsorbates and η=0.54 % in the presence of the co-adsorbates).19  To 
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further improve the performance of the present cell, we also introduced the 

chenodeoxychloic acid (2.5 mM) to the ZnPc-THF solution (0.05 mM), and prepared 

the phthalocyanine-sensitized TiO2 cell.  The cell, however, exhibited no apparent 

difference in the η values with the cell prepared in the absence of chenodeoxycholic 

acid under the same conditions (Figure 7); η = 0.54 ± 0.03 %, Jsc = 1.44 ± 0.06 mA cm-2, 

Voc = 0.54 ± 0.03 V, and ff = 0.70 ± 0.03 for the cell with chenodeoxycholic acid.  If 

there exist significant aggregations of ZnPc on the TiO2 surface, the electron injection 

yield would be considerably diminished by the accelerated decay of the ZnPc excited 

singlet state, leading to fair decrease in the cell performance, especially in the short 

circuit current.  No apparent difference between the two cells with and without the 

presence of chenodeoxycholic acid reveals that the performance of our present cell is 

not perturbed by the well-known tendency of phthalocyanine aggregation.  We 

understood this phenomenon is originated from the high steric hindrance of the ZnPc.  

Considering the degree of dye aggregation on the TiO2 surface is generally increased 

along with prolonged immersion, this interpretation is consistent with the parallel 

correlation between the time profiles of the η values and the Γ values (vide supra).   
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Figure 7 

 

To investigate the photovoltaic response of the present cell in more detail, we 

measured the photocurrent action spectra of ZnPc-sensitized TiO2 cell under the same 

conditions for the photocurrent-voltage characteristic measurements (Figure 8a).20  To 

a large extent, the photocurrent response follows the general trend of the absorption 

feature of the ZnPc/TiO2 (Figure 8b), indicating that the phthalocyanine is the main 

source for the photocurrent generation.  The maximal IPCE value at the near-infrared 

region is measured to be 4.9 %.   

 

Figure 8 

 

Considering the full coverage on the TiO2 surface and the high molar extinction 

coefficient at around 700 nm region of ZnPc, the low IPCE value of the ZnPc-sensitized 

TiO2 cell cannot be explained by the light-harvesting efficiency.  The remaining two 
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factors are the quantum yield of electron injection from the ZnPc excited singlet state to 

the CB of the TiO2 electrode, and the efficiency of charge collection.21  The charge 

collection efficiency is determined primarily by the relative rate of charge transport and 

charge recombination.  In DSSCs, the injected electron can be recombined by the 

resulting dye cation and I-/I3
- redox couple before going to the outer circuit.22  The 

charge transport is reported to be occurred in the timescale of 10-7 ~ 10-5 s, whereas the 

recombination between the electron and I-/I3
- is happened in the timescale of 10-3 ~ 1 s. 

23,24  Although the time scale of the charge recombination with the resulting dye cation 

is known to be varied depending on the electron density on the TiO2, typical range is 

from 10-5 to 10-3 s.23,25  Therefore, the charge collection efficiency may not be the 

limiting factor for the low photocurrent generation.  The quantum yield of electron 

injection is controlled by the competing processes against electron injection such as 

intersystem crossing, nonradiative decay, emission, and excited-state quenching; the 

most important factor is, however, the driving force for electron injection (ΔGinj) from 

the excited state dye to the CB of the TiO2.3c  From the solution electrochemistry and 

spectroscopy, the ΔGinj for ZnPc-sensitized TiO2 cell is determined to be -0.34 eV.  
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Apparently, it indicates that the electron injection is thermodynamically feasible process.  

The energy level of the CB is, however, not laid in the fixed point but is subject to 

change depending on the operating conditions of the DSSCs.  Mesoporous TiO2 films 

have been known to show the Nernstian shifts in their CB level depending on the degree 

of surface protonations.26  The shift of the CB of about 0.3 eV related with the changes 

in the electrolyte compositions is also reported.22  Besides, the level of the CB would 

be raised in some degree due to the electron injection itself.  The oxidation potential of 

dye, in addition, is to be positively shifted by the chemical adsorption on the TiO2.18c,27 

Thus, the actual driving force for the ZnPc-sensitized cell is estimated to be smaller than 

the above-mentioned value.  In such a case, the electron injection from the excited 

ZnPc to the CB of the TiO2 may be occurred mainly or only through surface states 

because there exist little available acceptor states for the efficient electron injection.28  

Besides, the electronic coupling between the LUMO of the ZnPc and the 3d orbital of 

the TiO2 cannot be anticipated to be large enough due to no apparent electron density on 

the carboxylic acid binding groups together with the intervening phenyl moieties 

between the ZnPc core and the carboxylic acid (vide supra).  Thus, both of the small 
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driving force and the weak electronic coupling would make the ZnPc an inefficient 

photosensitizer for DSSCs.   

Certainly, the performance of our present cell is not good and this is far from 

our expectations.  From this study, however, we can catch invaluable clue for devising 

effective phthalocyanine photosensitizers for DSSCs applications.   

 

Conclusions 

Sterically hindered zinc phthalocyanine carboxylic acid (ZnPc) and its metal free 

counterpart (H2Pc) were synthesized and evaluated for the photosensitizer for DSSCs 

applications.  The H2Pc-sensitized TiO2 cell showed no photocurrent response due to 

its low excited singlet state compared with the CB of the TiO2.  ZnPc-sensitized TiO2 

cell displayed 0.57 % of power conversion efficiency (η) and 4.9 % of maximal IPCE 

value in the near-infrared region.  Introduction of the chenodeoxycholic acid revealed 

no noticeable change in the cell performance, showing that the aggregation of ZnPc is 

effectively suppressed by the steric hindrance.  The moderate cell performance can be 

rationalized by the small driving force for electron injection from the excited-state ZnPc 
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to the TiO2, and the poor electronic coupling between the LUMO of the ZnPc and the 

CB of the TiO2.  Even though the performance of the present cell is not impressive, 

this study affords an important clue for devising novel phthalocyanines for DSSCs 

applications. 

 

Experimental  

General 

All solvents and chemicals were of reagent grade quality, purchased, and used without 

further purification unless otherwise noted.  Column chromatography and thin-layer 

chromatography (TLC) were performed with UltraPure Silica Gel (230-400 mesh, 

SiliCycle) and Silica gel 60 F254 (Merck), respectively.  1H NMR spectra were 

measured on a JEOL EX-400 (400 MHz) or a Varian Unity 500 (500 MHz) 

spectrometer.  13C NMR spectra were measured on a JEOL EX-400 (100 MHz) 

spectrometer.  High-resolution mass spectra (HRMS) were recorded on a JEOL 

JMS-HX 110A spectrometer (FAB) using 3-nitrobenzylic alcohol as a matrix or a JEOL 

JMS-700 MStatiom spectrometer (EI).  Matrix assisted laser desorption/ionization 

time-of-flight (MALDI-TOF) mass spectra were made on a BRUKER Autoflex III 

using CHCA as a matrix.  UV-vis absorption spectra were measured using a 

Perkin-Elmer Lambda 900 UV/vis/NIR Spectrometer.  Steady-state fluorescence 

spectra were acquired by a SPEX Fluoromax-3 Spectrofluorometer.  Spectroscopy 
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grade tetrahydrofuran was used for the measurements of UV-visible absorption and 

fluorescence spectra.  FT-IR spectra were acquired using by a JASCO FT/IR-470 plus 

or a FT/IR-4200 spectrometer with a KBr pellet.  Melting points were recorded on a 

Yanagimoto micro-melting point apparatus and were not corrected. 

Electrochemical measurements were made using a BAS 50W electrochemical 

workstation.  Oxidation potentials in solution were determined by differential pulse 

voltammetry (DPV) with the pulse amplitude of 50 mV in Ar saturated N, 

N’-dimethylformamide containing 0.1M tetrabutylammonium perchlorate (TBAP) as a 

supporting electrolyte.  A glassy carbon working electrode (3 mm diameter), 

Ag/AgNO3 reference electrode, and Pt wire counter electrode were employed.  

Ferrocene/ferrocenium (+0.642 V vs NHE) was used as an internal standard for all 

measurements.  The measured potentials were quoted with reference to NHE. 

Synthesis 

4,5-Bis(4-t-butylphenyl)phthalonitrile (1).  Although this compound is already 

reported, the previous characterization is not complete. 29   A 100 mL of 

round-bottomed flask was charged with 4,5-dichlorophthalonitrile (1.87 g, 9.5 mmol), 

4-t-butylphenylboronic acid (5.0 g, 28.1 mmol), palladium (II) acetate (44 mg, 0.2 
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mmol), 2-(2’,6’-dimethoxybiphenyl)dicyclohexylphosphine (200 mg, 0.49 mmol), 

K3PO4 (8.48 g, 40 mmol), and anhydrous toluene (25 mL).  The solution was stirred at 

90 oC for 2 h.  After cooling to room temperature, the reaction mixture was washed 

twice with water.  The combined organic layers were washed once with water, 

subsequently dried over anhydrous magnesium sulfate, and then concentrated in vacuo.  

The residue was dissolved in hexane, and the solid material was obtained by 

precipitation.  Dissolution in and reprecipitation with cold hexane was repeated until 

no solid material was appeared.  Reprecipitation of the combined crude product with 

ethyl acetate/hexane afforded 1 as a needle-like off-white crystal (2.44 g, 6.22 mmol, 

66 % yield).  Mp. 165.2-166.9 oC; 1H NMR (400 MHz, CDCl3) δ 7.82 (s, 2H, phenyl 

H), 7.28 (d, J=8.3 Hz, 4H, phenyl H), 7.03 (d, J=8.3 Hz, 4H, phenyl H), 1.29 (s, 18H, 

t-butyl H); 13C NMR (100 MHz, CDCl3) 151.77, 145.81, 135.54, 134.80, 129.01, 

125.46, 115.56, 113.97, 34.64, 31.20; FT-IR (KBr) νmax 2964, 2905, 2869, 2233 (CN), 

1735, 1608, 1589, 1484, 1462, 1363, 1268, 1113, 1015, 915, 835, 594, 569 cm-1; HRMS 

(EI positive) m/z calcd for 392.2252 (C28H28N2), found 392.2249; Elemental analysis 

(% calcd, % found for C28H28N2) : C (85.67, 85.37), H (7.19, 7.30), N (7.14, 6.87). 
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4,5-Bis(4-methoxycarbonylphenyl)phthalonitrile (2).  A 100 mL of round-bottomed 

flask was charged with 4,5-dichlorophthalonitrile (1.0 g, 5.1 mmol), 

4-(methoxycarbonylphenyl)boronic acid (2.7 g, 15.0 mmol), palladium (II) acetate (22 

mg, 0.1 mmol), 2-(2’,6’-dimethoxybiphenyl)dicyclohexylphosphine (100 mg, 0.25 

mmol), K3PO4  (4.24 g, 20 mmol), and anhydrous toluene (20 mL).  The solution was 

stirred at 90 oC for 15 h.  After cooling to room temperature, the reaction mixture was 

washed twice with water.  The combined organic layers were washed once with water, 

subsequently dried over anhydrous magnesium sulfate, and then concentrated in vacuo.  

Reprecipitation of the crude product from ethyl acetate twice afforded 2 as a plate-like 

off-white crystal (1.20 g, 2.62 mmol, 60.6 % yield).  Mp. 225.6-227.1 oC; 1H NMR 

(300 MHz, CDCl3) δ 7.96 (d, J=8.4 Hz, 4H, phenyl H), 7.89 (s, 2H, phenyl H), 7.17 (d, 

J=8.4 Hz, 4H, phenyl H), 3.92 (s, 6H, ester H); 13C NMR (75 MHz, CDCl3) 166.20, 

144.86, 141.58, 135.39, 130.50, 130.00, 129.39, 115.31, 114.97, 52.38; FT-IR (KBr) 

νmax 3437, 2236 (CN), 1725, 1609, 1436, 1314, 1282, 1188, 1115, 1105, 1018, 861, 777, 

713, 523 cm-1; HRMS (EI positive) m/z calcd for 396.1110 (C26H16N2O4), found 

396.1114; Elemental analysis (% calcd, % found for C26H16N2O4) : C (72.72, 72.79), H 
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(4.07, 4.05), O (16.14, 16.29), N (7.07, 6.87). 

2,3,9,10,16,17-Hexakis(4-t-butylphenyl)-23,24-bis(4-carboxyphenyl)phthalocyanine 

(H2Pc).  A 200 mL of round-bottomed flask was charged with 1 (4.24 g, 10.8 mmol), 2 

(1.43 g, 3.60 mmol), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.3 g, 1.97 mmol), 

and 1-pentanol (60 mL).  The solution was stirred at reflux for 20 h and cooled to 

room temperature.  The solvent was then removed under reduced pressure.  The solid 

material was obtained from methanol, and subjected to silica gel column 

chromatography (chloroform/hexane = 3:1).  The second fraction was collected and 

reprecipitated from methanol.  Silica gel column chromatography (chloroform/hexane 

= 1:5) of the previously collected material afforded a dark green solid (1.02 g).  The 

solid showed two molecular ion peaks at 1630.7 and 1686.8 with the intensity ratio of 

1:3 on the mass spectrometry (MALDI-TOF).  Each of the peaks corresponds to 

2,3,9,10,16,17-hexakis(4-t-butylphenyl)-23-(4-methoxycarbonylphenyl)-24-(4- 

pentoxycarbonylphenyl)phthalocyanine, and 2,3,9,10,16,17-hexakis(4-t-butylphenyl)- 

23,24-bis(4-pentoxycarbonylphenyl)phthalocyanine, respectively.  The mixture was 

directly employed for the next reaction without further purification.  
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To a solution of the previously collected dark green solid (1.03 g) in 

THF/methanol (2:1(v/v), 280 mL) in a 500 mL of round-bottomed flask was added a 

40 % aqueous KOH solution (40 mL).  The solution was stirred at reflux for 8 h, 

cooled to room temperature, and the organic solvent was removed under reduced 

pressure.  The pH of the reaction mixture was set to 2 by adding HCl solution (6M), 

and the precipitate was formed.  The precipitate was collected and washed with ample 

amount of water and dried.  The collected solid material was suspended in chloroform 

(100 mL), and stirred at reflux for 1 h.  Filtering, and subsequent drying under reduced 

pressure of the solid was afforded H2Pc as a dark green solid (336 mg, 6.0 % overall 

yield for 2 steps with reference to 2 used).  Mp. > 300 oC; 1H NMR (400 MHz, 

THF-d8) δ 10.83 (s, 1H, carboxy H), 9.18 (s, 6H, phenyl H (2,3,9,10,16,17)), 9.15 (s, 

2H, phenyl H (23,24)), 8.08 (d, 4H, J=8.3 Hz, carboxyphenyl H), 7.63 (d, 4H, J=8.3 Hz, 

carboxyphenyl H), 7.49 (d, 4H, J=8.3 Hz, carboxyphenyl H), 7.43 (s, 20H, 

carboxyphenyl H), 1.43 (s, 36H, t-Bu H), 1.41 (s, 18H, t-Bu H), -1.55 (br s, 2H, inner 

H); FT-IR (KBr) νmax 3431, 3296, 2962, 2903, 1716, 1698, 1609, 1506, 1499, 1446, 

1435, 1395, 1363, 1315, 1292, 1269, 1105, 1011, 925, 835, 764, 727, 719 cm-1; HRMS 
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(FAB positive) m/z calcd for 1547.7745 (C106H98N8O4), found 1547.7822 (M+H)+. 

2,3,9,10,16,17-Hexakis(4-t-butylphenyl)-23,24-bis(4-carboxyphenyl)phthalocyanato

zinc (II) (ZnPc).  To a solution of the previously collected dark green solid (500 mg, 

mixture of the 2,3,9,10,16,17-hexakis(4-t-butylphenyl)-23-(4-methoxycarbonyl- 

phenyl)-24-(4-pentoxycarbonylphenyl)phthalocyanine and 2,3,9,10,16,17-hexakis- 

(4-t-butylphenyl)-23,24-bis(4-pentoxycarbonylphenyl)phthalocyanine) in 1-pentanol 

(100 mL) in a 300 mL of round-bottomed flask was added anhydrous zinc acetate (500 

mg, 3.0 mmol).  The solution was stirred at 130 oC for 3 h under nitrogen atmosphere.  

After cooling to room temperature, the solvent was removed under reduced pressure.  

Silica gel column chromatography (chloroform) of the crude product afforded a green 

solid (103 mg).  The solid showed the two molecular ion peaks at 1692.5 and 1748.6 

with the intensity ratio of 1:3 on the mass spectrometry (MALDI-TOF).  Each of the 

peaks corresponds to 2,3,9,10,16,17-hexakis(4-t-butylphenyl)-23-(4-methoxycarbonyl- 

phenyl)-24-(4-pentoxycarbonylphenyl)phthalocyanatozinc (II), and 2,3,9,10,16,17- 

hexakis(4-t-butylphenyl)-23,24-bis(4-pentoxycarbonylphenyl)phthalocyanatozinc (II), 

respectively.  The mixture was directly employed for the next reaction without further 
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purification.  

To a solution of the previously collected green solid (103 mg) in 

THF/methanol (2:1(v/v), 30 mL) in a 100 mL of round-bottomed flask was added a 

40 % aqueous KOH solution (30 mL).  The solution was stirred at reflux for 5 h, 

cooled to room temperature, and the organic solvent was removed under reduced 

pressure.  The pH of the reaction mixture was set to 4 by adding 6M HCl solution, and 

the precipitate was formed.  The precipitate was collected and washed with ample 

amount of water and dried.  The collected solid material was suspended in chloroform 

(100mL), and stirred at reflux for 1h.  Filtering, and subsequent drying under reduced 

pressure of the solid was afforded ZnPc as a dark green solid (52.6 mg, 4.6 % overall 

yield for 3 steps with reference to 2 used).  Mp. > 300 oC; 1H NMR (400 MHz, 

THF-d8) δ 10.72 (s, 1H, carboxy H), 9.47 (s, 2H, phenyl H (23,24)), 9.47 (s, 2H, phenyl 

H (9,10)), 9.39 (s, 4H, phenyl H (2,3,16,17)), 7.10 (d, 4H, J=8.3 Hz, carboxyphenyl H), 

7.72 (d, 4H, J=8.3 Hz, carboxyphenyl H), 7.53 (skewed d, J=8.3 Hz, 12H, 

carboxyphenyl H), 7.46 (skewed d, J=8.3 Hz, 12H, carboxyphenyl H), 1.41 (s, 36H, 

t-Bu H), 1.40 (s, 18H, t-Bu H); HRMS (FAB positive) m/z calcd for 1608.6846 
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(C106H96N8O4Zn), found 1608.6816 (M+H)+. 

Density Functional Theory (DFT) Calculations.  Geometry optimization and 

electronic structure calculations of the porphyrins were performed by using B3LYP 

functional and 3-21G (d) basis set implemented in the Gaussian 03 program package.30  

Molecular orbitals were visualized by GaussView 3.0 software.  

Preparation of Phthalocyanine-Modified TiO2 Electrode and Photovoltaic 

Measurements.  Preparation of mesoporous TiO2 films and immobilization of the 

phthalocyanine on the TiO2 surface, and characterization of the photovoltaic properties 

of phthalocyanine-modified TiO2 were made by following the procedures reported 

previously.18 Tetrahydrofuran was used as an immersing solvent in the present 

experiments instead of ethanol or methanol.  The TiO2 electrodes modified with H2Pc 

and ZnPc are denoted as TiO2/H2Pc and TiO2/ ZnPc, respectively.  The amounts of the 

phthalocyanines adsorbed on the TiO2 films were determined by measuring the changes 

in the absorbance of the phthalocyanine solutions (4 mL) before and after immersing the 

TiO2 films (0.25 cm2 of projected area).  All the experimental values were given as an 

average from six independent measurements. 
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TABLE 1: Optical and Electrochemical Data for the Phthalocyanines and Driving 

Forces for Electron Transfer Processes on the TiO2 

 
λa

abs 

/ nm  
λb

em 

/ nm 
Eox

c 

/ V 
E0-0

d 

/ eV 
Eox*e 

/ V 

ΔGinj
f  

/ eV 

ΔGreg
g  

/ eV 

  ZnPc 
364.5 
622.0 
691.0 

699 
730 

+ 0.94 1.78 - 0.84 - 0.34 - 0.44 

H2Pc 

357.9, 416.3 

619.4, 651.1 

681.0, 714.5 

718 

747 
+ 1.27 1.73 - 0.46 + 0.04 - 0.77 

a Wavelengths for B and Q bands maxima in THF.  b Wavelengths for emission 

maxima in THF by exciting at the B band maxima. c Ground state oxidation potentials 

(vs NHE). d The zero-zero excitation estimated from the interaction of the normalized 

absorption and emission spectra.  e Excited-state oxidation potentials approximated 

from Eox and E0-0 (vs NHE). f Driving forces for electron injection from the 

phthalocyanine excited singlet state (Eox*) to the conduction band of the TiO2 (-0.5 V vs 

NHE). g Driving forces for the regeneration of phthalocyanine radical cation (Eox) by 

I-/I3
- redox couple (+0.5 V vs NHE).   
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Figure 1.  Structures of the phthalocyanines used in this study. 

 

 

 

 



 31 

 

 

 

 

Figure 2.  UV-visible absorption spectra of ZnPc (solid) and H2Pc (dashed) measured 

in 2×10-6 M of THF solution.  Optical length = 1 cm. 
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Figure 3.  LUMOs of (a) ZnPc and (b) H2Pc calculated by DFT methods with 

B3LYP/3-21G(d).  The protons are omitted for clarity. 
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Figure 4.  Profile of the surface coverage (Γ) of ZnPc on the TiO2 electrode depending 

on the immersing time of the TiO2 electrode into the THF solution of ZnPc (0.05 mM).  
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Figure 5.  Profile of the power conversion efficiency (η) of ZnPc-sensitized TiO2 cell 

depending on the immersing time of the TiO2 electrode in the ZnPc-THF solution (0.05 

mM).  
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Figure 6.  Photocurrent-voltage characteristics of ZnPc-sensitized TiO2 cell (η  = 

0.57 %, Jsc = 1.47 mA cm-2, Voc = 0.54 V, ff = 0.71).  Conditions: electrolyte 0.1 M LiI, 

0.05 M I2, 0.6 M 2,3-dimethyl-1-propyl imidazolium iodide, and 0.5 M 

4-t-butylpyridine in CH3CN; input power: AM 1.5 under simulated solar light (100 mW 

cm-2). η = Jsc × Voc× ff. 
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Figure 7.  Profile of the power conversion efficiency (η) of ZnPc-sensitized TiO2 cell 

depending on the immersing time of the TiO2 electrode in the ZnPc-THF solution (0.05 

mM) in the presence of chenodeoxycholic acid (2.5 mM).  
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Figure 8.  (a) Photocurrent action spectra of ZnPc-sensitized TiO2 cell.  The 

phthalocyanine-modified TiO2 electrode was prepared under the same conditions for the 
power conversion efficiency (η) measurements.  Conditions: electrolyte 0.1 M LiI, 

0.05 M I2, 0.6 M 2,3-dimethyl-1-propyl imidazolium iodide, and 0.5 M 

4-t-butylpyridine in CH3CN; input power: AM 1.5 under simulated solar light (100 mW 

cm-2).  (b) UV-visible absorption spectra of TiO2/ZnPc.  The thickness of the TiO2 
was adjusted to be 700 – 1000 nm to obtain the shape and peak position of the spectra 
accurately.   

(a)

(b)
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