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Abstract 

  A numerical method using a path-independent H-integral based on the Betti reciprocal principle 

was developed to analyze the stress intensity factors of an interfacial corner between anisotropic 

bimaterials under thermal stress. According to the theory of linear elasticity, asymptotic stress near 

the tip of a sharp interfacial corner is generally singular as a result of a mismatch of the materials’ 

elastic constants. The eigenvalues and the eigenfunctions are obtained using the Williams 



eigenfunction method, which depends on the materials’ properties and the geometry of an 

interfacial corner. The order of the singularity related to the eigenvalue is real, complex or 

power-logarithmic. The amplitudes of the singular stress terms can be calculated using the 

H-integral. The stress and displacement fields around an interfacial corner for the H-integral are 

obtained using finite element analysis. A proposed definition of the stress intensity factors of an 

interfacial corner involves a smooth expansion of the stress intensity factors of an interfacial crack 

between dissimilar materials. The asymptotic solutions of stress and displacement around an 

interfacial corner are uniquely obtained using these stress intensity factors. 

 

Keywords 

H-integral, Stress Singularity, Interfacial Corner, Anisotropic, Thermal Stress, Stress Intensity 

Factor, Stroh Formalism, Finite Element Method 

 

Main Text 

1. Introduction 

  Micro-structures such as those utilized in electronic devices and micro-electro mechanical 

systems (MEMS) are composed of many different materials. Many interfacial corners exist in 



electronic devices and MEMS because each of the materials employed has a different configuration. 

Due to a mismatch of the materials’ thermal expansion and elastic properties, the stress 

concentration at an interfacial corner may cause failure. Therefore, the strength of an interfacial 

corner is very important for the reliability of an electronic product.  

  Singular stress fields usually occur near the tip of a sharp interfacial corner, and their nature has 

been the subject of a number of studies. Williams [1] used an eigenvector approach on a corner in 

homogeneous media, with this method was expanded in a later paper [2]. Stern et al. [3], Sinclair et 

al. [4], Carpenter [5] and Babuska and Miller [6] employed the Betti reciprocal principle to derive 

the path-independent H-integral and applied this integral to a corner in an isotropic, homogeneous 

medium for the calculation of stress intensities. This approach was extended to the corner between 

dissimilar isotropic materials by Carpenter and Byers [7] and Banks-Sills [8], and to the thermal 

elastic problem by Banks-Sills and Ishbir [9]. Using the Stroh formalism [10] and the H-integral, 

asymptotic solutions to stress and displacement near the corner of dissimilar anisotropic materials 

have been computed by Labossiere and Dunn [11]. A general solution for the order of the 

singularity has been provided by Hwu et al. [12], who has also proposed a unified definition for the 

stress intensity factors of general interfacial corners and cracks [13].  

  In the present paper, we extend the H-integral to analyze asymptotic stress and displacement 



fields around an interfacial corner between dissimilar general anisotropic materials under thermal 

stress, and propose a modified definition of the stress intensity factors of an interfacial corner based 

on the unified definition proposed by Hwu and Kuo [13]. The H-integral is extended to the thermal 

anisotropic elastic problem using the body force analogy [14]. Employing the Williams 

eigenfunction expansion method, the Stroh formalism and an extended H-integral, asymptotic 

solutions near an interfacial corner, which are generally mixed-mode, are obtained. The modified 

definition of stress intensity factors corresponds to the three deformation modes through mode 

separation from asymptotic stresses. These three stress intensity factors can lead to precise 

asymptotic solutions of stress and displacement and are directly connected to the stress intensity 

factors of interfacial cracks proposed by Hwu [15] and those of homogeneous cracks. 

 

2. Singular stress and displacement fields near the tip of an interfacial corner 

  Consider the wedge corner that consists of n different anisotropic elastic materials as shown in 

Fig. 1. The asymptotic solutions near the tip of a corner under thermal stress have been expressed 

as follows [9][11]: 

� 

σ ij
k = Cmr

λm−1 fij
mk (θ)

m=1

Ν

∑ + σ ij0
k (θ)

ui
k = Cmr

λmgi
mk (θ)

m=1

Ν

∑ + ui0
k (r,θ)

                       (1) 



where (r,

� 

θ ) are the polar coordinates whose origin is located on the corner tip, and Cm (m=I,II, … 

N) is a scalar coefficient obtained by the H-integral,

� 

λm  is the eigenvalue (

� 

λm–1 is the order of the 

singularity) and N is the number of eigenvalues. The tensors 

� 

f ij
mk  and 

� 

gi
mk  are eigenfunctions 

related to 

� 

λm  which depend upon the angle

� 

θ . The last terms of stress and displacement (

� 

σ ij0
k , 

� 

ui0
k ) 

are the regular stress and displacement components, respectively, which are usually absent for 

mechanical loading [9][16].  

  The general solutions for eigenvalues and eigenfunctions of general anisotropic multi-bonded 

materials have been provided by Hwu et al. [12]. By employing the Stroh formalism [10][17], the 

general solutions near the tip are expressed as 

� 

uk = rλ{A k ˆ µ jk
λ (θ) ck + A k ˆ µ jk

λ (θ) dk}

t k = λrλ−1{Bk ˆ µ jk
λ (θ) ck + B k ˆ µ jk

λ (θ) dk}
                   (2) 

� 

 ˆ µ jk (θ) = cosθ + µ jksinθ,   j = 1, 2, 3                     (3) 

where t is the traction vector related to stresses through 

� 

ti = σ ijn j  in which nj denotes the normal 

vector of the boundary, A and B are 3 x 3 complex matrices composed of Stroh’s eigenvectors, and 

� 

µ j  is Stroh’s eigenvalue. These eigenvectors and eigenvalues are functions of the anisotropic 

elastic constants for each material. The vectors ck and dk are complex coefficient vectors to be 

determined through the satisfaction of boundary conditions. The angular brackets < > stand for the 



3 x 3 diagonal matrix, and the overbar denotes the conjugate of a complex number. Both the1st and 

nth materials have a traction-free boundary condition on their corner flanks, and the tractions and 

displacements are continuous across each interface at 

� 

θ = θ1,θ2,...,θn−1 as shown in Fig. 1. These 

boundary conditions can be written as 

� 

                        t1(θ0) = tn (θn ) = 0
t k (θk ) = t k+1(θk ),  uk (θk ) = uk+1(θk ),    k = 1, 2, ....,  n −1

                (4). 

Substituting Eq. (2) into Eq. (4) and using Key matrix   

� 

) 
N [12], the boundary conditions are 

simplified as 

  

� 

E3p
* = 0,      E =

E1 E2

E3 E4

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

) 
N k

λ

k=1

n

∏ (θk−1,θk )                   (5) 

where 

  

� 

) 
N k

λ(θA ,θB ) =
A k A k
Bk B k

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

ˆ µ jk
λ (θA ) ˆ µ jk

−λ(θB ) 0

0 ˆ µ jk
λ (θA ) ˆ µ jk

−λ(θB )

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 

Bk
T A k

T

Bk
T A k

T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥      (6). 

Here,   

� 

) 
N  is a 6 x 6 complex matrix, 

� 

E3 is one of the 3 x 3 sub-matrices of the 6 x 6 matrix E, and 

� 

p* is a complex vector related to ck and dk. Therefore, the eigenvalue can be obtained by 

� 

E3 = 0                                  (7). 

In this case, Eq. (7) has an infinite number of possible solutions for 

� 

λ . Since the displacements are 

finite, only positive solutions are permitted, i.e., 

� 

0 < Re[λ], and singular stress terms are dominant 

near the tip of a corner 

� 

Re[λ] <1. Thus we will focus only on the region 



� 

0 < Re[λ] <1                               (8). 

Using 

� 

λm  obtained by Eq. (7) and key matrix   

� 

) 
N , the eigenfunctions 

� 

Fmk  and 

� 

gmk  related to 

� 

f ij
mk  and 

� 

gi
mk  are expressed as 

  

� 

gmk (θ)
Fmk (θ)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=

) 
N k

λm (θ,θk )
) 
N i

λm

i= k+1

n

∏ (θi−1,θi)
p*

0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
,  k = 1, 2, ... ,n −1

) 
N k

λm (θ,θk )
p*

0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
,      k = n

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

    (n > 2)        (9). 

The vector 

� 

Fmk  is the eigenfunction of the stress function 

� 

φmk  which is given by 

� 

φmk = Cmr
λmFmk (θ)                            (10). 

The stress function is related to the stresses by 

� 

σ i2 = φi,1,   σ i1 = −φi,2,   i = 1, 2, 3                    (11). 

From Eqs. (10) and (11), 

� 

f ij
mk  is obtained. 

� 

gmk and

� 

gi
mk  have the following relation. 

� 

gmk (θ) =
g1
mk (θ)
g2
mk (θ)
g3
mk (θ)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

                            (12). 

In the singular terms, the only quantities in Eq. (1) that are not obtained are the scalar coefficients 

Cm which depend on far-field geometry and mechanical and thermal loading. 

 

3. H-integral for thermo-elastic problems 

  We developed a path-independent H-integral based on the Betti reciprocal principle in order to 



calculate the scalar coefficients Cm subjected to thermo-elastic problems. The Betti reciprocal 

principle is based on two sets of linear elastic fields: the actual and the complementary. For any 

closed-contour 

� 

Γ  not containing a singularity, the principle can be written as 

� 

(σ ijui
* −σ ij

*ui )n jdsΓ∫ + (siui
* − si

*ui )dΩ = 0
Ω∫                  (13) 

where 

� 

σ ij  and 

� 

ui  are the actual stress and displacement, respectively, 

� 

σ ij
*  and 

� 

ui
*  are the 

complementary stress and displacement, respectively, which satisfy the same equilibrium and 

constitutive relations as the actual fields, 

� 

si and 

� 

si
*  are the actual and complementary body forces, 

respectively, 

� 

n j  is the unit outward normal to the contour-clockwise 

� 

Γ , and Ω is the area inside 

the contour.  

  Eq. (13) cannot be applied to thermal elastic problems directly. When we consider thermal 

effects, the Betti reciprocal principle can be rewritten by employing the body force analogy [14] as 

shown in Fig. 2. According to the analogy, the strain and displacement of a body subjected to 

thermal elastic forces are identical to those of the same body without thermal loading subjected to 

the corresponding body forces and tractions. In Fig. 2, 

� 

ϑ  is the change of temperature, 

� 

si and 

� 

˜ s i 

are the body forces, 

� 

σ ij  and 

� 

˜ σ ij  are the stresses, and 

� 

Ti and 

� 

˜ T i are the tractions applied to the 

bodies shown Figs. 2(a) and 2(b), respectively. The body force, stress and traction of the analogous 

problem (

� 

˜ s i, 

� 

˜ σ ij , 

� 

˜ T i ) are defined as 



� 

˜ s i = si −βijϑ , j

˜ σ ij = σ ij + βijϑ
˜ T i = Ti + βijϑn j

                            (14) 

where 

� 

βij = Cijksαks                             (15). 

The Betti reciprocal principle for the analogous problem is written as 

� 

( ˜ σ ijui
* − ˜ σ ij

* ui )n jds
Γ∫ + (˜ s iui

* − ˜ s i
*ui )dΩ = 0

Ω∫                  (16). 

We consider only that no body forces are present in both the actual and complementary fields. The 

substitution of Eq. (14) into Eq. (16) and 

� 

si = si
* = 0  leads to  

� 

(σ ijui
* −σ ij

*ui )n jdsΓ∫ + βij (ϑui
* −ϑ *ui )n jdsΓ∫ − β ij (ϑ , j ui

* −ϑ , j
* ui )dΩΩ∫ = 0        (17). 

The complementary solutions are chosen as the isothermal problem (

� 

ϑ * = 0). Therefore Eq. (17) 

becomes 

� 

(σ ijui
* −σ ij

*ui )n jds+ βijϑui
*n jdsΓ∫Γ∫ − β ijϑ , j ui

*dΩ
Ω∫ = 0             (18). 

Applying the Stokes theorem to the second term on the left-hand of Eq. (18), and taking account of 

the strain-displacement relation, Eq. (18) is written as 

� 

(σ ijui
* −σ ij

*ui )n jdsΓ∫ + βijϑεij
*dΩ

Ω∫ = 0                      (19). 

The Betti reciprocal principle for thermo-elastic problems in Eq. (19) is thus obtained. For 

two-dimensional deformation, the strain-displacement relation becomes 



� 

ε11 = ∂u1

∂x1

,   2ε23 = ∂u3

∂x2

ε22 = ∂u2

∂x2

,  2ε31 = ∂u3

∂x1

ε33 = 0,     2ε12 = ∂u1

∂x2

+ ∂u2

∂x1

                          (20). 

  If this principle is applied to the wedge corner, 

� 

Γ  is selected to be 

� 

Cr + C1 + C2 + C3 as shown 

in Fig. 3. The notch flanks are traction-free, and the complementary solutions are taken so that they 

also satisfy the traction-free condition on the corner flanks. Hence, the line integrals along 

� 

C1 and 

� 

C3 are zero, and Eq. (19) is written as 

� 

(σ ijui
* −σ ij

*ui )n jdsCδ
∫ = (σ ijui

* −σ ij
*ui )n jdsCr

∫ + β ijϑεij
*dΩ

Ω∫           (21) 

where 

� 

Cδ = −C2 and a circular contour-clockwise path is selected for the inner path 

� 

Cδ . The 

path-independent H-integral is defined as the limit of the left-hand term in Eq. (21) for 

� 

δ → 0 ,  

� 

H = (σ ijui
* −σ ij

*ui )n jdsCr
∫ + βijϑεij

*dΩ
Ω∫                   (22) 

where the integral path 

� 

Cr  is arbitrary from the lower flank to the upper flank. The subscript k 

denoting the materials has been neglected for simplicity while the H-integral is discussed. Eqs. 

(13-22) are valid for any multibonded wedges. 

 

4. Interfacial corners between bimaterials 

  In this section, we consider an interfacial corner between anisotropic bimaterials as shown in Fig. 



4, which shows the special case of a wedge corner consisting of n-bonded materials (n=1 or 2). For 

an interfacial corner, the combination of the eigenvalues, the calculation of the scalar coefficients 

by the H-integral, the moving least-square method and the definition of the stress intensity factors 

are treated.  

 

4.1. Five combinations of the eigenvalues 

  Substituting n = 2, k =A or B and 

� 

θ0 = −β,  θ1 = 0, θ2 = α  into Eqs. (5), (7) and (9), these 

equations are simplified as 

  

� 

E3 = 0,   E =
) 
N B

λ (−β,0)
) 
N A

λ (0,α)                        (23) 

  

� 

gmk (θ)
Fmk (θ)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=

) 
N B

λm (θ,0)
) 
N A

λm (0,α)
p*

0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
,  (−β < θ ≤ 0)

) 
N A

λm (θ,α)
p*

0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
,                (0 ≤θ < α)

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

                  (24). 

The 

� 

λm  obtained from Eq. (23) in the range of Eq. (8) may be real or complex. If 

� 

λm  is a 

repeated root, the power-logarithmic stress singularities should be considered [18]. Since few 

situations yield this singular behavior, the power type is not treated in the present study. The 

combination of 

� 

λm  depends upon the wedge angles (

� 

α , 

� 

β ) and the anisotropic elastic constants of 

the two materials, as demonstrated in the following five examples (A-E) [13]:  

 



(A) 3 eigenvalues are real and non-repeated (N=3), 

� 

0 < λI < λII < λIII <1                          (25) 

(B) 2 eigenvalues are real and non-repeated (N=2), 

� 

0 < λI < λII <1                            (26) 

(C) 1 eigenvalue is real and is a triple root (N=1), 

� 

λI = 0.5                              (27) 

(D) 2 eigenvalues are complex and conjugate, and 1 eigenvalue is real and non-repeated (N=3), 

� 

λI = λ + iε,  λII = λ − iε,  λIII = ′ λ ,     λ ≤ ′ λ 
λI = ′ λ ,  λII = λ + iε,  λIII = λ − iε,     λ > ′ λ 

⎧ 
⎨ 
⎩ 

               (28) 

(E) 2 eigenvalues are complex and conjugate (N=2), 

� 

λI = λ + iε,  λII = λ − iε                       (29) 

where 

� 

λ  and 

� 

ε are real numbers. Since the singular terms associated with 

� 

λI,  λII and 

� 

λIII are 

generally mixed-mode, the subscript has no relation to the three deformation modes. However, 

when the in-plane and anti-plane deformations can be decoupled, 

� 

λm  can be classified into 

in-plane and anti-plane eigenvalues. Then, regardless of Eqs. (25-29), 

� 

λIII is chosen to be the 

anti-plane eigenvalue, which is associated with anti-plane deformation, and the others (

� 

λI,  λII) are 

the in-plane eigenvalues. 

  Type (C), which is the case of a homogeneous crack, occurs if we set 

� 

α = β = π  and two 



identical materials A = B. In this case, three linearly independent p* (

� 

p1
*,p2

* ,p3
*) in Eq. (24) are 

obtained since 

� 

λ  is a triple root. In spite of N=1, three sets of 

� 

f ij
mk  and 

� 

gi
mk  corresponding to 

� 

p1
*,p2

* , and 

� 

p3
*  exist, and three scalar coefficients Cm are needed. In the other cases, the number of 

Cm which are needed equals N. If 

� 

λm  is complex, in the cases of (D) and (E), the corresponding 

scalar coefficient is also complex, so CI and CII or CII and CIII are complex and conjugate. 

 

4.2. Calculation of the scalar coefficients by H-integral 

  Since the H-integral path 

� 

Cr  is arbitrary from the lower flank to the upper flank, a circular 

contour-clockwise path is selected for simplicity’s sake as shown in Fig. 4. If the complementary 

solutions are chosen properly, H equals the scalar coefficient Cm. Szabo and Babuska [19] and Wu 

and Chang [20] showed that if 

� 

λm  is the solution of Eq. (23), 

� 

−λm is also the solution. So we 

chose the complementary solutions as follows. 

� 

σ ij
k* = Cm

* r−λm−1 fij
mk*(θ)

ui
k* = Cm

* r−λmgi
mk*(θ)

          k=A, B         (30) 

� 

1
Cm
* = ( f ij

mk (θ)
−β

α∫ gi
mk*(θ) − f ij

mk*(θ)gi
mk (θ))n jdθ               (31) 

where 

� 

f ij
mk*  and 

� 

gi
mk*  are obtained from Eq. (24) in the same way 

� 

f ij
mk  and 

� 

gi
mk  are obtained. 

These complementary solutions satisfy the requirements mentioned earlier. By shrinking the inner 

path, the dominant contribution to the solutions inside the region comes from the singular terms. So, 



substituting Eqs. (1) and (30) into H-integral Eq. (22) in the limit as 

� 

δ → 0 , and using 

� 

C* given in 

Eq. (31), we obtain 

� 

Hm = lim
δ →0

(σ ij
k ui

k* −σ ij
k*ui

k )n jδdθ−β

α∫ = Cm                      (32). 

In the case of m = I, the singular stresses and displacements associated with the minimum 

eigenvalue λI of the actual field in Eq. (1) are of the order 

� 

O(δλI −1) and 

� 

O(δλI ) , respectively. 

Those of the complementary field in Eq. (30) are of the order 

� 

O(δ−λI −1) and 

� 

O(δ−λI ) . Therefore, 

the products of the above stresses and displacements expressed in Eq. (32) are of the order 

� 

O(δ−1) , 

and the other terms, whose orders are 

� 

O(δλII −λI )  or 

� 

O(δλIII −λI ), are eliminated by 

� 

δ → 0 . Therefore, 

only the scalar coefficient CI is left. In the other cases m = II or III, in the same way, the products of 

the stresses and displacements associated with the eigenvalue λII, e.g. in Eq. (1), and those of the 

complementary are of the order 

� 

O(δ−1) , but the other terms whose order is 

� 

O(δλI −λII )  cannot be 

eliminated by 

� 

δ → 0 . These terms are dissolved by the following relation: 

� 

( f ij
lk (θ)

−β

α∫ gi
mk*(θ) − f ij

mk*(θ)gi
lk (θ))n jdθ = 0,  l ≠ m                (33). 

Since the explicit expressions of 

� 

f ij
mk , 

� 

gi
mk , 

� 

f ij
mk*  and 

� 

gi
mk*are quite complicated, a rigorous proof 

is not easily performed. Instead, a numerical check has been done for all cases (A-E). Therefore, 

only CII is left. In order to obtain all the scalar coefficients Cm, we need to evaluate the H-integral N 

times using the N patterns (m = I, II or III)of Eqs. (30) and (31). 



  On the right-hand side of Eq. (22), the numerical solutions obtained using the finite element 

method are employed for actual stress and displacement, and Eqs. (30) and (31) are used for the 

complementary field. Since the strain of the complementary field on the right-hand side of Eq. (22) 

is of the order 

� 

O(r−λm−1), the second term is highly singular and cannot be integrated by standard 

numerical methods near the tip. To overcome this difficulty, the analytic integration is carried out 

for a radial direction. The complementary strains are expressed as 

� 

 εij
k* = Cm

* r−λm−1hij
mk*(θ)                            (34). 

Using the strain-displacement relation of Eq. (20), 

� 

hij
mk*  is written as 

� 

h11
mk*(θ) = −λm cosθg1

mk*(θ) − sinθ{g1
mk*(θ)},θ

h22
mk*(θ) = −λmsinθg2

mk*(θ) + cosθ{g2
mk*(θ)},θ

2h23
mk*(θ) = −λmsinθg3

mk*(θ) + cosθ{g3
mk*(θ)},θ

2h31
mk*(θ) = −λm cosθg3

mk*(θ) − sinθ{g3
mk*(θ)},θ

2h12
mk*(θ) = −λm cosθg2

mk*(θ) − sinθ{g2
mk*(θ)},θ −λmsinθg1

mk*(θ) + cosθ{g1
mk*(θ)},θ

     (35). 

When the integral path is circular, the element within the region is 

� 

rdrdθ  [9], and the region is 

divided into the differential elements of area as shown in Fig. 5. If we assume that the temperature 

and 

� 

hij
mk*  at the evaluation point are constant in each element, the second term of Eq. (22) can be 

rewritten as 

� 

β ijϑεij
m*

Ω∫ rdrdθ = ra
1−λm − ra−1

1−λm

1− λmb
∑

a
∑ C*βijϑhij

m*(θb −θb−1)            (36) 

where the subscript k has been neglected for the sake of simplicity. 



 

4.3. Moving least-square method 

The moving least-square method [21] is used as a pre-processing step of the H-integral. In many 

cases, data preparation for post-processing is troublesome. Therefore, using the moving 

least-square method, the stress, strain and displacement used for the H-integral are approximated 

automatically based on the nodal displacements obtained using the finite element method. The 

formulation of the moving least-square method is described as follows. 

The approximation of displacement at an arbitrary point can be written as 

� 

uh (x) = pT (x)a(x)                              (37) 

� 

p(x) = {1,x,y}T                                (38) 

� 

a(x)  is determined by minimizing the following weighted least-square form, 

� 

R(x) = w(x − xI )
I

n

∑ [pT (xI )a(x) −uI ]
2                    (39) 

where 

� 

uI  is the displacement at node I as shown in Fig. 6. The following exponential weight 

function was employed in this paper. 

� 

w(dI ) =
exp(−(dI /c)2) − exp(−(dmI /c)2)

1− exp(−(dmI /c)2)
,   if  dI ≤ dmI

0,                                                   if  dI > dmI

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
            (40) 

where 

� 

dI = x − xI , 

� 

c = βdmI  and 

� 

β  is a parameter which determines the sharpness of the weight 



function. The function 

� 

a(x)  is determined by taking the extremum of 

� 

R(x)  and by substituting 

� 

a(x)  into Eq. (37) to obtain 

� 

uh = p j (x)
j

m

∑
I

n

∑ [X−1(x)Y(x)] jI uI ≡ φI (x)uI
I

n

∑               (41) 

where the shape function is given by 

� 

φI (x) = p j (x)
j

m

∑ [X−1(x)Y(x)] jI                     (42) 

  

� 

X(x) = w(x − xI )
I

n

∑ p(xI )p
T (xI )

Y(x) = [w(x − x1)p(x1),  w(x − x2)p(x2),  Kw(x − xI )p(xI )]
        (43). 

 

4.4. A modified definition of stress intensity factors 

  A unified definition of the stress intensity factors of an interfacial corner between anisotropic 

bimaterials has been proposed by Hwu and Kuo [13], and it is applicable to interfacial cracks [15] 

and homogeneous cracks considering the consistency of the definition and its clear physical 

meaning: 

� 

k =
K II

K I

K III

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= lim

r→0
θ = 0

2π r1−Re[λI ]Λ(θ) (r / lk )
− iε* Λ−1(θ)

σ12
σ 22

σ 32

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
            (44) 

where lk is a length parameter which may be chosen arbitrarily. However, since the stress intensity 

factors for different lk cannot be compared, the length parameter should be selected as a fixed value. 

The matrix 

� 

Λ  is composed of F obtained from Eq. (24), and < > stands for the diagonal matrix.  



  In Eq. (44), only the smallest critical eigenvalue 

� 

λI  is considered. When r →0, i.e. near the tip 

field, the term associated with 

� 

λI  will dominate the stress behavior. However, in the actual 

fracture, the terms associated with minor eigenvalues, 

� 

λII or 

� 

λIII, may have considerable influence. 

There is a difference between the asymptotic stress considering only the dominant term and that 

considering all the singular terms, even in the vicinity of a corner. If minor eigenvalues are 

considered in Eq. (44), more stress intensity factors related to 

� 

λII or 

� 

λIII are needed (six or nine 

values). No matter how many eigenvalues are considered, it may be convenient for engineers to 

evaluate a singular stress field using only 3 values, 

� 

K I,  K II and 

� 

K III. 

  Therefore, we propose a modified definition of the stress intensity factors based on Eq. (44) for 

engineering applications, as follows: 

� 

k =
K II

K I

K III

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= lim

r→0
θ = 0

2πrlk
0.5−Re[λI ]Λ(θ) (r / lk )

0.5−λm Λ−1(θ)
σ12
σ 22

σ 32

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
           (45) 

� 

Λ(θ) = F I(θ) F II(θ) F III(θ)[ ]                       (46) 

where lk is a length parameter which may be chosen arbitrarily, and < > stands for the 3 x 3 

diagonal matrix, m=I, II, III. If two eigenvalues exist, as in the cases of (B) and (E), the diagonal 

matrix and 

� 

Λ  are 2 x 2 and 3 x 2 matrices, respectively. These values have the dimension related 

to the smallest eigenvalue 

� 

λI , because the stress intensity factors which have different dimensions 



are unified by the dominant dimension. The physical meaning of this definition is not as clear as 

that of the definition in Eq. (44). However, since the influence of all the singular terms can be 

reflected in the stress intensity factors, it is convenient for use in fracture evaluation. 

  Also, asymptotic solutions of stress and displacement near the tip of an interfacial corner are 

uniquely obtained using these stress intensity factors. For example, the stresses ahead of an 

interfacial corner are expressed as 

 

� 

σ12
σ 22

σ 32

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= lk

Re[λI ]−1

2π
Λ(0) (r / lk )

λm−1 Λ−1(0)
K II

K I

K III

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
+

σ120
σ 220

σ 320

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
              (47). 

The last term on the right-hand side is the regular stress caused by thermal loading [9][16]. 

Substituting the singular stress terms from Eq. (1) into Eq. (45), the relation between the scalar 

coefficient Cm and these stress intensity factors is obtained: 

� 

K II

K I

K III

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= 2π [CIlk

Im[λI ]

f12
I (0)
f22
I (0)
f32
I (0)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

+ CIIlk
λII −Re[λI ]

f12
II(0)
f22
II(0)
f32
II(0)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

+ CIIIlk
λIII −Re[λI ]

f12
III(0)
f22
III(0)
f32
III(0)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 
]      (48). 

In the cases of (B) and (E), the third term is absent. If lk is changed to lk’, the relation of the stress 

intensity factors in Eq. (45) is written as 

� 

′ k ( ′ l k ) = Λ(0) (lk / ′ l k )
Re[λI ]−λm Λ−1(0)k(lk )                   (49). 

  This definition involves a smooth expansion of the stress intensity factors of an interfacial crack 

between dissimilar materials defined by Hwu [15], whose eigenvalues are 

� 

λI = 0.5 + iε , 



� 

λII = 0.5 − iε  and

� 

λIII = 0.5 . Thus, Eq. (45) becomes 

� 

K II

K I

K III

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= lim

r→0
θ = 0

2πrΛ(θ) (r / lk )
− iεm Λ−1(θ)

σ12
σ 22

σ 32

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
                (50) 

where 

� 

εI = ε,  εII = −ε,  εIII = 0  are the anisotropic bimaterial constants. The definition of stress 

intensity factors in Eq. (45) also has a direct connection with that of a homogeneous crack. In the 

case of a crack (C), the eigenvalue is 

� 

λI = 0.5. Then, Eq. (37) becomes 

� 

K II

K I

K III

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= lim

r→0
θ = 0

2πr
σ12
σ 22

σ 32

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
                         (51). 

 

5. Numerical results 

  In the first example, we show the variation of the eigenvalues (A) ~ (E) with respect to the 

wedge angles. In other examples, the accuracy and efficiency of the present method were examined 

for several interfacial corner or crack problems. Note that for all the examples, elastic analyses 

were carried out using the finite element method program for the general plain strain condition. 

Eight-noded isoparametric elements were used. The moving least-square method was used to 

determine stresses and displacements along circular paths around an interfacial corner. The length 

parameter lk was selected to be 10µm. 

 



5.1. The eigenvalues of an interfacial corner 

  We calculate 

� 

λm  for two cases: glass-silicon bimaterial, and aragonite-Gd2SiO5 (GSO) 

bimaterial interfacial corners. The glass-silicon bimaterial interfacial corner is found in an anodic 

bonding which is commonly used in micro-sensors. The material properties of glass are E = 72.6 

GPa, ν =0.2 and α = 2.0 x 10-6 (K-1), while the anisotropic material properties of silicon, aragonite 

and GSO are shown in Table 1. Silicon and aragonite are made by rotating the principal direction of 

each material with respect to the x2-axes (see Fig. 4) –45 degrees. After the rotation, the material 

properties of silicon and aragonite are  

� 

CSi =

194.4 63.9 35.2 0 0 0
165.7 63.9 0 0 0

194.4 0 0 0
79.6 0 0

sym. 50.9 0
79.6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 [GPa],  αSi =
3.5 0 0
0 3.5 0
0 0 3.5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 [10−6K−1]   (52) 

� 

Caragonite =

87.8 26.3 36.6 0 18.75 0
87 26.3 0 10.35 0

87.8 0 18.75 0
42 0 0.7

sym. 60.27 0
42

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 [GPa],  αaragonite =
22.5 0 12.5

0 17 0
12.5 0 22.5

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 [10−6K−1] (53). 

  Consider an interfacial corner between glass-silicon bimaterials. In order to explore the 

dependence of the eigenvalue on the wedge angle and compare it with Labossiere and Dunn’s 

results [11], we plot 1–

� 

λm  versus the wedge angle of silicon 

� 

β  in Fig. 7. The wedge angle of 



glass, 

� 

α =180°, is fixed. The results are the same as Labossiere’s results, where only in-plane 

deformations were focused on and the 

� 

λIII in Fig. 7 related to anti-plane deformations was absent. 

For 

� 

0° < β < 69°, two eigenvalues are real, corresponding to (B) in Section 4.1. For 

� 

69° < β <143°, 

three eigenvalues are real, corresponding to (A). At 

� 

β ≈143° , the power-logarithmic stress 

singularity should be considered, because

� 

λI  and 

� 

λII have the same value, which is a repeated root. 

For 

� 

143° < β <180°, two eigenvalues are a complex conjugate whose real number is a repeated 

root, and the other is a real eigenvalue, corresponding to (D). 

� 

β =180° is a well known case of an 

interfacial crack. 

  Consider an interfacial corner between aragonite-GSO bimaterials. A plot of 1–

� 

λm  versus the 

wedge angle of GSO 

� 

′ β  is shown in Fig. 8, and that of aragonite 

� 

α = 90°  is fixed. For 

� 

90° < ′ β <127° , two eigenvalues are complex and conjugate corresponding to (E). The 

power-logarithmic stress singularity should be considered at 

� 

′ β ≈127°. For 

� 

127° < ′ β <173°, two 

real eigenvalues exist corresponding to (B). For 

� 

173° < ′ β ≤180°, three real eigenvalues exist 

corresponding to (A). Since (C) is the case of a crack in a homogeneous body, (C) is absent in these 

two examples. 

 

5.2. Stress intensity factors of interfacial corners under thermal stress 



  We consider an interfacial corner configuration as shown in Fig. 9. The wedge angles of glass 

and silicon are 

� 

α =180° and 

� 

β =125.26°, respectively. The stress intensity factors in Eq. (45) 

subjected to a uniform change of temperature 

� 

ϑ = +100K  and a uniform tension 

� 

σ = 0.1MPa  

applied at the edge of glass were analyzed. The material properties of glass and silicon are the same 

as in Section 5.1. The numbers of nodes and elements of the FE mesh, whose smallest element near 

the tip was 0.0001 mm, were 8,583 and 2,782, respectively.  

  The eigenvalues were 

� 

λI = 0.5033, 

� 

λII = 0.6368  and 

� 

λIII = 0.5485 . Six different radii r of the 

H-integral path were examined. Stress intensity factors whose dimensions were related to the 

smallest eigenvalue 

� 

λI  are shown in Table 2. They are stable and path-independent for values of r 

larger than 0.001 mm. By substituting the stress intensity factors obtained by the H-integral, whose 

path r = 0.01 mm, into Eq. (47), the stress distribution ahead of an interfacial corner was calculated, 

where the regular terms were ignored. Excellent agreement between those results and the finite 

element solutions is shown in Fig. 10, and the accuracy of the stress intensity factors was indirectly 

demonstrated. 

  For the purpose of comparison, two asymptotic stress distributions ahead of an interfacial corner 

are shown in Fig. 11. One is the summation of the singular terms associated with 

� 

λI  and 

� 

λII, and 

the other is only the dominant singular term with 

� 

λI . They should correspond to each other as the 



limit for r →0,  but there is great difference even at 10-8mm in Fig. 11. Therefore, the influence of 

minor eigenvalues should be considered for the actual fracture, and we thus modified the definition 

of stress intensity factors in Eq. (44). 

  In this case, the in-plane and anti-plane deformations are decoupled, since both silicon and glass 

possess a material symmetrical plane identical to the coordinate plane x3 = 0. Thus, the contribution 

of the singular term with 

� 

λIII related to anti-plane deformations was zero, and the stress intensity 

factor of the tearing mode KIII was almost negligible.  

 

  An interfacial corner subjected to a uniform change of temperature 

� 

ϑ = −20K  as shown in Fig. 

12 was analyzed. The wedge angles of aragonite and GSO are 

� 

α =180°  and 

� 

β =160° , 

respectively. The material properties of aragonite were given in Eq. (53) and those of GSO as 

shown in Table 1 were used. The numbers of nodes and elements of the FE mesh were 8,431 and 

2,734, respectively. 

  The eigenvalues, scalar coefficients, and stress intensity factors are shown in Table 3. The scalar 

coefficients Cm and the stress intensity factors K have the relation given in Eq. (48). The stress 

distribution obtained from Eq. (47) and the finite element solutions ahead of an interfacial corner 

are shown in Fig. 13, where close agreement between those results can be seen. This fact indirectly 



proved the reasonableness of the analyzed stress intensity factors as well. In Table 3, KIII is 

relatively large because the in-plane and anti-plane deformations are coupled in the case of 

orthotropic and monoclinic bimaterial corners. The eigenvalues, eigenfunctions and scalar 

coefficients of the first and second terms (I and II) were complex and conjugate. The three scalar 

coefficients had no relation to the three deformation modes, opening, sliding and tearing, as shown 

by the stress distribution in Fig. 13. Therefore, the scalar coefficients are inappropriate as a 

criterion for an interfacial corner. On the other hand, the ratio of the stress intensity factors that 

were proposed in this study corresponds to the proportion of stress in the three deformation modes 

qualitatively, and thus these stress intensity factors were easily understandable. 

 

  A single-edge interfacial crack between aragonite-GSO bimaterials subjected to a non-uniform 

change of temperature was examined as illustrated in Fig. 14. The change of temperature has a 

uniform gradient with respect to the x1-direction, –100/3 [K/mm]. The interfacial crack is a special 

case of an interfacial corner with wedge angles 

� 

α = β =180°. The material properties of aragonite 

and GSO are also those given in Table 1, while the numbers of nodes and elements of the FE mesh 

were 10,547 and 3,436, respectively. 

  The eigenvalues were 

� 

λI = 0.5 + 0.0292i , 

� 

λII = 0.5 − 0.0292i and 

� 

λIII = 0.5 , where 0.0292 was 



the bimaterial constant. For the purpose of comparison, we evaluated the stress intensity factors 

defined in Eq. (45) through the use of both the present method and the M-integral method [22]. The 

stress intensity factors obtained by these two methods versus r/m are shown in Fig. 15, where r and 

m stood for the radius of the H-integral circular path and the smallest element size 0.0001 mm, 

respectively. In the near tip region r/m < 3~ 4, the stress intensity factors were unstable, because the 

singular point yielded errors in the FEM solutions near the tip which were used to calculate those 

stress intensity factors. On the other hand, in the outer region r/m > 3~ 4, the stress intensity factors 

determined by the present method were stable and agreed well with those obtained by the 

M-integral method. Thus, the H-integral path should be far from this near-tip region in order to 

obtain accurate results. Furthermore, the present method could be used to analyze an interfacial 

crack, and the stress intensity factors of an interfacial corner defined in Eq. (45) involved that of an 

interfacial crack as defined in Eq. (50). 

 

6. Conclusion 

  A numerical method using the path-independent H-integral based on the Betti reciprocal 

principle was developed to analyze the stress intensity factors of an interfacial corner between 

anisotropic bimaterials under thermal stress. To evaluate the amplitudes of the analyzed singular 



stress field, a new definition of the stress intensity factors of an interfacial corner, which involved a 

smooth expansion of the stress intensity factors of an interfacial crack, was proposed. Using these 

stress intensity factors, asymptotic solutions of stress and displacement around an interfacial corner 

can be uniquely obtained. Moreover, the deformation mode can be easily understood qualitatively, 

since the three stress intensity factors correspond to the proportions of the opening, sliding and 

tearing modes, respectively. Using this numerical method, analyses of interfacial corners subjected 

to thermal and mechanical loading were performed, and the stress intensity factors were calculated. 

The asymptotic stress solutions obtained by the stress intensity factors showed excellent agreement 

with the finite element solutions, thus demonstrating the accuracy of the present method. 
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Fig. 15 Stress intensity factors calculated from different H-integral radii.



Table 1 Elastic stiffness Cij (GPa) and CTE. αij (10–6K-1) of anisotropic materials.

Table 2 Calculated stress intensity factors of an interfacial corner between glass-silicon bimaterials

(α = 180º, β = 125.26º).
r KI KII KIII

mm

� 

MPa ⋅mm0.497   lk = 10µm
0.001 1.447 3.834 0
0.005 1.487 3.858 0
0.01 1.479 3.848 0
0.03 1.490 3.864 0
0.05 1.491 3.860 0
0.08 1.489 3.859 0

Silicon
(Cubic)

Aragonite
(Orthotropic)

GSO
(Monoclinic)

C11 165.7 160 223

C12 63.9 36.6 108

C13 63.9 1.97 98.5

C15 0 0 84

C22 165.7 87 150

Elastic C23 63.9 15.9 102

Stiffness C25 0 0 33.3

C33 165.7 85 251

C35 0 0 –6

C44 79.56 41.3 78.8

C46 0 0 6.6

C55 79.56 25.6 68.8

C66 79.56 42.7 82.7

α11
3.5 35.0 4.4

CTE. α22
3.5 17.0 14.0

α33
3.5 10.0 6.8

α31
0 0.0 -1.4



Table 3 Calculated eigenvalues, scalar coefficients, and stress intensity factors of an interfacial
corner between aragonite-GSO bimaterials (α = 180º, β = 160º).

I II III

� 

λ 0.5167+0.042i 0.5167–0.042i 0.5200
C –0.2254+0.1066i –0.2254–0.1066i 4.980
K 3.278 22.90 35.09

Unit : Ck …

� 

MPa ⋅mm1-λk　  KI, KII, KIII… 

� 

MPa ⋅mm0.483　　

� 

lk =10µm


