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Abstract 

The unfolded protein response (UPR) is an evolutionarily conserved 

mechanism by which all eukaryotic cells preserve the homeostasis of the endoplasmic 

reticulum (ER) in the face of accumulation of unfolded proteins in the ER.  Plants 

possess at least two signaling pathways specific for UPR.  ER membrane-bound ER 

stress sensor/transducers, AtbZIP60 and AtbZIP28, are basic leucine zipper 

transcription factors that are activated by regulated intramembrane proteolysis 

systems and regulate transcription of the UPR genes.  These signaling pathways play 

important roles not only in the UPR but also in other biological processes such as the 

response to pathogens and heat stress.
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Introduction 

Many of membrane proteins and secretory proteins are synthesized and folded 

in the endoplasmic reticulum (ER).  Correct folding during and after synthesis is 

crucial not only for production of functional proteins but also for the correct transport 

to target organelles.  Protein folding proceeds with the assistance of molecular 

chaperones and other folding factors in the ER.  When protein folding is inhibited 

because of mutations, unbalanced ratios of subunits of hetero-oligomeric proteins, 

disturbances in calcium homeostasis, or imbalance between the entry of nascent 

polypeptides and the folding capacity of the ER, unfolded proteins accumulate in the 

ER in an event termed “ER stress” [1,2].  Unfolded proteins are then prevented from 

trafficking and degraded by protein quality control systems.  In addition, the 

overproduction of unfolded proteins is sensed by stress sensors on the ER membrane, 

and signal transduction pathways are activated in an attempt to maintain the 

homeostasis of the ER.  When the ER stress is not relieved by the expression of genes 

that promote protein folding and removal of unfolded proteins from the ER, the 

apoptotic pathway is activated.  Collectively, these pathways are referred to as the 

unfolded protein response (UPR).  The molecular mechanisms underlying quality 

control of proteins and UPR have been described mainly in yeast and mammals.  In 

plants, analogous pathways for quality control of proteins and UPR have been 

identified [3].  The quality control system and UPR in the plant ER have recently 

attracted considerable attention because most of the nutritional plant proteins, such as 

the seed storage proteins in food crops, and many therapeutic products, such as 

antibodies and vaccines, are synthesized in the ER.  In this review, the recent 
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advances in the plant ER stress signaling pathway will be summarized and discussed. 

 

Components of ER stress signaling pathways in plants 

ER stress is sensed by sensor proteins on the ER membrane.  Yeast inositol-requiring 

enzyme-1 (IRE1) was first discovered as an ER stress sensor [4,5].  Subsequently, two 

additional ER stress sensors, activating transcription factor 6 (ATF6) and interferon-

induced double-stranded RNA-activated protein kinase-related protein (PERK), were 

found to trigger UPR in mammals [6].  In plants, Ire1-like proteins and the two 

sensors/transducers bZIP60 and bZIP28, which are responsive to ER stress, have been 

identified.  Plant Ire1-like proteins, Arabidopsis Ire1s (AtIre1-1 and AtIre1-2) [7,8] 

and rice Ire1 (OsIre1) [9], were identified based on their similarity to yeast and 

mammalian Ire1s.  The expression of AtIre1-1 is restricted to certain tissues at 

specific developmental stages such as the apical meristem, the leaf margins where 

vascular bundles end, the anthers before pollen is formed, the ovules at an early stage 

of development, and the cotyledons immediately after germination.  AtIre1-2 is 

expressed in vascular bundles of young plants, leaves, roots, seedlings, receptacles of 

flowers, and vascular bundles of petals.  Yeast Ire1 is a transmembrane receptor 

protein kinase/ribonuclease located in the ER.  This protein, which is activated via a 

process of oligomerization and
 
autophosphorylation stimulated by ER stress, splices 

invalid basic leucine zipper (bZIP) transcription factor HAC1 mRNA, which is 

recruited by a conserved bipartite targeting element contained in the 3' untranslated 

region, into the mature mRNAs encoding active Hac1 [4,5,10,11].  Mammalian Ire1 

also senses ER stress and splices invalid XBP1 mRNA in an analogous manner to that 
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of yeast Ire1 [12].  Plant Ire1s contain the C-terminal cytosolic region, which includes 

the protein kinase and ribonuclease domains that are conserved from yeast to 

mammals.  In yeast and mammals, active Hac1 or XBP1 are translated from the Ire1-

spliced mRNA and then translocate into the nucleus.  These transcription factors bind 

UPR cis-activating regulatory elements in the promoter regions and induce the 

transcription of UPR genes [5,13].  The C-terminal portions of recombinant AtIre1-2 

and OsIre1 exhibit autophosphorylation activity in vitro.  When Lys
442

 of AtIre1-2 

was mutated to alanine, the autophosphorylation activity was lost, suggesting that 

AtIre1-2 is a transphosphorylating protein kinase similar to other receptor kinases.  

The N-terminal domains of AtIre1-1, AtIre1-2, and OsIre1 function as ER stress 

sensors in yeast cells, although the amino acid sequences of the N-terminal luminal 

domain of these Ire1s are not conserved between other organisms.  When chimeric 

proteins containing the N-terminal domains of AtIre1-1, AtIre1-2, or OsIre1 and the 

C-terminal domain of yeast Ire1 were expressed in yeast lacking functional Ire1, 

treatment with tunicamycin, which results in the generation of misfolded or unfolded 

proteins by inhibiting N-glycosylation, no longer inhibited growth.  In addition, 

treatment of these cells with tunicamycin or dithiothreitol induced the UPR genes.  

Based on these observations, plant Ire1s are presumed to act as an ER stress sensor 

similar to yeast or mammalian Ire1 in vivo; however, whether plant Ire1s function as 

regulators of transcription during ER stress remains to be determined.  Confirmation 

of whether AtIre1-1 functions as an ER stress sensor is challenging, because AtIRE1-1 

T-DNA mutant homozygosity is lethal [14].  In contrast, an AtIRE1-1, AtIRE1-2 

homozygous null mutant was obtained; however, disruption of the AtIRE1-2 gene did 
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not interfere with representative ER stress-induced genes like BiP and protein 

disulfide isomerase (PDI) [15-17].  Unfortunately, to date, no transcription factor 

mRNA splicing by plant Ire1 has been found. 

Mammalian ATF6 is an ER stress sensor/transducer.  ATF6 is a transmembrane 

protein that senses ER stress through its C-terminal luminal domain and then moves 

to Golgi bodies to be cleaved by the serine protease site-1 protease (S1P) and the 

metalloprotease site-2 protease (S2P) [18] via a process termed regulated 

intramembrane proteolysis (RIP).  The N-terminal cytosolic bZIP domain is released 

from the Golgi membrane into the nucleus to induce the expression of target genes 

[19].  In the Arabidopsis genome, 75 genes are predicted to encode bZIP transcription 

factors [20].  Among them, AtbZIP17, AtbZIP28, AtbZIP49, and AtbZIP60 possess a 

transmembrane domain (TMD).  AtbZIP60 and AtbZIP28 are bZIP transcription 

factors that are similar to mammalian ATF6 involved in UPR, whereas AtbZIP17 is 

activated in response to salt stress but not ER stress [21,22].  AtbZIP49 has not been 

found in plants due to difficulty in isolation of cDNA [23]. 

AtbZIP60 protein, which is induced by ER stress, was identified as a protein by 

Iwata and Koizumi [24].  This 295-amino acid protein contains an N-terminal bZIP 

domain and a putative transmembrane domain followed by a short C-terminal luminal 

domain (Fig. 1).  AtbZIP60 is localized as an inactive form in the ER membrane and 

is cleaved under ER stress [25]. 

Cleavage of the salt-stress sensor, AtbZIP17, by an Arabidopsis homolog of 

mammalian S1P following salt stress conditions was demonstrated in an in vitro pull-

down assay, suggesting that a RIP-like system acts on stress signal transduction from 
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the ER in plants [21].  Cleavage of AtbZIP60, however, is independent of the function 

of Arabidopsis homologs of mammalian S1P and S2P [25].  Cleavage of this protein 

was observed even in homozygous T-DNA insertion mutants of the Arabidopsis 

homologs of mammalian S1P and S2P following treatment of seedlings with 

tunicamycin.  This finding is consistent with the lack of consensus sequence, RXXL 

or RXL, for S1P cleavage in AtbZIP60.  Taken together, these results suggest that an 

unidentified processing system exists in addition to the plant S1P/S2P-dependent RIP-

like system. 

Another important but yet unanswered question is how AtbZIP60 senses ER 

stress.  The ER luminal domain of ATF6 has two Golgi body localization sequences 

(GLS1 and GLS2).  ATF6 localizes to the ER via interactions between GLS1 and BiP 

[26].  Thus, when unfolded proteins sequester BiP from GLS1 under ER stress, ATF6 

is transported into the Golgi body and processed by RIP.  On the other hand, the 

AtbZIP60 56-amino acid luminal domain is relatively short and lacks GLS consensus 

sequences.  Hence, AtbZIP60 itself does not likely function as a sensor, and 

AtbZIP60-interacting proteins actually sense the ER stress [25].  After proteolysis, the 

N-terminal bZIP domain of AtbZIP60 then translocates into the nucleus.  A truncated 

form of AtbZIP60 containing amino acids 1-216 without the transmembrane domain 

(AtbZIP60∆C) fused with green fluorescent protein (GFP) also localized to the 

nucleus regardless of ER stress when transiently expressed in Arabidopsis protoplasts 

[25].  Localization of a truncated form of the tobacco ortholog NtbZIP60 

(NtbZIP60∆C) to the nucleus was also reported [27]. 

The bZIP28 protein, which is another plant ER stress sensor, is an N-
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glycosylated protein with a N-terminal bZIP domain, a putative TMD, and a C-

terminal domain (Fig. 1) [28].  A canonical S1P cleavage site and a putative S2P 

cleavage site are found in the C-terminal domain and at a site adjacent to the TMD of 

the N-terminal domain, respectively (Fig 1).  Arabidopsis bZIP28 (AtbZIP28) tagged 

with Myc or GFP at its N-terminus has been demonstrated to reside in the ER 

membrane under unstressed conditions and to be cleaved in response to ER stress 

induced by tunicamycin.  Based on the size of the resultant AtbZIP N-terminal 

fragment, the plant S1P/S2P-dependent RIP system may, in fact, cleave AtbZIP28 

under ER stress conditions; however, this possibility remains unproved.  In addition, 

whether AtbZIP28 is processed in the ER or the Golgi body also remains unknown.  

In this system, tunicamycin and dithiothreitol treatment clearly increased GFP 

fluorescence in the nucleus, suggesting the translocation of the AtZIP28 N-terminal 

fragment to the nucleus.  Furthermore, translocation of AtbZIP28 from the ER to the 

nucleus was indicated by the captured time-lapse imaging experiments, supporting the 

notion that the N-terminal fragment of AtbZIP28 translocates to the nucleus in 

response to ER stress [23]. 

Mammalian PERK is an ER transmembrane protein that senses ER stress via 

its luminal domain and subsequently phosphorylates a specific serine residue of 

translation initiation factor-2α (eIF2α), resulting in general attenuation of translation 

[29].  Phosphorylation of eIF2α also stimulates translation of ATF4 [30], which 

induces the transcription of many amino acid synthetic enzymes, amino acid 

transporters, anti-oxidation enzymes, and CHOP, a gene important for apoptotic cell 

death [31].  In plants, a similar signal transduction kinase for attenuating translation 
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has not been found; however, a heterodimer of Gβ and Gγ proteins on the ER 

membrane was demonstrated to be involved in the signaling events that trigger UPR-

associated cell death in Arabidopsis [32].  In fact, seedlings of Gβ-null mutant plants 

are more resistant to growth inhibition by tunicamycin than wild-type plants.  The 

connections between G protein signaling and the ER stress-sensing system are not 

understood.  Despite these questions, a pathway that transduces a programmed cell 

death signal and diverges from the molecular chaperone-inducing branch of the UPR 

was postulated in soybean [33].  This integrated pathway was synergistically activated 

by ER stress and osmotic stresses that result in the appearance of markers associated 

with leaf senescence through activation of plant-specific N-rich proteins.  The 

components of this signal transduction pathway in soybean have not yet been 

identified. 

 

Activation of transcription by UPR signaling 

The cis-acting regulatory element in the promoter of a UPR gene was identified 

first for KAR2 (yeast BiP) and named UPR cis-acting regulatory element (UPRE) [34-

36].  Yeast UPRE is a target for HAC1.  In mammalian cells, more than ten types of 

cis-acting regulatory elements that respond to ER stress are known [6].  Among them, 

UPRE (XBP1-BS), ER stress response element (ERSE), and ERSE-II are targets for 

both ATF6 and XBP1 [37,38].  In plants, two cis-acting regulatory elements 

analogous to the mammalian elements were identified.  Two overlapping sequences 

similar to mammalian ERSE-II and UPRE was first noted in the 5' flanking sequences 

of the soybean BiP gene [39].  This 16-bp sequence was demonstrated to function as 
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an ER stress-responsive cis-acting element and was designated plant UPR element (P-

UPRE) [40].  Another plant ER stress-responsive cis-acting element is ERSE, which 

has sequence similar to mammalian ERSE.  Both P-UPRE and ERSE were found to 

be crucial for induction of a reporter gene in transgenic Arabidopsis treated with 

tunicamycin [24, 40]. 

When the truncated AtbZIP60∆C was expressed in protoplasts of cultured 

tobacco cells, the promoters of the representative UPR genes, BiP1, BiP2, BiP, 

calnexin1 and calnexin2 were activated in a dual luciferase assay [24].  In addition, 

the luciferase activities driven by P-UPRE and ERSE were enhanced by the 

expression of AtbZIP60∆C [24] and tobacco NtbZIP60∆C [27].  AtbZIP60∆C also 

appeared to induce the expression of AtbZIP60 through ERSE in the promoter of 

AtbZIP60, resulting in amplification of the signal.  Expression of a truncated form of 

AtbZIP28 (AtbZIP28∆C), which contains only the cytoplasmic domain of the protein, 

also activated the BiP1 and BiP3 promoters via P-UPRE and ERSE in the absence of 

stress conditions [23].  Therefore, bZIP domains derived from both bZIP60 and 

bZIP28 activate the expression of the same ER stress-responsive genes. 

In plants, ER stress upregulates large numbers of genes.  The patterns of gene 

expression in normal maize and the opaque mutants fl-2 and Mc, which contain 

mutations in the 24-kDa α-zein protein or the 16-kDa γ-zein, were compared by DNA 

microarray analysis [41].  These mutations cause ER stress and result in a dramatic 

increase in ER-resident molecular chaperones as well as the expression of a number 

of stress response genes.  Comprehensive analyses of the transcriptome of 

Arabidopsis and soybean during drug-induced ER stress revealed that genes encoding 
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ER chaperones, glycosylation/modification-related proteins, translocon subunits, 

vesicle transport proteins, ER-associated degradation-related proteins, antiapoptosis 

proteins, and others were upregulated [3, 17,42-44].  Most of these genes are 

Arabidopsis orthologs of the yeast or mammalian UPR genes.  P-UPRE and 

especially ERSE are found at high frequencies in the 5' flanking sequences of the 

genes observed to be upregulated during ER stress [3].  These analyses of the 

transcriptome of wild-type plants, however, may have identified genes regulated by 

the UPR or genes regulated by other signal transduction systems involved in crosstalk 

with the UPR.  Therefore, transcriptome analysis of an ER stress sensor null mutant 

was performed to identify genes primarily regulated by the UPR.  When compared 

with wild-type plants, homozygous bZIP60 null mutant Arabidopsis showed a 

markedly weaker induction of many ER-stress responsive genes [25].  Of the 129 

genes activated more than three-fold by tunicamycin treatment in wild-type seedlings, 

54 genes exhibited a significantly lower level of induction in the bZIP60 null mutant 

seedling.  These affected genes encode fifteen molecular chaperones, ten protein 

transport-related proteins, six ER-associated degradation-related proteins, seven 

transcription factors, five other known proteins, and eleven unidentified proteins.  

While upregulation of only twelve of these genes was completely abolished by the 

defect in bZIP60, upregulation of the other 42 genes caused by ER stress in the 

bZIP60 null mutant plants were weaker than those in wild-type plants but still quite 

substantial, suggesting that other components responsive to ER stress, like bZIP28, 

simultaneously govern these genes.  Indeed, Gao et al. demonstrated that 

overexpression of AtbZIP28∆C in an AtbZIP28 null mutant induced ten genes 
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encoding ER chaperones and other ER proteins [45].  Defects in bZIP60 exert various 

effects on expressions of homologous genes encoding ER molecular chaperones, 

which have similar functions as molecular chaperone or folding enzymes in vitro.  For 

instance, BiP3 mRNA was less strongly upregulated in the bZIP60 null mutants than 

in wild-type seedlings, whereas upregulation of BiP1 or BiP2 mRNAs was similar 

between the bZIP60 null mutant and the wild-type plants [25].  In addition, following 

ER stress, upregulation of five of the seven PDI genes was significantly attenuated in 

an AtbZIP60 null mutant, whereas upregulation of the other two PDI genes was 

unaffected [14].  The diversity in transcriptional regulation of these genes may 

correlate with their unique physiological roles in the ER. 

In mammals, cells may be able to perform a time-dependent phase shift from 

the ATF6-mediated refolding phase to the XBP1-mediated refolding plus degradation 

phase to cope with the quality or quantity (or both) of unfolded proteins that 

accumulate in the ER [46-48].  Although plant cells are also expected to perform a 

time-dependent phase shift from one ER stress signaling pathway to the other, our 

lack of understanding of these pathways makes this assumption unproven at this 

point. 

 

Roles of the ER stress signaling pathway in biological processes other than UPR 

In mammals, the ER stress signaling pathway is involved in crosstalk with 

other signaling pathways and plays important roles in various biological processes.  

Therefore, disturbance of ER stress signaling can result in many disorders such as 

diabetes and neurodegenerative diseases [49].  On the other hand, examination of the 
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interactions between the UPR signaling pathway and other signaling systems and the 

effects on biological events other than UPR is just beginning in plants.  To date, 

crosstalk between bZIP60- or bZIP28-signaling pathway and heat-stress or pathogen- 

signaling pathway have been identified.  Thus, defective AtbZIP28 causes a striking 

heat-sensitive phenotype, although an AtbZIP28 null mutant was indistinguishable 

from wild-type plants under normal growth conditions [45].  This result suggests that 

AtbZIP28 contributes to heat tolerance.  In plants, heat stress responses are controlled 

by classical heat stress transcription factors that are conserved among all eukaryotes.  

In addition to these transcription factors, AtbZIP28 is also upregulated under heat 

stress (42 °C), and its transcription factor domain is released by the RIP-like system 

from the ER membrane in response to heat.  As a result, expressions of genes, such as 

BiP2, that are activated by the bZIP domain of AtbZIP28 are upregulated under heat 

stress.  In accord with this notion, these genes were not upregulated under heat stress 

in the AtbZIP28 null mutant seedlings. 

A tobacco or a Nicotiana benthamiana ortholog of AtbZIP60, NtbZIP60 or 

NbbZIP60, was identified as a component of the spermine-signaling pathway [27].  

Polyamine spermine is produced and accumulates in the apoplastic space during 

infection with pathogens.  Accumulated spermine activates two mitogen-activated 

protein kinases and upregulates a subset of hypersensitive response-specific genes in 

the spermine signaling pathway [50].  NbbZIP60 was activated by infection with a 

bacterial pathogen through the spermine signaling pathway.  In addition, NbbZIP60-

silenced N. benthamiana plants showed decreased resistance to pathogens compared 

to the control plants.  Hence, bZIP60 may play an important role in plant innate 
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immunity.  In Arabidopsis, cleavage of AtbZIP60 protein is observed in anthers even 

in the absence of stress treatment [25].  Hence, AtbZIP60 is also thought to function 

in the normal development of active secretory cells. 

 

Conclusions 

ER stress is sensed by at least two sensors/transducers, bZIP60 and bZIP28, 

which are located in the ER membrane in plants.  In these signaling pathways, an 

unidentified processing system or a widely conserved RIP-like system cleaves the 

bZIP domain of bZIP60 or bZIP28 from the ER membrane, respectively.  The 

released bZIP domain translocates into the nucleus and activates the UPR genes by 

binding to consensus sequences on their promoters.  Further studies are required to 

elucidate the detailed molecular mechanism of these processes.  The UPR pathways 

are also suspected to be involved in crosstalk with other transcription factors in a 

complex network of biological processes.  Elucidation of the relationship between 

UPR and other biological functions will certainly offer new insight into the versatility 

of the plant ER. 
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Figure legends 

 

Fig. 1.  Diagrams of the structures of Arabidopsis ER stress sensors.  AtIRE1-1 and 

AtIRE1-2 are type I transmembrane proteins.  AtbZIP60 and AtbZIP28 are type II 

transmembrane proteins.  AtbZIP28 contains a canonical S1P and a putative S2P site 

(indicated by arrows).  TMD indicates the conserved transmembrane domain, and 

bZIP indicates the basic leucine zipper motif. 

 

Fig. 2.  Model for the ER stress-induced activation of bZIP60 and bZIP28.  The 

bZIP60 and bZIP28 proteins localize to the ER membrane.  Following accumulation 

of unfolded proteins in the ER, the N-terminal cytoplasmic domains of bZIP28 and 

bZIP60 are released from the ER membrane by a S1P/S2P-dependent RIP-like 

mechanism or another unknown mechanism.  Transportation of bZIP28 to the Golgi 

body for cleavage by S1P has not yet been confirmed.  Both N-terminal cytoplasmic 

domains released from bZIP60 and bZIP28 are translocated to the nucleus and induce 

transcription of UPR genes that possess P-UPRE and ERSE regulatory elements in the 

promoter.  Transcription of bZIP60 and bZIP28 is activated by infection with 

pathogens and heat stress, respectively.  Hence, transcription of the same UPR genes 

is activated as a result of ER stress, heat stress, and infection of pathogens. 
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