$K_2 Cu_x Zn_{1-x} F_4$ 系の高周波帯磁率

東工大・理,千葉理・理* 小 島 義 己 池 上 富 雄 山 田 勲* 橋 本 巍 洲

擬二次元強磁性体 $K_2 CuF_4$ の磁性イオン Cu^{2+} を非磁性イオン Zn^{2+} で希釈した系 K_2 $Cu_x Zn_{1-x}F_4$ の高周波帯磁率($\chi(\omega)$)測定による磁性研究を行っている。

測定には Schering Bridge を用い、同軸終端を短絡したものを Cavity として用いた。従って、用いられた試料はトロイダル型で、高周波磁界は円形磁界であるので、反磁場補正が不必要になり、この補正の際の誤差がなくなり、 $\chi(\omega)$ の詳細な周波数依存性が得やすくなる。これが、この方法の利点であり特徴である¹⁾。以下、実験結果を示す。

1) $K_2 CuF_4$:単結晶試料を c 軸が軸であるようなトロイダルに形成し、1 MHz ~ 250 MHz の周波数領域で $\chi(\omega)$ を測定した。 T_C 以上では、 $\epsilon(=(T - T_C)/T_C) \gtrsim$ 1×10^{-3} の温度領域で第1 図に示す様に完全な単分散であることが明らかになった。 この事実は、先の西川²⁾ の理論的な予測、即ち、" T_C 近傍でスピン運動方程式中の非線型項により、緩和過程が単分散より多分散に変る"、となる結果である。結果の解析より静帯磁率 χ_0 及び緩和時間 τ を求め、これ等の臨界指数 τ 及び \triangle を第1表の様に得た。比較のために 3 次元強磁性体 EuSの値も示しておく。また、過去の理論計算^{3),4)}の結果を第2表に示す。

2) $K_2Cu_xZn_{1-x}F_4$ 系。この系列では我々は x = 0.95, 0.9, 0.8, 0.6 の試料を作 製したが大きな結晶は得られなかったので、粉末試料の $\chi(\omega)$ を示した。総ての試料の 分散周波数は 100 MHz ~ 500 MHz の領域にあり完全な Cole-Cole プロットは、 得られ なかった。しかし第 2 図に $K_2Cu_{0.9}Zn_{0.1}F_4$ の結果を例示してあるが、総ての試料で、 ほぼ単分散であることが明らかになった。先に我々は不均質試料の T_C 近傍の Cole-Cole プロットの不均質度依存性を研究した⁵⁾。この結果を参照すると、試料はほぼ均質であ ると考えられる。この系においては τ の発散は、 K_2CuF_4 に比して非常に弱く、 x が ランダムスピン系の相転移

が $1.0 \sim 0.8$ の範囲では、 r はほぼ 1.30 ± 0.3 で変化せず、 $T_{\rm C}$ の濃度依存は $T_{\rm C} \propto (2 x - 1) T_{\rm C_{K_2CuF_4}}$ の関係式で説明される。 $P_{\rm C}$ は ~ 0.5 と予想される。 これらの結果は第3表に示しておく。

参考文献

- 1) M. Shiino and T. Hashimoto, to be published in J. Phys. Soc. Japan.
- 2) K. Nishikwaa: Progr. Theor. Phys. 38 (1967) 305.
- 3) S. V. Maleev: Sov. Phys. JETP 39 (1974) 889.
- 4) G. B. Teitelbaum : Sov. Phys. JETP Lett. 21 (1975) 154.
- T. Hashimoto and M. Maeda : J. Phys. Soc. Japan 40 (1976) 1547, Physica 86-88 B+C, (1977) 1263.

	第1表	臨界指数		
	x ₀ ∝ ε ^{−γ}	•		
	τ ∝ ε ^{-Δ}	L .		
	Ŷ	Δ	Δ/γ	
EuS	1.41	1.26	0.89	
K ₂ CuF ₄	1.28	1.08	0.85	
	第2表 理論	計算の結果		
		l	Δ/γ	
S.V. Maleev		<i>r</i> 0	0.50	
G.B. Teitelbaum 1.02				
第3表 $K_2Cu_xZn_{1-x}F_4$ の T_C および γ				
		т _с	Ŷ	
K ₂ CuF ₄		6.25	1.28	
^K 2 ^{Cu} 0.95	^{Zn} 0.05 ^F 4	5.7	1.30	
^K 2 ^{Cu} 0.9 ^Z	ⁿ 0.1 ^F 4	4.9	1.32	
^K 2 ^{Cu} 0.8 ^Z	ⁿ 0.2 ^F 4	3.8	1.31	
-F62-				

-F 63 -