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Abstract: This paper develops measures to identify resonant or unfavorable earthquake 

ground motions. Probabilistic measures based on the entropy rate and the geometric 

properties of the power spectral density function of the ground acceleration are developed. 

Deterministic measures for the frequency content of the ground acceleration are also 

developed. The use of these measures to identify resonance in stochastic earthquake models 

and 110 acceleration records measured at rock, stiff, medium and soft soil sites is presented. 

The unfavorable earthquake record for a given structure is defined as the record having 

narrow frequency content and dominant frequency close to the structure fundamental natural 

frequency. Accordingly, the measures developed in this paper may provide a basis for 

selecting records that are capable of producing the highest structural response. Numerical 

verifications on damage caused to structures by identified resonant records are provided. 
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INTRODUCTION 

Structural design to earthquake loads is the key tool for the mitigation of earthquake 

hazards. Structural engineers aim to design structures that are safe against possible future 

earthquakes and are economic at the same time. The specification of robust design earthquake 

loads for structures is the first step towards achieving this goal. The method of critical 

earthquake load modeling has been developed in the literature for specifying robust 

mathematical earthquake loads on structures. The studies by Abbas (2002, 2006) and 

Takewaki (2002, 2007) provide an extensive overview on this method. The critical or most 

unfavorable earthquake load for a given structure is derived by solving an inverse dynamic 

problem using optimization techniques subjected to predefined constraints reflecting known 

information on earthquake data at the site. These seismic loads are tailored to produce the 

highest structural responses while they satisfy predefined constraints on the earthquake 

ground motions at the site. 

On the other hand, several studies have attempted to identify unfavorable real ground 

motion records (e.g. Anderson and Bertero 1987, Uang and Bertero 1988, Takewaki 2002, 

Amiri and Dana 2005, Dahakal et al 2006, Zhai and Xie 2007). Some of these methods, 

however, are conceptual, adopt sophisticated techniques or require nonlinear time history 

analysis, and, thus, are highly computational. For instance, Anderson and Bertero (1987) 

investigated the implications of the adjusted earthquake records on the maximum structural 

responses produced by near-field ground motions. Takewaki (2001) used the critical 

excitation method to quantify resonance and criticality of earthquake records for a given 

structure by comparing the structural response produced by the critical input and that from the 

earthquake record. Dana and Amiri (2005) proposed the effective peak ground velocity to 

identify resonant records at a given site. The study by Dhakal et al (2006) employed 

probabilistic methods to identify critical earthquake records and tried to relate them to the 

maximum design earthquake. The study by Zhai and Xie (2007) employs the critical 

excitation concept to identify unfavorable earthquake records for structures of known 
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frequency range. The method developed by these authors, however, requires nonlinear time 

history analysis of the structure under each record, and is thus highly computational 

(Moustafa 2008). 

Abbas and Manohar (2002, 2005, 2007) examined the significance of incorporating a 

lower bound on the entropy rate of the ground acceleration in deriving critical random 

earthquake load models. These studies showed the significance of the entropy rate constraint 

quantified from actual recorded accelerograms in producing realistic earthquake loads that are 

rich in frequency content. 

In this paper, we employ the notion of the critical excitation method and random vibration 

theory to develop measures for identifying resonant or unfavorable earthquake records among 

a set of records. The first measure is based on the concept of the entropy of random processes 

and the second measure is the dispersion index of the power spectral density function (PSDF) 

of the ground acceleration and is based on the work of Vanmarcke (1972, 1976). 

Deterministic measures of the frequency content of the ground acceleration are also 

developed. These measures can provide a basis for the selection of proper design records for 

structures. Numerical illustrations on identification of resonance in random process and 110 

earthquake records at various soil sites and different earthquake characteristics are provided. 

The next section demonstrates the development of a new measure using the entropy rate 

for identifying resonance in random processes. Subsequently, the dispersion index and central 

frequency measures developed by Vanmarcke are explained. The use of these measures to 

identify resonant earthquake records is then demonstrated. The developments of deterministic 

measures for identifying frequency content of ground motions is then explained. The last 

section illustrates the use of these measures for the selection of proper acceleration records for 

seismic design of structures. 
 

ENTROPY AS A MEASURE OF RESONANCE AND CRITICALITY OF PROBABILISTIC 

EARTHQUAKE MODELS 

The idea of using entropy to measure the amount of information in random signals sent 
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along a transmission line was proposed by Shannon (1948). This idea has been advocated as 

being a general principle of statistical inference and has been used in science, engineering and 

economics. The literature on the use of entropy in engineering is vast (see, e.g., Papoulis 1991, 

Kapur 1993). Entropy in its basic form is a measure of uncertainty or missing information. 

For instance, the entropy of a random variable x is a measure of the uncertainty associated 

with that random variable, which is given in terms of the probability density function )(xp  

as follows (Papoulis 1991): 
 

dxxpxpH x   )(ln  )(∫
∞
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=                           (1) 

When xH  is large, the uncertainty as to the value of x is also large. For instance, the entropy 

of a normal random variable of large coefficient of variation is also large. Note that when the 

coefficient of variation is significantly large, the normal distribution can approximate the 

uniform distribution that possesses the largest entropy among all distributions. On the other 

hand, when the coefficient of variation is very small, the distribution may approximate a 

deterministic quantity which possesses zero entropy. 

In the context of earthquake engineering, the use of entropy was introduced in modeling 

critical earthquake loads (Manohar and Sarkar 1995, Abbas 2002, Abbas and Manohar 2002, 

2007). These studies proved the crucial role of including the entropy in producing realistic 

critical earthquake loads. The entropy of a zero-mean stationary Gaussian random process 

)(tu  is given as (Papoulis 1991): 
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where ),( 0 uωω  and )(ωS  define the frequency range and the one-sided PSDF of the 

ground acceleration. The constant eπ2ln  represents a reference level from which entropy 

rate is measured. Eq. (2) reveals that the entropy rate of a stationary Gaussian process is 

constant. Thus, when the entropy rate of )(tu  is large the uncertainty as to the value of )(tu  
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at discrete time instants is also large. On the other hand, the entropy of a harmonic signal with 

a random amplitude and a single or very few frequencies (e.g., )sin()( tωAtu g= ) is almost 

zero. In other words, the energy of the signal or the amplitude of the Fourier transform of a 

sine or a cosine time series of a single or very few frequencies is well ordered in the 

frequency range ),( 0 uωω  while a time signal composed of several frequencies will be 

disordered. Note that two random processes with the same energy (i.e., same area under the 

PSDF) need not possess the same entropy. This is because entropy depends on the frequency 

bandwidth and the spectral amplitude of the PSDF (see Eq. 2). To gain more insights into the 

use of entropy in characterizing ground motions we derive the entropy of probabilistic models 

of Gaussian ground motion models in the next subsections. 
 

Stationary narrow-band white noise model 

The narrow-band random process has been used extensively as an idealization for random 

signals, noises, turbulences and earthquakes (Lin 1967, Nigam and Narayanan 1994). 

Consider a stationary narrow-band signal of intensity 0s  and central frequency cω . Thus, 

Eq. (2) leads to: 
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Therefore, the parameters uωωs ,, 00  define the entropy of the narrow-band signal. Note that 

the term eπ2ln  was omitted in Eq. (2). 
 

Stationary band-limited white noise model 

The band-limited white process has been used as an approximation for earthquake and 

wind loads. This process possesses finite energy, constant spectral amplitude in the frequency 

range ),( 0 uωω . Thus, Eq. (2), leads to: 

2
 ln 0s

H =                                      (4) 

Accordingly, the spectral parameter 0s  defines the entropy of the band-limited process. 
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Equations (3) and (4) reveal that entropy of the band-limited ground acceleration model is 

significantly larger than that of the narrow-band acceleration model. 

Stationary Kanai-Tajimi model 

This model has been widely used in modeling strong ground motions. The PSDF of the 

ground acceleration is obtained by passing a band-limited white noise through a filter that 

represents the soil layer above the bed-rock, given as (Kanai 1957, Tajimi 1960): 
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where, gωηs , , g0  are the intensity of the PSDF at the rock level, damping and frequency of 

the soil layer, respectively. The entropy of the Kanai-Tajimi model can be estimated 

numerically instead of integrating Eq. (2) analytically. 
 

Nonstationary and evolutionary PSDF models 

Several earthquake acceleration models have been developed in the literature to account 

for nonstationarity in time and frequency content. This class of earthquake models is known 

as evolutionary PSDF models (see, e.g., Nigam and Narayanan 1994 for more details). Herein, 

the PSDF of the ground acceleration is a function of time and frequency and is represented as: 

)(|),(|  ),( 2 ωSωtAωtS =                                 (6) 

where ),( ωtA  is a modulating envelope that could be a complex function and )(ωS  is a 

stationary PSDF. When ),( ωtA  is separable into a time function and a frequency function, 

the model reduces to the uniformly modulated nonstationary random process which possesses 

invariable PSDF at all time instants. Accordingly, entropy is constant and the computation 

follows the same procedures for stationary acceleration models. Consider the ground 

acceleration defined by the Kanai-Tajimi PSDF of Eqs. (5) and (6) with ),( ωtA  given as: 
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where, mm tωrβαA ,,,,,0  are constants. Herein, the quantification of entropy can be carried 
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out using numerical integration of the evolutionary PSDF at discrete points of time. Fig. 1 

shows the evolutionary PSDF of the ground acceleration and the associated entropy function 

for =0A 2.87, =α 0.13, =β 0.35, =r 1.0, =mω 5.0 Hz and =mt  5.0 s. 

The above subsections demonstrated the quantification of the entropy for probabilistic 

earthquake models. It is shown that the entropy for stationary and uniformly modulated 

random processes is constant. Also, the entropy of the band-limited acceleration is 

significantly larger than that of the narrow-band acceleration. We explain the quantification of 

the relative entropy of two random processes in the next subsection. 
 

Relative entropy of two random processes 

To compare entropy from alternative acceleration models, we measure entropy of the 

random process )(tu  with reference to a wide-band signal )(tz  of spectral intensity 0s . 

This is known as the relative entropy of two random processes. Thus, under the assumption 

that )(tu  is independent of )(tz , the increase in entropy when )(tu  is added to )(tz  is 

given as: 
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We now calculate the entropy index HΔ  for the narrow-band, the Kanai-Tajimi and the 

band-limited acceleration models, described above, from a reference wide-band signal of 

intensity 0.02 m2/s3. The PSDF for each of these three models is normalized such that they 

possess unit area (see Fig. 2). This normalization implies equality of the earthquake energy of 

the three models (Arias 1970). The parameters of the Kanai-Tajimi model gg ηω ,  are taken 

as π  rad/s, 0.20 for soft soil, π3  rad/s, 0.40 for medium soil, π6  rad/s, 0.60 for stiff soil, 

and  π9  rad/s, 0.80 for rock soil (see, Table 1). Additionally, the spectral intensity at the 

rock level is taken as 02.00 =s  m2/s3 and the central frequency of the narrow-band signal is 

taken as ππππωg 9 ,6 ,3 ,=  rad/s for soft, medium, stiff, and rock soil, respectively. The 

numerical results are shown in Table 1. Based on careful examination of these results, the 
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following observations are made: 

(1) The narrow-band acceleration possesses the smallest entropy. In other words, the PSDF of 

this model is well ordered or the acceleration energy is concentrated at a single frequency. 

Note that the central frequency of the acceleration does not influence the value of the 

entropy (see Table 1 and Eq. 3). Thus, entropy of narrow-band signals with the same 

energy is invariant regardless of the central frequency. 

(2) The band-limited acceleration possesses the highest entropy among all models. This is 

because the energy of the process is well represented at all frequencies. 

(3) The Kanai-Tajimi acceleration is significantly disordered. This is expected since the PSDF 

is reasonably distributed across a significant frequency range (see Fig. 2a). The entropy 

for soft soil is small compared with that for rock soil. This is not surprising since the 

PSDF for soft soil is narrow-band while that for rock soil is distributed across a wider 

frequency range (Fig. 2b). 

(4) Entropy of the Kanai-Tajimi model is bounded between entropy of the narrow-band 

acceleration and that from the band-limited acceleration for all soil conditions (see Table 

1). This result is interesting since it provides lower and upper bounds on entropy of the 

Kanai-Tajimi acceleration model. 

In general, earthquake ground motions possess amplitude distributed across a significant 

frequency range. This is because the energy released at the source gets amplified and filtered 

by the soil layer above the rock level due to site and attenuation effects caused by soil 

damping, geometric spreading, wave scattering and local soil profile. As discussed in the 

Introduction section, real accelerograms, however, exhibit the resonance trend, and thus, the 

associated frequency range is narrow which can be characterized in terms of the entropy. 

This section explained the use of entropy as a measure of the frequency content of 

probabilistic earthquake models. It is shown that the narrow-band and the band-limited 

signals provide lower and upper bounds on the entropy of the Kanai-Tajimi model. We 

estimate entropy of recorded accelerograms in the next section. 
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DISPERSION INDEX AND CENTRAL FREQUENCY 

Vanmarcke (1972, 1976) developed measures for the frequency content of the ground 

acceleration in terms of the geometric properties or the moments of the PSDF. These 

measures are outlined here. The ith moment of )(ωS  is given as: 
 

niωdωSωλ i
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The zeroth moment defines the energy and the second moment defines the variance of the 

random process. The ith frequency is defined as: 
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Here cωω =1  is the central frequency of the ground acceleration and 2ω  indicates where 

the spectral mass of the PSDF is located along the frequency range. The radius of gyration of 

)(ωS  about the frequency origin cω  is given as (Vanmarcke 1972,1976): 
 

2
1

2
2 ωωωs −=                                  (11) 

sω  is a measure of dispersion of the PSDF about the central frequency. Thus, when sω  is 

small it implies that the ground acceleration is narrow-band and when sω  is large, the 

ground acceleration is broad-band or rich in frequency content. Table 1 summarizes the 

dispersion index for narrow-band, Kanai-Tajimi, and band-limited random processes defined 

earlier. The numerical values of the parameters of these models are given in the same table. It 

is evident from these results that the narrow-band and the band-limited models provide lower 

and upper bounds on the dispersion index of the Kanai-Tajimi model. The next section 

demonstrates the use of the measures developed in this section and the previous section for 

identifying resonant earthquake records. 
 

THE USE OF ENTROPY AND DISPERSION INDICES TO MEASURE RESONANCE OF 
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EARTHQUAKE RECORDS 

Consider an actual recorded earthquake acceleration )(tx  that is represented as: 
 

)(  ][ )( )()( 0 tueeAtutetx tβtα −− −==                         (12) 

Here )(tu  represents a steady-state function and )(te  is an envelope function that defines 

the nonstationarity of )(tx . The envelope parameters 10  , αA  and 2α  can be estimated by 

matching the transient trend of the earthquake acceleration. Subsequently, the stationary part 

)(tu  can be obtained by dividing )(tx  by )(te . The PSDF of )(tu  can then be calculated. 

This is followed by the estimation of the entropy using Eq. (8). 

Fig. (4) shows the PSDFs for four ground acceleration models. The first acceleration 

represents a sample narrow-band signal tωAtetx g sin )()( = , with random amplitude A  and 

central frequency πωg 3=  (medium soil). The second acceleration represents a sample of a 

band-limited model, ,)sin()cos()()(
1
∑

=
+=

N

i
iiii tωBtωAtetx where iA  and iB are 

uncorrelated normal random variables of variance 0s . The third signal is a simulated 

acceleration from the Kanai-Tajimi model of Eq. (5) for medium soil 

( 40.0 ;rad/s 3 == gg ηπω ). The fourth acceleration represents the first horizontal acceleration 

of the 1992 Cape Mendocino (Petrolia) earthquake measured at medium soil site (PEER 

2005). The stationary components )(tu  for the first three models are modulated by the 

envelope function that matches the transient trend of the actual record and all accelerations 

are normalized to unit intensity. 

The relative entropy of these accelerations from a wide-band acceleration of spectral 

intensity 0.02 m2/s3 are determined. The numerical values were found to be 0.03 for the 

narrow-band acceleration, 0.56 for the band-limited acceleration, 0.19 for the simulated 

Kanai-Tajimi acceleration and 0.32 for the Cape Mendocino accelerogram (see Table 1). 

These results reveal that entropy of the Kanai-Tajimi model is bounded by entropy of the 

narrow-band acceleration and entropy of the band-limited acceleration. Interestingly, entropy 

of the recorded acceleration is also bounded by the narrow-band and the band-limited signals. 

Note that the narrow-band signal represents a resonant acceleration that is poor in frequency 
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content. The band-limited signal, on the other hand, represents an acceleration that is rich in 

frequency content. Based on this observation it can be expected that entropy of a resonant or a 

narrow-band acceleration will be the smallest among a set of records while, entropy of an 

acceleration that is rich in frequency content will be large. The next section develops 

deterministic measures to quantify the frequency content of ground motions. 
 
THE USE OF DETERMINISTIC MEASURES TO IDENTIFY RESONANCE OF 

EARTHQUAKE RECORDS 

Consider an acceleration record of finite energy in time domain satisfying the condition: 
 

[ ] ∞<= ∫
∞

∞−

dttxEt
2)(                            (13) 

Under this condition, the Fourier transform of the ground acceleration is given by: 
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Equation (13) provides a measure of the acceleration energy computed in time domain 

(Arias 1970). Recalling Parseval’s theorem ( [ ] ∫∫
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measure can be computed in frequency domain: 
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Herein, )(* ωy −  is the complex conjugate of )(ωy . The frequency content, proposed in this 

paper, is taken as ),( ba ωω  where aω  and bω  represent the frequencies at which a and b 

times the Fourier energy are attained, respectively. Thus, the frequency-bandwidth is taken to 

be given as abef ωωω −=  (see Fig. 4). Typical values of a and b can be taken as 0.05 and 

0.95 (5 % and 95 % of the acceleration energy), respectively or any reasonable values (e.g., 

0.01 and 0.99). When a = 0.05 and b = 0.95, efω  can be viewed as a measure of the 

frequencies contributing to the strong phase of the ground motion (see, e.g. Trifunac and 
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Brady 1975). The effective frequency-bandwidth can be further normalized to provide a 

measure that is bounded between zero and one: 
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The frequency range ( uΩΩ ,0 ) is generally in the range of 2π (0,10~50) rad/s depending on 

the site soil condition. When efω  is close to zero, the ground acceleration is narrow-band or 

poor in frequency content. An example of this scenario is a harmonic signal of a single or a 

few frequencies (e.g., )sin( )( tωAtx g= , where A  and gω  are the acceleration amplitude 

and dominant frequency, respectively). When efω  is significantly larger than zero, the 

ground acceleration will be rich in frequencies. The band-limited acceleration model (constant 

amplitude at all frequencies) is an example of this scenario. The average frequency of the 

ground motion is calculated as 2/)( abav ωωω −= . 

The central frequency or dominant frequency of the ground acceleration that reflects the 

influence of the local soil profile can be computed as: 
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An additional frequency maxω  that corresponds to the peak amplitude of )(ωy  can be 

also estimated (see Fig. 4). The relevance of maxω  becomes obvious by comparing maxω  

with the fundamental frequency of the structure. For instance, when the ratio nωω /max  is 

close to one, it can be expected that the input energy to the structure will be large (Takewaki 

2004). 

It is believed that these measurers provide important information on the nature of the 

ground motion, and, thus, can be adopted in identifying the frequency content of recorded 

accelerograms. It is proposed in this paper that these measures be utilized in selecting 

recorded accelerations as design inputs to important structures. Thus, if a set of n records are 

available and it is required to select a few records (typically 3~10) for seismic design of a new 
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structure of fundamental frequency nω  (obtainable using approximate or empirical 

expressions), the following procedures can be adopted: 

(1) Normalize the set of available accelerograms to the same Arias intensity (Arias 1970). 

(2) Calculate the central and effective frequencies for each record (Eqs. 16, 17). 

(3) Sort the records based on the central frequency and associated effective frequency. 

(4) Select those records that have their cω  close to nω  and have the smallest efω . 

To demonstrate the use of the measures developed in this paper in quantifying resonant 

recorded accelerograms, we consider the acceleration records listed in Table 2 (PEER 2005). 

The numerical values of these measures are given in the same table. These results reveal the 

significant differences of these records. It is seen that efω  for the Chichi record is the 

smallest and that for the Landers is the largest. The Kobe record would govern the design of 

buildings of nω  in the range (0,4) Hz. This observation is confirmed by the large Fourier 

amplitude of the Kobe record that is about twice the amplitude of El Centro record and about 

four times that of the Chichi record. 
 

IDENTIFICATION OF RESONANT ACCELERATIONS AND SELECTION OF DESIGN 

ACCELEROGRAMS 

To examine the applicability of the measures developed in this study in identifying 

resonant accelerograms at a site we consider the four recorded earthquake groups shown in 

Table 3. These records include accelerograms measured at rock, stiff, medium and soft soil 

sites (PEER 2005). The selection of these records is based on the site soil classification 

adopted by the USGS in terms of the shear wave velocity sv  (see Table 3). The vertical and 

the two horizontal accelerations of each earthquake are considered in the numerical analyses. 

Table 3 provides information on magnitude, source-site distance, PGA, Arias intensity, 

duration and recording station for the 72 accelerograms considered. In numerical calculations, 

the dispersion index is normalized by 2ω  and all records are scaled to the same Arias 

intensity. 

The numerical results on entropy and dispersion indices for these records are provided in 
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Table 3. The mean and coefficient of variation for the entropy are (0.58, 0.17), (0.52, 0.23), 

(0.47, 0.14), and (0.50, 0.28) for rock, stiff, medium and soft soil, respectively. The higher 

variation is seen in the entropy for the soft soil site which could be attributed to the 

differences in the source properties and other characteristics (e.g., duration, magnitude, 

epicentral distance, fault mechanism, etc.). If the 72 accelerograms are considered, the mean 

entropy and coefficient of variation are calculated as (0.52, 0.22). Figs. 5-8 depict the PSDF 

for the stationary components of the vertical and the two horizontal accelerations, respectively. 

The results reveal that the entropy and the dispersion indices correlate well and that they 

successfully identify resonant accelerograms. For instance, the vertical acceleration of the 

1979 Imperial Valley earthquake recorded at soft soil (El Centro #3) possesses the lowest 

entropy among all records. Fig. 5 confirms this result since the PSDF of this acceleration is 

narrow-band and resembles a resonant signal with high amplitude at a single frequency. On 

the other hand, the accelerations that are rich in frequency content (e.g. 1999 Kocaeli 

(Arcelik) earthquake) possess the largest entropy. It is also evident that the three accelerations 

of the same earthquake have different entropy and dispersion indices. The Fourier transform 

of these accelerations were seen to confirm these observations. 

The numerical results reveal also that the Arias intensity and the peak ground acceleration 

are not guaranteed as accurate parameters for selecting design ground motions for structures. 

For instance, the vertical acceleration of the 1992 Landers earthquake (Lurcene) measured at 

rock soil possesses high PGA (0.82 g) and high Arias intensity (51.37 m2/s3). However, the 

spectral amplitude of this acceleration is substantially small in the frequency range 2π (0,9) 

rad/s. On the other hand, the vertical acceleration of the 1992 Cape Mendocino (CM) 

measured at the same soil condition has relatively lower PGA (0.75 g) and substantially 

smaller intensity (8.59 m2/s3) but possesses significantly higher spectral amplitudes in the 

frequency range 2π (0,2) rad/s. Thus, it can be expected that this record will produce large 

deformations in a structure with short to moderate period compared to the first acceleration. 

We verify this observation below. 
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Consider three SDOF buildings of natural frequency of 0.13, 0.21, and 0.41 Hz. The yield 

displacement and yield strength are taken as 10.0=yu m and 410=yf  N for the three 

structures and a viscous damping of 0.05 damping ratio is adopted. The material nonlinearity 

is modeled using elastic-plastic stress-strain relation. Nonlinear dynamic analysis is carried 

out for each structure subjected to a single acceleration using the Newmark β-method (α = 1/2, 

β = 1/6, △t = 0.004). All records were normalized to the same Arias intensity of 6.00 m2/s3. 

The Park and Ang damage index for each structure driven by the ground acceleration is 

calculated as follows (Park et al., 1985): 
 

uyy

H

u

max

uy

H

u

max
PA μuf

Eβ
μ
μ

uf
Eβ

u
uDI +=+=                      (18) 

Here maxu  and HE are the maximum displacement and dissipated hysteretic energy 

(excluding elastic energy) under the earthquake (Abbas 2006). uμ  is the ultimate yield 

ductility capacity under monotonic loading and β  is a positive constant that weights the 

effect of cyclic loading on structural damage (taken as 6 and 0.15). The numerical results on 

DIPA are provided in Table 4. From the numerical results it is evident that the identified 

resonant acceleration (Cape Mendocino) produces more damage than the Landers acceleration. 

In fact, the three structures are damaged beyond repair (DIPA > 0.40) by the first acceleration 

while they sustain the second acceleration with repairable damage (DIPA < 0.40) (Park et al., 

1985). The same observation applies to the ductility factor. 

We further examine the measures developed in this study for the four groups of earthquake 

records listed in Table 5. These records include near-fault accelerograms measured at rock and 

soil sites, and short-duration and long-duration earthquakes (PEER 2005). The selection of 

records for different soil conditions and for different earthquake durations is meant for 

examining the robustness of the proposed measures to different earthquake characteristics. 

The two horizontal accelerations are considered in the numerical analyses. Table 5 provides 

information on these records. Note that all records are scaled to the same Arias intensity. 

The numerical results on entropy and dispersion indices for each of these earthquake 
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accelerations are provided in Table 5. The results reveal that the entropy and the dispersion 

indices correlate well and that they both successfully identify resonant accelerograms. It is 

seen that the narrow-band records possess the smallest entropy and dispersion indices (e.g., 

1995 Kobe (OSAJ) and 1994 Northridge (Sylmar) earthquakes) while the accelerations that 

are rich in frequency content (e.g. 1992 Landers and 1986 N. Palm spring earthquakes) 

possess the largest entropy and dispersion. It is also evident that the two acceleration 

components of the same earthquake have different entropy and dispersion indices. This 

observation is consistent with the findings of Anderson and Bertero (1987). The 

short-duration earthquakes are seen to possess higher entropy and dispersion and sharp energy 

jump compared to the long-duration earthquakes. It is also remarkable that near-fault records 

measured on soil site have smaller entropy and dispersion indices compared to near-fault 

records measured on rock soil. This may be attributed to the site soil effects that can 

significantly filter the amplitude and frequency content of the ground motion for soil sites. 
 

CONCLUSIONS 

This paper develops measures to identify resonance of earthquake ground motions. The 

entropy and dispersion indices are shown to successfully identify resonance of probabilistic 

earthquake models and recorded accelerograms. It is shown that resonant accelerations exist 

regardless of soil site condition and source characteristics. It is also shown that the 

band-limited and the narrow-band signals provide upper and lower bounds on entropy and 

dispersion indices of the Kanai-Tajimi acceleration models. Similarly, resonant harmonic time 

functions and broad-band harmonic functions provide bounds on the frequency content of 

recorded accelerograms. Measures that are based on deterministic approach are also shown to 

be good descriptors of resonance of ground motions. 

The usefulness of the measures developed in this paper is demonstrated by identifying 

resonant accelerations at sites with different soil conditions and earthquake characteristics. 

Such accelerations are shown to produce large structural damage when their dominant 

frequency is close to the structure fundamental frequency. Numerical verifications using 
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nonlinear dynamic analysis and Park and Ang damage indices are provided. 
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Fig. 1: (a) Evolutionary Kanai-Tajimi PSDF (b) Entropy function 
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Fig. 2: (a) PSD function for ground acceleration models for medium soil (b) Kanai-Tajimi 
PSD function for different soil types. 
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Fig. 3: PSD function for ground acceleration (a) narrow-band (b) band-limited (c) 
Kanai-Tajimi (d) 1992 Cape Mendocino (Petrolia) earthquake. 
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Fig. 5: Power spectral density function: records at rock soil site. 
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Fig. 6: Power spectral density function: records at stiff soil site. 
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Fig. 7: Power spectral density function: records at medium soil site. 
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Fig. 8: Power spectral density function: records at soft soil site. 
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Table 1: Resonance measures for alternative earthquake models and different soil types. 

Soil type 
Soft soil Medium soil Stiff soil Rock soil Earthquake Model 

Entropy 
index 

Bandwidth 
factor 

Entropy 
index 

Bandwidth 
factor 

Entropy 
index 

Bandwidth 
factor 

Entropy 
index 

Bandwidth 
factor 

Narrow-band* 

Kanai-Tajimi** 

Band-limited 

1992 Cape Mend. 
(Petrolia) 

0.0294 

0.2122 

0.6040 

- 

0.0785 

4.0869 

45.2997 

- 

0.0294 

0.4080 

0.6040 

0.3215 

0.0785 

14.7227 

45.2997 

5.7164 

0.0294 

0.5228 

0.6040 

- 

0.0785 

26.2513 

45.2997 

- 

0.0294 

0.5704 

0.6040 

- 

0.0785 

34.1420 

45.2997 

- 

* ππππωc 9 ,6 ,3 ,= for soft, medium, stiff and rock soil, respectively. 
** ππππωg 9 ,6 ,3 ,= and 80.0 ,60.0 ,40.0 ,20.0=gη  for soft, medium, stiff and rock soil, respectively. 
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Table 2: Frequency content measures for recorded ground motion. 

Earthquake (station, record) 
cω (Hz) efω  (Hz) efω * maxω (Hz) 

1940 Elcentro (El Centro#9, H180) 

1966 Parkfield (Cholame#2, C065)  

1992 Landers (Lucerne, LCN000) 

1995 Kobe (Takatori, TAK000) 

1999 Chichi (ALS, ALS0) 

13.53 

8.18 

23.05 

6.75 

3.83 

43.92 

28.85 

46.69 

31.49 

16.52 

0.88 

0.58 

0.93 

0.63 

0.33 

5.88 

8.24 

28.52 

4.03 

1.74 
* Equation (4), 00 =Ω , 50=Ωu  Hz. 
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Table 3: Information on earthquake records and entropy and bandwidth indices for different soil conditions [32]. 

Soil type    
(vs m/s) 

Earthquake (station) M * Ep. dis.  
(km) 

PGA (g) 
V /  H1 /  H2

IA
** (m2/s3) 

V  / H1  / H2
 

Dur. 
(s) 

Ef. Bandwidth 
V  / H1  / H2

Entropy*** 

V  / H1  / H2
 

Band. Factor**** 

V  / H1  / H2 

Rock 
vs > 750 

1971 San Fernando (Lake Hug. #9)
1989 Loma Prieta (Gilory #1) 
1992 Cape Mendocino (CM) 
1992 Landers (Lurcene) 
1999 Kocaeli (ERD) 
1999 Chichi (TAP051) 

6.6
6.9
7.1
7.3
7.4
7.6

23.10 
28.64 
10.36 
44.02 
47.03 

152.71

0.09/0.16/0.13
0.21/0.41/0.47
0.75/1.50/1.04
0.82/0.72/0.78
0.20/0.24/0.14
0.04/0.06/0.11

0.50/0.94/0.67 
1.85/6.59/10.49 

8.59/37.19/14.91 
51.37/41.10/43.46

1.16/3.43/2.00 
0.27/0.81/1.44 

34.89 
39.95 
30.00 
48.13 
28.00 
90.00 

0.63/0.57/0.54
0.64/0.34/0.42
0.44/0.34/0.39
0.79/0.77/0.81
0.48/0.23/0.24
0.22/0.17/0.17

0.49/0.70/0.66
0.47/0.62/0.60
0.42/0.63/0.58
0.62/0.68/0.71
0.67/0.63/0.58
0.46/0.43/0.49

1.46/0.83/0.90 
1.50/1.03/0.98 
1.64/1.03/0.98 
0.29/0.41/0.56 
0.84/1.18/0.89 
0.84/0.90/0.81 

Stiff soil 
360 < vs ≤ 750

1989 Loma Prieta (Gilory #6) 
1992 Cape Mendocino (Fort. Blvd)
1992 Landers (DH Springs) 
1995 Kobe (0KJMA) 
1999 Kocaeli (Arcelik) 
1999 Chichi (ALS) 

6.9
7.1
7.3
6.9
7.4
7.6

35.47 
29.55 
27.33 
18.27 
53.68 
37.83 

0.10/0.13/0.17
0.05/0.12/0.11
0.17/0.17/0.15
0.34/0.82/0.60
0.09/0.22/0.15
0.07/0.18/0.16

0.61/1.39/2.76 
0.34/1.63/1.49 
3.61/4.41/4.23 

11.66/52.40/33.94
0.50/1.81/1.36 
1.26/6.00/5.74 

39.96 
44.00 
50.00 
48.00 
30.00 
59.00 

0.38/0.29/0.19
0.33/0.17/0.16
0.40/0.26/0.24
0.22/0.12/0.14
0.65/0.34/0.37
0.24/0.14/0.15

0.37/0.50/0.43
0.34/0.48/0.45
0.64/0.57/0.71
0.60/0.46/0.46
0.77/0.61/0.63
0.48/0.42/0.47

1.58/1.09/1.21 
1.53/1.24/1.14 
0.82/0.88/0.81 
0.76/0.57/0.63 
0.79/0.52/1.10 
0.94/0.78/0.69 

Medium soil 
180 ≤ vs ≤ 360

1942 Borrego (Elcentro #9) 
1960 Central Calif. (Hollister CH) 
1992 Big Bear (SBE & H) 
1992 Cape Mendocino (Petrolia) 
1999 Chichi (CHY006) 
1999 Chichi (CHY024) 

6.5
5.0
6.4
7.1
7.6
7.6

57.79 
8.01 
45.51 
4.51 
40.47 
24.10 

0.04/0.07/0.10
0.03/0.04/0.06
0.07/0.09/0.10
0.16/0.59/0.66
0.20/0.36/0.35
0.15/0.18/0.28

0.08/0.53/0.39 
0.06/0.12/0.26 
0.65/1.70/1.83 

2.46/21.33/23.86 
3.98/12.70/9.35 
11.41/7.46/4.33 

40.00 
40.00 

100.00
36.00 

150.00
90.00 

0.46/0.24/0.23
0.17/0.13/0.15
0.38/0.23/0.26
0.32/0.33/0.33
0.45/0.21/0.17
0.29/0.22/0.19

0.48/0.40/0.43
0.33/0.35/0.45
0.54/0.45/0.53
0.46/0.58/0.53
0.45/0.45/0.44
0.51/0.53/0.49

1.46/0.74/0.85 
0.49/0.57/0.55 
0.69/1.03/0.88 
1.42/0.89/0.90 
0.71/0.64/0.66 
1.03/0.81/0.73 

Soft soil    
vs<180 

1979 Imperial Valley (Elcentro #3)
1981 Westmorland (SSW Rd.) 
1989 Loma Prieta (Apeel2 RC) 
1994 Northridge (MB Rd.) 
1995 Kobe (Kakogawa) 
1999 Kocaeli (Ambarli) 

6.5
5.8
6.9
6.7
6.9
7.4

28.65 
8.62 
63.49 
47.11 
24.20 
112.26 

0.13/0.27/0.22
0.21/0.20/0.18
0.08/0.27/0.22
0.08/0.18/0.13
0.16/0.25/0.35
0.08/0.25/0.18

1.32/7.08/4.26 
2.05/3.26/3.20 
0.58/7.82/4.44 
0.41/2.02/1.20 

1.75/6.44/10.54 
0.86/6.28/7.74 

39.55 
28.75 
35.83 
21.83 
40.96 

150.41

0.48/0.26/0.25
0.93/0.33/0.35/
0.20/0.10/0.10
0.26/0.19/0.21
0.44/0.23/0.22
0.40/0.10/0.10

0.20/0.59/0.58
0.70/0.51/0.57
0.61/0.32/0.31
0.59/0.54/0.58
0.68/0.54/0.51
0.35/0.37/0.37

2.50/0.85/0.92 
0.67/1.04/0.99 
0.71/1.04/0.57 
0.46/0.56/0.77 
0.84/0.82/0.88 
1.11/0.90/0.76 

* M = Richter’s magnitude. 
** ∫

∞
=

0
2)]([ dttgxAI  (Arias intensity). 

*** Entropy index calculated from Eq. (5). 
**** Bandwidth factor calculated from Eq. (9). 
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Table 4: Ductility factor and damage index for SDOF inelastic structure subjected to ground acceleration. 

Structure fundamental frequency 
f = 0.13 Hz f = 0.21 Hz f = 0.41 Hz Earthquake (station) 

Ductility 
factor 

Damage 
index 

Ductility 
factor 

Damage 
index 

Ductility 
factor 

Damage 
index 

1992 Cape Mendocino (CM) 

1992 Landers (Lurcene) 

4.39 

0.93 

0.74 

0.12 

7.09 

0.60 

1.05 

0.08 

1.41 

0.43 

0.19 

0.05 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 32

 
 
 
Table 5: Information on earthquake records and entropy and dispersion indices for different soil conditions (PEER 2005). 

Group type Earthquake (station) MW PGA (g) IA
* (m2/s3) Duration  (s) Ef. Bandwidth   

H1  / H2 
Entropy index**

H1  / H2 
Dispersion index *** 

H1  / H2 

Near-fault  
(rock) 

1992 Landers (Lucerne) 
1992 Cape Mendocino (CM) 
1995 Kobe (JMA) 
1989 Loma Prieta (LG pres. center) 

7.2 
7.0 
6.9 
6.9 

0.79/0.72
1.50/1.04
0.82/0.60
0.61/0.56

41.10/43.46 
37.19/14.91 
52.40/33.94 
49.12/19.28 

48.13 
30.00 
48.00 
24.97 

0.77/0.81 
0.39/0.34 
0.13/0.14 
0.29/0.34 

0.68/0.71 
0.63/0.58 
0.46/0.46 
0.48/0.56 

27.90/34.85 
21.34/15.93 
7.73/8.30 

17.79/22.29 

Near-fault 
(soil) 

1978 Tabas (Tabas) 
1992 Cape Mendocino (Petrolia) 
1994 Northridge (Rinaldi) 
1994 Northridge (Sylmar converter) 
1979 Imperial valley (Meloland) 

7.4 
7.0 
6.7 
6.7 
6.5 

0.84/0.85
0.59/0.66
0.84/0.85
0.61/0.90
0.31/0.30

46.03/24.74 
21.33/23.86 
72.09/72.01 
36.42/32.99 
5.36/6.74 

32.84 
36.00 
14.95 
40.00 
39.99 

0.28/0.26 
0.33/0.32 
0.23/0.35 
0.22/0.19 
0.17/0.13 

0.67/0.60 
0.58/0.53 
0.59/0.64 
0.33/0.37 
0.48/0.41 

27.64/17.30 
17.51/14.82 
23.01/28.15 
5.27/9.23 
9.88/9.71 

Short-duration 

1983 Caolinga (Anticline Ridge) 
1970 Lytle Creek (Devils canyon) 
1986 N. Palm Spring (SR Mountain) 
1975 Northern Calif. (CM Petrolia) 
1971 San Fernando (Gormon-Oso) 
1984 Morgan Hill (Lick observatory) 

5.0 
5.4 
6.0 
5.2 
6.6 
6.2 

0.67/0.58
0.15/0.15/
0.10/0.10
0.18/0.12
0.11/0.08
0.05/0.08

4.42/3.90 
0.65/0.57 
0.29/0.39 
0.74/0.55 
0.37/0.28 
0.15/0.50 

9.84 
13.61 
10.40 
14.61 
9.23 
16.00 

0.36/0.42 
0.34/0.43 
0.97/0.99 
0.28/0.22 
0.21/0.23 
0.20/0.18 

0.55/0.54 
0.40/0.46 
0.79/0.82 
0.58/0.53 
0.64/0.70 
0.58/0.53 

18.09/24.87 
20.33/24.56 
70.27/70.42 
15.26/12.53 
17.68/13.76 
15.93/17.05 

Long-duration 

1992 Big Bear (SB-E & hospitality) 
1995 Kobe (OSAJ) 
1999 Kocaeli (Maslak) 
1999 Chichi (CHY034) 

6.4 
6.9 
7.4 
7.6 

0.10/0.10
0.08/0.06
0.25/0.19
0.31/0.25

1.70/1.83 
1.44/1.22 
6.28/7.74 
11.35/9.12 

100.00 
120.00 
150.41 
250.00 

0.23/0.26 
0.14/0.16 
0.10/0.10 
0.12/0.13 

0.45/0.53 
0.19/0.17 
0.37/0.37 
0.38/0.35 

11.26/14.12 
1.89/1.40 
5.68/5.10 
4.38/4.16 

* ∫
∞

=
0

2)]([ dttgxAI  (Arias intensity). 

** Entropy index calculated from Eq. (8). 
*** Dispersion index calculated from Eq. (12). 


